
Building and Installing X11R6.6

April 4, 2001

Copyright © 1999,2000,2001 Compaq Computer Corporation
Copyright © 1999,2000,2001 Hewlett-Packard Company
Copyright © 1999,2000,2001 IBM Corporation
Copyright © 1999,2000,2001 Hummingbird Communications Ltd.
Copyright © 1999,2000,2001 Silicon Graphics, Inc.
Copyright © 1999,2000,2001 Sun Microsystems, Inc.
Copyright © 1998,1999,2000,2001 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files

(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,

publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided

that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copy-

right notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS

INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL

DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DAT A OR PROFITS, WHETHER

IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNEC-

TION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the

sale, use or other dealings in this Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

1. Introduction

This document is the installation notes that were provided with X.Org’s X11R6.6 release. If you’re build-

ing XFree86, it can be used as a rough guide. Be aware that most of the details are not targeted specifi-

cally at the current XFree86 source tree. XFree86-specific documentation can be found in the xc/pro-

grams/Xserver/hw/xfree86/doc directory and on-line at http://www.xfree86.org/current/. Some of the

documentation there is out of date, so also be aware of that. There is currently no up to date document

specifically targeted at building XFree86 from source.

2. Easy Build Instructions

This quick summary is no substitute for reading the full build instructions later in this document.

Edit xc/config/cf/site.def for local preferences. If you want to install and use the installation from some-

where other than /usr, change ProjectRoot. (Do not use DESTDIR.)

If you are cross compiling you will want to use DESTDIR to specify where the installation should take

place. Failure to do so will corrupt your native installation of X.

If you want to build with gcc uncomment the HasGcc2 line. If you have gcc, but not cc, please read the

full build instructions.

If some time has elapsed since the initial release of R6.6, check to see if any public patches have been

released. The source tar files may have been updated — check the patch-level line in the bug-report tem-

plate. If the source in the tar files has not been updated then get all the patches and apply them, following

the instructions at the top of each patch. Ignore the rebuild steps in the patch application instructions.

Check the appropriate vendor-specific .cf file in xc/config/cf/ to make sure that OSMajorVersion, OSMi-

norVersion, and OSTeenyVersion are set correctly for your system. On most systems imake will figure

these out automatically; but you may override them in your xc/config/cf/site.def if you want.

See if there is a BootstrapCFlags mentioned in the comments in the vendor-specific .cf file. (Most sys-

tems don’t hav e or need one. The BootstrapCFlags in sun.cf is for SunOS 4.0.x, so if you’re building on

SunOS 4.1.x or SunOS 5/Solaris 2 then BootstrapCFlags doesn’t apply.) If there isn’t one, cd to the xc

directory and type (in csh):

% make World >& world.log

If there is an applicable BootstrapCFlags, take its value and type:

% make World BOOTSTRAPCFLAGS="value" >& world.log

Do not call the output file ‘‘make.log’’ when doing ‘‘make World’’. After a successful build, you can

install with:

% make install >& install.log

You can install manual pages with:

% make install.man >& man.log

While the system is building (or if things fail), read the rest of these installation instructions.

3. Building and Installing R6.6

Historically the MIT X Consortium, The X Consortium, Inc., and X.Org sample implementation releases

1

X Window System Installation Version 11, Release 6.6

have always been source-code-only releases, and this release is no different.

3.1. Introduction

Every release of X has been progressively easier to configure, build, and install than the preceding

releases — and we believe this release is the easiest release to build yet. That notwithstanding, if things do

go amiss during the build we assume that you have the basic skills necessary, and the willingness, to

debug any errors that may occur in the build process. When you install, if you’re going to use xdm or

replace your system’s old X, we assume you have a basic understanding of your system’s initialization

process. For Remote Execution (RX, embedding) we assume that you understand the fundamentals of

HTTP, CGI, and HTML. If these assumptions are not correct then you should consider finding someone

who has proficiency in these areas to do the build and install for you.

After the release has been out for a while more up to date information about any newly-discovered prob-

lems may be found in the Fr equently Asked Questions posting, which appears monthly on the Usenet

newsgroup comp.windows.x and xpert mailing list. The FAQ is also available via anonymous FTP from

ftp://ftp.x.org/ in the file ftp://ftp.x.org/contrib/faqs/FAQ.Z, or possibly on one of X mirror sites.

3.2. Preparing Your Build System

The source is distributed in four gzip compressed UNIX Tape ARchive (tar) files. You will need about

230 Mb of disk space in order to unpack and build the release. Installing requires an additional 30-50 Mb

assuming you have shared libraries (80-100 Mb without).

On non-UNIX systems you’ll need a utility that can extract gzip compressed tar files to extract the

sources. There are several to chose from, we do not make recommendations about which one you should

use.

Release 6.6 sources are distributed among the tar files as follows:

xorg-1.tar contains ev erything in xc/ that isn’t in the other tar files

xorg-2.tar contains xc/fonts

xorg-3.tar contains xc/doc/specs, xc/util

xorg-4.tar contains xc/doc/hardcopy

If you define BuildFonts to NO in your site.def file, then you only need to unpack xorg-1.tar to build. If

you build fonts, then you will also need xorg-2.tar to build. If you already have the fonts from prior

releases you can use those instead of downloading them again. We presume that you know how to copy or

move them from your old source tree to the R6.6 source tree.

3.3. Unpacking the Distribution

Create a directory to hold the sources and cd into it:

% mkdir sourcedir

% cd sourcedir

Then for each tar file xorg−*.tar.gz, execute this:

% gunzip −c ftp-dir/xorg−N.tar.gz | tar xf −

2

X Version 11, Release 6.6 X Window System Installation

or if you have GNU’s tar (FreeBSD, NetBSD, OpenBSD, or Linux too)

% tar xzf ftp-dir/xorg−N.tar.gz

3.4. Applying Patches

If some time has elapsed since the initial release of R6.6, check to see if any public patches have been

released. The source tar files may have been updated — check the patch-level line in the bug-report tem-

plate. If the source in the tar files has not been updated then get all the patches and apply them, following

the instructions at the top of each patch. Ignore the rebuild steps in the patch application instructions.

See the section ‘‘Public Patches’’ later in this document.

Then continue here.

3.5. Configuration Parameters (Imake Variables)

This release, like all the releases before it, uses imake, a utility for creating system-specific Makefiles

from system-independent Imakefiles. Almost every directory in the release contains an Imakefile. Sys-

tem-specific configuration information is located in xc/config/cf/, which is used by the imake program

ev ery time a Makefile is generated in the source tree.

Most of the configuration work prior to building the release is to set parameters (imake variables) so that

imake will generate correct Makefiles. If you’re building on one of the supported systems almost no con-

figuration work should be necessary.

You should define your configuration parameters in xc/config/cf/site.def. We provide an empty site.def

file and a site.sample file. The site.sample file is a suggested site.def file — use it at your own risk.

Any public patches we release will never patch site.def, so you can be assured that applying a public-

patch will not corrupt your site.def file. On rare occasion you may need to make the change in your

vendor-specific .cf file; but you should avoid doing that if at all possible because any patch we might

release could conceivably patch your vendor-specific .cf file and your change may be lost or garbled. You

can override most of the things in your vendor-specific .cf file in your site.def file. (If you can’t, it’s a bug

— please file a bug-report.)

On the systems we use here, imake will automatically determine the OSMajorVersion, OSMinorVersion,

and OSTeenyVersion for your system. If your system isn’t one of the systems we build on here, or you

want to build for a different version of your operating system, then you can override them in the appropri-

ate entry in your site.def file.

The site.def file has two parts, one protected with ‘‘#ifdef BeforeVendorCF’’ and one with ‘‘#ifdef After-

VendorCF’’. The file is actually processed twice, once before the .cf file and once after. About the only

thing you need to set in the ‘‘before’’ section is HasGcc2; just about everything else can be set in the

‘‘after’’ section.

The site.sample also has commented out support to include another file, host.def. This scheme may be

useful if you want to set most parameters site-wide, but some parameters vary from machine to machine.

If you use a symbolic link tree, you can share site.def across all machines, and give each machine its own

copy of host.def.

The config parameters are listed in xc/config/cf/README, but here are some of the new or more com-

mon parameters that you may wish to set in your xc/config/cf/site.def.

3

X Window System Installation Version 11, Release 6.6

ProjectRoot

The destination where X will be installed. This variable needs to be set before you build, as some

programs that read files at run-time have the installation directory compiled in to them.

HasVarDirectory

Set to NO if your system doesn’t hav e /var or you don’t want certain files to be installed in VarDi-

rectory.

VarDirectory

The location of site editable configuration and run-time files. Many sites prefer to install their X

binaries on read-only media — either a disk slice (partition) that’s mounted read-only for added

security, an NFS volume mounted read-only for security and/or improved VM paging characteris-

tics, or from a live filesystem on a CD-ROM. In order to simplify things like installing app-default

files for locally built software, and allowing editing of miscellaneous configuration and policy files,

and to allow xdm to create its master Xauthority file, some directories under $ProjectRoot/lib/X11

are actually installed in /var/X11, and $ProjectRoot/lib/X11 contains symlinks to the directories in

/var/X11.

HasGcc2

Set to YES to build with gcc version 2.x instead of your system’s default compiler.

BuildXInputExt

Set to YES to build the X Input Extension. This extension requires device-dependent support in the

X server, which exists only in Xhp and XF86_* in the sample implementation.

DefaultUsrBin

This is a directory where programs will be found even if PATH is not set in the environment. It is

independent of ProjectRoot and defaults to /usr/bin. It is used, for example, when connecting from

a remote system via rsh. The rstart program installs its server in this directory.

InstallServerSetUID

Some systems require the X server to run as root to access the devices it needs. If you are on such a

system and will not be using xdm, you may set this variable to YES to install the X server setuid to

root; however the X.Org Group strongly recommends that you not install your server suid-root, but

that you use xdm instead. Talk to your system manager before setting this variable to YES.

InstallXdmConfig

By default set to NO, which suppresses installing xdm config files over existing ones. Leave it set to

NO if your site has customized the files in $ProjectRoot/lib/X11/xdm, as many sites do. If you

don’t install the new files, merge any changes present in the new files.

MotifBC

Causes Xlib and Xt to work around some bugs in older versions of Motif. Set to YES only if you

will be linking with Motif version 1.1.1, 1.1.2, or 1.1.3.

GetValuesBC

Setting this variable to YES allows illegal XtGetValues requests with NULL ArgVal to usually suc-

ceed, as R5 did. Some applications erroneously rely on this behavior. Support for this will be

removed in a future release.

The following vendor-specific .cf files are in the release but have not been tested recently and hence prob-

ably need changes to work: apollo.cf, bsd.cf, convex.cf, DGUX.cf, luna.cf, macII.cf, Mips.cf, moto.cf,

Oki.cf, pegasus.cf, x386.cf. Amoeba.cf is known to require additional patches.

The file xc/lib/Xdmcp/Wraphelp.c, for XDM-AUTHORIZATION-1, is not included in this release. See

ftp://ftp.x.org/pub/R6.6/xdm-auth/README.

4

X Version 11, Release 6.6 X Window System Installation

3.6. System Build Notes

This section contains hints on building X with specific compilers and operating systems.

If the build isn’t finding things right, make sure you are using a compiler for your operating system. For

example, a pre-compiled gcc for a different OS (e.g. as a cross-compiler) will not have right symbols

defined, so imake will not work correctly.

3.6.1. gcc

X will not compile on some systems with gcc version 2.5, 2.5.1, or 2.5.2 because of an incorrect declara-

tion of memmove() in a gcc fixed include file.

If you are using a gcc version prior to 2.7 on Solaris x86, you need to specify

BOOTSTRAPCFLAGS="−Dsun" in the ‘‘make World’’ command.

If you’re building on a system that has an unbundled compiler, e.g. Solaris 2.x, and you do not have the

cc compiler, you need to contrive to hav e cc in your path in order to bootstrap imake. One way to do this

is to create a symlink cc that points to gcc.

% cd /usr/local/bin; ln −s path-to-gcc cc

Once imake has been built all the Makefiles created with it will explicitly use gcc and you can remove the

symlink. Another way around this is to edit xc/config/imake/Makefile.ini to specify gcc instead of cc.

3.6.2. Other GNU tools

Use of the GNU BinUtils assembler, as, and linker, ld, is not supported — period! If you have them

installed on your system you must rename or remove them for the duration of the R6.6 build. (You can

restore them afterwards.)

The system-supplied make works just fine for building R6.6 and that’s what we suggest you use. If you’ve

replaced your system’s make with GNU make then we recommend that you restore the system make for

the duration of your R6.6 build. After R6.6 is done building you can revert to GNU make. GNU make on

most systems (except Linux, where it is the default make) is not a supported build configuration. GNU

make may work for you, and if it does, great; but if it doesn’t we do not consider it a bug in R6.6. If, after

this admonition, you still use GNU make and your build fails, reread the above, and retry the build with

the system’s make before you file a bug-report.

3.6.3. IBM AIX 4.x

On AIX 4.x, the file lib/font/Type1/objects.c must be compiled without optimization (−O) or the X

server and fontserver will exit when Type 1 fonts are used.

3.6.4. SunOS 4.0.x

SunOS 4.0 and earlier need BOOTSTRAPCFLAGS=-DNOSTDHDRS because it does not have unistd.h

and stdlib.h. Do not supply a BOOTSTRAPCFLAGS when building any SunOS 4.1 or 5.x (Solaris 2) ver-

sion.

5

X Window System Installation Version 11, Release 6.6

3.6.5. Linux

On Linux systems imake has preliminary support to automatically determine which Linux distribution

you’re using. At this time it only automatically detects S.u.S.E. Linux. On other Linux systems you

should set the LinuxDistribution parameter in your xc/config/cf/site.def — see the xc/config/cf/linux.cf

file for the list of valid values. On Linux systems imake will also automatically determine which version

of libc and binutils your system has. You may override these in your xc/config/cf/site.def file.

Many distributions of Linux have poor or no support for ANSI/POSIX/ISO C locale support. If your

Linux distribution is one of these you should make certain that the imake variable LinuxLocaleDefines is

set to -DX_LOCALE so that compose processing and other internationalization features will work cor-

rectly. To help decide if you should use -DX_LOCALE, look in /usr/share/locale — if it’s empty, you

should probably use the -DX_LOCALE define.

3.6.6. Microsoft Windows NT

All of the base libraries are supported, including multi-threading in Xlib and Xt, but some of the more

complicated applications, specifically xterm and xdm, are not supported.

There are also some other rough edges in the implementation, such as lack of support for non-socket file

descriptors as Xt alternate inputs and not using the registry for configurable parameters like the system

filenames and search paths.

The Xnest server has been made to run on NT; although it still requires a real X server for output still. A

real X server can not be built from these sources — in order to display X applications on a MS-Windows

host you will have to acquire a real X Server.

You hav e several choices for imake’s RmTreeCmd. Look at the possible definitions in the xc/con-

fig/cf/Win32.cf file, choose one that’s right for you, and add it to your xc/config/cf/site.def file.

3.7. The Build

For all the supported UNIX and UNIX-like systems you can simply type (in csh):

% make World >& world.log

You can call the output file something other than ‘‘world.log’’; but don’t call it ‘‘make.log’’ because files

with this name are automatically deleted during the initial ‘‘cleaning’’ stage of the build.

The build can take sev eral hours on older systems, and may take as little as an hour on the faster systems

that are available today. On UNIX and UNIX-like systems you may want to run it in the background and

keep a watch on the output. For example:

% make World >& world.log &

% tail −f world.log

If something goes wrong, the easiest thing is to correct the problem and start over again, i.e. typing ‘‘make

World’’.

3.7.1. UNIX and UNIX-like systems

Check your vendor-specific .cf file; if it doesn’t hav e BootstrapCFlags that apply to your version of the

6

X Version 11, Release 6.6 X Window System Installation

operating system then type (in csh):

% make World >& world.log

Otherwise type (in csh):

% make World BOOTSTRAPCFLAGS="value" >& world.log

None of the supported operating systems need to use BOOTSTRAPCFLAGS.

3.7.2. Microsoft Windows NT

On NT, make certain your Path, Include, and Lib environment variables are set accordingly. For example

here we use the command line compiler in VC++ 4.0 Standard Edition, which is installed in C:\MSDE-

VSTD. To setup the environment type:

> set Path=old-path;C:\MSDEVSTD\bin;C:\path-to-RmTreeCmd

> set Include=C:\MSDEVSTD\include

> set Lib=C:\MSDEVSTD\lib

Then to build, at the prompt, type:

C:\> nmake World.Win32 > world.log

3.8. Installing X

After the build has successfully completed you can install the software by typing the following as root:

% make install >& install.log

or on Microsoft Windows NT

C:\> nmake install > install.log

Again, you might want to run this in the background and use tail to watch the progress.

You can install the manual pages by typing the following as root:

% make install.man >& man.log

3.9. Shared Libraries

The version number of some of the shared libraries has been changed. On SunOS 4, which supports

minor version numbers for shared libraries, programs linked with the R6.6 libraries will use the new

libraries with no special action required.

On most other modern operating systems the version portion of the library name, i.e. "6.1" portion of

"libX11.so.6.1" is a string. Even if it’s only one character long, e.g. "1" (as in libX11.so.1) it’s still a

string. This string uniquely identifies and distinguishes one version of the library from another. Even

though all the libraries in this release are compatible with the libraries from previous releases, and there’s

otherwise no reason to change the version string, we do it to identify which source release the libraries

were built from.

7

X Window System Installation Version 11, Release 6.6

An old program that was linked with libXext.so.6.3 won’t run if you delete libXext.so.6.3 and install

libXext.so.6.4 in its place. In general on these systems you have the following choices:

1. Keep the old versions of the libraries around.

2. Relink all applications with the new libraries.

3. Create a symlink using the old name which points to the new name.

For example, to have programs that were linked against libXext.so.6.3 use libXext.so.6.4, make this

symlink:

% cd $ProjectRoot/lib

% ln −s libXext.so.6.4 libXext.so.6.3

On some distributions of Linux the run-time loader is broken — requiring that the library’s internal SON-

AME match the filename — and the symlink solution won’t work. We recommend that you get a new run-

time loader which is not broken or recompile your run-time loader to not require that the SONAME

match.

3.10. Setting Up xterm

If your /etc/termcap and /usr/lib/terminfo databases do not have correct entries for xterm, use the sample

entries provided in the directory xc/programs/xterm/. System V users may need to compile and install

the terminfo entry with the tic utility.

Since each xterm will need a separate pseudoterminal, you need a reasonable number of them for normal

execution. You probably will want at least 32 on a small, multiuser system. On most systems, each pty has

two devices, a master and a slave, which are usually named /dev/tty[pqrstu][0-f] and /dev/pty[pqrstu][0-f].

If you don’t hav e at least the ‘‘p’’ and ‘‘q’’ sets configured (try typing ‘‘ls /dev/?ty??’’), you should have

your system administrator add them. This is commonly done by running the MAKEDEV script in the /dev

directory with appropriate arguments.

3.11. Starting Servers Automatically at System Boot

The xfs and xdm programs are designed to be run automatically at system startup. Please read the manual

pages for details on setting up configuration files; reasonable sample files are in xc/programs/xdm/con-

fig/ and xc/programs/xfs/.

Since xfs can serve fonts over the network, you do not need to run a font server on every machine with an

X display. You should start xfs before xdm, since xdm may start an X server which is a client of (depen-

dent on) the font server.

3.11.1. On BSD-based systems using /etc/rc or /etc/rc.local

If your system uses an /etc/rc or /etc/rc.local file at boot time, you can usually enable these programs by

placing the following at or near the end of the file:

if [−f $ProjectRoot/bin/xfs]; then

$ProjectRoot/bin/xfs & echo −n ’ xfs’

fi

8

X Version 11, Release 6.6 X Window System Installation

if [−f $ProjectRoot/bin/xdm]; then

$ProjectRoot/bin/xdm; echo −n ’ xdm’

fi

On later versions of FreeBSD the preferred way of doing this is to create the directory $Project-

Root/etc/rc.d. Add this directory to the local_startup variable defined in /etc/rc.conf, and then create short

scripts in this directory to start xfs and xdm.

If you are unsure about how system boot works, or if your system does not use /etc/rc, consult your sys-

tem administrator for help.

3.11.2. On Linux systems

Most Linux distributions have an /etc/inittab entry specifically for xdm. Depending on your distribution

this may be run-level three, four, or five. To use xdm, edit /etc/inittab and find the line which contains

initdefault and change it from 2 to the appropriate run-level

You Linux distribution may already have a script to start xdm at a particular run-level. For example on

S.u.S.E. Linux 5.0 there is the file /sbin/init.d/xdm, and the symlink /sbin/init.d/rc3.d/S30xdm which

points to /sbin/init.d/xdm. Change /sbin/init.d/xdm to use $ProjectRoot/bin/xdm. You can use the xdm

script as a model write an xfs script. Depending on your Linux distribution you may find these files in

/etc/init.d instead of /sbin/init.d.

3.11.3. On Digital Unix, HPUX 10, and SVR4 systems

Most systems run xdm by default at some particular run-level of the system. There is a master init.d file

and a run-level symlink rc?.d that points to the master init.d file:

Operating System rc?.d symlink init.d file

Digital Unix 4.0 /sbin/rc3.d/S95xlogin /sbin/init.d/xlogin

HPUX 10.20 /sbin/rc3.d/S800xdm /sbin/init.d/xdm

Solaris 2.[0-4]

Solaris 2.5 /etc/rc3.d/S99xdm /etc/init.d/xdm.rc

Solaris 2.6 /etc/rc2.d/S99dtlogin /etc/init.d/dtlogin

IRIX 6.2 /etc/rc2.d/S98xdm /etc/init.d/xdm

Unixware /etc/rc2.d/S69xdm /etc/init.d/xdm

In general you can edit the init.d file to use $ProjectRoot/bin/xdm. You can use the xdm file as a model to

write an /etc/rc?.d/S??xfs file to start xfs. Some systems may already have files to start xfs. Starting in

Solaris 2.5 Sun uses inetd to start xfs — you should remove the xfs entries from /etc/inetd.conf and

/etc/services before adding xfs to the run-level files.

3.11.4. On Unix System V-based systems

On systems with a /etc/inittab file, you can edit this file to add the lines

xfs:3:once:$ProjectRoot/bin/xfs

xdm:3:once:$ProjectRoot/bin/xdm

9

X Window System Installation Version 11, Release 6.6

3.12. Using OPEN LOOK applications

You can use the X11R6.x Xsun server with OPEN LOOK applications; but you must pass the

−swapLkeys flag to the server on startup, or the OPEN LOOK Undo, Copy, Paste, Find, and Cut keys

may not work correctly. For example, to run Sun’s OpenWindows 3.3 desktop environment with an

X11R6 server, use the command:

% openwin −server $ProjectRoot/bin/Xsun −swapLkeys

The keysyms reported by keys on the numeric keypad have also changed since X11R5; if you find that

OpenWindows applications do not respond to keypad keys and cursor control keys when using an R6

server, you can remap the keypad to generate R5 style keysyms using the following xmodmap commands:

keysym Pause = F21

keysym Print = F22

keysym Break = F23

keysym KP_Equal = F24

keysym KP_Divide = F25

keysym KP_Multiply = F26

keysym KP_Home = F27

keysym KP_Up = Up

keysym KP_Prior = F29

keysym KP_Left = Left

keycode 100 = F31

keysym KP_Right = Right

keysym KP_End = F33

keysym KP_Down = Down

keysym KP_Next = F35

keysym KP_Insert = Insert

keysym KP_Delete = Delete

3.13. Rebuilding after Patches

Eventually you are going to make changes to the sources, for example by applying any public patches that

may be released or to fix any bugs you may have found.

If only source files are changed, rebuild by going to the base of your source tree xc and typing:

% make >& make.log

If there are imake configuration file changes, the best thing to do is type:

% make Everything >& every.log

‘‘Everything’’ is similar to ‘‘World’’ in that it rebuilds every Makefile, but unlike ‘‘World’’ it does not

delete the existing objects, libraries, and executables, and only rebuilds what is out of date.

3.14. Formatting the Documentation

The PostScript files in xc/doc/hardcopy can be generated from the sources in xc/doc/specs. Most of the

documentation is in troff using the −ms macros. The easiest way to format it is to use the Imakefiles

10

X Version 11, Release 6.6 X Window System Installation

provided.

Set the name of your local troff program by setting the variable Tr offCmd in xc/config/cf/site.def. Then

build the Makefiles:

cd xc/doc

make SUBDIRS=specs Makefiles

Finally, go to the directory you are interested in and type ‘‘make’’ there. This command will generate .PS

files. You can also generate text files by specifying the document name with a .txt extension as a make tar-

get, e.g., ‘‘make icccm.txt’’.

4. Public Patches

The X.Org Group may from time to time issue public patches for this release to fix any serious problems

that are discovered. Such fixes are a subset of fixes available to X.Org members. Public patches are avail-

able via anonymous FTP from ftp://ftp.x.org/pub/R6.6/fixes, or from your local X mirror site. Check the

site closest to you first.

You can determine which public patches have already been applied to your source tree by examining the

‘‘VERSION’’ line of xc/bug-report. The source in the tar files you have may already have some patches

applied; you only need to apply later patches. If you try to apply patches out of order or apply patches that

are already in your tree, patch will tell you that you have the wrong version and not apply the patch.

Source for the patch program is in xc/util/patch/. The patch program included on some systems may not

support all the options this version has. If you have problems applying patches, or if you’re otherwise in

doubt, use this version.

11

X Window System Installation Version 11, Release 6.6

12

Table of Contents

1. Introduction . 1

2. Easy Build Instructions . 1

3. Building and Installing R6.6 . 1

3.1. Introduction . 2

3.2. Preparing Your Build System . 2

3.3. Unpacking the Distribution . 2

3.4. Applying Patches . 3

3.5. Configuration Parameters (Imake Variables) 3

3.6. System Build Notes . 5

3.6.1. gcc . 5

3.6.2. Other GNU tools . 5

3.6.3. IBM AIX 4.x . 5

3.6.4. SunOS 4.0.x . 5

3.6.5. Linux . 6

3.6.6. Microsoft Windows NT . 6

3.7. The Build . 6

3.7.1. UNIX and UNIX-like systems . 6

3.7.2. Microsoft Windows NT . 7

3.8. Installing X . 7

3.9. Shared Libraries . 7

3.10. Setting Up xterm . 8

3.11. Starting Servers Automatically at System Boot 8

3.11.1. On BSD-based systems using /etc/rc or /etc/rc.local 8

3.11.2. On Linux systems . 9

3.11.3. On Digital Unix, HPUX 10, and SVR4 systems 9

3.11.4. On Unix System V-based systems 9

3.12. Using OPEN LOOK applications . 10

3.13. Rebuilding after Patches . 10

3.14. Formatting the Documentation . 10

4. Public Patches . 11

i

