
Xmu Library

X Version 11, Release 6.4

‘‘Don’t ask.’’

Copyright © 1989 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the ‘‘Software’’), to deal in the Software without restriction, including without limita-

tion the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Soft-

ware, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions

of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X

CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-

TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or other-

wise to promote the sale, use or other dealings in this Software without prior written authorization from the

X Consortium.

X Window System is a trademark of X Consortium, Inc.

-2-

1. Introduction

The Xmu Library is a collection of miscellaneous (some might say random) utility functions that have been

useful in building various applications and widgets. This library is required by the Athena Widgets.

2. Atom Functions

The use the functions and macros defined in this section, you should include the header file

<X11/Xmu/Atoms.h>.

XA_ATOM_PAIR(d)

XA_CHARACTER_POSITION(d)

XA_CLASS(d)

XA_CLIENT_WINDOW(d)

XA_CLIPBOARD(d)

XA_COMPOUND_TEXT(d)

XA_DECNET_ADDRESS(d)

XA_DELETE(d)

XA_FILENAME(d)

XA_HOSTNAME(d)

XA_IP_ADDRESS(d)

XA_LENGTH(d)

XA_LIST_LENGTH(d)

XA_NAME(d)

XA_NET_ADDRESS(d)

XA_NULL(d)

XA_OWNER_OS(d)

XA_SPAN(d)

XA_TARGETS(d)

XA_TEXT(d)

XA_TIMESTAMP(d)

XA_USER(d)

XA_UTF8_STRING(d)

These macros take a display as argument and return an Atom . The name of the atom is obtained from the

macro name by removing the leading characters ‘‘XA_’’. The Atom value is cached, such that subsequent

requests do not cause another round-trip to the server.

AtomPtr XmuMakeAtom(name)

char* name;

name specifies the atom name

This function creates and initializes an opaque object, an AtomPtr , for an Atom with the given name.

XmuInternAtom can be used to cache the Atom value for one or more displays.

char *XmuNameOfAtom(atom_ptr)

AtomPtr atom_ptr;

atom_ptr specifies the AtomPtr

The function returns the name of an AtomPtr.

Atom XmuInternAtom(d, atom_ptr)

Display *d;

AtomPtr atom_ptr;

-3-

d specifies the connection to the X server

atom_ptr specifies the AtomPtr

This function returns the Atom for an AtomPtr . The Atom is cached, such that subsequent requests do

not cause another round-trip to the server.

char *XmuGetAtomName(d, atom)

Display *d;

Atom atom;

d specifies the connection to the X server

atom specifies the atom whose name is desired

This function returns the name of an Atom . The result is cached, such that subsequent requests do not

cause another round-trip to the server.

void XmuInternStrings(d, names, count, atoms)

Display *d;

String *names;

Cardinal count;

Atom *atoms;

d specifies the connection to the X server

names specifies the strings to intern

count specifies the number of strings

atoms returns the list of Atom values

This function converts a list of atom names into Atom values. The results are cached, such that subsequent

requests do not cause further round-trips to the server. The caller is responsible for preallocating the array

pointed at by atoms.

3. Error Handler Functions

To use the functions defined in this section, you should include the header file <X11/Xmu/Error.h>.

int XmuPrintDefaultErrorMessage(dpy, event, fp)

Display *dpy;

XErrorEvent *event;

FILE *fp;

dpy specifies the connection to the X server

event specifies the error

fp specifies where to print the error message

This function prints an error message, equivalent to Xlib’s default error message for protocol errors. It

returns a non-zero value if the caller should consider exiting, otherwise it returns 0. This function can be

used when you need to write your own error handler, but need to print out an error from within that handler.

int XmuSimpleErrorHandler(dpy, errorp)

Display *dpy;

XErrorEvent *errorp;

dpy specifies the connection to the X server

errorp specifies the error

-4-

This function ignores errors for BadWindow errors for XQueryTree and XGetWindowAttributes , and

ignores BadDrawable errors for XGetGeometry; it returns 0 in those cases. Otherwise, it prints the

default error message, and returns a non-zero value if the caller should consider exiting, and 0 if the caller

should not exit.

4. System Utility Functions

To use the functions defined in this section, you should include the header file <X11/Xmu/SysUtil.h>.

int XmuGetHostname(buf, maxlen)

char *buf;

int maxlen;

buf returns the host name

maxlen specifies the length of buf

This function stores the null terminated name of the local host in buf, and returns length of the name. This

function hides operating system differences, such as whether to call gethostname or uname.

5. Window Utility Functions

To use the functions defined in this section, you should include the header file <X11/Xmu/WinUtil.h>.

Screen *XmuScreenOfWindow(dpy, w)

Display *dpy;

Window w;

dpy specifies the connection to the X server

w specifies the window

This function returns the Screen on which the specified window was created.

Window XmuClientWindow(dpy, win)

Display *dpy;

Window win;

dpy specifies the connection to the X server

win specifies the window

This function finds a window, at or below the specified window, which has a WM_STATE property. If such

a window is found, it is returned, otherwise the argument window is returned.

Bool XmuUpdateMapHints(dpy, w, hints)

Display *dpy;

Window w;

XSizeHints *hints;

dpy specifies the connection to the X server

win specifies the window

hints specifies the new hints, or NULL

This function clears the PPosition and PSize flags and sets the USPosition and USSize flags in the hints

structure, and then stores the hints for the window using XSetWMNormalHints and returns True . If

NULL is passed for the hints structure, then the current hints are read back from the window using

XGetWMNormalHints and are used instead, and True is returned; otherwise False is returned.

-5-

6. Cursor Utility Functions

To use the functions defined in this section, you should include the header file <X11/Xmu/CurUtil.h>.

int XmuCursorNameToIndex(name)

char *name;

name specifies the name of the cursor

This function takes the name of a standard cursor and returns its index in the standard cursor font. The cur-

sor names are formed by removing the ‘‘XC_’’ prefix from the cursor defines listed in Appendix B of the

Xlib manual.

7. Graphics Functions

To use the functions defined in this section, you should include the header file <X11/Xmu/Drawing.h>.

void XmuDrawRoundedRectangle(dpy, draw, gc, x, y, w, h, ew, eh)

Display *dpy;

Drawable draw;

GC gc;

int x, y, w, h, ew, eh;

dpy specifies the connection to the X server

draw specifies the drawable

gc specifies the GC

x specifies the upper left x coordinate

y specifies the upper left y coordinate

w specifies the rectangle width

h specifies the rectangle height

ew specifies the corner width

eh specifies the corner height

This function draws a rounded rectangle, where x, y, w, h are the dimensions of the overall rectangle, and

ew and eh are the sizes of a bounding box that the corners are drawn inside of; ew should be no more than

half of w, and eh should be no more than half of h. The current GC line attributes control all attributes of

the line.

void XmuFillRoundedRectangle(dpy, draw, gc, x, y, w, h, ew, eh)

Display *dpy;

Drawable draw;

GC gc;

int x, y, w, h, ew, eh;

dpy specifies the connection to the X server

draw specifies the drawable

gc specifies the GC

x specifies the upper left x coordinate

y specifies the upper left y coordinate

w specifies the rectangle width

h specifies the rectangle height

ew specifies the corner width

-6-

eh specifies the corner height

This function draws a filled rounded rectangle, where x, y, w, h are the dimensions of the overall rectangle,

and ew and eh are the sizes of a bounding box that the corners are drawn inside of; ew should be no more

than half of w, and eh should be no more than half of h. The current GC fill settings control all attributes of

the fill contents.

XmuDrawLogo(dpy, drawable, gcFore, gcBack, x, y, width, height)

Display *dpy;

Drawable drawable;

GC gcFore, gcBack;

int x, y;

unsigned int width, height;

dpy specifies the connection to the X server

drawable specifies the drawable

gcFore specifies the foreground GC

gcBack specifies the background GC

x specifies the upper left x coordinate

y specifies the upper left y coordinate

width specifies the logo width

height specifies the logo height

This function draws the ‘‘official’’ X Window System logo. The bounding box of the logo in the drawable

is given by x, y, width, and height. The logo itself is filled using gcFore, and the rest of the rectangle is

filled using gcBack.

Pixmap XmuCreateStippledPixmap(screen, fore, back, depth)

Screen *screen;

Pixel fore, back;

unsigned int depth;

screen specifies the screen the pixmap is created on

fore specifies the foreground pixel value

back specifies the background pixel value

depth specifies the depth of the pixmap

This function creates a two pixel by one pixel stippled pixmap of specified depth on the specified screen.

The pixmap is cached so that multiple requests share the same pixmap. The pixmap should be freed with

XmuReleaseStippledPixmap to maintain correct reference counts.

void XmuReleaseStippledPixmap(screen, pixmap)

Screen *screen;

Pixmap pixmap;

screen specifies the screen the pixmap was created on

pixmap specifies the pixmap to free

This function frees a pixmap created with XmuCreateStippledPixmap .

-7-

int XmuReadBitmapData(fstream, width, height, datap, x_hot, y_hot)

FILE *fstream;

unsigned int *width, *height;

unsigned char **datap;

int *x_hot, *y_hot;

stream specifies the stream to read from

width returns the width of the bitmap

height returns the height of the bitmap

datap returns the parsed bitmap data

x_hot returns the x coordinate of the hotspot

y_hot returns the y coordinate of the hotspot

This function reads a standard bitmap file description from the specified stream, and returns the parsed data

in a format suitable for passing to XCreateBitmapFromData . The return value of the function has the

same interpretation as the return value for XReadBitmapFile .

int XmuReadBitmapDataFromFile(filename, width, height, datap, x_hot, y_hot)

char *filename;

unsigned int *width, *height;

unsigned char **datap;

int *x_hot, *y_hot;

filename specifies the file to read from

width returns the width of the bitmap

height returns the height of the bitmap

datap returns the parsed bitmap data

x_hot returns the x coordinate of the hotspot

y_hot returns the y coordinate of the hotspot

This function reads a standard bitmap file description from the specified file, and returns the parsed data in

a format suitable for passing to XCreateBitmapFromData . The return value of the function has the same

interpretation as the return value for XReadBitmapFile .

Pixmap XmuLocateBitmapFile(screen, name, srcname, srcnamelen, widthp, heightp, xhotp, yhotp)

Screen *screen;

char *name;

char *srcname;

int srcnamelen;

int *widthp, *heightp, *xhotp, *yhotp;

screen specifies the screen the pixmap is created on

name specifies the file to read from

srcname returns the full filename of the bitmap

srcnamelen specifies the length of the srcname buffer

width returns the width of the bitmap

height returns the height of the bitmap

xhotp returns the x coordinate of the hotspot

yhotp returns the y coordinate of the hotspot

This function reads a file in standard bitmap file format, using XReadBitmapFile , and returns the created

bitmap. The filename may be absolute, or relative to the global resource named bitmapFilePath with class

-8-

BitmapFilePath. If the resource is not defined, the default value is the build symbol BITMAPDIR, which is

typically "/usr/include/X11/bitmaps". If srcnamelen is greater than zero and srcname is not NULL, the null

terminated filename will be copied into srcname. The size and hotspot of the bitmap are also returned.

Pixmap XmuCreatePixmapFromBitmap(dpy, d, bitmap, width, height, depth, fore, back)

Display *dpy;

Drawable d;

Pixmap bitmap;

unsigned int width, height;

unsigned int depth;

unsigned long fore, back;

dpy specifies the connection to the X server

d specifies the screen the pixmap is created on

bitmap specifies the bitmap source

width specifies the width of the pixmap

height specifies the height of the pixmap

depth specifies the depth of the pixmap

fore specifies the foreground pixel value

back specifies the background pixel value

This function creates a pixmap of the specified width, height, and depth, on the same screen as the specified

drawable, and then performs an XCopyPlane from the specified bitmap to the pixmap, using the specified

foreground and background pixel values. The created pixmap is returned.

8. Selection Functions

To use the functions defined in this section, you should include the header file <X11/Xmu/StdSel.h>.

Boolean XmuConvertStandardSelection(w, time, selection, target, type, value, length, format)

Widget w;

Time time;

Atom *selection, *target, *type;

caddr_t *value;

unsigned long *length;

int *format;

w specifies the widget which currently owns the selection

time specifies the time at which the selection was established

selection this argument is ignored

target specifies the target type of the selection

type returns the property type of the converted value

value returns the converted value

length returns the number of elements in the converted value

format returns the size in bits of the elements

This function converts the following standard selections: CLASS, CLIENT_WINDOW, DEC-

NET_ADDRESS, HOSTNAME, IP_ADDRESS, NAME, OWNER_OS, TARGETS, TIMESTAMP, and

USER. It returns True if the conversion was successful, else it returns False.

-9-

9. Type Converter Functions

To use the functions defined in this section, you should include the header file <X11/Xmu/Converters.h>.

void XmuCvtFunctionToCallback(args, num_args, fromVal, toVal)

XrmValue *args;

Cardinal *num_args;

XrmValuePtr fromVal;

XrmValuePtr toVal;

args this argument is ignored

num_args this argument is ignored

fromVal the function to convert

toVal the place to store the converted value

This function converts a callback procedure to a callback list containing that procedure, with NULL closure

data. To use this converter, include the following in your widget’s ClassInitialize procedure:

XtAddConverter(XtRCallProc, XtRCallback, XmuCvtFunctionToCallback, NULL, 0);

void XmuCvtStringToBackingStore(args, num_args, fromVal, toVal)

XrmValue *args;

Cardinal *num_args;

XrmValuePtr fromVal;

XrmValuePtr toVal;

args this argument is ignored

num_args this argument must be a pointer to a Cardinal containing the value 0

fromVal specifies the string to convert

toVal returns the converted value

This function converts a string to a backing-store integer as defined in <X11/X.h>. The string "notUseful"

converts to NotUseful , "whenMapped" converts to WhenMapped , and "always" converts to Always . The

string "default" converts to the value Always+ WhenMapped+ NotUseful . The case of the string does

not matter. To use this converter, include the following in your widget’s ClassInitialize procedure:

XtAddConverter(XtRString, XtRBackingStore, XmuCvtStringToBackingStore, NULL, 0);

void XmuCvtStringToBitmap(args, num_args, fromVal, toVal)

XrmValuePtr args;

Cardinal *num_args;

XrmValuePtr fromVal;

XrmValuePtr toVal;

args the sole argument specifies the Screen on which to create the bitmap

num_args must be the value 1

fromVal specifies the string to convert

toVal returns the converted value

This function creates a bitmap (a Pixmap of depth one) suitable for window manager icons. The string

argument is the name of a file in standard bitmap file format. For the possible filename specifications, see

XmuLocateBitmapFile . To use this converter, include the following in your widget’s ClassInitialize pro-

cedure:

static XtConvertArgRec screenConvertArg[] = {

{XtBaseOffset, (XtPointer)XtOffset(Widget, core.screen), sizeof(Screen *)}

};

-10-

XtAddConverter(XtRString, XtRBitmap, XmuCvtStringToBitmap,

screenConvertArg, XtNumber(screenConvertArg));

Boolean XmuCvtStringToColorCursor(dpy, args, num_args, fromVal, toVal, data)

Display * dpy;

XrmValuePtr args;

Cardinal *num_args;

XrmValuePtr fromVal;

XrmValuePtr toVal;

XtPointer * data;

dpy specifies the display to use for conversion warnings

args specifies the required conversion arguments

num_args specifies the number of required conversion arguments, which is 4

fromVal specifies the string to convert

toVal returns the converted value

data this argument is ignored

This function converts a string to a Cursor with the foreground and background pixels specified by the

conversion arguments. The string can either be a standard cursor name formed by removing the ‘‘XC_’’

prefix from any of the cursor defines listed in Appendix B of the Xlib Manual, a font name and glyph index

in decimal of the form "FONT fontname index [[font] index]", or a bitmap filename acceptable to XmuLo-

cateBitmapFile . To use this converter, include the following in the widget ClassInitialize procedure:

static XtConvertArgRec colorCursorConvertArgs[] = {

{XtWidgetBaseOffset, (XtPointer) XtOffsetOf(WidgetRec, core.screen),

sizeof(Screen *)},

{XtResourceString, (XtPointer) XtNpointerColor, sizeof(Pixel)},

{XtResourceString, (XtPointer) XtNpointerColorBackground, sizeof(Pixel)},

{XtWidgetBaseOffset, (XtPointer) XtOffsetOf(WidgetRec, core.colormap),

sizeof(Colormap)}

};

XtSetTypeConverter(XtRString, XtRColorCursor, XmuCvtStringToColorCursor,

colorCursorConvertArgs, XtNumber(colorCursorConvertArgs),

XtCacheByDisplay, NULL); The widget must recognize XtNpointerColor and XtNpointerColor-

Background as resources, or specify other appropriate foreground and background resources. The widget’s

Realize and SetValues methods must cause the converter to be invoked with the appropriate arguments

when one of the foreground, background, or cursor resources has changed, or when the window is created,

and must assign the cursor to the window of the widget.

void XmuCvtStringToCursor(args, num_args, fromVal, toVal)

XrmValuePtr args;

Cardinal *num_args;

XrmValuePtr fromVal;

XrmValuePtr toVal;

args specifies the required conversion argument, the screen

num_args specifies the number of required conversion arguments, which is 1

fromVal specifies the string to convert

toVal returns the converted value

This function converts a string to a Cursor . The string can either be a standard cursor name formed by

removing the ‘‘XC_’’ prefix from any of the cursor defines listed in Appendix B of the Xlib Manual, a font

name and glyph index in decimal of the form "FONT fontname index [[font] index]", or a bitmap filename

-11-

acceptable to XmuLocateBitmapFile . To use this converter, include the following in your widget’s

ClassInitialize procedure:

static XtConvertArgRec screenConvertArg[] = {

{XtBaseOffset, (XtPointer)XtOffsetOf(WidgetRec, core.screen), sizeof(Screen *)}

};

XtAddConverter(XtRString, XtRCursor, XmuCvtStringToCursor,

screenConvertArg, XtNumber(screenConvertArg));

void XmuCvtStringToGravity(args, num_args, fromVal, toVal)

XrmValuePtr *args;

Cardinal *num_args;

XrmValuePtr fromVal;

XrmValuePtr toVal;

args this argument is ignored

num_args this argument must be a pointer to a Cardinal containing the value 0

fromVal specifies the string to convert

toVal returns the converted value

This function converts a string to an XtGravity enumeration value. The string "forget" and a NULL value

convert to ForgetGravity , "NorthWestGravity" converts to NorthWestGravity , the strings "NorthGrav-

ity" and "top" convert to NorthGravity , "NorthEastGravity" converts to NorthEastGravity , the strings

"West" and "left" convert to WestGravity , "CenterGravity" converts to CenterGravity , "EastGravity" and

"right" convert to EastGravity , "SouthWestGravity" converts to SouthWestGravity , "SouthGravity" and

"bottom" convert to SouthGravity , "SouthEastGravity" converts to SouthEastGravity , "StaticGravity"

converts to StaticGravity , and "UnmapGravity" converts to UnmapGravity . The case of the string does

not matter. To use this converter, include the following in your widget’s class initialize procedure:

XtAddConverter(XtRString, XtRGravity, XmuCvtStringToGravity, NULL, 0);

void XmuCvtStringToJustify(args, num_args, fromVal, toVal)

XrmValuePtr *args;

Cardinal *num_args;

XrmValuePtr fromVal;

XrmValuePtr toVal;

args this argument is ignored

num_args this argument is ignored

fromVal specifies the string to convert

toVal returns the converted value

This function converts a string to an XtJustify enumeration value. The string "left" converts to XtJusti-

fyLeft , "center" converts to XtJustifyCenter , and "right" converts to XtJustifyRight . The case of the

string does not matter. To use this converter, include the following in your widget’s ClassInitialize proce-

dure:

XtAddConverter(XtRString, XtRJustify, XmuCvtStringToJustify, NULL, 0);

void XmuCvtStringToLong(args, num_args, fromVal, toVal)

XrmValuePtr args;

Cardinal *num_args;

XrmValuePtr fromVal;

XrmValuePtr toVal;

-12-

args this argument is ignored

num_args this argument must be a pointer to a Cardinal containing 0

fromVal specifies the string to convert

toVal returns the converted value

This function converts a string to an integer of type long. It parses the string using sscanf with a format of

"%ld". To use this converter, include the following in your widget’s ClassInitialize procedure:

XtAddConverter(XtRString, XtRLong, XmuCvtStringToLong, NULL, 0);

void XmuCvtStringToOrientation(args, num_args, fromVal, toVal)

XrmValuePtr *args;

Cardinal *num_args;

XrmValuePtr fromVal;

XrmValuePtr toVal;

args this argument is ignored

num_args this argument is ignored

fromVal specifies the string to convert

toVal returns the converted value

This function converts a string to an XtOrientation enumeration value. The string "horizontal" converts to

XtorientHorizontal and "vertical" converts to XtorientVertical . The case of the string does not matter.

To use this converter, include the following in your widget’s ClassInitialize procedure:

XtAddConverter(XtRString, XtROrientation, XmuCvtStringToOrientation, NULL, 0);

Boolean XmuCvtStringToShapeStyle(dpy, args, num_args, from, toVal, data)

Display *dpy;

XrmValue *args;

Cardinal *num_args;

XrmValue *from;

XrmValue *toVal;

XtPointer *data;

dpy the display to use for conversion warnings

args this argument is ignored

num_args this argument is ignored

fromVal the value to convert from

toVal the place to store the converted value

data this argument is ignored

This function converts a string to an integer shape style. The string "rectangle" converts to

XmuShapeRectangle , "oval" converts to XmuShapeOval , "ellipse" converts to XmuShapeEllipse , and

"roundedRectangle" converts to XmuShapeRoundedRectangle . The case of the string does not matter.

To use this converter, include the following in your widget’s ClassInitialize procedure:

XtSetTypeConverter(XtRString, XtRShapeStyle, XmuCvtStringToShapeStyle,

NULL, 0, XtCacheNone, NULL);

Boolean XmuReshapeWidget(w, shape_style, corner_width, corner_height)

Widget w;

int shape_style;

int corner_width, corner_height;

-13-

w specifies the widget to reshape

shape_style specifies the new shape

corner_width specifies the width of the rounded rectangle corner

corner_height specified the height of the rounded rectangle corner

This function reshapes the specified widget, using the Shape extension, to a rectangle, oval, ellipse, or

rounded rectangle, as specified by shape_style (XmuShapeRectangle , XmuShapeOval , XmuShapeEl-

lipse , and XmuShapeRoundedRectangle , respectively). The shape is bounded by the outside edges of

the rectangular extents of the widget. If the shape is a rounded rectangle, corner_width and corner_height

specify the size of the bounding box that the corners are drawn inside of (see XmuFillRoundedRectan-

gle); otherwise, corner_width and corner_height are ignored. The origin of the widget within its parent

remains unchanged.

void XmuCvtStringToWidget(args, num_args, fromVal, toVal)

XrmValuePtr args;

Cardinal *num_args;

XrmValuePtr fromVal;

XrmValuePtr toVal;

args this sole argument is the parent Widget

num_args this argument must be 1

fromVal specifies the string to convert

toVal returns the converted value

This function converts a string to an immediate child widget of the parent widget passed as an argument.

Note that this converter only works for child widgets that have already been created; there is no lazy evalua-

tion. The string is first compared against the names of the normal and popup children, and if a match is

found the corresponding child is returned. If no match is found, the string is compared against the classes

of the normal and popup children, and if a match is found the corresponding child is returned. The case of

the string is significant. To use this converter, include the following in your widget’s ClassInitialize proce-

dure:

static XtConvertArgRec parentCvtArg[] = {

{XtBaseOffset, (XtPointer)XtOffset(Widget, core.parent), sizeof(Widget)},

};

XtAddConverter(XtRString, XtRWidget, XmuCvtStringToWidget,

parentCvtArg, XtNumber(parentCvtArg));

Boolean XmuNewCvtStringToWidget(dpy, args, num_args, fromVal, toVal, data)

Display *dpy;

XrmValue * args;

Cardinal *num_args;

XrmValue * fromVal;

XrmValue * toVal;

XtPointer *data;

dpy the display to use for conversion warnings

args this sole argument is the parent Widget

num_args this argument must be a pointer to a Cardinal containing the value 1

fromVal specifies the string to convert

toVal returns the converted value

data this argument is ignored

-14-

This converter is identical in functionality to XmuCvtStringToWidget, except that it is a new-style con-

verter, allowing the specification of a cache type at the time of registration. Most widgets will not cache the

conversion results, as the application may dynamically create and destroy widgets, which would cause

cached values to become illegal. To use this converter, include the following in the widget’s class initialize

procedure:

static XtConvertArgRec parentCvtArg[] = {

{XtWidgetBaseOffset, (XtPointer)XtOffsetOf(WidgetRec, core.parent),

sizeof(Widget)}

};

XtSetTypeConverter(XtRString, XtRWidget, XmuNewCvtStringToWidget,

parentCvtArg, XtNumber(parentCvtArg), XtCacheNone, NULL);

10. Character Set Functions

To use the functions defined in this section, you should include the header file <X11/Xmu/CharSet.h>.

The functions in this section are deprecated because they don’t work in most locales now supported by

X11; the function XmbLookupString provides a better alternative.

void XmuCopyISOLatin1Lowered(dst, src)

char *dst, *src;

dst returns the string copy

src specifies the string to copy

This function copies a null terminated string from src to dst (including the null), changing all Latin-1 upper-

case letters to lowercase. The string is assumed to be encoded using ISO 8859-1.

void XmuCopyISOLatin1Uppered(dst, src)

char *dst, *src;

dst returns the string copy

src specifies the string to copy

This function copies a null terminated string from src to dst (including the null), changing all Latin-1 lower-

case letters to uppercase. The string is assumed to be encoded using ISO 8859-1.

int XmuCompareISOLatin1(first, second)

char *first, *second;

dst specifies a string to compare

src specifies a string to compare

This function compares two null terminated Latin-1 strings, ignoring case differences, and returns an inte-

ger greater than, equal to, or less than 0, according to whether first is lexicographically greater than, equal

to, or less than second. The two strings are assumed to be encoded using ISO 8859-1.

int XmuLookupLatin1(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

Ke ySym *keysym;

XComposeStatus *status;

event specifies the key event

-15-

buffer returns the translated characters

nbytes specifies the length of the buffer

keysym returns the computed KeySym, or None

status specifies or returns the compose state

This function is identical to XLookupString , and exists only for naming symmetry with other functions.

int XmuLookupLatin2(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

Ke ySym *keysym;

XComposeStatus *status;

event specifies the key event

buffer returns the translated characters

nbytes specifies the length of the buffer

keysym returns the computed KeySym, or None

status specifies or returns the compose state

This function is similar to XLookupString , except that it maps a key event to an Latin-2 (ISO 8859-2)

string, or to an ASCII control string.

int XmuLookupLatin3(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

Ke ySym *keysym;

XComposeStatus *status;

event specifies the key event

buffer returns the translated characters

nbytes specifies the length of the buffer

keysym returns the computed KeySym, or None

status specifies or returns the compose state

This function is similar to XLookupString , except that it maps a key event to an Latin-3 (ISO 8859-3)

string, or to an ASCII control string.

int XmuLookupLatin4(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

Ke ySym *keysym;

XComposeStatus *status;

event specifies the key event

buffer returns the translated characters

nbytes specifies the length of the buffer

keysym returns the computed KeySym, or None

status specifies or returns the compose state

-16-

This function is similar to XLookupString , except that it maps a key event to an Latin-4 (ISO 8859-4)

string, or to an ASCII control string.

int XmuLookupKana(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

Ke ySym *keysym;

XComposeStatus *status;

event specifies the key event

buffer returns the translated characters

nbytes specifies the length of the buffer

keysym returns the computed KeySym, or None

status specifies or returns the compose state

This function is similar to XLookupString , except that it maps a key event to a string in an encoding con-

sisting of Latin-1 (ISO 8859-1) and ASCII control in the Graphics Left half (values 0 to 127), and Katakana

in the Graphics Right half (values 128 to 255), using the values from JIS X201-1976.

int XmuLookupJISX0201(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

Ke ySym *keysym;

XComposeStatus *status;

event specifies the key event

buffer returns the translated characters

nbytes specifies the length of the buffer

keysym returns the computed KeySym, or None

status specifies or returns the compose state

This function is similar to XLookupString , except that it maps a key event to a string in the JIS

X0201-1976 encoding, including ASCII control.

int XmuLookupArabic(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

Ke ySym *keysym;

XComposeStatus *status;

event specifies the key event

buffer returns the translated characters

nbytes specifies the length of the buffer

keysym returns the computed KeySym, or None

status specifies or returns the compose state

This function is similar to XLookupString , except that it maps a key event to a Latin/Arabic (ISO 8859-6)

string, or to an ASCII control string.

-17-

int XmuLookupCyrillic(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

Ke ySym *keysym;

XComposeStatus *status;

event specifies the key event

buffer returns the translated characters

nbytes specifies the length of the buffer

keysym returns the computed KeySym, or None

status specifies or returns the compose state

This function is similar to XLookupString , except that it maps a key event to a Latin/Cyrillic (ISO

8859-5) string, or to an ASCII control string.

int XmuLookupGreek(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

Ke ySym *keysym;

XComposeStatus *status;

event specifies the key event

buffer returns the translated characters

nbytes specifies the length of the buffer

keysym returns the computed KeySym, or None

status specifies or returns the compose state

This function is similar to XLookupString , except that it maps a key event to a Latin/Greek (ISO 8859-7)

string, or to an ASCII control string.

int XmuLookupHebrew(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

Ke ySym *keysym;

XComposeStatus *status;

event specifies the key event

buffer returns the translated characters

nbytes specifies the length of the buffer

keysym returns the computed KeySym, or None

status specifies or returns the compose state

This function is similar to XLookupString , except that it maps a key event to a Latin/Hebrew (ISO

8859-8) string, or to an ASCII control string.

-18-

int XmuLookupAPL(event, buffer, nbytes, keysym, status)

XKeyEvent *event;

char *buffer;

int nbytes;

Ke ySym *keysym;

XComposeStatus *status;

event specifies the key event

buffer returns the translated characters

nbytes specifies the length of the buffer

keysym returns the computed KeySym, or None

status specifies or returns the compose state

This function is similar to XLookupString , except that it maps a key event to an APL string.

11. Compound Text Functions

The functions defined in this section are for parsing Compound Text strings, decomposing them into indi-

vidual segments. Definitions needed to use these routines are in the include file <X11/Xmu/Xct.h>.

The functions in this section are deprecated because they shift the burden for recently introduced locale

encodings to the application. The use of the UTF8_STRING text encoding provides a better alternative.

A Compound Text string is represented as the following type:

typedef unsigned char *XctString;

XctData XctCreate(string, length, flags)

XctString string;

int length;

XctFlags flags;

string the Compound Text string

length the number of bytes in string

flags parsing control flags

This function creates an XctData structure for parsing a Compound Text string. The string need not be

null terminated. The following flags are defined to control parsing of the string:

XctSingleSetSegments -- This means that returned segments should contain characters from only one set

(C0, C1, GL, GR). When this is requested, XctSegment is never returned by XctNextItem , instead

XctC0Segment , XctC1Segment , XctGlSegment , and XctGRSegment are returned. C0 and C1 seg-

ments are always returned as singleton characters.

XctProvideExtensions -- This means that if the Compound Text string is from a higher version than this

code is implemented to, then syntactically correct but unknown control sequences should be returned as

XctExtension items by XctNextItem . If this flag is not set, and the Compound Text string version indi-

cates that extensions cannot be ignored, then each unknown control sequence will be reported as an XctEr-

ror .

XctAcceptC0Extensions -- This means that if the Compound Text string is from a higher version than this

code is implemented to, then unknown C0 characters should be treated as if they were legal, and returned as

C0 characters (regardless of how XctProvideExtensions is set) by XctNextItem . If this flag is not set,

then all unknown C0 characters are treated according to XctProvideExtensions .

XctAcceptC1Extensions -- This means that if the Compound Text string is from a higher version than this

code is implemented to, then unknown C1 characters should be treated as if they were legal, and returned as

C1 characters (regardless of how XctProvideExtensions is set) by XctNextItem . If this flag is not set,

then all unknown C1 characters are treated according to XctProvideExtensions .

-19-

XctHideDirection -- This means that horizontal direction changes should be reported as XctHorizontal

items by XctNextItem . then direction changes are not returned as items, but the current direction is still

maintained and reported for other items. The current direction is given as an enumeration, with the values

XctUnspecified , XctLeftToRight , and XctRightToLeft .

XctFreeString -- This means that XctFree should free the Compound Text string that is passed to

XctCreate . If this flag is not set, the string is not freed.

XctShiftMultiGRToGL -- This means that XctNextItem should translate GR segments on-the-fly into

GL segments for the GR sets: GB2312.1980-1, JISX0208.1983-1, and KSC5601.1987-1.

void XctReset(data)

XctData data;

data specifies the Compound Text structure

This function resets the XctData structure to reparse the Compound Text string from the beginning.

XctResult XctNextItem(data)

XctData data;

data specifies the Compound Text structure

This function parses the next ‘‘item’’ from the Compound Text string. The return value indicates what kind

of item is returned. The item itself, it’s length, and the current contextual state, are reported as components

of the XctData structure. XctResult is an enumeration, with the following values:

XctSegment -- the item contains some mixture of C0, GL, GR, and C1 characters.

XctC0Segment -- the item contains only C0 characters.

XctGLSegment -- the item contains only GL characters.

XctC1Segment -- the item contains only C1 characters.

XctGRSegment -- the item contains only GR characters.

XctExtendedSegment -- the item contains an extended segment.

XctExtension -- the item is an unknown extension control sequence.

XctHorizontal -- the item indicates a change in horizontal direction or depth. The new direction and depth

are recorded in the XctData structure.

XctEndOfText -- The end of the Compound Text string has been reached.

XctError -- the string contains a syntactic or semantic error; no further parsing should be performed.

The following state values are stored in the XctData structure:

XctString item; /* the action item */

int item_length; /* the length of item in bytes */

int char_size; /* the number of bytes per character in

* item, with zero meaning variable */

char *encoding; /* the XLFD encoding name for item */

XctHDirection horizontal; /* the direction of item */

int horz_depth; /* the current direction nesting depth */

char *GL; /* the "{I} F" string for the current GL */

char *GL_encoding; /* the XLFD encoding name for the current GL */

int GL_set_size; /* 94 or 96 */

int GL_char_size; /* the number of bytes per GL character */

char *GR; /* the "{I} F" string for the current GR */

char *GR_encoding; /* the XLFD encoding name the for current GR */

int GR_set_size; /* 94 or 96 */

int GR_char_size; /* the number of bytes per GR character */

char *GLGR_encoding; /* the XLFD encoding name for the current

-20-

* GL+GR, if known */

void XctFree(data)

XctData data;

data specifies the Compound Text structure

This function frees all data associated with the XctData structure.

12. CloseDisplay Hook Functions

To use the functions defined in this section, you should include the header file <X11/Xmu/CloseHook.h>.

CloseHook XmuAddCloseDisplayHook(dpy, func, arg)

Display *dpy;

int (*func)();

caddr_t arg;

dpy specifies the connection to the X server

func specifies the function to call at display close

arg specifies arbitrary data to pass to func

This function adds a callback for the given display. When the display is closed, the given function will be

called with the given display and argument as:

(*func)(dpy, arg)

The function is declared to return an int even though the value is ignored, because some compilers have

problems with functions returning void.

This routine returns NULL if it was unable to add the callback, otherwise it returns an opaque handle that

can be used to remove or lookup the callback.

Bool XmuRemoveCloseDisplayHook(dpy, handle, func, arg)

Display *dpy;

CloseHook handle;

int (*func)();

caddr_t arg;

dpy specifies the connection to the X server

handle specifies the callback by id, or NULL

func specifies the callback by function

arg specifies the function data to match

This function deletes a callback that has been added with XmuAddCloseDisplayHook . If handle is not

NULL, it specifies the callback to remove, and the func and arg parameters are ignored. If handle is NULL,

the first callback found to match the specified func and arg will be removed. Returns True if a callback

was removed, else returns False .

Bool XmuLookupCloseDisplayHook(dpy, handle, func, arg)

Display *dpy;

CloseHook handle;

int (*func)();

caddr_t arg;

dpy specifies the connection to the X server

-21-

handle specifies the callback by id, or NULL

func specifies the callback by function

arg specifies the function data to match

This function determines if a callback is installed. If handle is not NULL, it specifies the callback to look

for, and the func and arg parameters are ignored. If handle is NULL, the function will look for any callback

for the specified func and arg. Returns True if a matching callback exists, else returns False .

13. Display Queue Functions

To use the functions and types defined in this section, you should include the header file <X11/Xmu/Dis-

playQue.h>. It defines the following types:

typedef struct _XmuDisplayQueueEntry {

struct _XmuDisplayQueueEntry *prev, *next;

Display *display;

CloseHook closehook;

caddr_t data;

} XmuDisplayQueueEntry;

typedef struct _XmuDisplayQueue {

int nentries;

XmuDisplayQueueEntry *head, *tail;

int (*closefunc)();

int (*freefunc)();

caddr_t data;

} XmuDisplayQueue;

XmuDisplayQueue *XmuDQCreate(closefunc, freefunc, data)

int (*closefunc)();

int (*freefunc)();

caddr_t data;

closefunc specifies the close function

freefunc specifies the free function

data specifies private data for the functions

This function creates and returns an empty XmuDisplayQueue (which is really just a set of displays, but is

called a queue for historical reasons). The queue is initially empty, but displays can be added using

XmuAddDisplay . The data value is simply stored in the queue for use by the closefunc and freefunc call-

backs. Whenever a display in the queue is closed using XCloseDisplay , the closefunc (if non-NULL) is

called with the queue and the display’s XmuDisplayQueueEntry as follows:

(*closefunc)(queue, entry)

The freeproc (if non-NULL) is called whenever the last display in the queue is closed, as follows:

(*freefunc)(queue)

The application is responsible for actually freeing the queue, by calling XmuDQDestroy .

XmuDisplayQueueEntry *XmuDQAddDisplay(q, dpy, data)

XmuDisplayQueue *q;

Display *dpy;

caddr_t data;

q specifies the queue

-22-

dpy specifies the display to add

data specifies private data for the free function

This function adds the specified display to the queue. If successful, the queue entry is returned, otherwise

NULL is returned. The data value is simply stored in the queue entry for use by the queue’s freefunc call-

back. This function does not attempt to prevent duplicate entries in the queue; the caller should use

XmuDQLookupDisplay to determine if a display has already been added to a queue.

XmuDisplayQueueEntry *XmuDQLookupDisplay(q, dpy)

XmuDisplayQueue *q;

Display *dpy;

q specifies the queue

dpy specifies the display to lookup

This function returns the queue entry for the specified display, or NULL if the display is not in the queue.

XmuDQNDisplays(q)

This macro returns the number of displays in the specified queue.

Bool XmuDQRemoveDisplay(q, dpy)

XmuDisplayQueue *q;

Display *dpy;

q specifies the queue

dpy specifies the display to remove

This function removes the specified display from the specified queue. No callbacks are performed. If the

display is not found in the queue, False is returned, otherwise True is returned.

Bool XmuDQDestroy(q, docallbacks)

XmuDisplayQueue *q;

Bool docallbacks;

q specifies the queue to destroy

docallbacks specifies whether close functions should be called

This function releases all memory associated with the specified queue. If docallbacks is True , then the

queue’s closefunc callback (if non-NULL) is first called for each display in the queue, even though

XCloseDisplay is not called on the display.

14. Toolkit Convenience Functions

To use the functions defined in this section, you should include the header file <X11/Xmu/Initer.h>.

void XmuAddInitializer(func, data)

void (*func)();

caddr_t data;

func specifies the procedure to register

data specifies private data for the procedure

This function registers a procedure, to be invoked the first time XmuCallInitializers is called on a given

application context. The procedure is called with the application context and the specified data:

(*func)(app_con, data)

-23-

void XmuCallInitializers(app_con)

XtAppContext app_con;

app_con specifies the application context to initialize

This function calls each of the procedures that have been registered with XmuAddInitializer , if this is the

first time the application context has been passed to XmuCallInitializers . Otherwise, this function does

nothing.

15. Standard Colormap Functions

To use the functions defined in this section, you should include the header file <X11/Xmu/StdCmap.h>.

Status XmuAllStandardColormaps(dpy)

Display *dpy;

dpy specifies the connection to the X server

To create all of the appropriate standard colormaps for every visual of every screen on a given display, use

XmuAllStandardColormaps .

This function defines and retains as permanent resources all standard colormaps which are meaningful for

the visuals of each screen of the display. It returns 0 on failure, non-zero on success. If the property of any

standard colormap is already defined, this function will redefine it.

This function is intended to be used by window managers or a special client at the start of a session.

The standard colormaps of a screen are defined by properties associated with the screen’s root window.

The property names of standard colormaps are predefined, and each property name except

RGB_DEFAULT_MAP may describe at most one colormap.

The standard colormaps are: RGB_BEST_MAP, RGB_RED_MAP, RGB_GREEN_MAP,

RGB_BLUE_MAP, RGB_DEFAULT_MAP, and RGB_GRAY_MAP. Therefore a screen may have at most

6 standard colormap properties defined.

A standard colormap is associated with a particular visual of the screen. A screen may have multiple visu-

als defined, including visuals of the same class at different depths. Note that a visual id might be repeated

for more than one depth, so the visual id and the depth of a visual identify the visual. The characteristics of

the visual will determine which standard colormaps are meaningful under that visual, and will determine

how the standard colormap is defined. Because a standard colormap is associated with a specific visual,

there must be a method of determining which visuals take precedence in defining standard colormaps.

The method used here is: for the visual of greatest depth, define all standard colormaps meaningful to that

visual class, according to this order of (descending) precedence: DirectColor; PseudoColor; TrueColor

and GrayScale; and finally StaticColor and StaticGray .

This function allows success, on a per screen basis. For example, if a map on screen 1 fails, the maps on

screen 0, created earlier, will remain. However, none on screen 1 will remain. If a map on screen 0 fails,

none will remain.

See XmuVisualStandardColormaps for which standard colormaps are meaningful under these classes of

visuals.

Status XmuVisualStandardColormaps(dpy, screen, visualid, depth, replace, retain)

Display *dpy;

int screen;

VisualID visualid;

unsigned int depth;

Bool replace;

Bool retain;

-24-

dpy specifies the connection to the X server

screen specifies the screen of the display

visualid specifies the visual type

depth specifies the visual depth

replace specifies whether or not to replace

retain specifies whether or not to retain

To create all of the appropriate standard colormaps for a given visual on a given screen, use XmuVisual-

StandardColormaps .

This function defines all appropriate standard colormap properties for the given visual. If replace is True ,

any previous definition will be removed. If retain is True , new properties will be retained for the duration

of the server session. This function returns 0 on failure, non-zero on success. On failure, no new properties

will be defined, but old ones may have been removed if replace was True.

Not all standard colormaps are meaningful to all visual classes. This routine will check and define the fol-

lowing properties for the following classes, provided that the size of the colormap is not too small. For

DirectColor and PseudoColor: RGB_DEFAULT_MAP, RGB_BEST_MAP, RGB_RED_MAP,

RGB_GREEN_MAP, RGB_BLUE_MAP, and RGB_GRAY_MAP. For TrueColor and StaticColor:

RGB_BEST_MAP. For GrayScale and StaticGray: RGB_GRAY_MAP.

Status XmuLookupStandardColormap(dpy, screen, visualid, depth, property, replace, retain)

Display *dpy;

int screen;

VisualID visualid;

unsigned int depth;

Atom property;

Bool replace;

Bool retain;

dpy specifies the connection to the X server

screen specifies the screen of the display

visualid specifies the visual type

depth specifies the visual depth

property specifies the standard colormap property

replace specifies whether or not to replace

retain specifies whether or not to retain

To create a standard colormap if one does not currently exist, or replace the currently existing standard col-

ormap, use XmuLookupStandardColormap .

Given a screen, a visual, and a property, this function will determine the best allocation for the property

under the specified visual, and determine the whether to create a new colormap or to use the default col-

ormap of the screen.

If replace is True, any previous definition of the property will be replaced. If retain is True, the property

and the colormap will be made permanent for the duration of the server session. However, pre-existing

property definitions which are not replaced cannot be made permanent by a call to this function; a request

to retain resources pertains to newly created resources.

This function returns 0 on failure, non-zero on success. A request to create a standard colormap upon a

visual which cannot support such a map is considered a failure. An example of this would be requesting

any standard colormap property on a monochrome visual, or, requesting an RGB_BEST_MAP on a display

whose colormap size is 16.

-25-

Status XmuGetColormapAllocation(vinfo, property, red_max, green_max, blue_max)

XVisualInfo *vinfo;

Atom property;

unsigned long *red_max, *green_max, *blue_max;

vinfo specifies visual information for a chosen visual

property specifies one of the standard colormap property names

red_max returns maximum red value

green_max returns maximum green value

blue_max returns maximum blue value

To determine the best allocation of reds, greens, and blues in a standard colormap, use XmuGetColorma-

pAllocation .

XmuGetColormapAllocation returns 0 on failure, non-zero on success. It is assumed that the visual is

appropriate for the colormap property.

XStandardColormap *XmuStandardColormap(dpy, screen, visualid, depth, property,

cmap, red_max, green_max, blue_max)

Display dpy;

int screen;

VisualID visualid;

unsigned int depth;

Atom property;

Colormap cmap;

unsigned long red_max, green_max, blue_max;

dpy specifies the connection to the X server

screen specifies the screen of the display

visualid specifies the visual type

depth specifies the visual depth

property specifies the standard colormap property

cmap specifies the colormap ID, or None

red_max specifies the red allocation

green_max specifies the green allocation

blue_max specifies the blue allocation

To create any one standard colormap, use XmuStandardColormap .

This function creates a standard colormap for the given screen, visualid, and visual depth, with the given

red, green, and blue maximum values, with the given standard property name. Upon success, it returns a

pointer to an XStandardColormap structure which describes the newly created colormap. Upon failure, it

returns NULL. If cmap is the default colormap of the screen, the standard colormap will be defined on the

default colormap; otherwise a new colormap is created.

Resources created by this function are not made permanent; that is the caller’s responsibility.

Status XmuCreateColormap(dpy, colormap)

Display *dpy;

XStandardColormap *colormap;

dpy specifies the connection under which the map is created

colormap specifies the map to be created

-26-

To create any one colormap which is described by an XStandardColormap structure, use XmuCreate-

Colormap .

This function returns 0 on failure, and non-zero on success. The base_pixel of the colormap is set on suc-

cess. Resources created by this function are not made permanent. No argument error checking is provided;

use at your own risk.

All colormaps are created with read-only allocations, with the exception of read-only allocations of colors

which fail to return the expected pixel value, and these are individually defined as read/write allocations.

This is done so that all the cells defined in the colormap are contiguous, for use in image processing. This

typically happens with White and Black in the default map.

Colormaps of static visuals are considered to be successfully created if the map of the static visual matches

the definition given in the standard colormap structure.

void XmuDeleteStandardColormap(dpy, screen, property)

Display *dpy;

int screen;

Atom property;

dpy specifies the connection to the X server

screen specifies the screen of the display

property specifies the standard colormap property

To remove any standard colormap property, use XmuDeleteStandardColormap . This function will

remove the specified property from the specified screen, releasing any resources used by the colormap(s) of

the property, if possible.

16. Widget Description Functions

The functions defined in this section are for building a description of the structure of and resources associ-

ated with a hierarchy of widget classes. This package is typically used by applications that wish to manipu-

late the widget set itself.

The definitions needed to use these interfaces are in the header file <X11/Xmu/WidgetNode.h>. The fol-

lowing function must be called before any of the others described below:

void XmuWnInitializeNodes(node_array, num_nodes)

XmuWidgetNode *node_array;

int num_nodes;

node_array specifies a list of widget classes, in alphabetical order

num_nodes specfies the number of widget classes in the node array

To determine the resources provided by a widget class or classes, use

void XmuWnFetchResources(node, toplevel, top_node)

XmuWidgetNode *node;

Widget toplevel;

XmuWidgetNode *top_node;

node specifies the widget class for which resources should be obtained.

toplevel specifies the widget that should be used for creating an instance of node from which

resources are extracted. This is typically the value returned by XtAppInitialize.

top_node specifies the ancestor of node that should be treated as the root of the widget inheritance

tree (used in determining which ancestor contributed which resources).

Each widget class inherits the resources of its parent. To count the number of resources contributed by a

particular widget class, use:

-27-

int XmuWnCountOwnedResources(node, owner_node, constraints)

XmuWidgetNode *node;

XmuWidgetNode *owner_node;

Bool constraints;

node specifies the widget class whose resources are being examined.

owner_node specifies the widget class of the ancestor of node whose contributions are being counted.

constraints specifies whether or not to count constraint resources or normal resources.

This routine returns the number of resources contributed (or ‘‘owned’’) by the specified widget class.

XmuWidgetNode *XmuWnNameToNode(node_list, num_nodes, name)

XmuWidgetNode *node_list;

int num_nodes;

char *name;

node_list specifies a list of widget nodes

num_nodes specifies the number of nodes in the list

name specifies the name of the widget class in the node list to search for

This function returns the WidgetNode in the list that matches the given widget name or widget class name.

If no match is found, it returns NULL.

17. Participation in the Editres Protocol

To participate in the editres protocol, applications which are not based on the Athena widget set should

include the header file <X11/Xmu/Editres.h>.

To participate in the editres protocol, Xt applications which do not rely on the Athena widget set should

register the editres protocol handler on each shell widget in the application, specifying an event mask of 0,

nonmaskable events, and client data as NULL:

XtAddEventHandler(shell, (EventMask) 0, True, _XEditResCheckMessages, NULL);

