
X Input Device Extension Library

X Consortium Standard

X Version 11, Release 6.4

Mark Patrick Ardent Computer
George Sachs Hewlett-Packard

Copyright © 1989, 1990, 1991 by Hewlett-Packard Company, Ardent Computer.

Permission to use, copy, modify, and distribute this documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice and this permission notice appear
in all copies. Ardent, and Hewlett-Packard make no representations about the suitability for any
purpose of the information in this document. It is provided ``as is’’ without express or implied
warranty.

Copyright (c) 1989, 1990, 1991, 1992 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ‘‘Software’’), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization from the X Consortium.

X Window System is a trademark of X Consortium, Inc.

1. Input Extension Overview
This document describes an extension to the X11 server. The purpose of this extension is to sup-
port the use of additional input devices beyond the pointer and keyboard devices defined by the
core X protocol. This first section gives an overview of the input extension. The following sec-
tions correspond to chapters 9, 10, and 11, ‘‘Window and Session Manager Functions’’,
‘‘Events’’, and ‘‘Event Handling Functions’’ of the ‘‘Xlib - C Language Interface’’ manual and
describe how to use the input device extension.

1.1. Design Approach
The design approach of the extension is to define functions and events analogous to the core func-
tions and events. This allows extension input devices and events to be individually distinguish-
able from each other and from the core input devices and events. These functions and events
make use of a device identifier and support the reporting of n-dimensional motion data as well as
other data that is not currently reportable via the core input events.

1.2. Core Input Devices
The X server core protocol supports two input devices: a pointer and a keyboard. The pointer
device has two major functions. First, it may be used to generate motion information that client
programs can detect. Second, it may also be used to indicate the current location and focus of the
X keyboard. To accomplish this, the server echoes a cursor at the current position of the X
pointer. Unless the X keyboard has been explicitly focused, this cursor also shows the current
location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document as the core devices, and the input
ev ents they generate (KeyPress , KeyRelease , ButtonPress , ButtonRelease , and MotionNo-
tify) are known as the core input events. All other input devices are referred to as extension input
devices, and the input events they generate are referred to as extension input events .

Note

This input extension does not change the behavior or functionality of the core input
devices, core events, or core protocol requests, with the exception of the core grab
requests. These requests may affect the synchronization of events from extension
devices. See the explanation in the section titled ‘‘Event Synchronization and Core
Grabs.’’

Selection of the physical devices to be initially used by the server as the core devices is left imple-
mentation dependent. Functions are defined that allow client programs to change which physical
devices are used as the core devices.

1.3. Extension Input Devices
The input extension controls access to input devices other than the X keyboard and X pointer. It
allows client programs to select input from these devices independently from each other and inde-
pendently from the core devices. Input ev ents from these devices are of extension types
(DeviceKeyPress , DeviceKeyRelease , DeviceButtonPress , DeviceButtonRelease , DeviceMo-
tionNotify , and so on) and contain a device identifier so that events of the same type coming
from different input devices can be distinguished.

Extension input events are not limited in size by the size of the server 32-byte wire events. Exten-
sion input events may be constructed by the server sending as many wire-sized events as

1

X Input Extension Library X11, Release 6.4

necessary to return the information required for that event. The library event reformatting rou-
tines are responsible for combining these into one or more client XEvents.

Any input device that generates key, button, or motion data may be used as an extension input
device. Extension input devices may have zero or more keys, zero or more buttons, and may
report zero or more axes of motion. Motion may be reported as relative movements from a previ-
ous position or as an absolute position. All valuators reporting motion information for a given
extension input device must report the same kind of motion information (absolute or relative).

This extension is designed to accommodate new types of input devices that may be added in the
future. The protocol requests that refer to specific characteristics of input devices organize that
information by input device classes. Server implementors may add new classes of input devices
without changing the protocol requests.

All extension input devices are treated like the core X keyboard in determining their location and
focus. The server does not track the location of these devices on an individual basis and, there-
fore, does not echo a cursor to indicate their current location. Instead, their location is determined
by the location of the core X pointer. Like the core X keyboard, some may be explicitly focused.
If they are not explicitly focused, their focus is determined by the location of the core X pointer.

1.3.1. Input Device Classes
Some of the input extension requests divide input devices into classes based on their functionality.
This is intended to allow new classes of input devices to be defined at a later time without chang-
ing the semantics of these functions. The following input device classes are currently defined:

KEY The device reports key events.

BUTTON The device reports button events.

VALUAT OR The device reports valuator data in motion events.

PROXIMITY The device reports proximity events.

FOCUS The device can be focused.

FEEDBACK The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input classes, such
as the XListInputDevices function that lists all available input devices, organize the data they
return by input class. Client programs that use these functions should not access data unless it
matches a class defined at the time those clients were compiled. In this way, new classes can be
added without forcing existing clients that use these functions to be recompiled.

1.4. Using Extension Input Devices
A client that wishes to access an input device does so through the library functions defined in the
following sections. A typical sequence of requests that a client would make is as follows:

• XListInputDevices − lists all of the available input devices. From the information
returned by this request, determine whether the desired input device is attached to the
server. For a description of the XListInputDevices request, see the section entitled ‘‘List-
ing Available Devices.’’

• XOpenDevice − requests that the server open the device for access by this client. This
request returns an XDevice structure that is used by most other input extension requests to
identify the specified device. For a description of the XOpenDevice request, see the sec-
tion entitled ‘‘Enabling and Disabling Extension Devices.’’

• Determine the event types and event classes needed to select the desired input extension
ev ents, and identify them when they are received. This is done via macros whose name

2

X Input Extension Library X11, Release 6.4

corresponds to the desired event, for example, DeviceKeyPress . For a description of these
macros, see the section entitled ‘‘Selecting Extension Device Events.’’

• XSelectExtensionEvent − selects the desired events from the server. For a description of
the XSelextExtensionEvent request, see the section entitled ‘‘Selecting Extension Device
Events.’’

• XNextEvent − receives the next available event. This is the core XNextEvent function
provided by the standard X libarary.

Other requests are defined to grab and focus extension devices, to change their key, button, or
modifier mappings, to control the propagation of input extension events, to get motion history
from an extension device, and to send input extension events to another client. These functions
are described in the following sections.

2. Library Extension Requests
Extension input devices are accessed by client programs through the use of new protocol requests.
The following requests are provided as extensions to Xlib. Constants and structures referenced by
these functions may be found in the files <X11/extensions/XI.h> and <X11/extensions/XIn-
put.h>, which are attached to this document as Appendix A.

The library will return NoSuchExtension if an extension request is made to a server that does not
support the input extension.

Input extension requests cannot be used to access the X keyboard and X pointer devices.

2.1. Window Manager Functions
This section discusses the following X Input Extension Window Manager topics:

• Changing the core devices

• Event synchronization and core grabs

• Extension active grabs

• Passively grabbing a key

• Passively grabbing a button

• Thawing a device

• Controlling device focus

• Controlling device feedback

• Ringing a bell on an input device

• Controlling device encoding

• Controlling button mapping

• Obtaining the state of a device

2.1.1. Changing the Core Devices
These functions are provided to change which physical device is used as the X pointer or X
keyboard.

3

X Input Extension Library X11, Release 6.4

Note

Using these functions may change the characteristics of the core devices. The new
pointer device may have a different number of buttons from the old one, or the new
keyboard device may have a different number of keys or report a different range of
keycodes. Client programs may be running that depend on those characteristics. For
example, a client program could allocate an array based on the number of buttons on
the pointer device and then use the button numbers received in button events as
indices into that array. Changing the core devices could cause such client programs
to behave improperly or to terminate abnormally if they ignore the ChangeDevi-
ceNotify ev ent generated by these requests.

These functions change the X keyboard or X pointer device and generate an XChangeDeviceNo-
tify ev ent and a MappingNotify ev ent. The specified device becomes the new X keyboard or X
pointer device. The location of the core device does not change as a result of this request.

These requests fail and return AlreadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client. They fail and return GrabFrozen if either
device is frozen by the active grab of another client.

These requests fail with a BadDevice error if the specified device is invalid, has not previously
been opened via XOpenDevice , or is not supported as a core device by the server implementa-
tion.

Once the device has successfully replaced one of the core devices, it is treated as a core device
until it is in turn replaced by another ChangeDevice request or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attempts to use
the XCloseDevice request to close the new core device will fail with a BadDevice error.

To change which physical device is used as the X keyboard, use the XChangeKeyboardDevice
function. The specified device must support input class Keys (as reported in the ListInputDe-
vices request) or the request will fail with a BadMatch error.

int XChangeKeyboardDevice (display , device)
Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

If no error occurs, XChangeKeyboardDevice returns Success . A ChangeDeviceNotify ev ent
with the request field set to NewKeyboard is sent to all clients selecting that event. A Mapping-
Notify ev ent with the request field set to MappingKeyboard is sent to all clients. The requested
device becomes the X keyboard, and the old keyboard becomes available as an extension input
device. The focus state of the new keyboard is the same as the focus state of the old X keyboard.

XChangeKeyboardDevice can generate AlreadyGrabbed , BadDevice , BadMatch , and
GrabFrozen errors.

To change which physical device is used as the X pointer, use the XChangePointerDevice func-
tion. The specified device must support input class Valuators (as reported in the XListInputDe-
vices request) and report at least two axes of motion, or the request will fail with a BadMatch

4

X Input Extension Library X11, Release 6.4

error. If the specified device reports more than two axes, the two specified in the xaxis and yaxis
arguments will be used. Data from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server implementation does
not allow such a device to be used as the X pointer, the request will fail with a BadDevice error.

int XChangePointerDevice (display , device , xaxis , yaxis)
Display *display;
XDevice *device;
int xaxis;
int yaxis;

display Specifies the connection to the X server.

device Specifies the desired device.

xaxis Specifies the zero-based index of the axis to be used as the x-axis of the pointer
device.

yaxis Specifies the zero-based index of the axis to be used as the y-axis of the pointer
device.

If no error occurs, XChangePointerDevice returns Success . A ChangeDeviceNotify ev ent
with the request field set to NewPointer is sent to all clients selecting that event. A Mapping-
Notify ev ent with the request field set to MappingPointer is sent to all clients. The requested
device becomes the X pointer, and the old pointer becomes available as an extension input device.

XChangePointerDevice can generate AlreadyGrabbed , BadDevice , BadMatch , and
GrabFrozen errors.

2.1.2. Event Synchronization and Core Grabs
Implementation of the input extension requires an extension of the meaning of event synchroniza-
tion for the core grab requests. This is necessary in order to allow window managers to freeze all
input devices with a single request.

The core grab requests require a pointer_mode and keyboard_mode argument. The meaning of
these modes is changed by the input extension. For the XGrabPointer and XGrabButton
requests, pointer_mode controls synchronization of the pointer device, and keyboard_mode con-
trols the synchronization of all other input devices. For the XGrabKeyboard and XGrabKey
requests, pointer_mode controls the synchronization of all input devices, except the X keyboard,
while keyboard_mode controls the synchronization of the keyboard. When using one of the core
grab requests, the synchronization of extension devices is controlled by the mode specified for the
device not being grabbed.

2.1.3. Extension Active Grabs
Active grabs of extension devices are supported via the XGrabDevice function in the same way
that core devices are grabbed using the core XGrabKeyboard function, except that an extension
input device is passed as a function parameter. The XUngrabDevice function allows a previous
active grab for an extension device to be released.

Passive grabs of buttons and keys on extension devices are supported via the XGrabDeviceBut-
ton and XGrabDeviceKey functions. These passive grabs are released via the XUngrabDe-
viceKey and XUngrabDeviceButton functions.

5

X Input Extension Library X11, Release 6.4

To grab an extension device, use the XGrabDevice function. The device must have previously
been opened using the XOpenDevice function.

int XGrabDevice (display , device , grab_window , owner_events , event_count , event_list ,
this_device_mode , other_device_mode , time)

Display *display;
XDevice *device;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;
Time time;

display Specifies the connection to the X server.

device Specifies the desired device.

grab_window Specifies the ID of a window associated with the device specified above.

owner_events Specifies a boolean value of either True or False .

event_count Specifies the number of elements in the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which events the client
wishes to receive. These event classes must have been obtained using the device
being grabbed.

this_device_mode
Controls further processing of events from this device. You can pass one of these
constants: GrabModeSync or GrabModeAsync .

other_device_mode
Controls further processing of events from all other devices. You can pass one of
these constants: GrabModeSync or GrabModeAsync .

time Specifies the time. This may be either a timestamp expressed in milliseconds or
CurrentTime .

XGrabDevice actively grabs an extension input device and generates DeviceFocusIn and
DeviceFocusOut ev ents. Further input events from this device are reported only to the grabbing
client. This function overrides any previous active grab by this client for this device.

The event_list parameter is a pointer to a list of event classes. This list indicates which events the
client wishes to receive while the grab is active. If owner_events is False , input events from this
device are reported with respect to grab_window and are reported only if specified in event_list.
If owner_events is True , then if a generated event would normally be reported to this client, it is
reported normally. Otherwise, the event is reported with respect to the grab_window and is only
reported if specified in event_list.

The this_device_mode argument controls the further processing of events from this device, and
the other_device_mode argument controls the further processing of input events from all other
devices.

• If the this_device_mode argument is GrabModeAsync , device event processing continues
normally; if the device is currently frozen by this client, then processing of device events is
resumed. If the this_device_mode argument is GrabModeSync , the state of the grabbed

6

X Input Extension Library X11, Release 6.4

device (as seen by client applications) appears to freeze, and no further device events are
generated by the server until the grabbing client issues a releasing XAllowDeviceEvents
call or until the device grab is released. Actual device input events are not lost while the
device is frozen; they are simply queued for later processing.

• If the other_device_mode is GrabModeAsync , event processing from other input devices
is unaffected by activation of the grab. If other_device_mode is GrabModeSync , the state
of all devices except the grabbed device (as seen by client applications) appears to freeze,
and no further events are generated by the server until the grabbing client issues a releasing
XAllowEvents or XAllowDeviceEvents call or until the device grab is released. Actual
ev ents are not lost while the other devices are frozen; they are simply queued for later pro-
cessing.

XGrabDevice fails on the following conditions:

• If the device is actively grabbed by some other client, it returns AlreadyGrabbed .

• If grab_window is not viewable, it returns GrabNotViewable .

• If the specified time is earlier than the last-grab-time for the specified device or later than
the current X server time, it returns GrabInvalidTime . Otherwise, the last-grab-time for
the specified device is set to the specified time and CurrentTime is replaced by the current
X server time.

• If the device is frozen by an active grab of another client, it returns GrabFrozen .

If a grabbed device is closed by a client while an active grab by that client is in effect, that active
grab will be released. Any passive grabs established by that client will be released. If the device
is frozen only by an active grab of the requesting client, it is thawed.

XGrabDevice can generate BadClass , BadDevice , BadValue , and BadWindow errors.

To release a grab of an extension device, use the XUngrabDevice function.

int XUngrabDevice(display , device , time)
Display *display;
XDevice *device;
Time time;

display Specifies the connection to the X server.

device Specifies the desired device.

time Specifies the time. This may be either a timestamp expressed in milliseconds, or
CurrentTime .

XUngrabDevice allows a client to release an extension input device and any queued events if
this client has it grabbed from either XGrabDevice or XGrabDeviceKey . If any other devices
are frozen by the grab, XUngrabDevice thaws them. This function does not release the device
and any queued events if the specified time is earlier than the last-device-grab time or is later than
the current X server time. It also generates DeviceFocusIn and DeviceFocusOut ev ents. The X
server automatically performs an XUngrabDevice if the event window for an active device grab
becomes not viewable or if the client terminates without releasing the grab.

XUngrabDevice can generate BadDevice errors.

7

X Input Extension Library X11, Release 6.4

2.1.4. Passively Grabbing a Key
To passively grab a single key on an extension device, use XGrabDeviceKey . That device must
have previously been opened using the XOpenDevice function, or the request will fail with a
BadDevice error. If the specified device does not support input class Keys , the request will fail
with a BadMatch error.

int XGrabDeviceKey(display , device , keycode , modifiers , modifier_device , grab_window ,
owner_events , event_count , event_list , this_device_mode , other_device_mode)

Display *display;
XDevice *device;
int keycode;
unsigned int modifiers;
XDevice *modifier_device;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is to be grabbed. You can pass either the
keycode or AnyKey .

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of these
keymask bits: ShiftMask , LockMask , ControlMask , Mod1Mask ,
Mod2Mask , Mod3Mask , Mod4Mask , and Mod5Mask .

You can also pass AnyModifier , which is equivalent to issuing the grab key
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X keyboard is used as the modifier_device.

grab_window Specifies the ID of a window associated with the device specified above.

owner_events Specifies a boolean value of either True or False .

event_count Specifies the number of elements in the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which events the client
wishes to receive.

this_device_mode
Controls further processing of events from this device. You can pass one of these
constants: GrabModeSync or GrabModeAsync .

other_device_mode
Controls further processing of events from all other devices. You can pass one of
these constants: GrabModeSync or GrabModeAsync .

XGrabDeviceKey is analogous to the core XGrabKey function. It creates an explicit passive
grab for a key on an extension device. The XGrabDeviceKey function establishes a passive grab

8

X Input Extension Library X11, Release 6.4

on a device. Consequently, in the future,

• IF the device is not grabbed and the specified key, which itself can be a modifier key, is log-
ically pressed when the specified modifier keys logically are down on the specified modifier
device (and no other keys are down),

• AND no other modifier keys logically are down,

• AND EITHER the grab window is an ancestor of (or is) the focus window or the grab win-
dow is a descendent of the focus window and contains the pointer,

• AND a passive grab on the same device and key combination does not exist on any ancestor
of the grab window,

• THEN the device is actively grabbed, as for XGrabDevice , the last-device-grab time is set
to the time at which the key was pressed (as transmitted in the DeviceKeyPress ev ent), and
the DeviceKeyPress ev ent is reported.

The interpretation of the remaining arguments is as for XGrabDevice . The active grab is termi-
nated automatically when the logical state of the device has the specified key released (indepen-
dent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A key of AnyKey is equivalent to issuing the request for all
possible keycodes. Otherwise, the key must be in the range specified by min_keycode and
max_keycode in the information returned by the XListInputDevices function. If it is not within
that range, XGrabDeviceKey generates a BadValue error.

XGrabDeviceKey generates a BadAccess error if some other client has issued a XGrabDe-
viceKey with the same device and key combination on the same window. When using AnyMod-
ifier or AnyKey , the request fails completely and the X server generates a BadAccess error, and
no grabs are established if there is a conflicting grab for any combination.

XGrabDeviceKey returns Success upon successful completion of the request.

XGrabDeviceKey can generate BadAccess , BadClass , BadDevice , BadMatch , BadValue ,
and BadWindow errors.

To release a passive grab of a single key on an extension device, use XUngrabDeviceKey .

9

X Input Extension Library X11, Release 6.4

int XUngrabDeviceKey(display , device , keycode , modifiers , modifier_device , ungrab_window)
Display *display;
XDevice *device;
int keycode;
unsigned int modifiers;
XDevice *modifier_device;
Window ungrab_window;

display Specifies the connection to the X server.

device Specifies the desired device.

keycode Specifies the keycode of the key that is to be ungrabbed. You can pass either the
keycode or AnyKey .

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of these
keymask bits: ShiftMask , LockMask , ControlMask , Mod1Mask ,
Mod2Mask , Mod3Mask , Mod4Mask , and Mod5Mask .

You can also pass AnyModifier , which is equivalent to issuing the ungrab key
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device Specifies the device whose modifiers are to be used. If NULL is speci-
fied, the core X keyboard is used as the modifier_device.

ungrab_window Specifies the ID of a window associated with the device specified above.

XUngrabDeviceKey is analogous to the core XUngrabKey function. It releases an explicit pas-
sive grab for a key on an extension input device.

XUngrabDeviceKey can generate BadAlloc , BadDevice , BadMatch , BadValue , and Bad-
Window errors.

2.1.5. Passively Grabbing a Button
To establish a passive grab for a single button on an extension device, use XGrabDeviceButton .
The specified device must have previously been opened using the XOpenDevice function, or the
request will fail with a BadDevice error. If the specified device does not support input class But-
tons , the request will fail with a BadMatch error.

10

X Input Extension Library X11, Release 6.4

int XGrabDeviceButton(display , device , button , modifiers , modifier_device , grab_window ,
owner_events , event_count , event_list , this_device_mode , other_device_mode)

Display *display;
XDevice *device;
unsigned int button;
unsigned int modifiers;
XDevice *modifier_device ;
Window grab_window;
Bool owner_events;
int event_count;
XEventClass *event_list;
int this_device_mode;
int other_device_mode;

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be grabbed. You can pass either the
button or AnyButton .

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of these
keymask bits: ShiftMask , LockMask , ControlMask , Mod1Mask ,
Mod2Mask , Mod3Mask , Mod4Mask , and Mod5Mask .

You can also pass AnyModifier , which is equivalent to issuing the grab request
for all possible modifier combinations (including the combination of no modi-
fiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X keyboard is used as the modifier_device.

grab_window Specifies the ID of a window associated with the device specified above.

owner_events Specifies a boolean value of either True or False .

event_count Specifies the number of elements in the event_list array.

event_list Specifies a list of event classes that indicates which device events are to be
reported to the client.

this_device_mode
Controls further processing of events from this device. You can pass one of these
constants: GrabModeSync or GrabModeAsync .

other_device_mode
Controls further processing of events from all other devices. You can pass one of
these constants: GrabModeSync or GrabModeAsync .

XGrabDeviceButton is analogous to the core XGrabButton function. It creates an explicit
passive grab for a button on an extension input device. Because the server does not track exten-
sion devices, no cursor is specified with this request. For the same reason, there is no confine_to
parameter. The device must have previously been opened using the XOpenDevice function.

The XGrabDeviceButton function establishes a passive grab on a device. Consequently, in the
future,

11

X Input Extension Library X11, Release 6.4

• IF the device is not grabbed and the specified button is logically pressed when the specified
modifier keys logically are down (and no other buttons or modifier keys are down),

• AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab
window is a descendent of the focus window and contains the pointer,

• AND a passive grab on the same device and button/key combination does not exist on any
ancestor of the grab window,

• THEN the device is actively grabbed, as for XGrabDevice , the last-grab time is set to the
time at which the button was pressed (as transmitted in the DeviceButtonPress ev ent), and
the DeviceButtonPress ev ent is reported.

The interpretation of the remaining arguments is as for XGrabDevice . The active grab is termi-
nated automatically when logical state of the device has all buttons released (independent of the
logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A button of AnyButton is equivalent to issuing the request for
all possible buttons. Otherwise, it is not required that the specified button be assigned to a physi-
cal button.

XGrabDeviceButton generates a BadAccess error if some other client has issued a XGrabDe-
viceButton with the same device and button combination on the same window. When using
AnyModifier or AnyButton , the request fails completely and the X server generates a BadAc-
cess error and no grabs are established if there is a conflicting grab for any combination.

XGrabDeviceButton can generate BadAccess , BadClass , BadDevice , BadMatch , BadValue ,
and BadWindow errors.

To release a passive grab of a button on an extension device, use XUngrabDeviceButton .

12

X Input Extension Library X11, Release 6.4

int XUngrabDeviceButton(display , device , button , modifiers , modifier_device , ungrab_window)
Display *display;
XDevice *device;
unsigned int button;
unsigned int modifiers;
XDevice *modifier_device;
Window ungrab_window;

display Specifies the connection to the X server.

device Specifies the desired device.

button Specifies the code of the button that is to be ungrabbed. You can pass either a
button or AnyButton .

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of these
keymask bits: ShiftMask , LockMask , ControlMask , Mod1Mask ,
Mod2Mask , Mod3Mask , Mod4Mask , and Mod5Mask .

You can also pass AnyModifier , which is equivalent to issuing the ungrab key
request for all possible modifier combinations (including the combination of no
modifiers).

modifier_device
Specifies the device whose modifiers are to be used. If NULL is specified, the
core X keyboard is used as the modifier_device.

ungrab_window
Specifies the ID of a window associated with the device specified above.

XUngrabDeviceButton is analogous to the core XUngrabButton function. It releases an
explicit passive grab for a button on an extension device. That device must have previously been
opened using the XOpenDevice function, or a BadDevice error will result.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers).

XUngrabDeviceButton can generate BadAlloc , BadDevice , BadMatch , BadValue , and Bad-
Window errors.

2.1.6. Thawing a Device
To allow further events to be processed when a device has been frozen, use XAllowDe-
viceEvents .

13

X Input Extension Library X11, Release 6.4

int XAllowDeviceEvents(display , device , event_mode , time)
Display *display;
XDevice *device;
int event_mode;
Time time;

display Specifies the connection to the X server.

device Specifies the desired device.

event_mode Specifies the event mode. You can pass one of these constants: AsyncThisDe-
vice , SyncThisDevice , AsyncOtherDevices , ReplayThisDevice , AsyncAll , or
SyncAll .

time Specifies the time. This may be either a timestamp expressed in milliseconds, or
CurrentTime .

XAllowDeviceEvents releases some queued events if the client has caused a device to freeze. It
has no effect if the specified time is earlier than the last-grab time of the most recent active grab
for the client and device, or if the specified time is later than the current X server time. The fol-
lowing describes the processing that occurs depending on what constant you pass to the
ev ent_mode argument:

• AsyncThisDevice
If the specified device is frozen by the client, event processing for that continues as usual.
If the device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncThisDevice thaws for all. AsyncThisDevice has no effect if the specified device is
not frozen by the client, but the device need not be grabbed by the client.

• SyncThisDevice
If the specified device is frozen and actively grabbed by the client, event processing for that
device continues normally until the next key or button event is reported to the client. At
this time, the specified device again appears to freeze. However, if the reported event
causes the grab to be released, the specified device does not freeze. SyncThisDevice has
no effect if the specified device is not frozen by the client or is not grabbed by the client.

• ReplayThisDevice
If the specified device is actively grabbed by the client and is frozen as the result of an
ev ent having been sent to the client (either from the activation of a GrabDeviceButton or
from a previous AllowDeviceEvents with mode SyncThisDevice , but not from a Grab),
the grab is released and that event is completely reprocessed. This time, however, the
request ignores any passive grabs at or above (toward the root) the grab-window of the grab
just released. The request has no effect if the specified device is not grabbed by the client
or if it is not frozen as the result of an event.

• AsyncOtherDevices
If the remaining devices are frozen by the client, event processing for them continues as
usual. If the other devices are frozen multiple times by the client on behalf of multiple
separate grabs, AsyncOtherDevices ‘‘thaws’’ for all. AsyncOtherDevices has no effect if
the devices are not frozen by the client, but those devices need not be grabbed by the client.

• SyncAll
If all devices are frozen by the client, event processing (for all devices) continues normally
until the next button or key event is reported to the client for a grabbed device, at which

14

X Input Extension Library X11, Release 6.4

time the devices again appear to freeze. However, if the reported event causes the grab to
be released, then the devices do not freeze (but if any device is still grabbed, then a subse-
quent event for it will still cause all devices to freeze). SyncAll has no effect unless all
devices are frozen by the client. If any device is frozen twice by the client on behalf of two
separate grabs, SyncAll "thaws" for both (but a subsequent freeze for SyncAll will freeze
each device only once).

• AsyncAll
If all devices are frozen by the client, event processing (for all devices) continues normally.
If any device is frozen multiple times by the client on behalf of multiple separate grabs,
AsyncAll ‘‘thaws ’’for all. If any device is frozen twice by the client on behalf of two sep-
arate grabs, AsyncAll ‘‘thaws’’ for both. AsyncAll has no effect unless all devices are
frozen by the client.

AsyncThisDevice , SyncThisDevice , and ReplayThisDevice have no effect on the processing of
ev ents from the remaining devices. AsyncOtherDevices has no effect on the processing of
ev ents from the specified device. When the event_mode is SyncAll or AsyncAll , the device
parameter is ignored.

It is possible for several grabs of different devices (by the same or different clients) to be active
simultaneously. If a device is frozen on behalf of any grab, no event processing is performed for
the device. It is possible for a single device to be frozen because of several grabs. In this case,
the freeze must be released on behalf of each grab before events can again be processed.

XAllowDeviceEvents can generate BadDevice and BadValue errors.

2.1.7. Controlling Device Focus
The current focus window for an extension input device can be determined using the XGetDe-
viceFocus function. Extension devices are focused using the XSetDeviceFocus function in the
same way that the keyboard is focused using the core XSetInputFocus function, except that a
device ID is passed as a function parameter. One additional focus state, FollowKeyboard , is
provided for extension devices.

To get the current focus state, revert state, and focus time of an extension device, use XGetDe-
viceFocus .

15

X Input Extension Library X11, Release 6.4

int XGetDeviceFocus(display , device , focus_return , re vert_to_return , focus_time_return)
Display *display;
XDevice *device;
Window *focus_return;
int *re vert_to_return;
Time *focus_time_return;

display Specifies the connection to the X server.

device Specifies the desired device.

focus_return Specifies the address of a variable into which the server can return the ID of the
window that contains the device focus or one of the constants None , Pointer-
Root , or FollowKeyboard .

re vert_to_return
Specifies the address of a variable into which the server can return the current
revert_to status for the device.

focus_time_return
Specifies the address of a variable into which the server can return the focus time
last set for the device.

XGetDeviceFocus returns the focus state, the revert-to state, and the last-focus-time for an exten-
sion input device.

XGetDeviceFocus can generate BadDevice and BadMatch errors.

To set the focus of an extension device, use XSetDeviceFocus .

int XSetDeviceFocus(display , device , focus , re vert_to , time)
Display *display;
XDevice *device;
Window focus;
int re vert_to;
Time time;

display Specifies the connection to the X server.

device Specifies the desired device.

focus Specifies the ID of the window to which the device’s focus should be set. This
may be a window ID, or PointerRoot , FollowKeyboard , or None .

re vert_to Specifies to which window the focus of the device should revert if the focus win-
dow becomes not viewable. One of the following constants may be passed:
RevertToParent , RevertToPointerRoot , RevertToNone , or RevertToFol-
lowKeyboard .

time Specifies the time. You can pass either a timestamp, expressed in milliseconds,
or CurrentTime .

XSetDeviceFocus changes the focus for an extension input device and the last-focus-change-
time. It has no effect if the specified time is earlier than the last-focus-change-time or is later than
the current X server time. Otherwise, the last-focus-change-time is set to the specified time. This
function causes the X server to generate DeviceFocusIn and DeviceFocusOut ev ents.

16

X Input Extension Library X11, Release 6.4

The action taken by the server when this function is requested depends on the value of the focus
argument:

• If the focus argument is None , all input events from this device will be discarded until a
new focus window is set. In this case, the revert_to argument is ignored.

• If the focus argument is a window ID, it becomes the focus window of the device. If an
input event from the device would normally be reported to this window or to one of its infe-
riors, the event is reported normally. Otherwise, the event is reported relative to the focus
window.

• If the focus argument is PointerRoot , the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each input event. In this case, the revert_to
argument is ignored.

• If the focus argument is FollowKeyboard , the focus window is dynamically taken to be
the same as the focus of the X keyboard at each input event.

The specified focus window must be viewable at the time XSetDeviceFocus is called. Other-
wise, it generates a BadMatch error. If the focus window later becomes not viewable, the X
server evaluates the revert_to argument to determine the new focus window.

• If the revert_to argument is RevertToParent , the focus reverts to the parent (or the closest
viewable ancestor), and the new rev ert_to value is taken to be RevertToNone .

• If the revert_to argument is RevertToPointerRoot , RevertToFollowKeyboard , or
RevertToNone , the focus reverts to that value.

When the focus reverts, the X server generates DeviceFocusIn and DeviceFocusOut ev ents, but
the last-focus-change time is not affected.

XSetDeviceFocus can generate BadDevice , BadMatch , BadValue , and BadWindow errors.

2.1.8. Controlling Device Feedback
To determine the current feedback settings of an extension input device, use XGetFeedbackCon-
trol .

XFeedbackState * XGetFeedbackControl(display , device , num_feedbacks_return)
Display *display;
XDevice *device;
int *num_feedbacks_return;

display Specifies the connection to the X server.

device Specifies the desired device.

num_feedbacks_return
Returns the number of feedbacks supported by the device.

XGetFeedbackControl returns a list of FeedbackState structures that describe the feedbacks
supported by the specified device. There is an XFeedbackState structure for each class of feed-
back. These are of variable length, but the first three members are common to all.

17

X Input Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;

} XFeedbackState;

The common members are as follows:

• The class member identifies the class of feedback. It may be compared to constants defined
in the file <X11/extensions/XI.h>. Currently defined feedback constants include: Kbd-
FeedbackClass , PtrFeedbackClass , StringFeedbackClass , IntegerFeedbackClass ,
LedFeedbackClass , and BellFeedbackClass .

• The length member specifies the length of the FeedbackState structure and can be used by
clients to traverse the list.

• The id member uniquely identifies a feedback for a given device and class. This allows a
device to support more than one feedback of the same class. Other feedbacks of other
classes or devices may have the same ID.

Those feedbacks equivalent to those supported by the core keyboard are reported in class Kbd-
Feedback using the XKbdFeedbackState structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int click;
int percent;
int pitch;
int duration;
int led_mask;
int global_auto_repeat;
char auto_repeats[32];

} XKbdFeedbackState;

The additional members of the XKbdFeedbackState structure report the current state of the
feedback:

• The click member specifies the key-click volume and has a value in the range 0 (off) to 100
(loud).

• The percent member specifies the bell volume and has a value in the range 0 (off) to 100
(loud).

• The pitch member specifies the bell pitch in Hz. The range of the value is implementation-
dependent.

• The duration member specifies the duration in milliseconds of the bell.

• The led_mask member is a bit mask that describes the current state of up to 32 LEDs. A
value of 1 in a bit indicates that the corresponding LED is on.

18

X Input Extension Library X11, Release 6.4

• The global_auto_repeat member has a value of AutoRepeatModeOn or AutoRepeat-
ModeOff .

• The auto_repeats member is a bit vector. Each bit set to 1 indicates that auto-repeat is
enabled for the corresponding key. The vector is represented as 32 bytes. Byte N (from 0)
contains the bits for keys 8N to 8N + 7, with the least significant bit in the byte representing
key 8N.

Those feedbacks equivalent to those supported by the core pointer are reported in class PtrFeed-
back using the XPtrFeedbackState structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} XPtrFeedbackState;

The additional members of the XPtrFeedbackState structure report the current state of the feed-
back:

• The accelNum member returns the numerator for the acceleration multiplier.

• The accelDenom member returns the denominator for the acceleration multiplier.

• The accelDenom member returns the threshold for the acceleration.

Integer feedbacks are those capable of displaying integer numbers and reported via the XInte-
gerFeedbackState structure. The minimum and maximum values that they can display are
reported.

typedef struct {
XID class;
int length;
XID id;
int resolution;
int minVal;
int maxVal;

} XIntegerFeedbackState;

The additional members of the XIntegerFeedbackState structure report the capabilities of the
feedback:

• The resolution member specifies the number of digits that the feedback can display.

• The minVal member specifies the minimum value that the feedback can display.

• The maxVal specifies the maximum value that the feedback can display.

19

X Input Extension Library X11, Release 6.4

String feedbacks are those that can display character information and are reported via the
XStringFeedbackState structure. Clients set these feedbacks by passing a list of KeySyms to
be displayed. The XGetFeedbackControl function returns the set of key symbols that the feed-
back can display, as well as the maximum number of symbols that can be displayed. The
XStringFeedbackState structure is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int max_symbols;
int num_syms_supported;
Ke ySym *syms_supported;

} XStringFeedbackState;

The additional members of the XStringFeedbackState structure report the capabilities of the
feedback:

• The max_symbols member specifies the maximum number of symbols that can be dis-
played.

• The syms_supported member is a pointer to the list of supported symbols.

• The num_syms_supported member specifies the length of the list of supported symbols.

Bell feedbacks are those that can generate a sound and are reported via the XBellFeedbackState
structure. Some implementations may support a bell as part of a KbdFeedback feedback. Class
BellFeedback is provided for implementations that do not choose to do so and for devices that
support multiple feedbacks that can produce sound. The meaning of the members is the same as
that of the corresponding fields in the XKbdFeedbackState structure.

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;

} XBellFeedbackState;

Led feedbacks are those that can generate a light and are reported via the XLedFeedbackState
structure. Up to 32 lights per feedback are supported. Each bit in led_mask corresponds to one
supported light, and the corresponding bit in led_values indicates whether that light is currently
on (1) or off (0). Some implementations may support leds as part of a KbdFeedback feedback.
Class LedFeedback is provided for implementations that do not choose to do so and for devices
that support multiple led feedbacks.

20

X Input Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;
Mask led_values;
Mask led_mask;

} XLedFeedbackState;

XGetFeedbackControl can generate BadDevice and BadMatch errors.

To free the information returned by the XGetFeedbackControl function, use XFreeFeedback-
List .

void XFreeFeedbackList(list)
XFeedbackState *list;

list Specifies the pointer to the XFeedbackState structure returned by a previous call
to XGetFeedbackControl .

XFreeFeedbackList frees the list of feedback control information.

To change the settings of a feedback on an extension device, use XChangeFeedbackControl .
This function modifies the current control values of the specified feedback using information
passed in the appropriate XFeedbackControl structure for the feedback. Which values are mod-
ified depends on the valuemask passed.

int XChangeFeedbackControl(display , device , valuemask , value)
Display *display;
XDevice *device;
unsigned long valuemask;
XFeedbackControl *value;

display Specifies the connection to the X server.

device Specifies the desired device.

valuemask Specifies one value for each bit in the mask (least to most significant bit). The
values are associated with the feedbacks for the specified device.

value Specifies a pointer to the XFeedbackControl structure.

XChangeFeedbackControl controls the device characteristics described by the XFeedback-
Control structure. There is an XFeedbackControl structure for each class of feedback. These
are of variable length, but the first three members are common to all and are as follows:

21

X Input Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;

} XFeedbackControl;

Feedback class KbdFeedback controls feedbacks equivalent to those provided by the core
keyboard using the KbdFeedbackControl structure, which is defined as follows:.

typedef struct {
XID class;
int length;
XID id;
int click;
int percent;
int pitch;
int duration;
int led_mask;
int led_value;
int key;
int auto_repeat_mode;

} XKbdFeedbackControl;

This class controls the device characteristics described by the XKbdFeedbackControl structure.
These include the key_click_percent, global_auto_repeat, and individual key auto-repeat. Valid
modes are AutoRepeatModeOn , AutoRepeatModeOff , and AutoRepeatModeDefault .

Valid masks are as follows:

#define DvKeyClickPercent (1L << 0)
#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)
#define DvLed (1L << 4)
#define DvLedMode (1L << 5)
#define DvKey (1L << 6)
#define DvAutoRepeatMode (1L << 7)

Feedback class PtrFeedback controls feedbacks equivalent to those provided by the core pointer
using the PtrFeedbackControl structure, which is defined as follows:

22

X Input Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;
int accelNum;
int accelDenom;
int threshold;

} XPtrFeedbackControl;

Which values are modified depends on the valuemask passed.

Valid masks are as follows:

#define DvAccelnum (1L << 0)
#define DvAccelDenom (1L << 1)
#define DvThreshold (1L << 2)

The acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying
3/1 means that the device moves three times as fast as normal. The fraction may be rounded arbi-
trarily by the X server. Acceleration takes effect only if the device moves more than threshold
pixels at once and applies only to the amount beyond the value in the threshold argument. Setting
a value to -1 restores the default. The values of the accelNumerator and threshold fields must be
nonzero for the pointer values to be set. Otherwise, the parameters will be unchanged. Negative
values generate a BadValue error, as does a zero value for the accelDenominator field.

This request fails with a BadMatch error if the specified device is not currently reporting relative
motion. If a device that is capable of reporting both relative and absolute motion has its mode
changed from Relative to Absolute by an XSetDeviceMode request, valuator control values
will be ignored by the server while the device is in that mode.

Feedback class IntegerFeedback controls integer feedbacks displayed on input devices and are
reported via the IntegerFeedbackControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int int_to_display;

} XIntegerFeedbackControl;

Valid masks are as follows:

#define DvInteger (1L << 0)

Feedback class StringFeedback controls string feedbacks displayed on input devices and
reported via the StringFeedbackControl structure, which is defined as follows:

23

X Input Extension Library X11, Release 6.4

typedef struct {
XID class;
int length;
XID id;
int num_keysyms;
Ke ySym *syms_to_display;

} XStringFeedbackControl;

Valid masks are as follows:

#define DvString (1L << 0)

Feedback class BellFeedback controls a bell on an input device and is reported via the BellFeed-
backControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int percent;
int pitch;
int duration;

} XBellFeedbackControl;

Valid masks are as follows:

#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)

Feedback class LedFeedback controls lights on an input device and are reported via the Led-
FeedbackControl structure, which is defined as follows:

typedef struct {
XID class;
int length;
XID id;
int led_mask;
int led_values;

} XLedFeedbackControl;

Valid masks are as follows:

24

X Input Extension Library X11, Release 6.4

#define DvLed (1L << 4)
#define DvLedMode (1L << 5)

XChangeFeedbackControl can generate BadDevice , BadFeedBack , BadMatch , and Bad-
Value errors.

2.1.9. Ringing a Bell on an Input Device
To ring a bell on an extension input device, use XDeviceBell .

int XDeviceBell(display , device , feedbackclass , feedbackid , percent)
Display *display;
XDevice *device;
XID feedbackclass , feedbackid;
int percent;

display Specifies the connection to the X server.

device Specifies the desired device.

feedbackclass Specifies the feedbackclass. Valid values are KbdFeedbackClass and BellFeed-
backClass .

feedbackid Specifies the ID of the feedback that has the bell.

percent Specifies the volume in the range -100 (quiet) to 100 percent (loud).

XDeviceBell is analogous to the core XBell function. It rings the specified bell on the specified
input device feedback, using the specified volume. The specified volume is relative to the base
volume for the feedback. If the value for the percent argument is not in the range -100 to 100
inclusive, a BadValue error results. The volume at which the bell rings when the percent argu-
ment is nonnegative is:

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeFeedbackControl .
XDeviceBell can generate BadDevice and BadValue errors.

2.1.10. Controlling Device Encoding
To get the key mapping of an extension device that supports input class Keys , use XGetDe-
viceKeyMapping .

25

X Input Extension Library X11, Release 6.4

Ke ySym * XGetDeviceKeyMapping(display , device , first_keycode_wanted , keycode_count ,
keysyms_per_keycode_return)

Display *display;
XDevice *device;
Ke yCode first_keycode_wanted;
int keycode_count;
int *keysyms_per_keycode_return;

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode_wanted
Specifies the first keycode that is to be returned.

keycode_count Specifies the number of keycodes that are to be returned.

keysyms_per_keycode_return
Returns the number of keysyms per keycode.

XGetDeviceKeyMapping is analogous to the core XGetKeyboardMapping function. It
returns the symbols for the specified number of keycodes for the specified extension device.

XGetDeviceKeyMapping returns the symbols for the specified number of keycodes for the spec-
ified extension device, starting with the specified keycode. The first_keycode_wanted must be
greater than or equal to min-keycode as returned by the XListInputDevices request (else a Bad-
Value error results). The following value:

first_keycode_wanted + keycode_count − 1

must be less than or equal to max-keycode as returned by the XListInputDevices request (else a
BadValue error results).

The number of elements in the keysyms list is as follows:

keycode_count * keysyms_per_keycode_return

And KEYSYM number N (counting from zero) for keycode K has an index (counting from zero),
in keysyms, of the following:

(K − first_keycode_wanted) * keysyms_per_keycode_return + N

The keysyms_per_keycode_return value is chosen arbitrarily by the server to be large enough to
report all requested symbols. A special KEYSYM value of NoSymbol is used to fill in unused
elements for individual keycodes.

To free the data returned by this function, use XFree .

If the specified device has not first been opened by this client via XOpenDevice , this request will
fail with a BadDevice error. If that device does not support input class Keys , this request will
fail with a BadMatch error.

XGetDeviceKeyMapping can generate BadDevice , BadMatch , and BadValue errors.

To change the keyboard mapping of an extension device that supports input class Keys , use
XChangeDeviceKeyMapping .

26

X Input Extension Library X11, Release 6.4

int
XChangeDeviceKeyMapping(display , device , first_keycode , keysyms_per_keycode , keysyms ,

num_codes)
Display *display;
XDevice *device;
int first_keycode;
int keysyms_per_keycode;
Ke ySym *keysyms;
int num_codes;

display Specifies the connection to the X server.

device Specifies the desired device.

first_keycode Specifies the first keycode that is to be changed.

keysyms_per_keycode
Specifies the keysyms that are to be used.

keysyms Specifies a pointer to an array of keysyms.

num_codes Specifies the number of keycodes that are to be changed.

XChangeDeviceKeyMapping is analogous to the core XChangeKeyboardMapping function.
It defines the symbols for the specified number of keycodes for the specified extension keyboard
device.

If the specified device has not first been opened by this client via XOpenDevice , this request will
fail with a BadDevice error. If the specified device does not support input class Keys , this
request will fail with a BadMatch error.

The number of elements in the keysyms list must be a multiple of keysyms_per_keycode. Other-
wise, XChangeDeviceKeyMapping generates a BadLength error. The specified first_keycode
must be greater than or equal to the min_keycode value returned by the ListInputDevices
request, or this request will fail with a BadValue error. In addition, if the following expression is
not less than the max_keycode value returned by the ListInputDevices request, the request will
fail with a BadValue error:

first_keycode + (num_codes / keysyms_per_keycode) - 1

XChangeDeviceKeyMapping can generate BadAlloc , BadDevice , BadMatch , and BadValue
errors.

To obtain the keycodes that are used as modifiers on an extension device that supports input class
Keys , use XGetDeviceModifierMapping .

XModifierKeymap * XGetDeviceModifierMapping(display , device)
Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

XGetDeviceModifierMapping is analogous to the core XGetModifierMapping function. The
XGetDeviceModifierMapping function returns a newly created XModifierKeymap structure

27

X Input Extension Library X11, Release 6.4

that contains the keys being used as modifiers for the specified device. The structure should be
freed after use with XFreeModifierMapping . If only zero values appear in the set for any modi-
fier, that modifier is disabled.

XGetDeviceModifierMapping can generate BadDevice and BadMatch errors.

To set which keycodes are to be used as modifiers for an extension device, use XSetDeviceModi-
fierMapping .

int XSetDeviceModifierMapping(display , device , modmap)
Display *display;
XDevice *device;
XModifierKeymap *modmap;

display Specifies the connection to the X server.

device Specifies the desired device.

modmap Specifies a pointer to the XModifierKeymap structure.

XSetDeviceModifierMapping is analogous to the core XSetModifierMapping function. The
XSetDeviceModifierMapping function specifies the keycodes of the keys, if any, that are to be
used as modifiers. A zero value means that no key should be used. No two arguments can have
the same nonzero keycode value. Otherwise, XSetDeviceModifierMapping generates a Bad-
Value error. There are eight modifiers, and the modifiermap member of the XModifierKeymap
structure contains eight sets of max_keypermod keycodes, one for each modifier in the order
Shift , Lock , Control , Mod1 , Mod2 , Mod3 , Mod4 , and Mod5 . Only nonzero keycodes have
meaning in each set, and zero keycodes are ignored. In addition, all of the nonzero keycodes
must be in the range specified by min_keycode and max_keycode reported by the XListInputDe-
vices function. Otherwise, XSetModifierMapping generates a BadValue error. No keycode
may appear twice in the entire map. Otherwise, it generates a BadValue error.

A X server can impose restrictions on how modifiers can be changed, for example, if certain keys
do not generate up transitions in hardware or if multiple modifier keys are not supported. If some
such restriction is violated, the status reply is MappingFailed , and none of the modifiers are
changed. If the new keycodes specified for a modifier differ from those currently defined and any
(current or new) keys for that modifier are in the logically down state, the status reply is Map-
pingBusy , and none of the modifiers are changed. XSetModifierMapping generates a
DeviceMappingNotify ev ent on a MappingSuccess status.

XSetDeviceModifierMapping can generate BadAlloc , BadDevice , BadMatch , and BadValue
errors.

2.1.11. Controlling Button Mapping
To set the mapping of the buttons on an extension device, use XSetDeviceButtonMapping .

28

X Input Extension Library X11, Release 6.4

int XSetDeviceButtonMapping(display , device , map , nmap)
Display *display;
XDevice *device;
unsigned char map[];
int nmap;

display Specifies the connection to the X server.

device Specifies the desired device.

map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

XSetDeviceButtonMapping sets the mapping of the buttons on an extension device. If it suc-
ceeds, the X server generates a DeviceMappingNotify ev ent, and XSetDeviceButtonMapping
returns MappingSuccess . Elements of the list are indexed starting from one. The length of the
list must be the same as XGetDeviceButtonMapping would return, or a BadValue error results.
The index is a button number, and the element of the list defines the effective number. A zero ele-
ment disables a button, and elements are not restricted in value by the number of physical buttons.
However, no two elements can have the same nonzero value, or a BadValue error results. If any
of the buttons to be altered are logically in the down state, XSetDeviceButtonMapping returns
MappingBusy , and the mapping is not changed.

XSetDeviceButtonMapping can generate BadDevice , BadMatch , and BadValue errors.

To get the button mapping, use XGetDeviceButtonMapping .

int XGetDeviceButtonMapping(display , device , map_return , nmap)
Display *display;
XDevice *device;
unsigned char map_return[];
int nmap;

display Specifies the connection to the X server.

device Specifies the desired device.

map_return Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

XGetDeviceButtonMapping returns the current mapping of the specified extension device. Ele-
ments of the list are indexed starting from one. XGetDeviceButtonMapping returns the number
of physical buttons actually on the pointer. The nominal mapping for the buttons is the identity
mapping: map[i]=i. The nmap argument specifies the length of the array where the button map-
ping is returned, and only the first nmap elements are returned in map_return.

XGetDeviceButtonMapping can generate BadDevice and BadMatch errors.

2.1.12. Obtaining the State of a Device
To obtain information that describes the state of the keys, buttons, and valuators of an extension
device, use XQueryDeviceState .

29

X Input Extension Library X11, Release 6.4

XDeviceState * XQueryDeviceState(display , device)
Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the desired device.

XQueryDeviceState returns a pointer to an XDeviceState structure, which points to a list of
structures that describe the state of the keys, buttons, and valuators on the device:

typedef struct {
XID device_id;
int num_classes;
XInputClass *data;

} XDeviceState;

The structures are of variable length, but the first two members are common to all and are as fol-
lows:

typedef struct {
unsigned char class;
unsigned char length;

} XInputClass;

The class member contains a class identifier. This identifier can be compared with constants
defined in the file <X11/extensions/XI.h>. Currently defined constants are: KeyClass , Button-
Class , and ValuatorClass .

The length member contains the length of the structure and can be used by clients to traverse the
list.

The XValuatorState structure describes the current state of the valuators on the device. The
num_valuators member contains the number of valuators on the device. The mode member is a
mask whose bits report the data mode and other state information for the device. The following
bits are currently defined:

DeviceMode 1 << 0 Relative = 0, Absolute = 1
ProximityState 1 << 1 InProximity = 0, OutOfProximity = 1

The valuators member contains a pointer to an array of integers that describe the current value of
the valuators. If the mode is Relative , these values are undefined.

30

X Input Extension Library X11, Release 6.4

typedef struct {
unsigned char class;
unsigned char length;
unsigned char num_valuators;
unsigned char mode;
int *valuators;

} XValuatorState;

The XKeyState structure describes the current state of the keys on the device. Byte N (from 0)
contains the bits for key 8N to 8N + 7 with the least significant bit in the byte representing key
8N.

typedef struct {
unsigned char class;
unsigned char length;
short num_keys;
char keys[32];

} XKe yState;

The XButtonState structure describes the current state of the buttons on the device. Byte N
(from 0) contains the bits for button 8N to 8N + 7 with the least significant bit in the byte repre-
senting button 8N.

typedef struct {
unsigned char class;
unsigned char length;
short num_buttons;
char buttons[32];

} XButtonState;

XQueryDeviceState can generate BadDevice errors.

To free the data returned by this function, use XFreeDeviceState .

void XFreeDeviceState(state)
XDeviceState *state;

state Specifies the pointer to the XDeviceState data returned by a previous call to
XQueryDeviceState .

XFreeDeviceState frees the device state data.

2.2. Events
The input extension creates input events analogous to the core input events. These extension
input events are generated by manipulating one of the extension input devices. The remainder of

31

X Input Extension Library X11, Release 6.4

this section discusses the following X Input Extension event topics:

• Event types

• Event classes

• Event structures

2.2.1. Event Types
Event types are integer numbers that a client can use to determine what kind of event it has
received. The client compares the type field of the event structure with known event types to
make this determination.

The core input event types are constants and are defined in the header file <X11/X.h>. Extension
ev ent types are not constants. Instead, they are dynamically allocated by the extension’s request
to the X server when the extension is initialized. Because of this, extension event types must be
obtained by the client from the server.

The client program determines the event type for an extension event by using the information
returned by the XOpenDevice request. This type can then be used for comparison with the type
field of events received by the client.

Extension events propagate up the window hierarchy in the same manner as core events. If a win-
dow is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set
of windows that receive a particular extension event.

The following table lists the event category and its associated event type or types.

Event Category Event Type

Device key DeviceKeyPress
DeviceKeyRelease

Device motion DeviceButtonPress
DeviceButtonRelease
DeviceMotionNotify

Device input focus DeviceFocusIn
DeviceFocusOut

Device state notification DeviceStateNotify
Device proximity ProximityIn

ProximityOut
Device mapping DeviceMappingNotify
Device change ChangeDeviceNotify

2.2.2. Event Classes
Event classes are integer numbers that are used in the same way as the core event masks. They
are used by a client program to indicate to the server which events that client program wishes to
receive.

The core input event masks are constants and are defined in the header file <X11/X.h>. Exten-
sion event classes are not constants. Instead, they are dynamically allocated by the extension’s
request to the X server when the extension is initialized. Because of this, extension event classes
must be obtained by the client from the server.

32

X Input Extension Library X11, Release 6.4

The event class for an extension event and device is obtained from information returned by the
XOpenDevice function. This class can then be used in an XSelectExtensionEvent request to
ask that events of that type from that device be sent to the client program.

For DeviceButtonPress ev ents, the client may specify whether or not an implicit passive grab
should be done when the button is pressed. If the client wants to guarantee that it will receive a
DeviceButtonRelease ev ent for each DeviceButtonPress ev ent it receives, it should specify the
DeviceButtonPressGrab class in addition to the DeviceButtonPress class. This restricts the
client in that only one client at a time may request DeviceButtonPress ev ents from the same
device and window if any client specifies this class.

If any client has specified the DeviceButtonPressGrab class, any requests by any other client
that specify the same device and window and specify either DeviceButtonPress or DeviceBut-
tonPressGrab will cause an Access error to be generated.

If only the DeviceButtonPress class is specified, no implicit passive grab will be done when a
button is pressed on the device. Multiple clients may use this class to specify the same device and
window combination.

The client may also select DeviceMotion ev ents only when a button is down. It does this by
specifying the event classes DeviceButton1Motion through DeviceButton5Motion . An input
device will support only as many button motion classes as it has buttons.

2.2.3. Event Structures
Each extension event type has a corresponding structure declared in <X11/extensions/XIn-
put.h>. All ev ent structures have the following common members:

type Set to the event type number that uniquely identifies it. For example, when the X
server reports a DeviceKeyPress ev ent to a client application, it sends an XDe-
viceKeyPressEvent structure.

serial Set from the serial number reported in the protocol but expanded from the 16-bit
least significant bits to a full 32-bit value.

send_event Set to True if the event came from an XSendEvent request.

display Set to a pointer to a structure that defines the display on which the event was
read.

Extension event structures report the current position of the X pointer. In addition, if the device
reports motion data and is reporting absolute data, the current value of any valuators the device
contains is also reported.

2.2.3.1. Device Key Events
Ke y ev ents from extension devices contain all the information that is contained in a key event
from the X keyboard. In addition, they contain a device ID and report the current value of any
valuators on the device, if that device is reporting absolute data. If data for more than six valua-
tors is being reported, more than one key event will be sent. The axes_count member contains the
number of axes that are being reported. The server sends as many of these events as are needed to
report the device data. Each event contains the total number of axes reported in the axes_count
member and the first axis reported in the current event in the first_axis member. If the device sup-
ports input class Valuators , but is not reporting absolute mode data, the axes_count member
contains zero (0).

The location reported in the x, y and x_root, y_root members is the location of the core X pointer.

33

X Input Extension Library X11, Release 6.4

The XDeviceKeyEvent structure is defined as follows:

typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed */
Bool send_event; /* true if from SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window reported relative to */
XID deviceid;
Window root; /* root window event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* x, y coordinates in event window */
int x_root; /* coordinates relative to root */
int y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int keycode; /* detail */
Bool same_screen; /* same screen flag */
unsigned int device_state; /* device key or button mask */
unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];

} XDeviceKeyEvent;

typedef XDeviceKeyEvent XDeviceKeyPressedEvent;
typedef XDeviceKeyEvent XDeviceKeyReleasedEvent;

2.2.3.2. Device Button Events
Button events from extension devices contain all the information that is contained in a button
ev ent from the X pointer. In addition, they contain a device ID and report the current value of any
valuators on the device if that device is reporting absolute data. If data for more than six valua-
tors is being reported, more than one button event may be sent. The axes_count member contains
the number of axes that are being reported. The server sends as many of these events as are
needed to report the device data. Each event contains the total number of axes reported in the
axes_count member and the first axis reported in the current event in the first_axis member. If the
device supports input class Valuators , but is not reporting absolute mode data, the axes_count
member contains zero (0).

The location reported in the x, y and x_root, y_root members is the location of the core X pointer.

34

X Input Extension Library X11, Release 6.4

typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window reported relative to */
XID deviceid;
Window root; /* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* x, y coordinates in event window */
int x_root; /* coordinates relative to root */
int y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int button; /* detail */
Bool same_screen; /* same screen flag */
unsigned int device_state; /* device key or button mask */
unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];

} XDeviceButtonEvent;

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;
typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

2.2.3.3. Device Motion Events
Motion events from extension devices contain all the information that is contained in a motion
ev ent from the X pointer. In addition, they contain a device ID and report the current value of any
valuators on the device.

The location reported in the x, y and x_root, y_root members is the location of the core X pointer,
and so is 2-dimensional.

Extension motion devices may report motion data for a variable number of axes. The axes_count
member contains the number of axes that are being reported. The server sends as many of these
ev ents as are needed to report the device data. Each event contains the total number of axes
reported in the axes_count member and the first axis reported in the current event in the first_axis
member.

35

X Input Extension Library X11, Release 6.4

typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window reported relative to */
XID deviceid;
Window root; /* root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* x, y coordinates in event window */
int x_root; /* coordinates relative to root */
int y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
char is_hint; /* detail */
Bool same_screen; /* same screen flag */
unsigned int device_state; /* device key or button mask */
unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];

} XDeviceMotionEvent;

2.2.3.4. Device Focus Events
These events are equivalent to the core focus events. They contain the same information, with the
addition of a device ID to identify which device has had a focus change, and a timestamp.

DeviceFocusIn and DeviceFocusOut ev ents are generated for focus changes of extension
devices in the same manner as core focus events are generated.

36

X Input Extension Library X11, Release 6.4

typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window it is reported relative to */
XID deviceid;
int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
int detail;

/*
* NotifyAncestor, NotifyVirtual, NotifyInferior,
* NotifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,
* NotifyPointerRoot, NotifyDetailNone
*/

Time time;
} XDeviceFocusChangeEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;
typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

2.2.3.5. Device StateNotify Event
This event is analogous to the core keymap event but reports the current state of the device for
each input class that it supports. It is generated after every DeviceFocusIn ev ent and Enter-
Notify ev ent and is delivered to clients who have selected XDeviceStateNotify ev ents.

If the device supports input class Valuators , the mode member in the XValuatorStatus structure
is a bitmask that reports the device mode, proximity state, and other state information. The fol-
lowing bits are currently defined:

0x01 Relative = 0, Absolute = 1
0x02 InProximity = 0, OutOfProximity = 1

If the device supports more valuators than can be reported in a single XEvent , multiple XDe-
viceStateNotify ev ents will be generated.

37

X Input Extension Library X11, Release 6.4

typedef struct {
unsigned char class;
unsigned char length;

} XInputClass;

typedef struct {
int type;
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
XID deviceid;
Time time;
int num_classes;
char data[64];

} XDeviceStateNotifyEvent;

typedef struct {
unsigned char class;
unsigned char length;
unsigned char num_valuators;
unsigned char mode;
int valuators[6];

} XValuatorStatus;

typedef struct {
unsigned char class;
unsigned char length;
short num_keys;
char keys[32];

} XKe yStatus;

typedef struct {
unsigned char class;
unsigned char length;
short num_buttons;
char buttons[32];

} XButtonStatus;

2.2.3.6. Device Mapping Event
This event is equivalent to the core MappingNotify ev ent. It notifies client programs when the
mapping of keys, modifiers, or buttons on an extension device has changed.

38

X Input Extension Library X11, Release 6.4

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
XID deviceid;
Time time;
int request;
int first_keycode;
int count;

} XDeviceMappingEvent;

2.2.3.7. ChangeDeviceNotify Event
This event has no equivalent in the core protocol. It notifies client programs when one of the core
devices has been changed.

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
XID deviceid;
Time time;
int request;

} XChangeDeviceNotifyEvent;

2.2.3.8. Proximity Events
These events have no equivalent in the core protocol. Some input devices such as graphics tablets
or touchscreens may send these events to indicate that a stylus has moved into or out of contact
with a positional sensing surface.

The event contains the current value of any valuators on the device if that device is reporting
absolute data. If data for more than six valuators is being reported, more than one proximity
ev ent may be sent. The axes_count member contains the number of axes that are being reported.
The server sends as many of these events as are needed to report the device data. Each event con-
tains the total number of axes reported in the axes_count member and the first axis reported in the
current event in the first_axis member. If the device supports input class Valuators , but is not
reporting absolute mode data, the axes_count member contains zero (0).

39

X Input Extension Library X11, Release 6.4

typedef struct {
int type; /* ProximityIn or ProximityOut */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window;
XID deviceid;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
Bool same_screen;
unsigned int device_state; /* device key or button mask */
unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];

} XProximityNotifyEvent;

typedef XProximityNotifyEvent XProximityInEvent;
typedef XProximityNotifyEvent XProximityOutEvent;

2.3. Event Handling Functions
This section discusses the X Input Extension event handling functions that allow you to:

• Determine the extension version

• List the available devices

• Enable and disable extension devices

• Change the mode of a device

• Initialize valuators on an input device

• Get input device controls

• Change input device controls

• Select extension device events

• Determine selected device events

• Control event propogation

• Send an event

• Get motion history

2.3.1. Determining the Extension Version

40

X Input Extension Library X11, Release 6.4

XExtensionVersion * XGetExtensionVersion(display , name)
Display *display;
char *name;

display Specifies the connection to the X server.

name Specifies the name of the desired extension.

XGetExtensionVersion allows a client to determine whether a server supports the desired ver-
sion of the input extension.

The XExtensionVersion structure returns information about the version of the extension sup-
ported by the server and is defined as follows:

typedef struct {
Bool present;
short major_version;
short minor_version;

} XExtensionVersion;

The major and minor versions can be compared with constants defined in the header file
<X11/extensions/XI.h>. Each version is a superset of the previous versions.

You should use XFree to free the data returned by this function.

2.3.2. Listing Av ailable Devices
A client program that wishes to access a specific device must first determine whether that device
is connected to the X server. This is done through the XListInputDevices function, which will
return a list of all devices that can be opened by the X server. The client program can use one of
the names defined in the <X11/extensions/XI.h> header file in an XInternAtom request to
determine the device type of the desired device. This type can then be compared with the device
types returned by the XListInputDevices request.

XDeviceInfo * XListInputDevices(display , ndevices)
Display *display;
int *ndevices; /* RETURN */

display Specifies the connection to the X server.

ndevices Specifies the address of a variable into which the server can return the number of
input devices available to the X server.

XListInputDevices allows a client to determine which devices are available for X input and
information about those devices. An array of XDeviceInfo structures is returned, with one ele-
ment in the array for each device. The number of devices is returned in the ndevices argument.

The X pointer device and X keyboard device are reported, as well as all available extension input
devices. The use member of the XDeviceInfo structure specifies the current use of the device. If
the value of this member is IsXPointer , the device is the X pointer device. If the value is
IsXKeyboard , the device is the X keyboard device. If the value is IsXExtensionDevice , the
device is available for use as an extension input device.

41

X Input Extension Library X11, Release 6.4

Each XDeviceInfo entry contains a pointer to a list of structures that describe the characteristics
of each class of input supported by that device. The num_classes member contains the number of
entries in that list.

If the device supports input class Valuators , one of the structures pointed to by the XDeviceInfo
structure will be an XValuatorInfo structure. The axes member of that structure contains the
address of an array of XAxisInfo structures. There is one element in this array for each axis of
motion reported by the device. The number of elements in this array is contained in the
num_axes element of the XValuatorInfo structure. The size of the motion buffer for the device
is reported in the motion_buffer member of the XValuatorInfo structure.

The XDeviceInfo structure is defined as follows:

typedef struct _XDeviceInfo {
XID id;
Atom type;
char *name;
int num_classes;
int use;
XAnyClassPtr inputclassinfo;

} XDeviceInfo;

The structures pointed to by the XDeviceInfo structure are defined as follows:

typedef struct _XKeyInfo {
XID class;
int length;
unsigned short min_keycode;
unsigned short max_keycode;
unsigned short num_keys;

} XKe yInfo;

typedef struct _XButtonInfo {
XID class;
int length;
short num_buttons;

} XButtonInfo;

typedef struct _XValuatorInfo {
XID class;
int length;
unsigned char num_axes;
unsigned char mode;
unsigned long motion_buffer;
XAxisInfoPtr axes;

} XValuatorInfo;

The XAxisInfo structure pointed to by the XValuatorInfo structure is defined as follows:

42

X Input Extension Library X11, Release 6.4

typedef struct _XAxisInfo {
int resolution;
int min_value;
int max_value;

} XAxisInfo;

The following atom names are defined in the <X11/extensions/XI.h> header file.

MOUSE QUADRATURE
TABLET SPACEBALL
KEYBOARD DAT AGLOVE
TOUCHSCREEN EYETRACKER
TOUCHPAD CURSORKEYS
BUTTONBOX FOOTMOUSE
BARCODE ID_MODULE
KNOB_BOX ONE_KNOB
TRACKBALL NINE_KNOB

These names can be used in an XInternAtom request to return an atom that can be used for com-
parison with the type member of the XDeviceInfo structure.

XListInputDevices returns NULL if there are no input devices to list.

To free the data returned by XListInputDevices , use XFreeDeviceList .

void XFreeDeviceList(list)
XDeviceInfo *list;

list Specifies the pointer to the XDeviceInfo array returned by a previous call to
XListInputDevices .

XFreeDeviceList frees the list of input device information.

2.3.3. Enabling and Disabling Extension Devices
Each client program that wishes to access an extension device must request that the server open
that device by calling the XOpenDevice function.

XDevice * XOpenDevice(display , device_id)
Display *display;
XID device_id;

display Specifies the connection to the X server.

device_id Specifies the ID that uniquely identifies the device to be opened. This ID is
obtained from the XListInputDevices request.

XOpenDevice opens the device for the requesting client and, on success, returns an XDevice
structure, which is defined as follows:

43

X Input Extension Library X11, Release 6.4

typedef struct {
XID device_id;
int num_classes;
XInputClassInfo *classes;

} XDevice;

The XDevice structure contains a pointer to an array of XInputClassInfo structures. Each ele-
ment in that array contains information about events of a particular input class supported by the
input device.

The XInputClassInfo structure is defined as follows:

typedef struct {
unsigned char input_class;
unsigned char event_type_base;

} XInputClassInfo;

A client program can determine the event type and event class for a given event by using macros
defined by the input extension. The name of the macro corresponds to the desired event, and the
macro is passed the structure that describes the device from which input is desired, for example:

DeviceKeyPress(XDevice *device, event_type, event_class)

The macro will fill in the values of the event class to be used in an XSelectExtensionEvent
request to select the event and the event type to be used in comparing with the event types of
ev ents received via XNextEvent .

XOpenDevice can generate BadDevice errors.

Before terminating, the client program should request that the server close the device by calling
the XCloseDevice function.

int XCloseDevice(display , device)
Display *display;
XDevice *device;

display Specifies the connection to the X server.

device Specifies the device to be closed.

XCloseDevice closes the device for the requesting client and frees the associated XDevice struc-
ture.

A client may open the same extension device more than once. Requests after the first successful
one return an additional XDevice structure with the same information as the first, but otherwise
have no effect. A single XCloseDevice request will terminate that client’s access to the device.

Closing a device releases any active or passive grabs the requesting client has established. If the
device is frozen only by an active grab of the requesting client, any queued events are released.

If a client program terminates without closing a device, the server will automatically close that
device on behalf of the client. This does not affect any other clients that may be accessing that

44

X Input Extension Library X11, Release 6.4

device.

XCloseDevice can generate BadDevice errors.

2.3.4. Changing the Mode of a Device
Some devices are capable of reporting either relative or absolute motion data. To change the
mode of a device from relative to absolute, use XSetDeviceMode .

int XSetDeviceMode(display , device , mode)
Display *display;
XDevice *device;
int mode;

display Specifies the connection to the X server.

device Specifies the device whose mode should be changed.

mode Specifies the mode. You can pass Absolute or Relative .

XSetDeviceMode allows a client to request the server to change the mode of a device that is
capable of reporting either absolute positional data or relative motion data. If the device is invalid
or if the client has not previously requested that the server open the device via an XOpenDevice
request, this request will fail with a BadDevice error. If the device does not support input class
Valuators or if it is not capable of reporting the specified mode, the request will fail with a Bad-
Match error.

This request will fail and return DeviceBusy if another client has already opened the device and
requested a different mode.

XSetDeviceMode can generate BadDevice , BadMatch , BadMode , and DeviceBusy errors.

2.3.5. Initializing Valuators on an Input Device
Some devices that report absolute positional data can be initialized to a starting value. Devices
that are capable of reporting relative motion or absolute positional data may require that their val-
uators be initialized to a starting value after the mode of the device is changed to Absolute .

To initialize the valuators on such a device, use XSetDeviceValuators .

Status XSetDeviceValuators(display , device , valuators , first_valuator , num_valuators)
Display *display;
XDevice *device;
int *valuators , first_valuator , num_valuators;

display Specifies the connection to the X server.

device Specifies the device whose valuators should be initialized.

valuators Specifies the values to which each valuator should be set.

first_valuator Specifies the first valuator to be set.

num_valuators Specifies the number of valuators to be set.

XSetDeviceValuators initializes the specified valuators on the specified extension input device.
Valuators are numbered beginning with zero. Only the valuators in the range specified by

45

X Input Extension Library X11, Release 6.4

first_valuator and num_valuators are set. A BadValue error results if the number of valuators
supported by the device is less than the following expression:

first_valuator + num_valuators

If the request succeeds, Success is returned. If the specified device is grabbed by some other
client, the request will fail and a status of AlreadyGrabbed will be returned.

XSetDeviceValuators can generate BadDevice , BadLength , BadMatch , and BadValue
errors.

2.3.6. Getting Input Device Controls
Some input devices support various configuration controls that can be queried or changed by
clients. The set of supported controls will vary from one input device to another. Requests to
manipulate these controls will fail if either the target X server or the target input device does not
support the requested device control.

Each device control has a unique identifier. Information passed with each device control varies in
length and is mapped by data structures unique to that device control.

To query a device control, use XGetDeviceControl .

XDeviceControl * XGetDeviceControl(display , device , control)
Display *display;
XDevice *device;
int control;

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be returned.

control Identifies the specific device control to be queried.

XGetDeviceControl returns the current state of the specified device control. If the target X
server does not support that device control, a BadValue error is returned. If the specified device
does not support that device control, a BadMatch error is returned.

If the request is successful, a pointer to a generic XDeviceState structure is returned. The infor-
mation returned varies according to the specified control and is mapped by a structure appropriate
for that control. The first two members are common to all device controls and are defined as fol-
lows:

typedef struct {
XID control;
int length;

} XDeviceState;

The control may be compared to constants defined in the file <X11/extensions/XI.h>. Currently
defined device controls include DEVICE_RESOLUTION.

The information returned for the DEVICE_RESOLUTION control is defined in the XDeviceRes-
olutionState structure, which is defined as follows:

46

X Input Extension Library X11, Release 6.4

typedef struct {
XID control;
int length;
int num_valuators;
int *resolutions;
int *min_resolutions;
int *max_resolutions;

} XDeviceResolutionState;

This device control returns a list of valuators and the range of valid resolutions allowed for each.
Valuators are numbered beginning with zero (0). Resolutions for all valuators on the device are
returned. For each valuator i on the device, resolutions[i] returns the current setting of the resolu-
tion, min_resolutions[i] returns the minimum valid setting, and max_resolutions[i] returns the
maximum valid setting.

When this control is specified, XGetDeviceControl fails with a BadMatch error if the specified
device has no valuators.

XGetDeviceControl can generate BadMatch and BadValue errors.

2.3.7. Changing Input Device Controls
Some input devices support various configuration controls that can be changed by clients. Typi-
cally, this would be done to initialize the device to a known state or configuration. The set of sup-
ported controls will vary from one input device to another. Requests to manipulate these controls
will fail if either the target X server or the target input device does not support the requested
device control. Setting the device control will also fail if the target input device is grabbed by
another client or is open by another client and has been set to a conflicting state.

Each device control has a unique identifier. Information passed with each device control varies in
length and is mapped by data structures unique to that device control.

To change a device control, use XChangeDeviceControl .

Status XChangeDeviceControl(display , device , control , value)
Display *display;
XDevice *device;
int control;
XDeviceControl *value;

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be modified.

control Identifies the specific device control to be changed.

value Specifies a pointer to an XDeviceControl structure that describes which control
is to be changed and how it is to be changed.

XChangeDeviceControl changes the current state of the specified device control. If the target X
server does not support that device control, a BadValue error is returned. If the specified device
does not support that device control, a BadMatch error is returned. If another client has the tar-
get device grabbed, a status of AlreadyGrabbed is returned. If another client has the device

47

X Input Extension Library X11, Release 6.4

open and has set it to a conflicting state, a status of DeviceBusy is returned. If the request fails
for any reason, the device control will not be changed.

If the request is successful, the device control will be changed and a status of Success is returned.
The information passed varies according to the specified control and is mapped by a structure
appropriate for that control. The first two members are common to all device controls:

typedef struct {
XID control;
int length;

} XDeviceControl;

The control may be set using constants defined in the <X11/extensions/XI.h> header file. Cur-
rently defined device controls include DEVICE_RESOLUTION.

The information that can be changed by the DEVICE_RESOLUTION control is defined in the
XDeviceResolutionControl structure, which is defined as follows:

typedef struct {
XID control;
int length;
int first_valuator;
int num_valuators;
int *resolutions;

} XDeviceResolutionControl;

This device control changes the resolution of the specified valuators on the specified extension
input device. Valuators are numbered beginning with zero. Only the valuators in the range speci-
fied by first_valuator and num_valuators are set. A value of -1 in the resolutions list indicates that
the resolution for this valuator is not to be changed. The num_valuators member specifies the
number of valuators in the resolutions list.

When this control is specified, XChangeDeviceControl fails with a BadMatch error if the spec-
ified device has no valuators. If a resolution is specified that is not within the range of valid val-
ues (as returned by XGetDeviceControl), XChangeDeviceControl fails with a BadValue error.
A BadValue error results if the number of valuators supported by the device is less than the fol-
lowing expression:

first_valuator + num_valuators,

XChangeDeviceControl can generate BadMatch and BadValue errors.

2.3.8. Selecting Extension Device Events
To select device input events, use XSelectExtensionEvent . The parameters passed are a pointer
to a list of classes that define the desired event types and devices, a count of the number of ele-
ments in the list, and the ID of the window from which events are desired.

48

X Input Extension Library X11, Release 6.4

int XSelectExtensionEvent(display , window , event_list , event_count)
Display *display;
Window window;
XEventClass *event_list;
int event_count;

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client wishes to receive events.

event_list Specifies a pointer to an array of event classes that specify which events are
desired.

event_count Specifies the number of elements in the event_list.

XSelectExtensionEvent requests the server to send events that match the events and devices
described by the event list and that come from the requested window. The elements of the
XEventClass array are the event_class values obtained by invoking a macro with the pointer to
an XDevice structure returned by the XOpenDevice request. For example, the DeviceKeyPress
macro would return the XEventClass for DeviceKeyPress ev ents from the specified device if it
were invoked in the following form:

DeviceKeyPress (XDevice *device, event_type, event_class)

Macros are defined for the following event classes:

DeviceKeyPress
DeviceKeyRelease
DeviceButtonPress
DeviceButtonRelease
DeviceMotionNotify
DeviceFocusIn
DeviceFocusOut
ProximityIn
ProximityOut
DeviceStateNotify
DeviceMappingNotify
ChangeDeviceNotify
DevicePointerMotionHint
DeviceButton1Motion
DeviceButton2Motion
DeviceButton3Motion,
DeviceButton4Motion
DeviceButton5Motion
DeviceButtonMotion,
DeviceOwnerGrabButton
DeviceButtonPressGrab

To get the next available event from within a client program, use the core XNextEvent function.
This returns the next event whether it came from a core device or an extension device.

Succeeding XSelectExtensionEvent requests using event classes for the same device as was
specified on a previous request will replace the previous set of selected events from that device
with the new set.

49

X Input Extension Library X11, Release 6.4

XSelectExtensionEvent can generate BadAccess , BadClass , BadLength , and BadWindow
errors.

2.3.9. Determining Selected Device Events
To determine which extension events are currently selected from a given window, use XGetSe-
lectedExtensionEvents .

int XGetSelectedExtensionEvents(display , window , this_client_count , this_client ,
all_clients_count , all_clients)

Display *display;
Window window;
int *this_client_count; /* RETURN */
XEventClass **this_client; /* RETURN */
int *all_clients_count; /* RETURN */
XEventClass **all_clients; /* RETURN */

display Specifies the connection to the X server.

window Specifies the ID of the window from which the client wishes to receive events.

this_client_count
Returns the number of elements in the this_client list.

this_client Returns a list of XEventClasses that specify which events are selected by this
client.

all_clients_count
Returns the number of elements in the all_clients list.

all_clients Returns a list of XEventClasses that specify which events are selected by all
clients.

XGetSelectedExtensionEvents returns pointers to two event class arrays. One lists the exten-
sion events selected by this client from the specified window. The other lists the extension events
selected by all clients from the specified window. This information is analogous to that returned
in your_event_mask and all_event_masks of the XWindowAttributes structure when an
XGetWindowAttributes request is made. To free the two arrays returned by this function, use
XFree .

XGetSelectedExtensionEvents can generate BadWindow errors.

2.3.10. Controlling Event Propagation
Extension events propagate up the window hierarchy in the same manner as core events. If a win-
dow is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set
of windows that receive a particular extension event.

Client programs may control event propagation through the use of the following two functions:
XChangeDeviceDontPropagateList and XGetDeviceDontPropagateList .

50

X Input Extension Library X11, Release 6.4

int XChangeDeviceDontPropagateList(display , window , event_count , events , mode)
Display *display;
Window window;
int event_count;
XEventClass *events;
int mode;

display Specifies the connection to the X server.

window Specifies the desired window.

event_count Specifies the number of elements in the events list.

events Specifies a pointer to the list of XEventClasses.

mode Specifies the mode. You can pass AddToList or DeleteFromList .

XChangeDeviceDontPropagateList adds an event to or deletes an event from the do_not_prop-
agate list of extension events for the specified window. There is one list per window, and the list
remains for the life of the window. The list is not altered if a client that changed the list termi-
nates.

Suppression of event propagation is not allowed for all events. If a specified XEventClass is
invalid because suppression of that event is not allowed, a BadClass error results.

XChangeDeviceDontPropagateList can generate BadClass , BadMode , and BadWindow
errors.

XEventClass * XGetDeviceDontPropagateList(display , window , event_count)
Display *display;
Window window;
int *event_count; /*RETURN */

display Specifies the connection to the X server.

window Specifies the desired window.

event_count Returns the number of elements in the array returned by this function.

XGetDeviceDontPropagateList allows a client to determine the do_not_propagate list of exten-
sion events for the specified window. It returns an array of XEventClass , each XEventClass
representing a device/event type pair. To free the data returned by this function, use XFree .

XGetDeviceDontPropagateList can generate BadWindow errors.

2.3.11. Sending an Event
To send an extension event to another client, use XSendExtensionEvent .

51

X Input Extension Library X11, Release 6.4

int XSendExtensionEvent(display , device , window , propagate , event_count , event_list , event)
Display *display;
XDevice *device;
Window window;
Bool propagate;
int event_count;
XEventClass *event_list;
XEvent *event;

display Specifies the connection to the X server.

device Specifies the device whose ID is recorded in the event.

window Specifies the destination window ID. You can pass a window ID, PointerWin-
dow or InputFocus .

propagate Specifies a boolean value that is either True or False .

event_count Specifies the number of elements in the event_list array.

event_list Specifies a pointer to an array of XEventClass .

event Specifies a pointer to the event that is to be sent.

XSendExtensionEvent identifies the destination window, determines which clients should
receive the specified event, and ignores any active grabs. It requires a list of XEventClass to be
specified. These are obtained by opening an input device with the XOpenDevice request.

XSendExtensionEvent uses the window argument to identify the destination window as follows:

• If you pass PointerWindow , the destination window is the window that contains the
pointer.

• If you pass InputFocus and if the focus window contains the pointer, the destination win-
dow is the window that contains the pointer. If the focus window does not contain the
pointer, the destination window is the focus window.

To determine which clients should receive the specified events, XSendExtensionEvent uses the
propagate argument as follows:

• If propagate is False , the event is sent to every client selecting from the destination window
any of the events specified in the event_list array.

• If propagate is True and no clients have selected from the destination window any of the
ev ents specified in the event_list array, the destination is replaced with the closest ancestor
of destination for which some client has selected one of the specified events and for which
no intervening window has that event in its do_not_propagate mask. If no such window
exists, or if the window is an ancestor of the focus window, and InputFocus was originally
specified as the destination, the event is not sent to any clients. Otherwise, the event is
reported to every client selecting on the final destination any of the events specified in
ev ent_list.

The event in the XEvent structure must be one of the events defined by the input extension, so
that the X server can correctly byte swap the contents as necessary. The contents of the event are
otherwise unaltered and unchecked by the X server except to force send_event to True in the for-
warded event and to set the sequence number in the event correctly.

XSendExtensionEvent returns zero if the conversion-to-wire protocol failed; otherwise, it
returns nonzero.

52

X Input Extension Library X11, Release 6.4

XSendExtensionEvent can generate BadClass , BadDevice , BadValue , and BadWindow
errors.

2.3.12. Getting Motion History

XDeviceTimeCoord * XGetDeviceMotionEvents(display , device , start , stop , nevents_return , mode_return ,
axis_count_return);

Display *display;
XDevice *device;
Time start , stop;
int *nevents_return;
int *mode_return;
int *axis_count_return;

display Specifies the connection to the X server.

device Specifies the desired device.

start Specifies the start time.

stop Specifies the stop time.

nevents_return Returns the number of positions in the motion buffer returned for this request.

mode_return Returns the mode of the nevents information. The mode will be one of the fol-
lowing: Absolute or Relative .

axis_count_return
Returns the number of axes reported in each of the positions returned.

XGetDeviceMotionEvents returns all positions in the device’s motion history buffer that fall
between the specified start and stop times inclusive. If the start time is in the future or is later
than the stop time, no positions are returned.

The return type for this function is an XDeviceTimeCoord structure, which is defined as follows:

typedef struct {
Time time;
unsigned int *data;

} XDeviceTimeCoord;

The data member is a pointer to an array of data items. Each item is of type int, and there is one
data item per axis of motion reported by the device. The number of axes reported by the device is
returned in the axis_count variable.

The value of the data items depends on the mode of the device. The mode is returned in the mode
variable. If the mode is Absolute , the data items are the raw values generated by the device.
These may be scaled by the client program using the maximum values that the device can gener-
ate for each axis of motion that it reports. The maximum value for each axis is reported in the
max_val member of the XAxisInfo structure, which is part of the information returned by the
XListInputDevices request.

If the mode is Relative , the data items are the relative values generated by the device. The client
program must choose an initial position for the device and maintain a current position by accumu-
lating these relative values.

53

X Input Extension Library X11, Release 6.4

Consecutive calls to XGetDeviceMotionEvents can return data of different modes, that is, if
some client program has changed the mode of the device via an XSetDeviceMode request.

XGetDeviceMotionEvents can generate BadDevice and BadMatch errors.

To free the data returned by XGetDeviceMotionEvents , use XFreeDeviceMotionEvents .

void XFreeDeviceMotionEvents(events)
XDeviceTimeCoord *events;

events Specifies the pointer to the XDeviceTimeCoord array returned by a previous
call to XGetDeviceMotionEvents .

XFreeDeviceMotionEvents frees the specified array of motion information.

54

X Input Extension Library X11, Release 6.4

Appendix A
The following information is contained in the <X11/extensions/XInput.h> and <X11/exten-
sions/XI.h> header files:

55

X Input Extension Library X11, Release 6.4

/* Definitions used by the library and client */

#ifndef _XINPUT_H_

#define _XINPUT_H_

#ifndef _XLIB_H_

#include <X11/Xlib.h>

#endif

#ifndef _XI_H_

#include "XI.h"

#endif

#define _deviceKeyPress 0

#define _deviceKeyRelease 1

#define _deviceButtonPress 0

#define _deviceButtonRelease 1

#define _deviceMotionNotify 0

#define _deviceFocusIn 0

#define _deviceFocusOut 1

#define _proximityIn 0

#define _proximityOut 1

#define _deviceStateNotify 0

#define _deviceMappingNotify 1

#define _changeDeviceNotify 2

#define FindTypeAndClass(d, type, class, classid, offset) { int i; XInputClassInfo *ip; type = 0; class = 0; for (i=0, ip= ((XDevice *) d)->classes; i< ((XDevice *) d)->num_classes; i++, ip++) if (ip->input_class == classid) {type = ip->event_type_base + offset; class = ((XDevice *) d)->device_id << 8 | type;}}

#define DeviceKeyPress(d, type, class) FindTypeAndClass(d, type, class, KeyClass, _deviceKeyPress)

#define DeviceKeyRelease(d, type, class) FindTypeAndClass(d, type, class, KeyClass, _deviceKeyRelease)

#define DeviceButtonPress(d, type, class) FindTypeAndClass(d, type, class, ButtonClass, _deviceButtonPress)

#define DeviceButtonRelease(d, type, class) FindTypeAndClass(d, type, class, ButtonClass, _deviceButtonRelease)

#define DeviceMotionNotify(d, type, class) FindTypeAndClass(d, type, class, ValuatorClass, _deviceMotionNotify)

#define DeviceFocusIn(d, type, class) FindTypeAndClass(d, type, class, FocusClass, _deviceFocusIn)

#define DeviceFocusOut(d, type, class) FindTypeAndClass(d, type, class, FocusClass, _deviceFocusOut)

#define ProximityIn(d, type, class) FindTypeAndClass(d, type, class, ProximityClass, _proximityIn)

#define ProximityOut(d, type, class) FindTypeAndClass(d, type, class, ProximityClass, _proximityOut)

56

X Input Extension Library X11, Release 6.4

#define DeviceStateNotify(d, type, class) FindTypeAndClass(d, type, class, OtherClass, _deviceStateNotify)

#define DeviceMappingNotify(d, type, class) FindTypeAndClass(d, type, class, OtherClass, _deviceMappingNotify)

#define ChangeDeviceNotify(d, type, class) FindTypeAndClass(d, type, class, OtherClass, _changeDeviceNotify)

#define DevicePointerMotionHint(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _devicePointerMotionHint;}

#define DeviceButton1Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton1Motion;}

#define DeviceButton2Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton2Motion;}

#define DeviceButton3Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton3Motion;}

#define DeviceButton4Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton4Motion;}

#define DeviceButton5Motion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButton5Motion;}

#define DeviceButtonMotion(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButtonMotion;}

#define DeviceOwnerGrabButton(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceOwnerGrabButton;}

#define DeviceButtonPressGrab(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _deviceButtonGrab;}

#define NoExtensionEvent(d, type, class) { class = ((XDevice *) d)->device_id << 8 | _noExtensionEvent;}

#define BadDevice(dpy, error) _xibaddevice(dpy, &error)

#define BadClass(dpy, error) _xibadclass(dpy, &error)

#define BadEvent(dpy, error) _xibadevent(dpy, &error)

#define BadMode(dpy, error) _xibadmode(dpy, &error)

#define DeviceBusy(dpy, error) _xidevicebusy(dpy, &error)

/***

*

* DeviceKey events. These events are sent by input devices that

* support input class Keys.

* The location of the X pointer is reported in the coordinate

* fields of the x,y and x_root,y_root fields.

*

*/

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed */

Bool send_event; /* true if from SendEvent request */

57

X Input Extension Library X11, Release 6.4

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int keycode; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XDeviceKeyEvent;

typedef XDeviceKeyEvent XDeviceKeyPressedEvent;

typedef XDeviceKeyEvent XDeviceKeyReleasedEvent;

/***

*

* DeviceButton events. These events are sent by extension devices

* that support input class Buttons.

*

*/

typedef struct {

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

unsigned int button; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XDeviceButtonEvent;

58

X Input Extension Library X11, Release 6.4

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;

typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

/***

*

* DeviceMotionNotify event. These events are sent by extension devices

* that support input class Valuators.

*

*/

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

Window root; /* root window that the event occured on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int x, y; /* x, y coordinates in event window */

int x_root; /* coordinates relative to root */

int y_root; /* coordinates relative to root */

unsigned int state; /* key or button mask */

char is_hint; /* detail */

Bool same_screen; /* same screen flag */

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XDeviceMotionEvent;

/***

*

* DeviceFocusChange events. These events are sent when the focus

* of an extension device that can be focused is changed.

*

*/

typedef struct

{

int type; /* of event */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* "event" window reported relative to */

XID deviceid;

int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */

int detail;

59

X Input Extension Library X11, Release 6.4

/*

* NotifyAncestor, NotifyVirtual, NotifyInferior,

* NotifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,

* NotifyPointerRoot, NotifyDetailNone

*/

Time time;

} XDeviceFocusChangeEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;

typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

/***

*

* ProximityNotify events. These events are sent by those absolute

* positioning devices that are capable of generating proximity information.

*

*/

typedef struct

{

int type; /* ProximityIn or ProximityOut */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window;

XID deviceid;

Window root;

Window subwindow;

Time time;

int x, y;

int x_root, y_root;

unsigned int state;

Bool same_screen;

unsigned int device_state; /* device key or button mask */

unsigned char axes_count;

unsigned char first_axis;

int axis_data[6];

} XProximityNotifyEvent;

typedef XProximityNotifyEvent XProximityInEvent;

typedef XProximityNotifyEvent XProximityOutEvent;

/***

*

* DeviceStateNotify events are generated on EnterWindow and FocusIn

* for those clients who have selected DeviceState.

*

*/

typedef struct

{

60

X Input Extension Library X11, Release 6.4

unsigned char class;

unsigned char length;

} XInputClass;

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window;

XID deviceid;

Time time;

int num_classes;

char data[64];

} XDeviceStateNotifyEvent;

typedef struct {

unsigned char class;

unsigned char length;

unsigned char num_valuators;

unsigned char mode;

int valuators[6];

} XValuatorStatus;

typedef struct {

unsigned char class;

unsigned char length;

short num_keys;

char keys[32];

} XKeyStatus;

typedef struct {

unsigned char class;

unsigned char length;

short num_buttons;

char buttons[32];

} XButtonStatus;

/***

*

* DeviceMappingNotify event. This event is sent when the key mapping,

* modifier mapping, or button mapping of an extension device is changed.

*

*/

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

61

X Input Extension Library X11, Release 6.4

Window window; /* unused */

XID deviceid;

Time time;

int request; /* one of MappingModifier, MappingKeyboard,

MappingPointer */

int first_keycode;/* first keycode */

int count; /* defines range of change w. first_keycode*/

} XDeviceMappingEvent;

/***

*

* ChangeDeviceNotify event. This event is sent when an

* XChangeKeyboard or XChangePointer request is made.

*

*/

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */

Display *display; /* Display the event was read from */

Window window; /* unused */

XID deviceid;

Time time;

int request; /* NewPointer or NewKeyboard */

} XChangeDeviceNotifyEvent;

/***

*

* Control structures for input devices that support input class

* Feedback. These are used by the XGetFeedbackControl and

* XChangeFeedbackControl functions.

*

*/

typedef struct {

XID class;

int length;

XID id;

} XFeedbackState;

typedef struct {

XID class;

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led_mask;

62

X Input Extension Library X11, Release 6.4

int global_auto_repeat;

char auto_repeats[32];

} XKbdFeedbackState;

typedef struct {

XID class;

int length;

XID id;

int accelNum;

int accelDenom;

int threshold;

} XPtrFeedbackState;

typedef struct {

XID class;

int length;

XID id;

int resolution;

int minVal;

int maxVal;

} XIntegerFeedbackState;

typedef struct {

XID class;

int length;

XID id;

int max_symbols;

int num_syms_supported;

KeySym *syms_supported;

} XStringFeedbackState;

typedef struct {

XID class;

int length;

XID id;

int percent;

int pitch;

int duration;

} XBellFeedbackState;

typedef struct {

XID class;

int length;

XID id;

int led_values;

int led_mask;

} XLedFeedbackState;

typedef struct {

XID class;

63

X Input Extension Library X11, Release 6.4

int length;

XID id;

} XFeedbackControl;

typedef struct {

XID class;

int length;

XID id;

int accelNum;

int accelDenom;

int threshold;

} XPtrFeedbackControl;

typedef struct {

XID class;

int length;

XID id;

int click;

int percent;

int pitch;

int duration;

int led_mask;

int led_value;

int key;

int auto_repeat_mode;

} XKbdFeedbackControl;

typedef struct {

XID class;

int length;

XID id;

int num_keysyms;

KeySym *syms_to_display;

} XStringFeedbackControl;

typedef struct {

XID class;

int length;

XID id;

int int_to_display;

} XIntegerFeedbackControl;

typedef struct {

XID class;

int length;

XID id;

int percent;

int pitch;

int duration;

} XBellFeedbackControl;

64

X Input Extension Library X11, Release 6.4

typedef struct {

XID class;

int length;

XID id;

int led_mask;

int led_values;

} XLedFeedbackControl;

/***

*

* Device control structures.

*

*/

typedef struct {

XID control;

int length;

} XDeviceControl;

typedef struct {

XID control;

int length;

int first_valuator;

int num_valuators;

int *resolutions;

} XDeviceResolutionControl;

typedef struct {

XID control;

int length;

int num_valuators;

int *resolutions;

int *min_resolutions;

int *max_resolutions;

} XDeviceResolutionState;

/***

*

* An array of XDeviceList structures is returned by the

* XListInputDevices function. Each entry contains information

* about one input device. Among that information is an array of

* pointers to structures that describe the characteristics of

* the input device.

*

*/

typedef struct _XAnyClassinfo *XAnyClassPtr;

typedef struct _XAnyClassinfo {

XID class;

65

X Input Extension Library X11, Release 6.4

int length;

} XAnyClassInfo;

typedef struct _XDeviceInfo *XDeviceInfoPtr;

typedef struct _XDeviceInfo

{

XID id;

Atom type;

char *name;

int num_classes;

int use;

XAnyClassPtr inputclassinfo;

} XDeviceInfo;

typedef struct _XKeyInfo *XKeyInfoPtr;

typedef struct _XKeyInfo

{

XID class;

int length;

unsigned short min_keycode;

unsigned short max_keycode;

unsigned short num_keys;

} XKeyInfo;

typedef struct _XButtonInfo *XButtonInfoPtr;

typedef struct _XButtonInfo {

XID class;

int length;

short num_buttons;

} XButtonInfo;

typedef struct _XAxisInfo *XAxisInfoPtr;

typedef struct _XAxisInfo {

int resolution;

int min_value;

int max_value;

} XAxisInfo;

typedef struct _XValuatorInfo *XValuatorInfoPtr;

typedef struct _XValuatorInfo

{

XID class;

int length;

unsigned char num_axes;

unsigned char mode;

66

X Input Extension Library X11, Release 6.4

unsigned long motion_buffer;

XAxisInfoPtr axes;

} XValuatorInfo;

/***

*

* An XDevice structure is returned by the XOpenDevice function.

* It contains an array of pointers to XInputClassInfo structures.

* Each contains information about a class of input supported by the

* device, including a pointer to an array of data for each type of event

* the device reports.

*

*/

typedef struct {

unsigned char input_class;

unsigned char event_type_base;

} XInputClassInfo;

typedef struct {

XID device_id;

int num_classes;

XInputClassInfo *classes;

} XDevice;

/***

*

* The following structure is used to return information for the

* XGetSelectedExtensionEvents function.

*

*/

typedef struct {

XEventClass event_type;

XID device;

} XEventList;

/***

*

* The following structure is used to return motion history data from

* an input device that supports the input class Valuators.

* This information is returned by the XGetDeviceMotionEvents function.

*

*/

typedef struct {

Time time;

67

X Input Extension Library X11, Release 6.4

int *data;

} XDeviceTimeCoord;

/***

*

* Device state structure.

* This is returned by the XQueryDeviceState request.

*

*/

typedef struct {

XID device_id;

int num_classes;

XInputClass *data;

} XDeviceState;

/***

*

* Note that the mode field is a bitfield that reports the Proximity

* status of the device as well as the mode. The mode field should

* be OR’d with the mask DeviceMode and compared with the values

* Absolute and Relative to determine the mode, and should be OR’d

* with the mask ProximityState and compared with the values InProximity

* and OutOfProximity to determine the proximity state.

*

*/

typedef struct {

unsigned char class;

unsigned char length;

unsigned char num_valuators;

unsigned char mode;

int *valuators;

} XValuatorState;

typedef struct {

unsigned char class;

unsigned char length;

short num_keys;

char keys[32];

} XKeyState;

typedef struct {

unsigned char class;

unsigned char length;

short num_buttons;

char buttons[32];

} XButtonState;

68

X Input Extension Library X11, Release 6.4

/***

*

* Function definitions.

*

*/

_XFUNCPROTOBEGIN

extern int XChangeKeyboardDevice(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */

#endif

);

extern int XChangePointerDevice(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

int /* xaxis */,

int /* yaxis */

#endif

);

extern int XGrabDevice(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

Window /* grab_window */,

Bool /* ownerEvents */,

int /* event count */,

XEventClass* /* event_list */,

int /* this_device_mode */,

int /* other_devices_mode */,

Time /* time */

#endif

);

extern int XUngrabDevice(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

Time /* time */

#endif

);

extern int XGrabDeviceKey(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

69

X Input Extension Library X11, Release 6.4

unsigned int /* key */,

unsigned int /* modifiers */,

XDevice* /* modifier_device */,

Window /* grab_window */,

Bool /* owner_events */,

unsigned int /* event_count */,

XEventClass* /* event_list */,

int /* this_device_mode */,

int /* other_devices_mode */

#endif

);

extern int XUngrabDeviceKey(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

unsigned int /* key */,

unsigned int /* modifiers */,

XDevice* /* modifier_dev */,

Window /* grab_window */

#endif

);

extern int XGrabDeviceButton(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

unsigned int /* button */,

unsigned int /* modifiers */,

XDevice* /* modifier_device */,

Window /* grab_window */,

Bool /* owner_events */,

unsigned int /* event_count */,

XEventClass* /* event_list */,

int /* this_device_mode */,

int /* other_devices_mode */

#endif

);

extern int XUngrabDeviceButton(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

unsigned int /* button */,

unsigned int /* modifiers */,

XDevice* /* modifier_dev */,

Window /* grab_window */

#endif

);

70

X Input Extension Library X11, Release 6.4

extern int XAllowDeviceEvents(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

int /* event_mode */,

Time /* time */

#endif

);

extern int XGetDeviceFocus(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

Window* /* focus */,

int* /* revert_to */,

Time* /* time */

#endif

);

extern int XSetDeviceFocus(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

Window /* focus */,

int /* revert_to */,

Time /* time */

#endif

);

extern XFeedbackState *XGetFeedbackControl(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

int* /* num_feedbacks */

#endif

);

extern int XFreeFeedbackList(

#if NeedFunctionPrototypes

XFeedbackState* /* list */

#endif

);

extern int XChangeFeedbackControl(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

unsigned long /* mask */,

XFeedbackControl* /* f */

#endif

71

X Input Extension Library X11, Release 6.4

);

extern int XDeviceBell(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

XID /* feedbackclass */,

XID /* feedbackid */,

int /* percent */

#endif

);

extern KeySym *XGetDeviceKeyMapping(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

#if NeedWidePrototypes

unsigned int /* first */,

#else

KeyCode /* first */,

#endif

int /* keycount */,

int* /* syms_per_code */

#endif

);

extern int XChangeDeviceKeyMapping(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

int /* first */,

int /* syms_per_code */,

KeySym* /* keysyms */,

int /* count */

#endif

);

extern XModifierKeymap *XGetDeviceModifierMapping(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */

#endif

);

extern int XSetDeviceModifierMapping(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

XModifierKeymap* /* modmap */

#endif

72

X Input Extension Library X11, Release 6.4

);

extern int XSetDeviceButtonMapping(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

unsigned char* /* map[] */,

int /* nmap */

#endif

);

extern int XGetDeviceButtonMapping(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

unsigned char* /* map[] */,

unsigned int /* nmap */

#endif

);

extern XDeviceState *XQueryDeviceState(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */

#endif

);

extern int XFreeDeviceState(

#if NeedFunctionPrototypes

XDeviceState* /* list */

#endif

);

extern XExtensionVersion *XGetExtensionVersion(

#if NeedFunctionPrototypes

Display* /* display */,

_Xconst char* /* name */

#endif

);

extern XDeviceInfo *XListInputDevices(

#if NeedFunctionPrototypes

Display* /* display */,

int* /* ndevices */

#endif

);

extern int XFreeDeviceList(

#if NeedFunctionPrototypes

XDeviceInfo* /* list */

73

X Input Extension Library X11, Release 6.4

#endif

);

extern XDevice *XOpenDevice(

#if NeedFunctionPrototypes

Display* /* display */,

XID /* id */

#endif

);

extern int XCloseDevice(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */

#endif

);

extern int XSetDeviceMode(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

int /* mode */

#endif

);

extern int XSetDeviceValuators(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

int* /* valuators */,

int /* first_valuator */,

int /* num_valuators */

#endif

);

extern XDeviceControl *XGetDeviceControl(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

int /* control */

#endif

);

extern int XChangeDeviceControl(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

int /* control */,

XDeviceControl* /* d */

#endif

74

X Input Extension Library X11, Release 6.4

);

extern int XSelectExtensionEvent(

#if NeedFunctionPrototypes

Display* /* display */,

Window /* w */,

XEventClass* /* event_list */,

int /* count */

#endif

);

extern int XGetSelectedExtensionEvents(

#if NeedFunctionPrototypes

Display* /* display */,

Window /* w */,

int* /* this_client_count */,

XEventClass** /* this_client_list */,

int* /* all_clients_count */,

XEventClass** /* all_clients_list */

#endif

);

extern int XChangeDeviceDontPropagateList(

#if NeedFunctionPrototypes

Display* /* display */,

Window /* window */,

int /* count */,

XEventClass* /* events */,

int /* mode */

#endif

);

extern XEventClass *XGetDeviceDontPropagateList(

#if NeedFunctionPrototypes

Display* /* display */,

Window /* window */,

int* /* count */

#endif

);

extern Status XSendExtensionEvent(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

Window /* dest */,

Bool /* prop */,

int /* count */,

XEventClass* /* list */,

XEvent* /* event */

#endif

75

X Input Extension Library X11, Release 6.4

);

extern XDeviceTimeCoord *XGetDeviceMotionEvents(

#if NeedFunctionPrototypes

Display* /* display */,

XDevice* /* device */,

Time /* start */,

Time /* stop */,

int* /* nEvents */,

int* /* mode */,

int* /* axis_count */

#endif

);

extern int XFreeDeviceMotionEvents(

#if NeedFunctionPrototypes

XDeviceTimeCoord* /* events */

#endif

);

extern int XFreeDeviceControl(

#if NeedFunctionPrototypes

XDeviceControl* /* control */

#endif

);

_XFUNCPROTOEND

#endif /* _XINPUT_H_ */

/* Definitions used by the server, library and client */

#ifndef _XI_H_

#define _XI_H_

#define sz_xGetExtensionVersionReq 8

#define sz_xGetExtensionVersionReply 32

#define sz_xListInputDevicesReq 4

#define sz_xListInputDevicesReply 32

#define sz_xOpenDeviceReq 8

#define sz_xOpenDeviceReply 32

#define sz_xCloseDeviceReq 8

#define sz_xSetDeviceModeReq 8

#define sz_xSetDeviceModeReply 32

#define sz_xSelectExtensionEventReq 12

#define sz_xGetSelectedExtensionEventsReq 8

#define sz_xGetSelectedExtensionEventsReply32

#define sz_xChangeDeviceDontPropagateListReq 12

#define sz_xGetDeviceDontPropagateListReq 8

76

X Input Extension Library X11, Release 6.4

#define sz_xGetDeviceDontPropagateListReply32

#define sz_xGetDeviceMotionEventsReq 16

#define sz_xGetDeviceMotionEventsReply 32

#define sz_xChangeKeyboardDeviceReq 8

#define sz_xChangeKeyboardDeviceReply 32

#define sz_xChangePointerDeviceReq 8

#define sz_xChangePointerDeviceReply 32

#define sz_xGrabDeviceReq 20

#define sz_xGrabDeviceReply 32

#define sz_xUngrabDeviceReq 12

#define sz_xGrabDeviceKeyReq 20

#define sz_xGrabDeviceKeyReply 32

#define sz_xUngrabDeviceKeyReq 16

#define sz_xGrabDeviceButtonReq 20

#define sz_xGrabDeviceButtonReply 32

#define sz_xUngrabDeviceButtonReq 16

#define sz_xAllowDeviceEventsReq 12

#define sz_xGetDeviceFocusReq 8

#define sz_xGetDeviceFocusReply 32

#define sz_xSetDeviceFocusReq 16

#define sz_xGetFeedbackControlReq 8

#define sz_xGetFeedbackControlReply 32

#define sz_xChangeFeedbackControlReq 12

#define sz_xGetDeviceKeyMappingReq 8

#define sz_xGetDeviceKeyMappingReply 32

#define sz_xChangeDeviceKeyMappingReq 8

#define sz_xGetDeviceModifierMappingReq 8

#define sz_xSetDeviceModifierMappingReq 8

#define sz_xSetDeviceModifierMappingReply 32

#define sz_xGetDeviceButtonMappingReq 8

#define sz_xGetDeviceButtonMappingReply 32

#define sz_xSetDeviceButtonMappingReq 8

#define sz_xSetDeviceButtonMappingReply 32

#define sz_xQueryDeviceStateReq 8

#define sz_xQueryDeviceStateReply 32

#define sz_xSendExtensionEventReq 16

#define sz_xDeviceBellReq 8

#define sz_xSetDeviceValuatorsReq 8

#define sz_xSetDeviceValuatorsReply 32

#define sz_xGetDeviceControlReq 8

#define sz_xGetDeviceControlReply 32

#define sz_xChangeDeviceControlReq 8

#define sz_xChangeDeviceControlReply 32

#define INAME "XInputExtension"

#define XI_KEYBOARD "KEYBOARD"

#define XI_MOUSE "MOUSE"

#define XI_TABLET "TABLET"

#define XI_TOUCHSCREEN "TOUCHSCREEN"

77

X Input Extension Library X11, Release 6.4

#define XI_TOUCHPAD "TOUCHPAD"

#define XI_BARCODE "BARCODE"

#define XI_BUTTONBOX "BUTTONBOX"

#define XI_KNOB_BOX "KNOB_BOX"

#define XI_ONE_KNOB "ONE_KNOB"

#define XI_NINE_KNOB "NINE_KNOB"

#define XI_TRACKBALL "TRACKBALL"

#define XI_QUADRATURE "QUADRATURE"

#define XI_ID_MODULE "ID_MODULE"

#define XI_SPACEBALL "SPACEBALL"

#define XI_DATAGLOVE "DATAGLOVE"

#define XI_EYETRACKER "EYETRACKER"

#define XI_CURSORKEYS "CURSORKEYS"

#define XI_FOOTMOUSE "FOOTMOUSE"

#define Dont_Check 0

#define XInput_Initial_Release 1

#define XInput_Add_XDeviceBell 2

#define XInput_Add_XSetDeviceValuators 3

#define XInput_Add_XChangeDeviceControl 4

#define XI_Absent 0

#define XI_Present 1

#define XI_Initial_Release_Major 1

#define XI_Initial_Release_Minor 0

#define XI_Add_XDeviceBell_Major 1

#define XI_Add_XDeviceBell_Minor 1

#define XI_Add_XSetDeviceValuators_Major 1

#define XI_Add_XSetDeviceValuators_Minor 2

#define XI_Add_XChangeDeviceControl_Major 1

#define XI_Add_XChangeDeviceControl_Minor 3

#define DEVICE_RESOLUTION 1

#define NoSuchExtension 1

#define COUNT 0

#define CREATE 1

#define NewPointer 0

#define NewKeyboard 1

#define XPOINTER 0

#define XKEYBOARD 1

#define UseXKeyboard 0xFF

78

X Input Extension Library X11, Release 6.4

#define IsXPointer 0

#define IsXKeyboard 1

#define IsXExtensionDevice 2

#define AsyncThisDevice 0

#define SyncThisDevice 1

#define ReplayThisDevice 2

#define AsyncOtherDevices 3

#define AsyncAll 4

#define SyncAll 5

#define FollowKeyboard 3

#define RevertToFollowKeyboard 3

#define DvAccelNum (1L << 0)

#define DvAccelDenom (1L << 1)

#define DvThreshold (1L << 2)

#define DvKeyClickPercent (1L<<0)

#define DvPercent (1L<<1)

#define DvPitch (1L<<2)

#define DvDuration (1L<<3)

#define DvLed (1L<<4)

#define DvLedMode (1L<<5)

#define DvKey (1L<<6)

#define DvAutoRepeatMode (1L<<7)

#define DvString (1L << 0)

#define DvInteger (1L << 0)

#define DeviceMode (1L << 0)

#define Relative 0

#define Absolute 1

#define ProximityState (1L << 1)

#define InProximity (0L << 1)

#define OutOfProximity (1L << 1)

#define AddToList 0

#define DeleteFromList 1

#define KeyClass 0

#define ButtonClass 1

#define ValuatorClass 2

#define FeedbackClass 3

#define ProximityClass 4

#define FocusClass 5

#define OtherClass 6

79

X Input Extension Library X11, Release 6.4

#define KbdFeedbackClass 0

#define PtrFeedbackClass 1

#define StringFeedbackClass 2

#define IntegerFeedbackClass 3

#define LedFeedbackClass 4

#define BellFeedbackClass 5

#define _devicePointerMotionHint 0

#define _deviceButton1Motion 1

#define _deviceButton2Motion 2

#define _deviceButton3Motion 3

#define _deviceButton4Motion 4

#define _deviceButton5Motion 5

#define _deviceButtonMotion 6

#define _deviceButtonGrab 7

#define _deviceOwnerGrabButton 8

#define _noExtensionEvent 9

#define XI_BadDevice 0

#define XI_BadEvent 1

#define XI_BadMode 2

#define XI_DeviceBusy 3

#define XI_BadClass 4

typedef unsigned long XEventClass;

/***

*

* Extension version structure.

*

*/

typedef struct {

int present;

short major_version;

short minor_version;

} XExtensionVersion;

#endif /* _XI_H_ */

80

Table of Contents

1. Input Extension Overview . 1
1.1. Design Approach . 1
1.2. Core Input Devices . 1
1.3. Extension Input Devices . 1
1.3.1. Input Device Classes . 2
1.4. Using Extension Input Devices 2
2. Library Extension Requests . 3
2.1. Window Manager Functions 3
2.1.1. Changing the Core Devices 3
2.1.2. Event Synchronization and Core Grabs 5
2.1.3. Extension Active Grabs . 5
2.1.4. Passively Grabbing a Key 8
2.1.5. Passively Grabbing a Button 10
2.1.6. Thawing a Device . 13
2.1.7. Controlling Device Focus 15
2.1.8. Controlling Device Feedback 17
2.1.9. Ringing a Bell on an Input Device 25
2.1.10. Controlling Device Encoding 25
2.1.11. Controlling Button Mapping 28
2.1.12. Obtaining the State of a Device 29
2.2. Events . 31
2.2.1. Event Types . 32
2.2.2. Event Classes . 32
2.2.3. Event Structures . 33
2.2.3.1. Device Key Events . 33
2.2.3.2. Device Button Events . 34
2.2.3.3. Device Motion Events . 35
2.2.3.4. Device Focus Events . 36
2.2.3.5. Device StateNotify Event 37
2.2.3.6. Device Mapping Event . 38
2.2.3.7. ChangeDeviceNotify Event 39
2.2.3.8. Proximity Events . 39
2.3. Event Handling Functions . 40
2.3.1. Determining the Extension Version 40
2.3.2. Listing Available Devices 41
2.3.3. Enabling and Disabling Extension Devices 43
2.3.4. Changing the Mode of a Device 45
2.3.5. Initializing Valuators on an Input Device 45
2.3.6. Getting Input Device Controls 46
2.3.7. Changing Input Device Controls 47
2.3.8. Selecting Extension Device Events 48
2.3.9. Determining Selected Device Events 50
2.3.10. Controlling Event Propagation 50
2.3.11. Sending an Event . 51
2.3.12. Getting Motion History . 53
2.3.12. Appendix A . 55

i

X Input Extension Library X11, Release 6.4

ii

