<?xml version='1.0' encoding='utf-8'?> encoding='UTF-8'?>

<!DOCTYPE rfc [
  <!ENTITY nbsp    "&#160;">
  <!ENTITY zwsp   "&#8203;">
  <!ENTITY nbhy   "&#8209;">
  <!ENTITY wj     "&#8288;">
]>
<?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?>
<!-- generated by https://github.com/cabo/kramdown-rfc version 1.7.29 (Ruby 3.2.3) -->

<rfc xmlns:xi="http://www.w3.org/2001/XInclude" ipr="trust200902" docName="draft-ietf-v6ops-nd-considerations-14" number="9898" updates="" obsoletes="" consensus="true" category="info" submissionType="IETF" tocInclude="true" sortRefs="true" symRefs="true" version="3">
  <!-- xml2rfc v2v3 conversion 3.28.1 --> version="3" xml:lang="en">

  <front>
    <title abbrev="nd-considerations">Neighbor abbrev="ND Considerations">Neighbor Discovery Considerations in IPv6 Deployments</title>
    <seriesInfo name="Internet-Draft" value="draft-ietf-v6ops-nd-considerations-14"/> name="RFC" value="9898"/>
    <author fullname="XiPeng Xiao">
      <organization>Huawei Technologies</organization>
      <address>
        <email>xipengxiao@huawei.com</email>
      </address>
    </author>
    <author fullname="Eduard Vasilenko">
      <organization>Huawei Technologies</organization>
      <address>
        <email>vasilenko.eduard@huawei.com</email>
      </address>
    </author>
    <author fullname="Eduard Metz">
      <organization>KPN N.V.</organization>
      <address>
        <email>eduard.metz@kpn.com</email>
      </address>
    </author>
    <author fullname="Gyan Mishra">
      <organization>Verizon Inc.</organization>
      <address>
        <email>gyan.s.mishra@verizon.com</email>
      </address>
    </author>
    <author fullname="Nick Buraglio">
      <organization>Energy Sciences Network</organization>
      <address>
        <email>buraglio@es.net</email>
      </address>
    </author>
    <date year="2025" month="June" day="06"/>
    <area>Operations and Management</area>
    <workgroup>IPv6 Operations (v6ops) Working Group</workgroup>
    <keyword>Internet-Draft</keyword> month="November"/>
    <area>OPS</area>
    <workgroup>v6ops</workgroup>

<!-- [rfced] Please insert any keywords (beyond those that appear in
the title) for use on https://www.rfc-editor.org/search. -->

<keyword>example</keyword>

<!--[rfced] Authors' Addresses:
Regarding the postal addresses for XiPeng and Eduard,
the markdown file you provided does not match the approved
Internet-Draft in that the postal addresses were removed. Would
you like your postal address information to be included in
the RFC? If so, we will restore it.
-->

<!-- [rfced] Regarding section titles:

a) May we update these section titles as follows? This would make them
consistent in the table of contents (all terms would appear with their
abbreviations) and more closely align with the items in the "ND solution"
column in Table 1. (Part b is about the sections not included in this list.)

Original:
  3. Review of DN Mitigation Solutions..............................9
    3.1. ND Solution in Mobile Broadband IPv6.....................10
    3.2. ND Solution in Fixed Broadband IPv6......................11
    3.3. Unique IPv6 Prefix per Host (UPPH).......................12

    3.5. Scalable Address Resolution Protocol.....................14

    3.9. Gratuitous Neighbor Discovery (GRAND)....................15

Perhaps:
  3. Review of ND Mitigation Solutions
    3.1.  Mobile Broadband IPv6 (MBBv6)
    3.2.  Fixed Broadband IPv6 (FBBv6)
    3.3.  Unique IPv6 Prefix per Host (UPPH)

    3.5.  Scalable Address Resolution Protocol (SARP)

    3.9.  Gratuitous Neighbor Discovery (GRAND)

b) We note the following inconsistencies between the section titles below and
their respective entries in Table 1. May we make the following updates for
consistency?

i) We were unable to find "Subnet ND" explicitly mentioned in this
section. May we update as follows to match "WiND" in Table 1?

Original:
3.4.  Wireless ND and Subnet ND

Perhaps:
3.4.  Wireless ND (WiND)

ii) The item for this section appears as "ND TRILL" in Table 1.
May we drop "ARP" from this section title and update as follows?

Original:
  3.6. ARP and ND Optimization for TRILL

Perhaps:
  3.6. ND Optimization for TRILL

iii) May we update as follows to match Table 1?

Original:
  3.7. Proxy ARP/ND in Ethernet Virtual Private Networks (EVPN)

Perhaps:
  3.7.  ND in Ethernet Virtual Private Networks (ND EVPN)

iv) Section 3.10: The item for this section appears as "SAVI/RA G/G+" in Table 1.
In addition, we were unable to find "G+" defined in this section. May we
update both this section title and its respective entry in Table 1 as follows?

Original (section title):
      3.10. Source Address Validation Improvement (SAVI) and Router
      Advertisement Guard

Original (table entry):
   SAVI/
   RA
   G/G+

Perhaps (new section title):
      3.10. Source Address Validation Improvement (SAVI) and Router
      Advertisement Guard (RA-Guard)

Perhaps (new table entry):
   SAVI/
   RA-G
-->

    <abstract>
      <?line 57?>
      <t>The Neighbor Discovery (ND) protocol is a critical component of the
   IPv6 architecture. The protocol uses multicast in many messages. It
   also assumes a security model where all nodes on a link are trusted.
   Such a design might be inefficient in some scenarios (e.g., use of
   multicast in wireless networks) or when nodes are not trustworthy
   (e.g., public access networks). These security and operational
   issues and the associated mitigation solutions are documented in
   more than 20 twenty RFCs. There is a need to track these issues and
   solutions in a single document.</t>
      <t>To that aim, this document summarizes the published ND issues and
   then describes how all these issues originate from three causes.
   Addressing the issues is made simpler by addressing the causes. This
   document also analyzes the mitigation solutions and demonstrates
   that isolating hosts into different subnets and links can help to
   address the three causes. Guidance is provided for selecting a
   suitable isolation method to prevent potential ND issues.</t>
    </abstract>
  </front>
  <middle>
    <?line 77?>

<section anchor="introduction">
      <name>Introduction</name>
      <t>Neighbor Discovery (ND) <xref target="RFC4861"/> specifies the mechanisms that IPv6
   nodes (hosts and routers) on the same link use to communicate and
   learn about each other. Stateless Address Autoconfiguration (SLAAC)
   <xref target="RFC4862"/> builds on those ND mechanisms to let nodes configure their
   own IPv6 addresses. When analyzing the issues nodes may encounter
   with ND, it helps to view the ND messages they exchange throughout
   their life-cycle, life cycle, taking SLAAC into consideration.</t>
      <t>For a host, the overall procedure is as follows:</t>
      <artwork><![CDATA[
 1. LLA
<ol spacing="normal" type="1">
  <li>LLA DAD: The host forms a Link-Local Address (LLA) and performs
  Duplicate Address Detection (DAD) using multicast Neighbor Solicitations (NSs).
 2. Router Discovery:
  (NSs).</li>
  <li>Router discovery: The host sends multicast Router Solicitations (RSs) to
  discover a router on the link. The router responds with Router
  Advertisements (RAs), providing subnet prefixes and other information. The
  host installs a Neighbor Cache Entry (NCE) for that router upon receiving
  the RAs. In contrast, the router cannot install an NCE for the host at this
  moment of the exchange because the host's global IP address is still
  unknown.  When the router later needs to forward a packet to the host's
  global address, it will perform address resolution and install an NCE for
  the host.
 3. GUA host.</li>
  <li>GUA DAD: The host forms a Global Unicast Address (GUA)
    {{RFC3587}} <xref
  target="RFC3587"/> or a Unique Local Address (ULA) {{RFC4193}} <xref target="RFC4193"/>
  and uses multicast NSs for DAD. For simplicity of description, this document
  will not further distinguish GUA and ULA.
 4. Next-hop ULA.</li>
  <li>Next-hop determination and address resolution: When the host needs to
  send a packet, it will first determine whether the
    next-hop next hop is a router or
  an on-link host (which is the destination). If the next-hop next hop is a router, the
  host already has the NCE for that router. If the next-hop next hop is an on-link
  host, it will use multicast NSs to perform address resolution for the
  destination host. As a result, the source host installs an NCE for the
  destination host.
 5. Node host.</li>
  <li>Node Unreachability Detection (NUD): The host uses unicast NSs to
  determine whether another node with an NCE is still
    reachable.
 6. Link-layer reachable.</li>
  <li>Link-layer address change announcement: If a host's link-layer address
  changes, it may use multicast Node Advertisements (NAs) to announce its new
  link-layer address to other nodes.
]]></artwork> nodes.</li>
</ol>
      <t>For a router, the procedure is similar except that there is no
   Router Discovery.
   router discovery. Instead, routers perform a Redirect procedure that
   hosts do not have. A router sends a Redirect to inform a node of a
   better next-hop next hop for the node's traffic.</t>

<!-- [rfced] Introduction: To make this list parallel in structure, may we
adjust the punctuation as follows?

Original:
   ND uses multicast in many messages, trusts messages from all nodes,
   and routers may install NCEs for hosts on demand when they are to
   forward packets to these hosts.

Perhaps:
   ND uses multicast in many messages and trusts messages from all nodes;
   in addition, routers may install NCEs for hosts on demand when they are to
   forward packets to these hosts.
-->

      <t>ND uses multicast in many messages, trusts messages from all nodes,
   and routers may install NCEs for hosts on demand when they are to
   forward packets to these hosts. These may lead to issues.
   Concretely, various ND issues and mitigation solutions have been
   published in more than 20 RFCs, including:</t>
      <artwork><![CDATA[
 *

<!-- [rfced] Introduction:

a) The items in the list below appear to be a mixture of both RFC titles and
"ND issues and mitigation solutions". In addition, some of these terms (e.g.,
Wireless ND (WiND)) do not explicitly appear in the RFCs that follow.

May we update these items to their full RFC titles for consistency and
clarity? For the list items that contain multiple RFCs, we would separate each
RFC or reference into a separate bullet point.

Original:
   Concretely, various ND issues and mitigation solutions have been
   published in more than 20 RFCs, including:

     . ND Trust Models and Threats {{RFC3756}},
 * [RFC3756],
     . Secure ND {{RFC3971}},
 * [RFC3971],
     . Cryptographically Generated Addresses {{RFC3972}},
 * [RFC3972],
     . ND Proxy {{RFC4389}},
 * [RFC4389],
     . Optimistic ND {{RFC4429}},
 * [RFC4429],
     . ND for mobile broadband {{RFC6459}}{{RFC7066}}, [RFC6459][RFC7066],

     [etc.]

Perhaps:
   Concretely, various ND issues and mitigation solutions have been
   published in more than 20 RFCs, including:

   *  "IPv6 Neighbor Discovery (ND) Trust Models and Threats" [RFC3756]

   *  "SEcure Neighbor Discovery (SEND)" [RFC3971]

   *  "Cryptographically Generated Addresses (CGA)" [RFC3972]

   *  "Neighbor Discovery Proxies (ND Proxy)" [RFC4389]

   *  "Optimistic Duplicate Address Detection (DAD) for IPv6" [RFC4429]

   *  "IPv6 in 3rd Generation Partnership Project (3GPP) Evolved Packet System (EPS)" [RFC6459]

   *  "IPv6 for Third Generation Partnership Project (3GPP) Cellular Hosts" [RFC7066]

   [etc.]

b) We note that the title of RFC 4429 is "Optimistic Duplicate Address
Detection (DAD) for IPv6" (rather than "Optimistic ND"); may this be
updated to the full title of RFC 4429?

Original:
     . Optimistic ND [RFC4429],

Perhaps:
     *  "Optimistic Duplicate Address Detection (DAD) for IPv6" [RFC4429]
-->

<ul spacing="normal">
  <li>ND Trust Models and Threats <xref target="RFC3756"/></li>
  <li>Secure ND <xref target="RFC3971"/></li>
  <li>Cryptographically Generated Addresses <xref target="RFC3972"/></li>
  <li>ND Proxy <xref target="RFC4389"/></li>
  <li>Optimistic ND <xref target="RFC4429"/></li>
  <li>ND for mobile broadband <xref target="RFC6459"/> <xref target="RFC7066"/></li>
  <li>ND for fixed broadband {{TR177}},
 * ND <xref target="TR177"/></li>
  <li>ND Mediation {{RFC6575}},
 * Operational <xref target="RFC6575"/></li>
  <li>Operational ND Problems {{RFC6583}},
 * Wireless <xref target="RFC6583"/></li>
  <li>Wireless ND (WiND) {{RFC6775}}{{RFC8505}}{{RFC8928}}{{RFC8929}}{{I-D.ietf-6man-ipv6-over-wireless}},
 * DAD <xref target="RFC6775"/> <xref target="RFC8505"/> <xref target="RFC8928"/> <xref target="RFC8929"/> <xref target="I-D.ietf-6man-ipv6-over-wireless"/></li>
  <li>DAD Proxy {{RFC6957}},
 * Source <xref target="RFC6957"/></li>
  <li>Source Address Validation Improvement {{RFC7039}},
 * Router <xref target="RFC7039"/></li>
  <li>Router Advertisement Guard {{RFC6105}}{{RFC7113}},
 * Enhanced <xref target="RFC6105"/> <xref target="RFC7113"/></li>
  <li>Enhanced Duplicate Address Detection {{RFC7527}},
 * Scalable <xref target="RFC7527"/></li>
  <li>Scalable ARP {{RFC7586}},
 * Reducing <xref target="RFC7586"/></li>
  <li>Reducing Router Advertisements {{RFC7772}},
 * Unique <xref target="RFC7772"/></li>
  <li>Unique Prefix Per Host {{RFC8273}},
 * ND <xref target="RFC8273"/></li>
  <li>ND Optimization for Transparent Interconnection of Lots of Links (TRILL) {{RFC8302}},
 * Gratuitous <xref target="RFC8302"/></li>
  <li>Gratuitous Neighbor Discovery {{RFC9131}},
 * Proxy <xref target="RFC9131"/></li>
  <li>Proxy ARP/ND for EVPN {{RFC9161}}, and
 * Using <xref target="RFC9161"/></li>
  <li>Using DHCPv6 Prefix Delegation (DHCPv6-PD) to Allocate Unique IPv6 Prefixes per Client in Large Broadcast Networks {{RFC9663}}.
]]></artwork> <xref target="RFC9663"/></li>
</ul>
      <t>This document summarizes these RFCs into a one-stop reference (as of
   the time of writing) for easier access. This document also
   identifies three causes of the issues and defines three host
   isolation methods to address the causes and prevent potential ND
   issues.</t>
      <section anchor="terminology">
        <name>Terminology</name>
        <t>This document uses the terms defined in <xref target="RFC4861"/>. Additional terms
   are defined in this section.</t>
        <dl>
        <dl spacing="normal" newline="false">
          <dt>MAC:</dt>
          <dd>
            <t>To
          <dd><t>Media Access Control. To avoid confusion with link-local addresses, link-layer
          addresses are referred to as MAC addresses "MAC addresses" in this document.</t>
          </dd>
        </dl>
        <t>Host Isolation:
   :separating document.</t></dd>
          <dt>Host isolation:</dt>
	  <dd>Separating hosts into different subnets or links.</t>
        <t>L3 Isolation:
   :allocating links.</dd>
          <dt>L3 Isolation:</dt>
	  <dd>Allocating a unique prefix Unique Prefix per host Host (UPPH) <xref
	  target="RFC8273"/> <xref target="RFC8273"/><xref target="RFC9663"/> so that every host is in
	  a different subnet. Given that a unique prefix can be allocated per
	  host on shared media, hosts in different subnets may be on the same link.</t>
        <t>L2 Isolation:
  :taking
	  link.</dd>
          <dt>L2 Isolation:</dt>
	  <dd>Taking measures to prevent a host from reaching other hosts
	  directly in Layer 2 (L2) so that every host is in a different
	  link. Due to the existence of Multi-Link Subnet <xref
	  target="RFC4903"/>, hosts in different links may be in the same
	  subnet. Therefore, L2 Isolation does not imply L3 Isolation, and L3
	  Isolation does not imply L2 Isolation either.</t>
        <t>L3+L2 Isolation:
  :applying either.</dd>
          <dt>L3+L2 Isolation:</dt>
	  <dd>Applying L3 Isolation and L2 Isolation simultaneously so that
	  every host is in a different subnet and on a different link.</t>
        <t>Partial link.</dd>
          <dt>Partial L2 Isolation:
  :using Isolation:</dt>
	  <dd>Using an L3 ND proxy Proxy <xref target="RFC4389"/> device to
	  represent the hosts behind it to other hosts in the same
	  subnet. Within the subnet, ND multicast exchange is segmented into
	  multiple smaller scopes, each represented by an ND proxy device.</t> Proxy device.</dd>
	</dl>
      </section>
    </section>
    <section anchor="review-of-inventoried-nd-issues">
      <name>Review of Inventoried ND Issues</name>
      <section anchor="multicast-may-cause-performance-and-reliability-issues">
        <name>Multicast May Cause Performance and Reliability Issues</name>
        <t>In some cases, ND uses multicast for NSs, NAs, RSs, and RAs. While
   multicast can be highly efficient in certain scenarios, e.g., scenarios (e.g., in
   wired networks, networks), multicast can also be inefficient in other
   scenarios, e.g.,
   scenarios (e.g., in large L2 networks or wireless networks.</t> networks).</t>
        <t>Typically, multicast can create a large amount of protocol traffic
   in large L2 networks. This can consume network bandwidth, increase
   processing overhead, and degrade network performance <xref target="RFC7342"/>.</t>
        <t>In wireless networks, multicast can be inefficient or even
   unreliable due to a higher probability of transmission interference,
   lower data rate, and lack of acknowledgements (Section 3.1 of <xref target="RFC9119"/>).</t> (<xref target="RFC9119" section="3.1"/>).</t>
        <t>Multicast-related performance issues of the various ND messages are
   summarized below:</t>
        <artwork><![CDATA[

<!-- [rfced] Please review the following questions regarding the "Issues"
defined in this document.

a) May we update the "Issues" to appear in sentence case rather than title
case? We would make these changes in Sections 2.1, 2.2, 2.3, and 2.4 and
wherever else they appear in this document. For example:

Original:
     . Issue 1: LLA DAD Degrading Performance

Perhaps:
     *  Issue 1: LLA DAD degrading performance

b) Should the issue names in Section 2.4 match those in Sections 2.1,
2.2, and 2.3? For example, the following issue is slightly different in
Sections 2.1 and 2.4:

In Section 2.1:
     . Issue 2: Router's Periodic Unsolicited RAs Draining Hosts'
        Battery

In Section 2.4:
     o Issue 2: Unsolicited RA Draining Host Battery Life.

c) We note that several Issues contain verbs that end in "-ing" (e.g.,
"degrading" and "draining"). Would updating these verbs to their forms
"degrades" and "drains" retain their meaning? This update would clarify the
subject and object of these "-ing" verbs.

Original:
     . Issue 1: LLA DAD Degrading Performance

     . Issue 2: Router's Periodic Unsolicited RAs Draining Hosts'
        Battery

     . Issue 3: GUA DAD Degrading Performance - same as in Issue 1.

     . Issue 4: Router's Address Resolution for Hosts Degrading
        Performance

     . Issue 5: Host's Address Resolution for Hosts Degrading
        Performance

Perhaps:
    *  Issue 1: LLA DAD Degrades Performance

    *  Issue 2: Router's Periodic Unsolicited RAs Drain Host's Battery

    *  Issue 3: GUA DAD Degrades Performance

    *  Issue 4: Router's Address Resolution for Hosts Degrades
       Performance

    *  Issue 5: Host's Address Resolution for Hosts Degrades Performance

d) How may we adjust the verbs in the item below for clarity? (Note that we
have also adjusted this list item so that it is formatted consistently with
the other items.)

Original:
     . (For Further Study) Hosts' MAC Address Change NAs Degrading
        Performance - with randomized and changing MAC addresses
        [MADINAS], there may be many such multicast messages.

Perhaps:
   *  Issue for further study: Host's MAC Address Changes to NAs Degrades
      Performance

      With randomized and changing MAC addresses [MADINAS], there may be
      many such multicast messages.
-->

   <ul spacing="normal">
     <li>
       <t>Issue 1: LLA DAD Degrading Performance</t>
       <t>In an L2 network of N addresses (which can be much larger than the
       number of hosts, as each host can have multiple addresses), there can
       be N such multicast messages. This may cause performance issues when N
       is
    large.
 * Issue large.</t>
     </li>
     <li>
       <t>Issue 2: Router's Periodic Unsolicited RAs Draining Hosts'
    Battery - multicast Host's Battery</t>
       <t>Multicast RAs are generally limited to one packet every
       MIN_DELAY_BETWEEN_RAS (3 seconds), and there are usually only one or
       two routers on the link, so it is unlikely to cause a performance
       issue. However, for battery-powered hosts, such messages may wake them
       up and drain their batteries {{RFC7772}}.
 * Issue <xref target="RFC7772"/>.</t>
     </li>
      <li>
	<t>Issue 3: GUA DAD Degrading Performance - Performance</t>
	<t>This is the same as in Issue 1.
 * Issue 1.</t>
      </li>
      <li>
	<t>Issue 4: Router's Address Resolution for Hosts Degrading
    Performance - Performance</t>
	<t>This is the same as in Issue 1.
 * Issue 1.</t>
      </li>
     <li>
       <t>Issue 5: Host's Address Resolution for Hosts Degrading
    Performance - Performance</t>
       <t>This is the same as in Issue 1.
 * (For Further Study) Hosts' 1.</t>
     </li>
     <li>
       <t>Issue for further study: Host's MAC Address Change NAs Degrading
    Performance - with Performance</t>
       <t>With randomized and changing MAC addresses
    {{I-D.ietf-madinas-use-cases}}, <xref target="RFC9797"/>,
       there may be many such multicast messages.
]]></artwork> messages.</t>
     </li>
   </ul>

    <t>In wireless networks, multicast is more likely to cause packet loss.
    Because DAD treats no response as no duplicate address detected, packet
    loss may cause duplicate addresses to be undetected.  Multicast
    reliability issues are summarized below:</t>
        <artwork><![CDATA[
 * Issue

   <ul spacing="normal">
     <li>
       <t>Issue 6: LLA DAD Not Completely Reliable in Wireless Networks.
 * Issue Networks</t>
     </li>
     <li>
       <t>Issue 7: GUA DAD Not Completely Reliable in Wireless Networks.
]]></artwork> Networks</t>
     </li>
   </ul>

        <t>Note: IPv6 address collisions are extremely unlikely. As a result,
        these two issues are largely theoretical rather than practical.</t>
      </section>

      <section anchor="trusting-all-hosts-may-cause-on-link-security-issues">
        <name>Trusting-all-hosts
        <name>Trusting-All-Hosts May Cause On-link On-Link Security Issues</name>
<!--[rfced] Trusting-All-Hosts vs. Trusting-all-nodes

These terms are both used within this document. If they have the same
meaning, how would you like to make this consistent? For example:

Section 2.2:
     2.2.  Trusting-All-Hosts May Cause On-Link Security Issues

Section 2.4:
   These issues stem from three primary causes:
   multicast, Trusting-all-nodes, and Router-NCE-on-Demand.
-->

        <t>In scenarios such as public access networks, some nodes may not be
   trustworthy. An attacker on the link can cause the following on-link
   security issues <xref target="RFC3756"/><xref target="RFC3756"/> <xref target="RFC9099"/>:</t>
        <artwork><![CDATA[
 * Issue

   <ul spacing="normal">
     <li>
       <t>Issue 8: Source IP Address Spoofing - an Spoofing</t>
       <t>An attacker can use another node's IP address as the source address
       of its ND message to pretend to be that node. The attacker can then
       launch various Redirect or Denial-of-Service (DoS) attacks.
 * Issue attacks.</t>
     </li>
     <li>
       <t>Issue 9: Denial of DAD - an DAD</t>
       <t>An attacker can repeatedly reply to a victim's DAD messages, causing
       the victim's address configuration procedure to fail, resulting in a
       DoS to the
    victim.
 * Issue victim.</t>
     </li>
     <li>
       <t>Issue 10: Rogue RAs - an RAs</t>
       <t>An attacker can send RAs to victim hosts to pretend to be a
       router. The attacker can then launch various Redirect or DoS attacks.
 * Issue
       attacks.</t>
     </li>
     <li>
       <t>Issue 11: Spoofed Redirects - an Redirects</t>
       <t>An attacker can send forged Redirects to victim hosts to redirect
       their traffic to the legitimate router itself.
 * Issue itself.</t>
     </li>
     <li>
       <t>Issue 12: Replay Attacks - an Attacks</t>
       <t>An attacker can capture valid ND messages and replay them later.
]]></artwork> later.</t>
     </li>
   </ul>
      </section>
      <section anchor="router-nce-on-demand-may-cause-forwarding-delay-nce-exhaustion-and-address-accountability-issues">
        <name>Router-NCE-on-Demand May Cause Forwarding Delay, NCE Exhaustion, and Address Accountability Issues</name>
        <t>When a router needs to forward a packet to a node but does not yet
   have a Neighbor-Cache Entry (NCE) for that node, it first creates an
   NCE in the INCOMPLETE state. The router then multicasts an NS to the
   node's solicited-node multicast address. When the destination
   replies with an NA containing its MAC address, the router updates
   the NCE with that address and changes its state to REACHABLE,
   thereby completing the entry. This process is referred to as Router-
   NCE-on-Demand "Router&nbhy;NCE&nbhy;on&nbhy;Demand" in this document.</t>
        <t>Router-NCE-on-Demand can cause the following issues:</t>
        <t>*Issue
	<ul spacing="normal">
          <li>
	    <t>Issue 13: NCE Exhaustion - an Exhaustion</t>
	    <t>An attacker can send a high volume of packets targeting
	    non-existent IP addresses, causing the router to create numerous
	    NCEs in the INCOMPLETE state. The resulting resource exhaustion
	    may cause the router to malfunction. This vulnerability, described
	    as "NCE Exhaustion" in this document, does not require the
	    attacker to be on-link.
   * Issue on-link.</t>
	  </li>
	  <li>
	    <t>Issue 14: Router Forwarding Delay - when Delay</t>
	    <t>When a packet arrives at a router, the router buffers it while
	    attempting to determine the host's MAC address. This buffering
	    delays forwarding and, depending on the router's buffer size, may
	    lead to packet loss.  This delay is referred to as "Router-NCE-on-Demand
	    "Router&nbhy;NCE&nbhy;on&nbhy;Demand Forwarding Delay" in this document.
   * Issue document.</t>
	  </li>
	  <li>
	    <t>Issue 15: Lack of Address Accountability - with Accountability</t>
	    <t>With SLAAC, hosts generate their IP addresses. The router does
	    not become aware of a host's IP address until an NCE entry is
	    created. With DHCPv6 <xref target="RFC8415"/>, the router may not
	    know the host's addresses unless it performs DHCPv6 snooping. In
	    public access networks, where subscriber management often relies
	    on IP address (or prefix) identification, this lack of address
	    accountability poses a challenge <xref
	    target="I-D.ccc-v6ops-address-accountability"/>. Without knowledge
	    of the host's IP address, network administrators are unable to
	    effectively manage subscribers, which is particularly problematic
	    in public access networks. Moreover, once a router has created its
	    NCEs, ND <xref target="RFC4861"/> provides no mechanism to
	    retrieve them for management or monitoring, as noted in <xref
	    section="2.6.1" sectionFormat="of" target="RFC9099"/>.</t>
	  </li>
	</ul>
      </section>
      <section anchor="summary-of-nd-issues">
        <name>Summary of ND Issues</name>
        <t>The ND issues, as discussed in Sections 2.1 to 2.3, <xref target="multicast-may-cause-performance-and-reliability-issues" format="counter"/>, <xref target="trusting-all-hosts-may-cause-on-link-security-issues" format="counter"/>, and <xref target="router-nce-on-demand-may-cause-forwarding-delay-nce-exhaustion-and-address-accountability-issues" format="counter"/>, are summarized
   below. These issues stem from three primary causes: multicast,
   Trusting-all-nodes, and Router-NCE-on-Demand. Eliminating any of
   these causes would also mitigate the corresponding issues. These
   observations provide guidance for addressing and preventing ND-
   related issues.</t>
        <t>(1) Multicast-related issues:</t>
        <artwork><![CDATA[
 * Performance

<!-- [rfced] Regarding Table 1

a) We note that a few RFC numbers appear in the "ND solution" column. For
consistency with the other items in this column, what terminology would you
like to replace these RFC numbers with?

(Note that we will also update the section titles that correspond with these
table entries to match.)

Original entries in table 1:

      7772
      6583
      9686

Corresponding section titles:

      3.8. Reducing Router Advertisements
      3.11. RFC 6583 Dealing with NCE Exhaustion Attacks
      3.12. Registering Self-generated IPv6 Addresses using DHCPv6

b) Some abbreviations in this table do not clearly correspond to the
list of issues
      o Issue in Section 2.4 (e.g., "No A. Acct."). Would you like to
add a legend above or below Table 1, or add the abbreviations in
Section 2.4? Also, FYI, we updated the abbreviations as shown below.

Current abbreviations:
   On-link securi.
   NCE Exhau.
   Fwd. Delay
   No A. Acct.

Perhaps:
   The abbreviations in Table 1 correspond to Section 2.4 as follows.

   On-link Sec.   = Trusting-all-nodes related issues
   NCE Exh.       = NCE Exhaustion
   Fwd. Delay     = Router Forwarding Delay
   No Addr. Acc.  = Lack of Address Accountability

c) FYI - We renamed the "RFC type" column to "RFC cat." (RFC category)
to align with the text that precedes the table.

d) FYI - We updated "U" to "N/A" to make it clear that the
corresponding items are not specified in RFCs.

Original:
     I - Informational
     B - Best Current Practice
     U - Unknown (not formally defined by the IETF)

Current:
   I:  Informational
   B:  Best Current Practice
   N/A:  Not Applicable (not an RFC)
-->

<ol spacing="normal" type="1">
  <li><t>Multicast-related issues:</t>
  <ul spacing="normal">
    <li><t>Performance issues:</t>
    <ul spacing="normal">
      <li>Issue 1: LLA DAD Degrading Performance.
      o Issue Performance</li>
      <li>Issue 2: Unsolicited RA Draining Host Battery Life.
      o Issue Life</li>
      <li>Issue 3: GUA DAD degrading performance.
      o Issue performance</li>
      <li>Issue 4: Router Address Resolution for Hosts Degrading
         Performance.
      o Issue Performance</li>
      <li>Issue 5: Host Address Resolution for Other Hosts Degrading
         Performance.
  * Reliability issues
      o Issue Performance</li>
    </ul></li>
    <li><t>Reliability issues:</t>
    <ul spacing="normal">
      <li>Issue 6: LLA DAD Not Completely Reliable in Wireless
         Networks
      o Issue Networks</li>
      <li>Issue 7: GUA DAD Not Completely Reliable in Wireless
         Networks
]]></artwork>
        <t>(2) Trusting-all-nodes Networks</li>
    </ul></li>
  </ul></li>
  <li><t>Trusting-all-nodes related issues:</t>
        <artwork><![CDATA[
      o Issue
    <ul spacing="normal">
      <li>Issue 8: Source IP Address Spoofing
      o Issue Spoofing</li>
      <li>Issue 9: Denial of DAD
      o Issue DAD</li>
      <li>Issue 10: Rogue RAs
      o Issue RAs</li>
      <li>Issue 11: Spoofed Redirects
      o Issue Redirects</li>
      <li>Issue 12: Replay Attacks
]]></artwork>
        <t>(3) Router-NCE-on-Demand Attacks</li>
    </ul></li>
  <li><t>Router-NCE-on-Demand related issues:</t>
        <artwork><![CDATA[
      o Issue
    <ul spacing="normal">
      <li>Issue 13: NCE Exhaustion
      o Issue Exhaustion</li>
      <li>Issue 14: Router Forwarding Delay
      o Issue Delay</li>
      <li>Issue 15: Lack of Address Accountability
]]></artwork> Accountability</li>
    </ul>
  </li>
</ol>
        <t>These issues are potential vulnerabilities and may not manifest in
   all usage scenarios.</t>
        <t>When these issues may occur in a specific deployment, it is
   advisable to consider the mitigation solutions available. They are
   described in the following section.</t>
      </section>
    </section>
    <section anchor="review-of-nd-mitigation-solutions">
      <name>Review of ND Mitigation Solutions</name>
      <t>Table 1
      <t><xref target="solutions-table"/> summarizes ND mitigation solutions available for Issues 1-15
   described in Section 2.4. <xref target="summary-of-nd-issues" format="default"/>. Similar solutions are grouped, beginning
   with those that address the most issues. Unrelated solutions are
   ordered based on the issues (listed in Section 2.4) <xref target="summary-of-nd-issues" format="default"/>) they address.
   Each solution in the table will be explained in a sub-section later,
   where abbreviations in the table are described.</t>
      <t>In the table, <xref target="solutions-table"/>, a letter code indicates the RFC category of the
   mitigation solution (see BCP 9 <xref target="RFC2026"/> for an explanation of these
   categories):</t>
      <artwork><![CDATA[
<!--[rfced] We suggest removing "Draft Standard" from this list
because that Standards Track maturity level is no longer in use,
per RFC 6410. (Also, it appears that zero of the ND solutions listed
in Table 1 are specified in a Draft Standard; please review.
We note that RFCs 4861 and 4862 are Draft Standards, but they are
not listed in Table 1.)

Original:
     S - Standards Track (Proposed Standard, Draft Standard, or
     Internet Standard)
 E - Experimental
 I - Informational
 B - Best

Suggested:
    S:   Standards Track (Proposed Standard or Internet Standard)
-->

   <dl spacing="compact" newline="false" indent="5">
     <dt>S:</dt><dd>Standards Track (Proposed Standard, Draft Standard, or Internet Standard)</dd>
     <dt>E:</dt><dd>Experimental</dd>
     <dt>I:</dt><dd>Informational</dd>
     <dt>B:</dt><dd>Best Current Practice
 U - Unknown Practice</dd>
     <dt>N/A:</dt><dd>Not Applicable (not formally defined by the IETF)
]]></artwork>
      <artwork><![CDATA[
  +-----+---+-------------------+--------+-------+-------+------+-----+
  |ND   |RFC|     Multicast     | Reli-  |On-link|NCE    |Fwd.  |No A.|
  |solu-|ty-|     performance   | ability|securi.|Exhau. |Delay |Acct.|
  |tion |pe |---+---+---+---+---+---+----+-------+-------+------+-----+
  |     |   | 1 | 2 | 3 | 4 | 5 | 6 |  7 |  8-12 |   13  |  14  | 15  |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |MBBv6| I |            All an RFC)</dd>
   </dl>

<table anchor="solutions-table">
  <name>Solutions for Identified Issues</name>
  <thead>
    <tr>
      <th rowspan="2">ND solution</th>
      <th rowspan="2">RFC cat.</th>
      <th colspan="5">Multicast performance</th>
      <th colspan="2">Reliability</th>
      <th>On-link sec.</th>
      <th>NCE Exh.</th>
      <th>Fwd. Delay</th>
      <th>No Addr. Acc.</th>
    </tr>
    <tr>
      <th align="center">1</th>
      <th align="center">2</th>
      <th align="center">3</th>
      <th align="center">4</th>
      <th align="center">5</th>
      <th align="center">6</th>
      <th align="center">7</th>
      <th align="center">8-12</th>
      <th align="center">13</th>
      <th align="center">14</th>
      <th align="center">15</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>MBBv6</td>
      <td align="center">I</td>
      <td colspan="11" align="center">All identified issues solved                 |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |FBBv6| U |            All solved</td>
    </tr>
    <tr>
      <td>FBBv6</td>
      <td align="center">N/A</td>
      <td colspan="11" align="center">All identified issues solved                 |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |UPPH | I |   | X |   | X | X |   |  X |       |   X   |   X  |  X  |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |WiND | S |All solved</td>
    </tr>
    <tr>
      <td>UPPH</td>
      <td align="center">I</td>
      <td></td>
      <td align="center">X</td>
      <td></td>
      <td align="center">X</td>
      <td align="center">X</td>
      <td></td>
      <td align="center">X</td>
      <td></td>
      <td align="center">X</td>
      <td align="center">X</td>
      <td align="center">X</td>
    </tr>
    <tr>
      <td>WiND</td>
      <td align="center">S</td>
      <td colspan="11" align="center">All issues solved for Low-Power and Lossy Networks (LLNs)|
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |SARP | E |   |   |   |   | X |   |    |       |       |      |     |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |ND   | S |   |   |   |   | X |   |    |       |       |      |     |
  |TRILL|   |   |   |   |   |   |   |    |       |       |      |     |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |ND   | S |   |   |   |   | X |   |    |       |       |      |     |
  |EVPN |   |   |   |   |   |   |   |    |       |       |      |     |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |7772 | B |   | X |   |   |   |   |    |       |       |      |     |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |GRAND| S |   |   |   | X |   |   |    |       |       |  X   |     |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |SAVI/|   |   |   |   |   |   |   |    |       |       |      |     |
  |RA   | I |   |   |   |   |   |   |    |   X   |       |      |     |
  |G/G+ |   |   |   |   |   |   |   |    |       |       |      |     |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |6583 | I |   |   |   |   |   |   |    |       |   X   |      |     |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
  |9686 | S |   |   |   |   |   |   |    |       |       |      |  X  |
  +-----+---+---+---+---+---+---+---+----+-------+-------+------+-----+
                 Table 1. Solutions for identified issues
]]></artwork> (LLNs)</td>
    </tr>
    <tr>
      <td>SARP</td>
      <td align="center">E</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td align="center">X</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td>ND TRILL</td>
      <td align="center">S</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td align="center">X</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td>ND EVPN</td>
      <td align="center">S</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td align="center">X</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td>7772</td>
      <td align="center">B</td>
      <td></td>
      <td align="center">X</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td>GRAND</td>
      <td align="center">S</td>
      <td></td>
      <td></td>
      <td></td>
      <td align="center">X</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td align="center">X</td>
      <td></td>
    </tr>
    <tr>
      <td>SAVI/RA G/G+</td>
      <td align="center">I</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td align="center">X</td>
      <td></td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td>6583</td>
      <td align="center">I</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td align="center">X</td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td>9686</td>
      <td align="center">S</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
      <td align="center">X</td>
    </tr>
  </tbody>
</table>

      <section anchor="nd-solution-in-mobile-broadband-ipv6">
        <name>ND Solution in Mobile Broadband IPv6</name>
        <t>The IPv6 solution defined in "IPv6 in 3GPP EPS" 3rd Generation Partnership
        Project (3GPP) Evolved Packet System (EPS)" <xref target="RFC6459"/>,
        "IPv6 for
   3GPP Third Generation Partnership Project (3GPP) Cellular Hosts"
        <xref target="RFC7066"/>, and "Extending an IPv6 /64 Prefix from a
        Third Generation Partnership Project (3GPP) Mobile Interface to a LAN
        Link" <xref target="RFC7278"/> is called Mobile Broadband IPv6
        (MBBv6) in this document. They are Informational RFCs. The key points
        are:</t>
        <artwork><![CDATA[
 * Putting
   <ul spacing="normal">
     <li><t>Putting every host, e.g., host (e.g., the mobile User Equipment (UE), (UE)) in a
     Point-to-Point (P2P) link with the router, e.g., router (e.g., the mobile
    gateway. Consequently:
      o All
     gateway) has the following outcomes:</t>
     <ul spacing="normal">
      <li>All multicast is effectively turned into unicast.
      o The unicast.</li>
      <li>The P2P links do not have a MAC address. Therefore, Router-
      NCE-on-Demand is not needed.
      o Trusting-all-nodes needed.</li>
      <li>Trusting-all-nodes is only relevant to the router. By applying
      filtering at the router, e.g., router (e.g., dropping RAs from the hosts, hosts), even
      malicious hosts cannot cause harm.
 * Assigning harm.</li>
     </ul></li>
    <li>Assigning a unique /64 prefix to each host. Together with the
    P2P link, this puts each host on a separate link and subnet.
 * Maintaining subnet.</li>
    <li>Maintaining (prefix, interface) binding at the router for
    forwarding purposes.
]]></artwork> purposes.</li>
   </ul>
        <t>Since all the three causes of ND issues are addressed, all the
   issues discussed in Section 2.4 <xref target="summary-of-nd-issues" format="default"/> are addressed.</t>
      </section>
      <section anchor="nd-solution-in-fixed-broadband-ipv6">
        <name>ND Solution in Fixed Broadband IPv6</name>
        <t>The IPv6 solution defined in "IPv6 in the context of TR-101" <xref target="TR177"/>
   is called Fixed Broadband IPv6 (FBBv6) in this document. FBBv6 has
   two flavors:</t>
        <artwork><![CDATA[
 * P2P:
   <ul spacing="normal">
     <li>P2P: Every host, e.g., host (e.g., the Residential Gateway (RG), (RG)) is in a
    P2P link with the router, e.g., router (e.g., the Broadband Network Gateway
    (BNG).
    (BNG)). In this case, the solution is functionally similar to
    MBBv6. All ND issues discussed in Section 2.4 <xref target="summary-of-nd-issues" format="default"/> are solved.
 * Point-to-Multi-Point solved.</li>
    <li>Point to Multipoint (P2MP): All hosts, e.g., hosts (e.g., the RGs, RGs)
    connected to an access device, e.g., device (e.g., the Optical Line Terminal
    (OLT),
    (OLT)) are in a P2MP link with the router, e.g., router (e.g., the BNG. BNG).  This
    is achieved by placing all hosts in a single VLAN on the router
    and configuring the OLT to block any frame from being forwarded
    between its access ports; traffic from each host can travel
    only up toward the router, not sideways to another host,
    thereby preventing direct host-to-host communication.
]]></artwork> communication.</li>
   </ul>
        <t>The following list summarizes the two key aspects of the FBBv6-P2MP
   architecture as described in <xref target="TR177"/> and the associated benefits:</t>
        <artwork><![CDATA[
 * Implementing
   <ul spacing="normal">
     <li><t>Implementing DAD Proxy {{RFC6957}}:

   In proxy <xref target="RFC6957"/>:</t>
     <t>In a P2MP architecture described above, the normal ND DAD procedure
     will breaks break down because hosts cannot exchange NSs with one another. To
     address this, the router participates in the DAD process as a DAD Proxy
     to resolve address duplication.

   The duplication.</t>
     <t>The benefits are:

      o Multicast are:</t>
     <ul spacing="normal">
       <li>Multicast traffic from all hosts to the router is effectively
       converted into unicast, as hosts can only communicate directly with the router.

      o The
       router.</li>
       <li>The Trusting-all-nodes model is limited to the router. By applying
       simple filtering, e.g., filtering (e.g., dropping RAs from hosts, hosts), the router can
       mitigate security risks, even from malicious hosts

 * Assigning hosts.</li>
   </ul></li>
   <li><t>Assigning a unique /64 prefix to each host:

   Assigning host:</t>
   <t>Assigning each host a unique /64 prefix results in several operational improvements:

      o The
   improvements:</t>
     <ul spacing="normal">
       <li>The router can proactively install a forwarding entry for that
       prefix towards the host, eliminating the need for
         Router-NCE-on-Demand.
      o Since
       Router-NCE-on-Demand.</li>
       <li>Since each host resides in a different subnet, traffic between
       hosts is routed through the router, eliminating the need for hosts to
       perform address resolution for one
         another.
      o Without another.</li>
       <li>Without address resolution, router multicast to hosts is limited to
       unsolicited RAs. As each host resides in its own subnet, these RAs are
       sent as unicast packets to individual hosts. This follows the approach
       specified in
         {{RFC6085}}, <xref target="RFC6085"/>, where the host's MAC address replaces the
       multicast MAC address in the RA.
]]></artwork> RA.</li>
     </ul></li>
   </ul>
        <t>Since all three causes of ND issues are addressed, all ND issues
   (Section 2.4)
   (<xref target="summary-of-nd-issues" format="default"/>) are also addressed.</t>
      </section>
      <section anchor="unique-ipv6-prefix-per-host-upph">
        <name>Unique IPv6 Prefix per Host (UPPH)</name>
        <t>UPPH
        <t>Unique IPv6 Prefix per Host (UPPH) solutions are described in <xref target="RFC8273"/> and <xref target="RFC9663"/>. Both are
   Informational RFCs. <xref target="RFC8273"/> relies on SLAAC for unique prefix
   allocation while <xref target="RFC9663"/> relies on DHCP-PD. DHCPv6 Prefix Delegation (DHCPv6-PD). That difference in
   allocation mechanism does not change the discussion on ND issues,
   because every IPv6 node is still required to run SLAAC, even when it
   receives its prefix via DHCP-PD. DHCPv6-PD. Therefore, discussing <xref target="RFC8273"/>
   alone is sufficient.</t>
        <t><xref target="RFC8273"/> "improves host isolation and enhanced subscriber
   management on shared network segments" such as Wi-Fi or Ethernet.
   The key points are:</t>
        <artwork><![CDATA[
 * When
   <ul spacing="normal">
     <li>When a prefix is allocated to the host, the router can proactively
     install a forwarding entry for that prefix towards the host.  There is no
     more Router-NCE-on-Demand.

 * Without Router-NCE-on-Demand.</li>
     <li>Without address resolution, router multicast to hosts consists
    only of unsolicited RAs. They will be sent to hosts one by one
    in unicast because the prefix for every host is different.
 * Since different.</li>
    <li>Since different hosts are in different subnets, hosts will send
    traffic to other hosts via the router. There is no host-to-host
    address resolution.
]]></artwork> resolution.</li>
  </ul>
        <t>Therefore, ND issues caused by Router-NCE-on-Demand and router
   multicast to hosts are prevented.</t>
        <t><xref target="RFC8273"/> indicates that a "network implementing a
        unique IPv6 prefix per host can simply ensure that devices cannot send
        packets to each other except through the first-hop router". But However,
        when hosts are on a shared medium like Ethernet, ensuring "devices
        cannot send packets to each other except through the first-hop router"
        requires additional measures like Private VLAN <xref
        target="RFC5517"/>. Without such additional measures, on a shared
        medium, hosts can still reach each other in L2 as they belong to the
        same Solicited-Node Multicast Group. Therefore, Trusting-all-nodes and
        host multicast to routers may cause issues. Of the host multicast
        issues (i.e., Issues 1, 3, 5, 6, and 7), Unique Prefix per Host UPPH prevents Issues 5 and 7,
        because there is no need for address resolution among hosts (Issue
   5) 5),
        and there is no possibility of GUA duplication (Issue 7). But However,
        Issues 1, 3, and 6 may occur.</t>
      </section>

<!-- [rfced] Section 3.4: As the phrase "WiND" does not explicitly appear in
the RFCs mentioned below, may we adjust the text below to indicate this a new
term?

Original:
   Wireless ND (WiND) [RFC6775][RFC8505][RFC8928][RFC8929] (Standards
   Track) defines a fundamentally different ND solution for Low-Power
   and Lossy Networks (LLNs) [RFC7102].

Perhaps:
   The term "Wireless ND (WiND)" is used in this document to describe the
   fundamentally different ND solution for Low-Power and Lossy Networks (LLNs)
   [RFC7102] that is defined in [RFC6775], [RFC8505], [RFC8928], and [RFC8929]
   (Standards Track).
-->

      <section anchor="wireless-nd-and-subnet-nd">
        <name>Wireless ND and Subnet ND</name>
        <t>Wireless ND (WiND) <xref target="RFC6775"/><xref target="RFC8505"/><xref target="RFC8928"/><xref target="RFC6775"/> <xref target="RFC8505"/> <xref target="RFC8928"/> <xref target="RFC8929"/> (Standards
   Track) defines a fundamentally different ND solution for Low-Power
   and Lossy Networks (LLNs) <xref target="RFC7102"/>. WiND changes host and router
   behaviors to use multicast only for router discovery. The key points
   are:</t>
        <artwork><![CDATA[
 * Hosts
   <ul spacing="normal">
     <li>Hosts use unicast to proactively register their addresses at
    the routers. Routers use unicast to communicate with hosts and
    become an abstract registrar and arbitrator for address
    ownership.
 * The
    ownership.</li>
    <li>The router also proactively installs NCEs for the hosts. This
    avoids the need for address resolution for the hosts.
 * The hosts.</li>
    <li>The router sets the Prefix Information Option (PIO) L-bit to 0.
    Each host communicates only with the router ({{Section 6.3.4 of RFC4861}}).
 * Other (<xref target="RFC4861" section="6.3.4"/>).</li>
    <li>Other functionalities that are relevant only to LLNs.
]]></artwork> LLNs.</li>
  </ul>
        <t>WiND addresses all ND issues (Section 2.4) (<xref target="summary-of-nd-issues" format="default"/>) in LLNs. However, WiND
   support is not mandatory for general-purpose hosts. Therefore, it
   cannot be relied upon as a deployment option without imposing
   additional constraints on the participating nodes.</t>
      </section>
      <section anchor="scalable-address-resolution-protocol">
        <name>Scalable Address Resolution Protocol</name>
        <t>Scalable
        <t>The Scalable Address Resolution Protocol (SARP) <xref
        target="RFC7586"/> was an Experimental solution. That experiment ended
        in 2017, two years after the RFC was published. Because the idea has
        been used in mitigation solutions for more specific scenarios
        (described in Sections 3.6 <xref
        target="arp-and-nd-optimization-for-trill" format="counter"/> and 3.7),
        <xref target="proxy-arpnd-in-ethernet-virtual-private-networks-evpn"
        format="counter"/>), it is worth describing here. The usage scenario
        is Data Centers (DCs), where large L2 domains span across multiple
        sites. In each site, multiple hosts are connected to a switch. The
        hosts can be Virtual Machines (VMs), so the number can be large.  The
        switches are interconnected by a native or overlay L2 network.</t>
        <t>The switch will snoop and install a (IP, MAC address) proxy table for
   the local hosts. The switch will also reply to address resolution
   requests from other sites to its hosts with its own MAC address. In
   doing so, all hosts within a site will appear to have a single MAC
   address to other sites. As such, a switch only needs to build a MAC
   address table for the local hosts and the remote switches, not for
   all the hosts in the L2 domain. Consequently, the MAC address table
   size of the switches is significantly reduced. A switch will also
   add the (IP, MAC address) replies from remote switches to its proxy
   ND table so that it can reply to future address resolution requests
   from local hosts for such IPs directly. This greatly reduces the
   number of address resolution multicast in the network.</t>
        <t>Unlike MBBv6, FBBv6, and UPPH, which try to address all ND issues
   discussed in Section 2.4, <xref target="summary-of-nd-issues" format="default"/>, SARP focuses on reducing address
   resolution multicast to improve the performance and scalability of
   large L2 domains in DCs.</t>
      </section>
      <section anchor="arp-and-nd-optimization-for-trill">
        <name>ARP and ND Optimization for TRILL</name>
        <t>ARP and ND Optimization optimization for TRILL Transparent Interconnection of Lots of Links (TRILL) <xref target="RFC8302"/>
        (Standards Track) is similar to SARP (Section 3.5). (<xref
        target="scalable-address-resolution-protocol" format="default"/>). It
        can be considered an application of SARP in the TRILL environment.</t>
        <t>Like

<!-- [rfced] Should the comma after "ARP" be removed in the text below so
that "ARP and ND optimization" appear as one item?

Original:
   Like SARP, ARP, and ND Optimization for TRILL focuses on reducing
   multicast address resolution.

Perhaps:
   Like SARP, ARP and ND optimization for TRILL focuses on reducing
   multicast address resolution.
-->

        <t>Like SARP, ARP, and ND optimization for TRILL focuses on reducing
   multicast address resolution. That is, it addresses Issue 5 (Section 2.1).</t> (<xref target="multicast-may-cause-performance-and-reliability-issues" format="default"/>).</t>
      </section>
      <section anchor="proxy-arpnd-in-ethernet-virtual-private-networks-evpn">
        <name>Proxy ARP/ND in Ethernet Virtual Private Networks (EVPN)</name>
        <t>Proxy ARP/ND in EVPN is specified in <xref target="RFC9161"/> (Standards Track).
   The usage scenario is DCs where large L2 domains span across
   multiple sites. In each site, multiple hosts are connected to a
   Provider Edge (PE) router.  The PEs are interconnected by EVPN
   tunnels.</t>
        <t>PE
        <t>The PE of each site snoops the local address resolution NAs to build
   (IP, MAC address) Proxy ND table entries. PEs then propagate such
   Proxy ND entries to other PEs via the Border Gateway Protocol (BGP).
   Each PE also snoops local hosts' address resolution NSs for remote
   hosts. If an entry exists in its Proxy ND table for the remote
   hosts, the PE will reply directly.  Consequently, the number of
   multicast address resolution messages is significantly reduced.</t>
        <t>Like SARP, Proxy ARP/ND in EVPN also focuses on reducing address
   resolution multicast.</t>
      </section>
      <section anchor="reducing-router-advertisements">
        <name>Reducing Router Advertisements</name>
        <t>Maintaining IPv6 connectivity requires that hosts be able to receive
   periodic multicast RAs <xref target="RFC4861"/>.  Hosts that process unicast
   packets while they are asleep must also process multicast RAs while
   they are asleep. An excessive number of RAs can significantly reduce
   the battery life of mobile hosts. <xref target="RFC7772"/> (Best Current Practice)
   specifies a solution to reduce RAs:</t>
        <artwork><![CDATA[
 * The
   <ul spacing="normal">
     <li>The router should respond to RS with unicast RA (rather than
    the normal multicast RA) if the host's source IP address is
    specified and the host's MAC address is valid. This way, other
    hosts will not receive this RA.
 * The RA.</li>
    <li>The router should reduce the multicast RA frequency
]]></artwork> frequency.</li>
   </ul>
        <t><xref target="RFC7772"/> addresses Issue 2 (Section 2.1).</t> (<xref target="multicast-may-cause-performance-and-reliability-issues" format="default"/>).</t>
      </section>
      <section anchor="gratuitous-neighbor-discovery-grand">
        <name>Gratuitous Neighbor Discovery (GRAND)</name>
        <t>GRAND <xref target="RFC9131"/> (Standards Track) changes ND in the following ways:</t>
        <artwork><![CDATA[
 * A
	<ul spacing="normal">
	  <li>A node sends unsolicited NAs upon assigning a new IPv6 address
	  to its interface.
 * A interface.</li>
	  <li>A router creates a new NCE for the node and sets its state to
    STALE.
]]></artwork>
	  STALE.</li>
	</ul>
        <t>When a packet for the host later arrives, the router can use the
   existing STALE NCE to forward it immediately (<xref target="RFC4861"/> Section
   7.2.2). target="RFC4861" sectionFormat="comma" section="7.2.2"/>). It then verifies reachability by sending a unicast NS rather
   than a multicast one for address resolution. In this way, GRAND
   eliminates the Router Forwarding Delay. But Delay, but it does not solve other
   Router-NCE-on-Demand issues. For example, NCE Exhaustion can still
   happen.</t>
      </section>
      <section anchor="source-address-validation-improvement-savi-and-router-advertisement-guard">
        <name>Source Address Validation Improvement (SAVI) and Router Advertisement Guard</name>
        <t>SAVI
        <t>Source Address Validation Improvement (SAVI) <xref target="RFC7039"/> (Informational) binds an address to a port on an L2
   switch and rejects claims from other ports for that address.
   Therefore, a node cannot spoof the IP address of another node.</t>
        <t>Router Advertisement Guard (RA-Guard) <xref target="RFC6105"/><xref target="RFC6105"/> <xref target="RFC7113"/>
   (Informational) only allows RAs from a port that a router is
   connected to. Therefore, nodes on other ports cannot pretend to be a
   router.</t>
        <t>SAVI and RA-Guard address the on-link security issues.</t>
      </section>
      <section anchor="rfc-6583-dealing-with-nce-exhaustion-attacks">
        <name>RFC 6583 Dealing with NCE Exhaustion Attacks</name>
        <t><xref target="RFC6583"/> (Informational) deals with the NCE
Exhaustion attack issue
   (Section 2.3). (<xref
target="router-nce-on-demand-may-cause-forwarding-delay-nce-exhaustion-and-address-accountability-issues"
format="default"/>). It recommends that:</t>
        <artwork><![CDATA[
 * Operators should
      o Filter
	<ul spacing="normal">
	  <li>
	    <t>Operators should:</t>
	    <ul spacing="normal">
	      <li>Filter unused address space so that messages to such
              addresses can be dropped rather than triggering NCE
         creation.
      o Implement
              creation.</li>
	      <li>Implement rate-limiting mechanisms for ND message
              processing to prevent CPU and memory resources from being
         overwhelmed.
 * Vendors should
      o Prioritizing
              overwhelmed.</li>
	    </ul>
	  </li>
	  <li>
	    <t>Vendors should:</t>
	    <ul spacing="normal">
	      <li>Prioritize NDP processing for existing NCEs over creating
              new NCEs
]]></artwork> NCEs.</li>
	    </ul>
	  </li>
	</ul>
        <t><xref target="RFC6583"/> acknowledges that "some of these options are 'kludges',
	and can be operationally difficult to manage". <xref target="RFC6583"/> partially
	addresses the Router NCE Exhaustion issue. In practice, router
	vendors cap the number of NCEs per interface to prevent cache
	exhaustion. If the link has more addresses than that cap, the router
	cannot keep an entry for every address, and packets destined for
	addresses without an NCE are simply dropped <xref target="RFC9663"/>.</t>
      </section>
      <section anchor="registering-self-generated-ipv6-addresses-using-dhcpv6">
        <name>Registering Self-generated Self-Generated IPv6 Addresses using Using DHCPv6</name>
        <t>In IPv4, network administrators can retrieve a host's IP address
	from the DHCP server and use it for subscriber management. In IPv6
   and SLAAC, this is not possible (Section 2.3).</t> (<xref target="router-nce-on-demand-may-cause-forwarding-delay-nce-exhaustion-and-address-accountability-issues" format="default"/>).</t>
        <t><xref target="RFC9686"/> (Standards Track) defines a method for informing a DHCPv6
   server that a host has one or more self-generated or statically
   configured addresses. This enables network administrators to
   retrieve the IPv6 addresses for each host from the DHCPv6 server.
   <xref target="RFC9686"/> provides a solution for Issue 15 (Section 2.3).</t> (<xref target="router-nce-on-demand-may-cause-forwarding-delay-nce-exhaustion-and-address-accountability-issues" format="default"/>).</t>
      </section>
      <section anchor="enhanced-dad">
        <name>Enhanced DAD</name>
        <t>Enhanced DAD <xref target="RFC7527"/> (Standards Track) addresses a DAD failure
   issue in a specific situation: a looped back looped-back interface. DAD will
   fail in a looped-back interface because the sending host will
   receive the DAD message back and will interpret it as another host
   is trying to use the same address. The solution is to include a
   Nonce option <xref target="RFC3971"/> in each DAD message so that the sending host
   can detect that the looped-back DAD message is sent by itself.</t>
        <t>Enhanced DAD does not solve any ND issue. It extends ND to work in a
   new scenario: a looped-back interface. It is reviewed here only for
   completeness.</t>
      </section>
      <section anchor="nd-mediation-for-ip-interworking-of-layer-2-vpns">
        <name>ND Mediation for IP Interworking of Layer 2 VPNs</name>
        <t>ND mediation is specified in <xref target="RFC6575"/> (Standards Track). When two
   Attachment Circuits (ACs) are interconnected by a Virtual Private
   Wired Service (VPWS), and the two ACs are of different media (e.g.,
   one is Ethernet while the other is Frame Relay), the two PEs must
   interwork to provide mediation service so that a Customer Edge (CE)
   can resolve the MAC address of the remote end. <xref target="RFC6575"/> specifies
   such a solution.</t>
        <t>ND Mediation mediation does not address any ND issue. It extends ND to work in
   a new scenario: two ACs of different media interconnected by a VPWS.
   It is reviewed here only for completeness.</t>
      </section>
      <section anchor="nd-solutions-defined-before-the-latest-versions-of-nd">
        <name>ND Solutions Defined before Before the Latest Versions of ND</name>
        <t>The latest versions of ND and SLAAC are specified in <xref target="RFC4861"/> and
   <xref target="RFC4862"/>. Several ND mitigation solutions were published before
   <xref target="RFC4861"/>. They are reviewed in this section only for completeness.</t>
        <section anchor="secure-neighbor-discovery-send">
          <name>Secure Neighbor Discovery (SeND)</name> (SEND)</name>
          <t>The purpose of SeND SEND <xref target="RFC3971"/> (Standards Track) is to ensure that
   hosts and routers are trustworthy. SeND SEND defined three new ND
   options, i.e., Cryptographically Generated Addresses (CGA) <xref target="RFC3972"/>
   (Standards Track), RSA public-key cryptosystem, and Timestamp/Nonce,
   an authorization delegation discovery process, an address ownership
   proof mechanism, and requirements for the use of these components in
   the ND protocol.</t>

<!-- [rfced] Please clarify; after the 3 options are listed, how does
the second part of this sentence relate to the first part?

Original:
   SeND defined three new ND options, i.e., Cryptographically Generated
   Addresses (CGA) [RFC3972] (Standards Track), RSA public-key cryptosystem,
   and Timestamp/Nonce, an authorization delegation discovery process, an
   address ownership proof mechanism, and requirements for the use of these
   components in the ND protocol.

Perhaps:
   SEND defined three new ND options: Cryptographically Generated Addresses
   (CGA) [RFC3972] (Standards Track), RSA public-key cryptosystem, and
   Timestamp/Nonce. These are an authorization delegation discovery process,
   an address ownership proof mechanism, and requirements for the use of
   these components in the ND protocol, respectively.
-->

        </section>
        <section anchor="cryptographically-generated-addresses-cga">
          <name>Cryptographically Generated Addresses (CGA)</name>
          <t>The purpose of CGA is to associate a cryptographic public key with
   an IPv6 address in the SeND SEND protocol. The key point is to generate
   the Interface Identifier (IID) of an IPv6 address by computing a
   cryptographic hash of the public key.  The resulting IPv6 address is
   called a CGA.  The corresponding private key can then be used to
   sign messages sent from the address.</t>
          <t>CGA assumes that a legitimate host does not care about the bit
   combination of the IID that would be created by some hash procedure.
   The attacker needs an exact IID to impersonate the legitimate hosts,
   but then the attacker is challenged to do a reverse hash calculation calculation,
   which is a strong mathematical challenge.</t>
          <t>CGA is part of SeND. SEND. There is no reported deployment.</t>
        </section>
        <section anchor="nd-proxy">
          <name>ND Proxy</name>
          <t>ND Proxy <xref target="RFC4389"/> (Experimental) aims to enable multiple links
   joined by an ND Proxy device to work as a single link.</t>
          <artwork><![CDATA[
 * When
<ul spacing="normal">
 <li>When an ND Proxy receives an ND request from a host on a link,
    it will proxy the message out the "best" (defined in the next
    paragraph) outgoing interface. If there is no best interface,
    the ND Proxy will proxy the message to all other links. Here,
    proxy means acting as if the ND message originates from the ND
    Proxy itself. That is, the ND Proxy will change the ND
    message's source IP and source MAC address to the ND Proxy's
    outgoing interface's IP and MAC address, and create an NCE
    entry at the outgoing interface accordingly.
 * When accordingly.</li>
 <li>When ND Proxy receives an ND reply, it will act as if the ND
    message is destined for itself, and update the NCE entry state
    at the receiving interface. Based on such state information,
    the ND Proxy can determine the "best" outgoing interface for
    future ND requests. The ND Proxy then proxies the ND message
    back to the requesting host.
]]></artwork> host.</li>
</ul>
          <t>ND Proxy is widely used in SARP (Sections 3.5), (<xref
          target="scalable-address-resolution-protocol" format="default"/>),
          ND Optimization optimization for TRILL (Sections 3.6), (<xref
          target="arp-and-nd-optimization-for-trill" format="default"/>), and
          Proxy ARP/ND in EVPN (Sections 3.7).</t> (<xref
          target="proxy-arpnd-in-ethernet-virtual-private-networks-evpn"
          format="default"/>).</t>
        </section>
        <section anchor="optimistic-dad">
          <name>Optimistic DAD</name>
          <t>Optimistic DAD <xref target="RFC4429"/> (Standards Track) seeks to minimize address
   configuration delays in the successful case and to reduce disruption
   as far as possible in the failure case. That is, Optimistic DAD lets
   hosts immediately use the newly formed address to communicate before
   DAD completes, assuming that DAD will succeed anyway. If the address
   turns out to be duplicate, Optimistic DAD provides a set of
   mechanisms to minimize the impact. Optimistic DAD modified the
   original ND <xref target="RFC2461"/> and original SLAAC <xref target="RFC2462"/>, target="RFC2462"/> (both of which are obsolete), but the solution was not
   incorporated into the latest specifications of ND <xref target="RFC4861"/> and
   SLAAC <xref target="RFC4862"/>. However, implementations of Optimistic DAD exist.</t>
          <t>Optimistic DAD does not solve any ND issue (Section 2). (<xref target="review-of-inventoried-nd-issues" format="default"/>). It is
   reviewed here only for completeness.</t>
        </section>
      </section>
    </section>
    <section anchor="guidelines-for-prevention-of-potential-nd-issues">
      <name>Guidelines for Prevention of Potential ND Issues</name>
      <t>By knowing the potential ND issues and associated mitigation
   solutions, network administrators of existing IPv6 deployments can
   assess whether these issues may occur in their networks and, if so,
   whether to deploy the mitigation solutions proactively. Deploying
   these solutions may take time and additional resources. Therefore,
   it is advisable to plan.</t>
      <t>Network administrators planning to start their IPv6 deployments can
   use the issue-solution information to help plan their deployments.
   Moreover, they can take proactive action to prevent potential ND
   issues.</t>
      <section anchor="learning-host-isolation-from-the-existing-solutions">
        <name>Learning Host Isolation from the Existing Solutions</name>
        <t>While various ND solutions may initially appear unrelated,
   categorizing them into four distinct groups highlights an important
   observation: "host isolation" host isolation is an effective strategy for
   mitigating ND-related issues.</t>
        <t>Group

<ul spacing="normal">
  <li><t>Group 1: L3 and L2 Isolation</t>
  <t>This group includes MBBv6 and FBBv6, which isolate hosts at both L3 and
  L2 by placing each host within its subnet and link. This prevents ND issues
  caused by multicast and Trusting-all-nodes, as each host operates within its
  isolated domain. Furthermore, since routers can route packets to a host
  based on its unique prefix, the need for Router-NCE-on-Demand is also
  eliminated. Therefore, L3 and L2 Isolation prevent all ND issues.</t>
        <t>Group issues.</t></li>
  <li><t>Group 2: L3 Isolation</t>
  <t>This group includes UPPH solutions like <xref target="RFC8273"/> and
  <xref target="RFC9663"/>, which isolate hosts into separate subnets while
  potentially leaving them on the same shared medium. This approach mitigates
  ND issues caused by router multicast to hosts and eliminates the need for
   "Router-NCE-on-Demand",
  Router-NCE-on-Demand, as detailed in Section 3.3.</t>
        <t>Group <xref
  target="unique-ipv6-prefix-per-host-upph" format="default"/>.</t></li>
  <li><t>Group 3: Partial L2 Isolation</t>
  <t>This group encompasses solutions such as WiND, SARP, ND Optimization optimization for
  TRILL, and Proxy ND in EVPN. These solutions use a proxy device to represent
  the hosts behind it, effectively isolating those hosts into distinct
  multicast domains. While hosts are still located within the same subnet,
  their separation into different multicast domains reduces the scope of ND
  issues related to multicast-based address resolution.</t>
        <t>Group resolution.</t></li>
  <li><t>Group 4: Non-Isolating Solutions</t>
  <t>The final group includes remaining solutions that do not implement host
  isolation. These solutions do not prevent ND issues but instead focus on
  addressing specific ND problems.</t> problems.</t></li>
</ul>
        <t>The analysis demonstrates that the stronger the isolation of hosts,
   the more ND issues can be mitigated. This correlation is intuitive,
   as isolating hosts reduces the multicast scope, minimizes the number
   of nodes that must be trusted, and may eliminate the need for
   "Router-NCE-on-Demand",
   Router-NCE-on-Demand, the three primary causes of ND issues.</t>
        <t>This understanding can be used to prevent ND issues.</t>
      </section>
      <section anchor="applicability-of-various-isolation-methods">
        <name>Applicability of Various Isolation Methods</name>
        <section anchor="applicability-of-l3l2-isolation">
          <name>Applicability of L3+L2 Isolation</name>
          <t>Benefits:</t>
          <t>o  All
	  <ul spacing="normal">
            <li><t>All ND issues (Section 2.4) (<xref target="summary-of-nd-issues" format="default"/>) can be effectively mitigated.</t> mitigated.</t></li>
	  </ul>

<!-- [rfced] We note a mixture of sentence and title case for several of the
list items that appear in Sections 4.2.1, 4.2.2, and 4.2.3. For consistency,
may we update these list items to sentence case? Some examples below:

Original:
   3. Privacy Issue from Unique Prefix Identifiability:

   1. Unique Prefix Allocation

   2. Router Support for L3 Isolation

   . Reduced Multicast Traffic:

   . Router Support for Partial L2 Isolation:

Perhaps:
   3.  Privacy issue from unique prefix identifiability:

   1.  Unique prefix allocation

   2.  Router support for L3 isolation

   *  Reduced multicast traffic:

   *  Router support for partial L2 isolation:
-->

          <t>Constraints:</t>
          <ol spacing="normal" type="1"><li>
              <dl>
                <dt>L2 Isolation:</dt>
                <dd> type="1">
	    <li>
              <t>L2 Isolation:</t>

              <t>Actions must be taken to isolate hosts in L2. The required
              effort varies by the chosen method and deployment context. For
              example, the P2P method <xref target="RFC7066"/> is heavy-weight,
              heavyweight, while the Private VLAN method <xref
              target="RFC5517"/> is more manageable.</t>
                </dd>
              </dl>
            </li>
            <li>
              <dl>
                <dt>Unique
              <t>Unique Prefix Allocation:</dt>
                <dd> Allocation:</t>
              <t>A large number of prefixes will be required, with one prefix
              assigned per host. This is generally not a limitation for
              IPv6. For instance, members of a Regional Internet Registry
              (RIR) can obtain a /29 prefix allocation <xref
              target="RIPE738"/>, which provides 32 billion /64 prefixes - --
              sufficient for any foreseeable deployment scenarios.  Practical
              implementations, such as MBBv6 assigning /64 prefixes to
              billions of mobile UEs <xref target="RFC6459"/> target="RFC6459"/>, and FBBv6
              assigning /56 prefixes to hundreds of millions of routed RGs
              <xref target="TR177"/>, demonstrate the feasibility of this
              approach.</t>
                </dd>
              </dl>
            </li>
            <li>
              <dl>
                <dt>Privacy
              <t>Privacy Issue from Unique Prefix Identifiability:</dt>
                <dd> Identifiability:</t>
              <t>Assigning a unique prefix to each host may theoretically
              reduce privacy, as hosts can be directly identified by their
              assigned prefix. However, alternative host identification
              methods, such as cookies, are commonly used. Therefore, unique
              prefix identifiability may not make much difference. The actual
              impact on privacy is therefore likely to be limited.</t>
                </dd>
              </dl>
            </li>
            <li>
              <dl>
                <dt>Router
              <t>Router Support for L3 Isolation:</dt>
                <dd> Isolation:</t>
              <t>The router must support an L3 Isolation solution, e.g., <xref
              target="RFC8273"/> or <xref target="RFC9663"/>.</t>
                </dd>
              </dl>
            </li>
            <li>
              <dl>
                <dt>A
              <t>A Large Number of Router Interfaces May be Needed:</dt>
                <dd> Needed:</t>
              <t>If the P2P method is used, the router must instantiate a
              separate logical interface for every attached host. In this
              case, a large number of interfaces will be needed at the
              router.</t>
                </dd>
              </dl>
            </li>
            <li>
              <dl>
                <dt>Router
              <t>Router as a Bottleneck:</dt>
                <dd> Bottleneck:</t>
              <t>Since all communication between hosts is routed through the
              router, the router may become a performance bottleneck in
              high-traffic scenarios.</t>
                </dd>
              </dl>
            </li>
            <li>
              <dl>
                <dt>Incompatibility
              <t>Incompatibility with Host-Based Multicast Services:</dt>
                <dd> Services:</t>
              <t>Services that rely on multicast communication among hosts,
              such as the Multicast Domain Name System <xref target="RFC6762"/>,
              will be disrupted.</t>
                </dd>
              </dl>
            </li>
          </ol>
        </section>
        <section anchor="applicability-of-l3-isolation">
          <name>Applicability of L3 Isolation</name>
          <t>Benefits:</t>
          <artwork><![CDATA[
 * All
<ul spacing="normal">
  <li><t>All ND issues (Section 2.4) (<xref target="summary-of-nd-issues" format="default"/>) are mitigated, with the exception
    of:
      o LLA
    of:</t>
    <ul spacing="normal">
      <li>LLA DAD multicast degrading performance,
      o LLA performance,</li>
      <li>LLA DAD not reliable in wireless networks, and
      o On-link security and</li>
      <li>on-link security.</li>
    </ul>
    <t>
   These remaining issues depend on the characteristics of the
   shared medium:

      o If medium:</t>
    <ul spacing="normal">
      <li>If the shared medium is Ethernet, the issues related to LLA
         DAD multicast are negligible.
      o If negligible.</li>
      <li>If nodes can be trusted, such as in private networks, on-
         link on-link security concerns are not significant.

 * No significant.</li>
    </ul></li>
<li>There is no need for L2 Isolation. Consequently, this method can be
    applied in a wide range of scenarios, making it possibly the
    most practical host isolation method.
]]></artwork>
          <t>Constraints, as method.</li>
</ul>
          <t>Constraints (as discussed in Section 4.2.1:</t> <xref target="applicability-of-l3l2-isolation" format="default"/>):</t>
          <ol spacing="normal" type="1"><li>
              <t>Unique Prefix Allocation</t>
            </li>
            <li>
              <t>Router Support for L3 Isolation</t>
            </li>
            <li>
              <t>Router as a Bottleneck</t>
            </li>
            <li>
              <t>Privacy Issue from Unique Prefix Identifiability.</t>
            </li>
          </ol>
        </section>
        <section anchor="applicability-of-partial-l2-isolation">
          <name>Applicability of Partial L2 Isolation</name>
          <t>Benefits:</t>
          <artwork><![CDATA[
 * Reduced

          <t>Benefit:</t>

	  <ul spacing="normal">
	    <li>Reduced Multicast Traffic: This method reduces multicast traffic, particularly for address
   resolution, by dividing the subnet into multiple multicast
   domains.
]]></artwork>
   domains.</li>
	  </ul>

          <t>Constraint:</t>
          <artwork><![CDATA[
 * Router
	  <ul spacing="normal">
	    <li>Router Support for Partial L2 Isolation:
]]></artwork>
          <t>The
          The router must implement a Partial L2 Isolation solution such as
   WiND, SARP, ND Optimization optimization for TRILL, and Proxy ND in EVPN to
   support this method.</t> method.</li>
	  </ul>
        </section>
      </section>
      <section anchor="guidelines-for-applying-isolation-methods">
        <name>Guidelines for Applying Isolation Methods</name>
        <t>Based on the applicability analysis provided in the preceding
   sections, network administrators can determine whether to implement
   an isolation method and, if so, which method is most appropriate for
   their specific deployment.</t>
        <t>A simple guideline is to consider the isolation methods in the order
   listed in the preceding sections, progressing from the strongest
   isolation to the weakest:</t>
        <artwork><![CDATA[
 * Stronger
   <ul spacing="normal">
     <li>Stronger isolation methods can prevent more ND issues, but may
    also impose higher entry requirements.
 * Weaker requirements.</li>
    <li>Weaker isolation methods have fewer entry requirements but may
    leave some ND issues unmitigated.
]]></artwork> unmitigated.</li>
   </ul>

        <t>The choice between L3+L2 Isolation and L3 Isolation often depends on
   the cost of implementing L2 Isolation:</t>
        <artwork><![CDATA[
 * If
   <ul spacing="normal">
     <li>If the cost is acceptable, L3+L2 Isolation is preferable
    because it eliminates every ND issue listed in Section 2.4.
 * Otherwise, <xref target="summary-of-nd-issues" format="default"/>.</li>
    <li>Otherwise, L3 Isolation addresses most of those issues while
    keeping the implementation effort reasonable.
]]></artwork> reasonable.</li>
    </ul>

        <t>Selecting an isolation method that is either too strong or too weak
   does not result in serious consequences:</t>
        <artwork><![CDATA[
 * Choosing
   <ul spacing="normal">
     <li>Choosing an overly strong isolation method may require the
    network administrator to meet higher entry requirements
    initially, such as measures for L2 Isolation, additional
    prefixes, or additional router capabilities.
 * Choosing capabilities.</li>
    <li>Choosing a "weaker weaker isolation method" method may necessitate deploying
    supplemental ND mitigation techniques to address any unresolved
    ND issues.
]]></artwork> issues.</li>
    </ul>
        <t>In either case, the resulting solution can be functional and
   effective.</t>
      </section>
    </section>
    <section anchor="security-considerations">
      <name>Security Considerations</name>
      <t>This document is a review of known ND issues and solutions,
   including security. It does not introduce any new solutions.
   Therefore, it does not introduce new security issues.</t>
    </section>
    <section anchor="iana-considerations">
      <name>IANA Considerations</name>
      <t>This document has no request to IANA.</t> IANA actions.</t>
    </section>
  </middle>
  <back>
    <displayreference target="I-D.ccc-v6ops-address-accountability" to="AddrAcc"/>
    <displayreference target="RFC9797" to="MADINAS"/>
    <displayreference target="I-D.ietf-6man-ipv6-over-wireless" to="SND"/>
    <references anchor="sec-combined-references">
      <name>References</name>
      <references anchor="sec-normative-references">
        <name>Normative References</name>
        <reference anchor="RFC4861" target="https://www.rfc-editor.org/info/rfc4861" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4861.xml">
          <front>
            <title>Neighbor Discovery for IP version 6 (IPv6)</title>
            <author fullname="T. Narten" initials="T." surname="Narten"/>
            <author fullname="E. Nordmark" initials="E." surname="Nordmark"/>
            <author fullname="W. Simpson" initials="W." surname="Simpson"/>
            <author fullname="H. Soliman" initials="H." surname="Soliman"/>
            <date month="September" year="2007"/>
            <abstract>
              <t>This document specifies the Neighbor Discovery protocol for IP Version 6. IPv6 nodes on the same link use Neighbor Discovery to discover each other's presence, to determine each other's link-layer addresses, to find routers, and to maintain reachability information about the paths to active neighbors. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="4861"/>
          <seriesInfo name="DOI" value="10.17487/RFC4861"/>
        </reference>
        <reference anchor="RFC4862" target="https://www.rfc-editor.org/info/rfc4862" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4862.xml">
          <front>
            <title>IPv6 Stateless Address Autoconfiguration</title>
            <author fullname="S. Thomson" initials="S." surname="Thomson"/>
            <author fullname="T. Narten" initials="T." surname="Narten"/>
            <author fullname="T. Jinmei" initials="T." surname="Jinmei"/>
            <date month="September" year="2007"/>
            <abstract>
              <t>This document specifies the steps a host takes in deciding how to autoconfigure its interfaces in IP version 6. The autoconfiguration process includes generating a link-local address, generating global addresses via stateless address autoconfiguration, and the Duplicate Address Detection procedure to verify the uniqueness of the addresses on a link. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="4862"/>
          <seriesInfo name="DOI" value="10.17487/RFC4862"/>
        </reference>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4861.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4862.xml"/>
      </references>
      <references anchor="sec-informative-references">
        <name>Informative References</name>

<!-- FYI:
We've added URLs for the following reference(s):
[TR177]
-->

        <reference anchor="TR177"> anchor="TR177" target="https://www.broadband-forum.org/pdfs/tr-177-1-0-1.pdf">
          <front>
            <title>IPv6 in the context of TR-101</title>
            <author>
              <organization>Broadband Forum, TR-177</organization> Forum</organization>
            </author>
            <date/>
            <date month="11" year="2017"/>
          </front>
          <refcontent>TR-177</refcontent>
        </reference>
        <reference anchor="RIPE738" target="https://www.ripe.net/publications/docs/ripe-738">
          <front>
            <title>IPv6 Address Allocation and Assignment Policy</title>
            <author>
              <organization>RIPE</organization>
            </author>
            <date/>
          </front>
        </reference>
        <reference anchor="RFC3587" target="https://www.rfc-editor.org/info/rfc3587" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3587.xml">
          <front>
            <title>IPv6 Global Unicast Address Format</title>
            <author fullname="R. Hinden" initials="R." surname="Hinden"/>
            <author fullname="S. Deering" initials="S." surname="Deering"/>
            <author fullname="E. Nordmark" initials="E." surname="Nordmark"/>
            <date month="August" year="2003"/>
            <abstract>
              <t>This document obsoletes RFC 2374, "An IPv6 Aggregatable Global Unicast Address Format". It defined an IPv6 address allocation structure that includes Top Level Aggregator (TLA) and Next Level Aggregator (NLA). This document makes RFC 2374 and the TLA/NLA structure historic. This memo provides information for the Internet community.</t>
            </abstract> month="03" year="2020"/>
          </front>
          <seriesInfo name="RFC" value="3587"/>
          <seriesInfo name="DOI" value="10.17487/RFC3587"/>
          <refcontent>RIPE-738</refcontent>
        </reference>
        <reference anchor="RFC4193" target="https://www.rfc-editor.org/info/rfc4193" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4193.xml">
          <front>
            <title>Unique Local IPv6 Unicast Addresses</title>
            <author fullname="R. Hinden" initials="R." surname="Hinden"/>
            <author fullname="B. Haberman" initials="B." surname="Haberman"/>
            <date month="October" year="2005"/>
            <abstract>
              <t>This document defines an IPv6 unicast address format that is globally unique and is intended for local communications, usually inside
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3587.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4193.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3756.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3971.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3972.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4389.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4429.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6459.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7066.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6575.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6583.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6775.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8505.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8928.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8929.xml"/>

<!-- [SND]
draft-ietf-6man-ipv6-over-wireless-08
IESG State: I-D Exists as of a site. These addresses are not expected to be routable on the global Internet. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="4193"/>
          <seriesInfo name="DOI" value="10.17487/RFC4193"/>
        </reference>
        <reference anchor="RFC3756" target="https://www.rfc-editor.org/info/rfc3756" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3756.xml">
          <front>
            <title>IPv6 Neighbor Discovery (ND) Trust Models and Threats</title>
            <author fullname="P. Nikander" initials="P." role="editor" surname="Nikander"/>
            <author fullname="J. Kempf" initials="J." surname="Kempf"/>
            <author fullname="E. Nordmark" initials="E." surname="Nordmark"/>
            <date month="May" year="2004"/>
            <abstract>
              <t>The existing IETF standards specify that IPv6 Neighbor Discovery (ND) and Address Autoconfiguration mechanisms may be protected with IPsec Authentication Header (AH). However, the current specifications limit the security solutions 08/01/25
-->
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-6man-ipv6-over-wireless.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6957.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7039.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6105.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7113.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7527.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7586.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7772.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8273.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8302.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9131.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9161.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9663.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4903.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7342.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9119.xml"/>
<!-- [MADINAS] Note to manual keying due PE:
Updated draft-ietf-madinas-use-cases-19 to practical problems faced with automatic key management. This document specifies three different trust models and discusses the threats pertinent to IPv6 Neighbor Discovery. The purpose RFC 9797
-->
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9797.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9099.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8415.xml"/>
<!-- [AddrAcc]
draft-ccc-v6ops-address-accountability-00
IESG State: Expired as of this discussion is 08/01/25
-->
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml3/reference.I-D.ccc-v6ops-address-accountability.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2026.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7278.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6085.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5517.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7102.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9686.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2461.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2462.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6762.xml"/>
      </references>
    </references>

<section numbered="false" anchor="acknowledgements">
      <name>Acknowledgements</name>
      <t>The authors would like to define the requirements for Securing IPv6 Neighbor Discovery. This memo provides information thank <contact fullname="Eric Vyncke"/>,
      <contact fullname="Gunter Van de Velde"/>, <contact fullname="Lorenzo
      Colitti"/>, <contact fullname="Erik Kline"/>, <contact fullname="Warren
      Kumari"/>, <contact fullname="Mohamed Boucadair"/>, <contact
      fullname="Gorry Fairhurst"/>, <contact fullname="Pascal Thubert"/>,
      <contact fullname="Jen Linkova"/>, <contact fullname="Brian
      Carpenter"/>, <contact fullname="Mike Ackermann"/>, <contact
      fullname="Nalini Elkins"/>, <contact fullname="Ed Horley"/>, <contact
      fullname="Ole Troan"/>, <contact fullname="David Thaler"/>, <contact
      fullname="Chongfeng Xie"/>, <contact fullname="Chris Cummings"/>,
      <contact fullname="Dale Carder"/>, <contact fullname="Tim Chown"/>,
      <contact fullname="Priyanka Sinha"/>, <contact fullname="Aijun Wang"/>,
      <contact fullname="Ines Robles"/>, <contact fullname="Magnus
      Westerlund"/>, <contact fullname="Barry Leiba"/>, <contact fullname="Deb
      Cooley"/>, and <contact fullname="Paul Wouters"/> for the Internet community.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="3756"/>
          <seriesInfo name="DOI" value="10.17487/RFC3756"/>
        </reference>
        <reference anchor="RFC3971" target="https://www.rfc-editor.org/info/rfc3971" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3971.xml">
          <front>
            <title>SEcure Neighbor Discovery (SEND)</title>
            <author fullname="J. Arkko" initials="J." role="editor" surname="Arkko"/>
            <author fullname="J. Kempf" initials="J." surname="Kempf"/>
            <author fullname="B. Zill" initials="B." surname="Zill"/>
            <author fullname="P. Nikander" initials="P." surname="Nikander"/>
            <date month="March" year="2005"/>
            <abstract>
              <t>IPv6 nodes use the Neighbor Discovery Protocol (NDP) to discover other nodes on the link, to determine their link-layer addresses to find routers, and to maintain reachability information about the paths to active neighbors. If not secured, NDP is vulnerable to various attacks. This document specifies security mechanisms for NDP. Unlike those in the original NDP specifications, these mechanisms do not use IPsec. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="3971"/>
          <seriesInfo name="DOI" value="10.17487/RFC3971"/>
        </reference>
        <reference anchor="RFC3972" target="https://www.rfc-editor.org/info/rfc3972" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3972.xml">
          <front>
            <title>Cryptographically Generated Addresses (CGA)</title>
            <author fullname="T. Aura" initials="T." surname="Aura"/>
            <date month="March" year="2005"/>
            <abstract>
              <t>This document describes a method for binding a public signature key to an IPv6 address in the Secure Neighbor Discovery (SEND) protocol. Cryptographically Generated Addresses (CGA) are IPv6 addresses for which the interface identifier is generated by computing a cryptographic one-way hash function from a public key and auxiliary parameters. The binding between the public key and the address can be verified by re-computing the hash value and by comparing the hash with the interface identifier. Messages sent from an IPv6 address can be protected by attaching the public key and auxiliary parameters and by signing the message with the corresponding private key. The protection works without a certification authority or any security infrastructure. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="3972"/>
          <seriesInfo name="DOI" value="10.17487/RFC3972"/>
        </reference>
        <reference anchor="RFC4389" target="https://www.rfc-editor.org/info/rfc4389" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4389.xml">
          <front>
            <title>Neighbor Discovery Proxies (ND Proxy)</title>
            <author fullname="D. Thaler" initials="D." surname="Thaler"/>
            <author fullname="M. Talwar" initials="M." surname="Talwar"/>
            <author fullname="C. Patel" initials="C." surname="Patel"/>
            <date month="April" year="2006"/>
            <abstract>
              <t>Bridging multiple links into a single entity has several operational advantages. A single subnet prefix is sufficient to support multiple physical links. There is no need to allocate subnet numbers to the different networks, simplifying management. Bridging some types of media requires network-layer support, however. This document describes these cases and specifies the IP-layer support that enables bridging under these circumstances. This memo defines an Experimental Protocol for the Internet community.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="4389"/>
          <seriesInfo name="DOI" value="10.17487/RFC4389"/>
        </reference>
        <reference anchor="RFC4429" target="https://www.rfc-editor.org/info/rfc4429" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4429.xml">
          <front>
            <title>Optimistic Duplicate Address Detection (DAD) for IPv6</title>
            <author fullname="N. Moore" initials="N." surname="Moore"/>
            <date month="April" year="2006"/>
            <abstract>
              <t>Optimistic Duplicate Address Detection is an interoperable modification of the existing IPv6 Neighbor Discovery (RFC 2461) reviews and Stateless Address Autoconfiguration (RFC 2462) processes.
      comments. The intention is to minimize address configuration delays in the successful case, to reduce disruption as far as possible in the failure case, and to remain interoperable with unmodified hosts and routers. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="4429"/>
          <seriesInfo name="DOI" value="10.17487/RFC4429"/>
        </reference>
        <reference anchor="RFC6459" target="https://www.rfc-editor.org/info/rfc6459" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6459.xml">
          <front>
            <title>IPv6 in 3rd Generation Partnership Project (3GPP) Evolved Packet System (EPS)</title>
            <author fullname="J. Korhonen" initials="J." role="editor" surname="Korhonen"/>
            <author fullname="J. Soininen" initials="J." surname="Soininen"/>
            <author fullname="B. Patil" initials="B." surname="Patil"/>
            <author fullname="T. Savolainen" initials="T." surname="Savolainen"/>
            <author fullname="G. Bajko" initials="G." surname="Bajko"/>
            <author fullname="K. Iisakkila" initials="K." surname="Iisakkila"/>
            <date month="January" year="2012"/>
            <abstract>
              <t>The use of cellular broadband for accessing the Internet and other data services via smartphones, tablets, and notebook/netbook computers has increased rapidly as a result of high-speed packet data networks such as HSPA, HSPA+, and now Long-Term Evolution (LTE) being deployed. Operators that have deployed networks based on 3rd Generation Partnership Project (3GPP) network architectures are facing IPv4 address shortages at the Internet registries and are feeling pressure to migrate authors would also like to IPv6. This document describes the support for IPv6 in 3GPP network architectures. This document is not an Internet Standards Track specification; it is published for informational purposes.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="6459"/>
          <seriesInfo name="DOI" value="10.17487/RFC6459"/>
        </reference>
        <reference anchor="RFC7066" target="https://www.rfc-editor.org/info/rfc7066" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7066.xml">
          <front>
            <title>IPv6 thank <contact fullname="Tim
      Winters"/> for Third Generation Partnership Project (3GPP) Cellular Hosts</title>
            <author fullname="J. Korhonen" initials="J." role="editor" surname="Korhonen"/>
            <author fullname="J. Arkko" initials="J." role="editor" surname="Arkko"/>
            <author fullname="T. Savolainen" initials="T." surname="Savolainen"/>
            <author fullname="S. Krishnan" initials="S." surname="Krishnan"/>
            <date month="November" year="2013"/>
            <abstract>
              <t>As the deployment of third and fourth generation cellular networks progresses, a large number of cellular hosts are being connected to the Internet. Standardization organizations have made the Internet Protocol version 6 (IPv6) mandatory in their specifications. However, the concept of IPv6 covers many aspects and numerous specifications. In addition, the characteristics of cellular links in terms of bandwidth, cost, and delay put special requirements on how IPv6 is used. This document considers IPv6 for cellular hosts that attach to the General Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMTS), or Evolved Packet System (EPS) networks (hereafter collectively referred to as Third Generation Partnership Project (3GPP) networks). This document also lists specific IPv6 functionalities that need to be implemented in addition to what is already prescribed in the IPv6 Node Requirements document (RFC 6434). It also discusses some issues related to the use of these components when operating in these networks. This document obsoletes RFC 3316.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="7066"/>
          <seriesInfo name="DOI" value="10.17487/RFC7066"/>
        </reference>
        <reference anchor="RFC6575" target="https://www.rfc-editor.org/info/rfc6575" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6575.xml">
          <front>
            <title>Address Resolution Protocol (ARP) Mediation for IP Interworking of Layer 2 VPNs</title>
            <author fullname="H. Shah" initials="H." role="editor" surname="Shah"/>
            <author fullname="E. Rosen" initials="E." role="editor" surname="Rosen"/>
            <author fullname="G. Heron" initials="G." role="editor" surname="Heron"/>
            <author fullname="V. Kompella" initials="V." role="editor" surname="Kompella"/>
            <date month="June" year="2012"/>
            <abstract>
              <t>The Virtual Private Wire Service (VPWS), detailed in RFC 4664, provides point-to-point connections between pairs of Customer Edge (CE) devices. It does so by binding two Attachment Circuits (each connecting a CE device with a Provider Edge (PE) device) to a pseudowire (connecting the two PEs). In general, the Attachment Circuits must be of the same technology (e.g., both Ethernet or both ATM), shepherd.</t>
    </section>
  </back>
</rfc>

<!-- [rfced] Terminology and the pseudowire must carry the frames of that technology. However, if it is known that the frames' payload consists solely of IP datagrams, it is possible to provide a point-to-point connection in which the pseudowire connects Attachment Circuits of different technologies. This requires the PEs to perform a function known as "Address Resolution Protocol (ARP) Mediation". ARP Mediation refers to the process of resolving Layer 2 addresses when different resolution protocols are used on either Attachment Circuit. The methods described in this document are applicable even when the CEs run a routing protocol between them, as long as the routing protocol runs over IP. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="6575"/>
          <seriesInfo name="DOI" value="10.17487/RFC6575"/>
        </reference>
        <reference anchor="RFC6583" target="https://www.rfc-editor.org/info/rfc6583" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6583.xml">
          <front>
            <title>Operational Neighbor Discovery Problems</title>
            <author fullname="I. Gashinsky" initials="I." surname="Gashinsky"/>
            <author fullname="J. Jaeggli" initials="J." surname="Jaeggli"/>
            <author fullname="W. Kumari" initials="W." surname="Kumari"/>
            <date month="March" year="2012"/>
            <abstract>
              <t>In IPv4, subnets are generally small, made just large enough to cover the actual number of machines on the subnet. In contrast, the default IPv6 subnet size is a /64, a number so large it covers trillions of addresses, the overwhelming number of which will be unassigned. Consequently, simplistic implementations of Neighbor Discovery (ND) can be vulnerable to deliberate or accidental denial of service (DoS), whereby they attempt to perform address resolution for large numbers of unassigned addresses. Such denial-of-service attacks can be launched intentionally (by an attacker) or result from legitimate operational tools or accident conditions. As a result abbreviations:

a) FYI, we updated each instance of these vulnerabilities, new devices may not be able "SeND" to "join" a network, it may be impossible to establish new IPv6 flows, and existing IPv6 transported flows may be interrupted.</t>
              <t>This document describes the potential for DoS in detail and suggests possible implementation improvements as well as operational mitigation techniques that can, in some cases, be used "SEND" to protect against or at least alleviate the impact of such attacks. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="6583"/>
          <seriesInfo name="DOI" value="10.17487/RFC6583"/>
        </reference>
        <reference anchor="RFC6775" target="https://www.rfc-editor.org/info/rfc6775" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6775.xml">
          <front>
            <title>Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)</title>
            <author fullname="Z. Shelby" initials="Z." role="editor" surname="Shelby"/>
            <author fullname="S. Chakrabarti" initials="S." surname="Chakrabarti"/>
            <author fullname="E. Nordmark" initials="E." surname="Nordmark"/>
            <author fullname="C. Bormann" initials="C." surname="Bormann"/>
            <date month="November" year="2012"/>
            <abstract>
              <t>The IETF work in IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) defines 6LoWPANs such as IEEE 802.15.4. This and other similar link technologies have limited or no match
usage of multicast signaling due to energy conservation. In addition, the wireless network may not strictly follow the traditional concept of IP subnets and IP links. IPv6 Neighbor Discovery was not designed for non- transitive wireless links, as its reliance on the traditional IPv6 link concept and its heavy use of multicast make it inefficient and sometimes impractical in a low-power and lossy network. This document describes simple optimizations to IPv6 Neighbor Discovery, its addressing mechanisms, and duplicate address detection for Low- power Wireless Personal Area Networks and similar networks. The document thus updates RFC 4944 to specify the use of the optimizations defined here. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="6775"/>
          <seriesInfo name="DOI" value="10.17487/RFC6775"/>
        </reference>
        <reference anchor="RFC8505" target="https://www.rfc-editor.org/info/rfc8505" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8505.xml">
          <front>
            <title>Registration Extensions for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery</title>
            <author fullname="P. Thubert" initials="P." role="editor" surname="Thubert"/>
            <author fullname="E. Nordmark" initials="E." surname="Nordmark"/>
            <author fullname="S. Chakrabarti" initials="S." surname="Chakrabarti"/>
            <author fullname="C. Perkins" initials="C." surname="Perkins"/>
            <date month="November" year="2018"/>
            <abstract>
              <t>This specification updates RFC 6775 -- the Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery specification -- to clarify the role of the protocol as a registration technique and simplify the registration operation in 6LoWPAN routers, 3971 as well as to provide enhancements to the registration capabilities and mobility detection for different network topologies, including the Routing Registrars performing routing for host routes and/or proxy Neighbor Discovery in a low-power network.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="8505"/>
          <seriesInfo name="DOI" value="10.17487/RFC8505"/>
        </reference>
        <reference anchor="RFC8928" target="https://www.rfc-editor.org/info/rfc8928" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8928.xml">
          <front>
            <title>Address-Protected Neighbor Discovery for Low-Power and Lossy Networks</title>
            <author fullname="P. Thubert" initials="P." role="editor" surname="Thubert"/>
            <author fullname="B. Sarikaya" initials="B." surname="Sarikaya"/>
            <author fullname="M. Sethi" initials="M." surname="Sethi"/>
            <author fullname="R. Struik" initials="R." surname="Struik"/>
            <date month="November" year="2020"/>
            <abstract>
              <t>This document updates the IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery (ND) protocol defined in RFCs 6775 and 8505. The new extension is called Address-Protected Neighbor Discovery (AP-ND), and it protects the owner of an address against address theft and impersonation attacks most usage in a Low-Power and Lossy Network (LLN). Nodes supporting recent RFCs.

b) Should "IPv6" be removed from this extension compute abbreviation for a cryptographic identifier (Crypto-ID), and use it with one or more of their Registered Addresses. The Crypto-ID identifies the owner of the Registered Address 1:1 relationship
between abbreviation and can be used expansion (and to provide proof of ownership of the Registered Addresses. Once an address is registered with the Crypto-ID and a proof of ownership is provided, only the owner match other uses of that address can modify the registration information, thereby enforcing Source Address Validation.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="8928"/>
          <seriesInfo name="DOI" value="10.17487/RFC8928"/>
        </reference>
        <reference anchor="RFC8929" target="https://www.rfc-editor.org/info/rfc8929" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8929.xml">
          <front>
            <title>IPv6 Backbone Router</title>
            <author fullname="P. Thubert" initials="P." role="editor" surname="Thubert"/>
            <author fullname="C.E. Perkins" initials="C.E." surname="Perkins"/>
            <author fullname="E. Levy-Abegnoli" initials="E." surname="Levy-Abegnoli"/>
            <date month="November" year="2020"/>
            <abstract>
              <t>This document updates RFCs 6775 and 8505 "Unique Prefix
Per Host [RFC8273]" in order to enable proxy services for IPv6 Neighbor Discovery by Routing Registrars called "Backbone Routers". Backbone Routers are placed along the wireless edge of a backbone and federate multiple wireless links to form a single Multi-Link Subnet (MLSN).</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="8929"/>
          <seriesInfo name="DOI" value="10.17487/RFC8929"/>
        </reference>
        <reference anchor="I-D.ietf-6man-ipv6-over-wireless" target="https://datatracker.ietf.org/doc/html/draft-ietf-6man-ipv6-over-wireless-08" xml:base="https://bib.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-6man-ipv6-over-wireless.xml">
          <front>
            <title>Architecture and Framework for IPv6 over Non-Broadcast Access</title>
            <author fullname="Pascal Thubert" initials="P." surname="Thubert"/>
            <author fullname="Michael Richardson" initials="M." surname="Richardson">
              <organization>Sandelman Software Works</organization>
            </author>
            <date day="19" month="May" year="2025"/>
            <abstract>
              <t>This document presents an architecture and framework for IPv6 access networks that decouples the network-layer concepts of Links, Interface, and Subnets from the link-layer concepts of links, ports, and broadcast domains, and limits the reliance on link-layer broadcasts. This architecture is suitable for this document)?

Original:
3.3. Unique IPv6 over any network, including non-broadcast networks, which is typically the case for intangible media such as wireless and virtual networks such as overlays. A study of the issues Prefix per Host (UPPH)

Perhaps:
3.3. Unique Prefix per Host (UPPH)

c) FYI - For consistency with IPv6 ND over intangible media is presented, and a framework RFC 9663, we have expanded "DHCP-PD" to solve those issues within the new architecture is proposed.</t>
            </abstract>
          </front>
          <seriesInfo name="Internet-Draft" value="draft-ietf-6man-ipv6-over-wireless-08"/>
        </reference>
        <reference anchor="RFC6957" target="https://www.rfc-editor.org/info/rfc6957" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6957.xml">
          <front>
            <title>Duplicate Address Detection Proxy</title>
            <author fullname="F. Costa" initials="F." surname="Costa"/>
            <author fullname="J-M. Combes" role="editor" surname="J-M. Combes"/>
            <author fullname="X. Pougnard" initials="X." surname="Pougnard"/>
            <author fullname="H. Li" initials="H." surname="Li"/>
            <date month="June" year="2013"/>
            <abstract>
              <t>The document describes a proxy-based mechanism allowing the use of Duplicate Address Detection (DAD) by IPv6 nodes in a point-to-multipoint architecture with a "split-horizon" forwarding scheme, primarily deployed for Digital Subscriber Line (DSL) "DHCPv6
Prefix Delegation (DHCPv6-PD)" and Fiber access architectures. Based on the DAD signaling, the first-hop router stores in a Binding Table all known IPv6 addresses used on a point-to-multipoint domain (e.g., VLAN). When a node performs DAD for an address already used by updated another node, the first-hop router defends the address rather than the device using the address.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="6957"/>
          <seriesInfo name="DOI" value="10.17487/RFC6957"/>
        </reference>
        <reference anchor="RFC7039" target="https://www.rfc-editor.org/info/rfc7039" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7039.xml">
          <front>
            <title>Source Address Validation Improvement (SAVI) Framework</title>
            <author fullname="J. Wu" initials="J." surname="Wu"/>
            <author fullname="J. Bi" initials="J." surname="Bi"/>
            <author fullname="M. Bagnulo" initials="M." surname="Bagnulo"/>
            <author fullname="F. Baker" initials="F." surname="Baker"/>
            <author fullname="C. Vogt" initials="C." role="editor" surname="Vogt"/>
            <date month="October" year="2013"/>
            <abstract>
              <t>Source Address Validation Improvement (SAVI) methods were developed to prevent nodes attached to the same IP link from spoofing each other's IP addresses, so as to complement ingress filtering with finer-grained, standardized IP source address validation. This document is a framework document that describes and motivates the design instance of the SAVI methods. Particular SAVI methods are described in other documents.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="7039"/>
          <seriesInfo name="DOI" value="10.17487/RFC7039"/>
        </reference>
        <reference anchor="RFC6105" target="https://www.rfc-editor.org/info/rfc6105" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6105.xml">
          <front>
            <title>IPv6 Router Advertisement Guard</title>
            <author fullname="E. Levy-Abegnoli" initials="E." surname="Levy-Abegnoli"/>
            <author fullname="G. Van de Velde" initials="G." surname="Van de Velde"/>
            <author fullname="C. Popoviciu" initials="C." surname="Popoviciu"/>
            <author fullname="J. Mohacsi" initials="J." surname="Mohacsi"/>
            <date month="February" year="2011"/>
            <abstract>
              <t>Routed protocols are often susceptible to spoof attacks. The canonical solution for IPv6 is Secure Neighbor Discovery (SEND), a solution that is non-trivial to deploy. This document proposes a light-weight alternative and complement "DHCP-PD" to SEND based on filtering in the layer-2 network fabric, using a variety of filtering criteria, including, for example, SEND status. This document is not an Internet Standards Track specification; it is published for informational purposes.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="6105"/>
          <seriesInfo name="DOI" value="10.17487/RFC6105"/>
        </reference>
        <reference anchor="RFC7113" target="https://www.rfc-editor.org/info/rfc7113" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7113.xml">
          <front>
            <title>Implementation Advice
"DHCPv6-PD". Please review.

d) FYI - We have added expansions for IPv6 Router Advertisement Guard (RA-Guard)</title>
            <author fullname="F. Gont" initials="F." surname="Gont"/>
            <date month="February" year="2014"/>
            <abstract>
              <t>The IPv6 Router Advertisement Guard (RA-Guard) mechanism is commonly employed to mitigate attack vectors based on forged ICMPv6 Router Advertisement messages. Many existing IPv6 deployments rely on RA-Guard as the abbreviations upon first line of defense against the aforementioned attack vectors. However, some implementations use
per Section 3.6 of RA-Guard have been found to be prone to circumvention by employing IPv6 Extension Headers. This document describes the evasion techniques that affect the aforementioned implementations and formally updates RFC 6105, such that the aforementioned RA-Guard evasion vectors are eliminated.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="7113"/>
          <seriesInfo name="DOI" value="10.17487/RFC7113"/>
        </reference>
        <reference anchor="RFC7527" target="https://www.rfc-editor.org/info/rfc7527" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7527.xml">
          <front>
            <title>Enhanced Duplicate Address Detection</title>
            <author fullname="R. Asati" initials="R." surname="Asati"/>
            <author fullname="H. Singh" initials="H." surname="Singh"/>
            <author fullname="W. Beebee" initials="W." surname="Beebee"/>
            <author fullname="C. Pignataro" initials="C." surname="Pignataro"/>
            <author fullname="E. Dart" initials="E." surname="Dart"/>
            <author fullname="W. George" initials="W." surname="George"/>
            <date month="April" year="2015"/>
            <abstract>
              <t>IPv6 Loopback Suppression and Duplicate Address Detection (DAD) are discussed 7322 ("RFC Style Guide"). Please review each
expansion in Appendix A of RFC 4862. That specification mentions a hardware-assisted mechanism to detect looped back DAD messages. If hardware cannot suppress looped back DAD messages, a software solution is required. Several service provider communities have expressed a need for automated detection of looped back Neighbor Discovery (ND) messages used by DAD. This document includes mitigation techniques and outlines the Enhanced DAD algorithm to automate the detection of looped back IPv6 ND messages used by DAD. For network loopback tests, the Enhanced DAD algorithm allows IPv6 to self-heal after a loopback is placed and removed. Further, for certain access networks, this document automates resolving a specific duplicate address conflict. This document updates RFCs 4429, 4861, and 4862.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="7527"/>
          <seriesInfo name="DOI" value="10.17487/RFC7527"/>
        </reference>
        <reference anchor="RFC7586" target="https://www.rfc-editor.org/info/rfc7586" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7586.xml">
          <front>
            <title>The Scalable Address Resolution Protocol (SARP) for Large Data Centers</title>
            <author fullname="Y. Nachum" initials="Y." surname="Nachum"/>
            <author fullname="L. Dunbar" initials="L." surname="Dunbar"/>
            <author fullname="I. Yerushalmi" initials="I." surname="Yerushalmi"/>
            <author fullname="T. Mizrahi" initials="T." surname="Mizrahi"/>
            <date month="June" year="2015"/>
            <abstract>
              <t>This document introduces the Scalable Address Resolution Protocol (SARP), an architecture that uses proxy gateways to scale large data center networks. SARP is based on fast proxies that significantly reduce switches' Filtering Database (FDB) table sizes and reduce impact of ARP and Neighbor Discovery (ND) on network elements in an environment where hosts within one subnet (or VLAN) can spread over various locations. SARP is targeted for massive data centers with a significant number of Virtual Machines (VMs) that can move across various physical locations.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="7586"/>
          <seriesInfo name="DOI" value="10.17487/RFC7586"/>
        </reference>
        <reference anchor="RFC7772" target="https://www.rfc-editor.org/info/rfc7772" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7772.xml">
          <front>
            <title>Reducing Energy Consumption of Router Advertisements</title>
            <author fullname="A. Yourtchenko" initials="A." surname="Yourtchenko"/>
            <author fullname="L. Colitti" initials="L." surname="Colitti"/>
            <date month="February" year="2016"/>
            <abstract>
              <t>Frequent Router Advertisement messages can severely impact host power consumption. This document recommends operational practices to avoid such impact.</t>
            </abstract>
          </front>
          <seriesInfo name="BCP" value="202"/>
          <seriesInfo name="RFC" value="7772"/>
          <seriesInfo name="DOI" value="10.17487/RFC7772"/>
        </reference>
        <reference anchor="RFC8273" target="https://www.rfc-editor.org/info/rfc8273" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8273.xml">
          <front>
            <title>Unique IPv6 Prefix per Host</title>
            <author fullname="J. Brzozowski" initials="J." surname="Brzozowski"/>
            <author fullname="G. Van de Velde" initials="G." surname="Van de Velde"/>
            <date month="December" year="2017"/>
            <abstract>
              <t>This document outlines an approach utilizing existing IPv6 protocols to allow hosts to be assigned a unique IPv6 prefix (instead of a unique IPv6 address from a shared IPv6 prefix). Benefits of using a unique IPv6 prefix over a unique service-provider IPv6 address include improved host isolation and enhanced subscriber management on shared network segments.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="8273"/>
          <seriesInfo name="DOI" value="10.17487/RFC8273"/>
        </reference>
        <reference anchor="RFC8302" target="https://www.rfc-editor.org/info/rfc8302" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8302.xml">
          <front>
            <title>Transparent Interconnection of Lots of Links (TRILL): ARP and Neighbor Discovery (ND) Optimization</title>
            <author fullname="Y. Li" initials="Y." surname="Li"/>
            <author fullname="D. Eastlake 3rd" initials="D." surname="Eastlake 3rd"/>
            <author fullname="L. Dunbar" initials="L." surname="Dunbar"/>
            <author fullname="R. Perlman" initials="R." surname="Perlman"/>
            <author fullname="M. Umair" initials="M." surname="Umair"/>
            <date month="January" year="2018"/>
            <abstract>
              <t>This document describes mechanisms carefully to optimize the Address Resolution Protocol (ARP) and Neighbor Discovery (ND) traffic in a Transparent Interconnection of Lots of Links (TRILL) campus. TRILL switches maintain a cache of IP / ensure correctness.

Media Access Control (MAC) address / Data Label bindings that are learned from ARP/ND requests and responses that pass through them. In many cases, this cache allows an edge Routing Bridge (RBridge) to avoid flooding an ARP/ND request by either responding to it directly or encapsulating it and unicasting it. Such optimization reduces packet flooding over a TRILL campus.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="8302"/>
          <seriesInfo name="DOI" value="10.17487/RFC8302"/>
        </reference>
        <reference anchor="RFC9131" target="https://www.rfc-editor.org/info/rfc9131" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9131.xml">
          <front>
            <title>Gratuitous Neighbor Discovery: Creating Neighbor Cache Entries on First-Hop Routers</title>
            <author fullname="J. Linkova" initials="J." surname="Linkova"/>
            <date month="October" year="2021"/>
            <abstract>
              <t>Neighbor Discovery (RFC 4861) is used by IPv6 nodes to determine the link-layer addresses of neighboring nodes as well as to discover and maintain reachability information. This document updates RFC 4861 to allow routers to proactively create a Neighbor Cache entry when a new IPv6 address is assigned to a node. It also updates RFC 4861 and recommends that nodes send unsolicited Neighbor Advertisements upon assigning a new IPv6 address. These changes will minimize the delay and packet loss when a node initiates connections to an off-link destination from a new IPv6 address.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="9131"/>
          <seriesInfo name="DOI" value="10.17487/RFC9131"/>
        </reference>
        <reference anchor="RFC9161" target="https://www.rfc-editor.org/info/rfc9161" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9161.xml">
          <front>
            <title>Operational Aspects of Proxy ARP/ND in Ethernet Virtual Private Networks</title>
            <author fullname="J. Rabadan" initials="J." role="editor" surname="Rabadan"/>
            <author fullname="S. Sathappan" initials="S." surname="Sathappan"/>
            <author fullname="K. Nagaraj" initials="K." surname="Nagaraj"/>
            <author fullname="G. Hankins" initials="G." surname="Hankins"/>
            <author fullname="T. King" initials="T." surname="King"/>
            <date month="January" year="2022"/>
            <abstract>
              <t>This document describes the Ethernet Virtual Private Network (EVPN) Proxy ARP/ND function augmented by the capability of the ARP/ND Extended Community. From that perspective, this document updates the EVPN specification to provide more comprehensive documentation of the operation of the Proxy ARP/ND function. The EVPN Proxy ARP/ND function and the ARP/ND Extended Community help operators of Internet Exchange Points, Data Centers, and other networks deal with IPv4 and IPv6 address resolution issues associated with large Broadcast Domains by reducing and even suppressing the flooding produced by address resolution in the EVPN network.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="9161"/>
          <seriesInfo name="DOI" value="10.17487/RFC9161"/>
        </reference>
        <reference anchor="RFC9663" target="https://www.rfc-editor.org/info/rfc9663" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9663.xml">
          <front>
            <title>Using
DHCPv6 Prefix Delegation (DHCPv6-PD) to Allocate Unique IPv6 Prefixes per Client in Large Broadcast Networks</title>
            <author fullname="L. Colitti" initials="L." surname="Colitti"/>
            <author fullname="J. Linkova" initials="J." role="editor" surname="Linkova"/>
            <author fullname="X. Ma" initials="X." role="editor" surname="Ma"/>
            <date month="October" year="2024"/>
            <abstract>
              <t>This document discusses an IPv6 deployment scenario when individual nodes connected to large broadcast networks (such as enterprise networks or public Wi-Fi networks) are allocated unique prefixes via DHCPv6 Prefix Delegation (DHCPv6-PD), as specified in RFC 8415.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="9663"/>
          <seriesInfo name="DOI" value="10.17487/RFC9663"/>
        </reference>
        <reference anchor="RFC4903" target="https://www.rfc-editor.org/info/rfc4903" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4903.xml">
          <front>
            <title>Multi-Link Subnet Issues</title>
            <author fullname="D. Thaler" initials="D." surname="Thaler"/>
            <date month="June" year="2007"/>
            <abstract>
              <t>There have been several proposals around the notion that a subnet may span multiple links connected by routers. This memo documents the issues and potential problems that have been raised with such an approach. This memo provides information for the Internet community.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="4903"/>
          <seriesInfo name="DOI" value="10.17487/RFC4903"/>
        </reference>
        <reference anchor="RFC7342" target="https://www.rfc-editor.org/info/rfc7342" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7342.xml">
          <front>
            <title>Practices for Scaling ARP and Neighbor Discovery (ND) in Large Data Centers</title>
            <author fullname="L. Dunbar" initials="L." surname="Dunbar"/>
            <author fullname="W. Kumari" initials="W." surname="Kumari"/>
            <author fullname="I. Gashinsky" initials="I." surname="Gashinsky"/>
            <date month="August" year="2014"/>
            <abstract>
              <t>This memo documents some operational practices that allow ARP and Neighbor Discovery (ND) to scale in data center environments.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="7342"/>
          <seriesInfo name="DOI" value="10.17487/RFC7342"/>
        </reference>
        <reference anchor="RFC9119" target="https://www.rfc-editor.org/info/rfc9119" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9119.xml">
          <front>
            <title>Multicast Considerations over IEEE 802 Wireless Media</title>
            <author fullname="C. Perkins" initials="C." surname="Perkins"/>
            <author fullname="M. McBride" initials="M." surname="McBride"/>
            <author fullname="D. Stanley" initials="D." surname="Stanley"/>
            <author fullname="W. Kumari" initials="W." surname="Kumari"/>
            <author fullname="JC. Zúñiga" initials="JC." surname="Zúñiga"/>
            <date month="October" year="2021"/>
            <abstract>
              <t>Well-known issues with multicast have prevented the deployment of multicast in 802.11 (Wi-Fi) and other local-area wireless environments. This document describes
-->

<!-- [rfced] Please review the known limitations "Inclusive Language" portion of wireless (primarily 802.11) Layer 2 multicast. Also described are certain multicast enhancement features that have been specified by the IETF online
Style Guide <https://www.rfc-editor.org/styleguide/part2/#inclusive_language>
and by IEEE 802 for wireless media, as well as some operational choices that can be made to improve the performance of the network. Finally, some recommendations let us know if any changes are provided about the usage and combination of these features and operational choices.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="9119"/>
          <seriesInfo name="DOI" value="10.17487/RFC9119"/>
        </reference>
        <reference anchor="I-D.ietf-madinas-use-cases" target="https://datatracker.ietf.org/doc/html/draft-ietf-madinas-use-cases-19" xml:base="https://bib.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-madinas-use-cases.xml">
          <front>
            <title>Randomized and Changing MAC Address: Context, Network Impacts, and Use Cases</title>
            <author fullname="Jerome Henry" initials="J." surname="Henry">
              <organization>Cisco Systems</organization>
            </author>
            <author fullname="Yiu Lee" initials="Y." surname="Lee">
              <organization>Comcast</organization>
            </author>
            <date day="20" month="December" year="2024"/>
            <abstract>
              <t>To limit the privacy issues created by the association between a device, its traffic, its location, and its user in [IEEE_802] networks, client and client Operating System vendors have started implementing MAC address randomization. This technology is particularly important in Wi-Fi [IEEE_802.11] networks due to the over-the-air medium and device mobility. When such randomization happens, some in-network states may break, which may affect network connectivity and user experience. At the same time, devices may continue using other stable identifiers, defeating the MAC address randomization purposes. This document lists various network environments and a range needed.  Updates of network services that may be affected by such randomization. This document then examines settings where the user experience may be affected by in-network state disruption. Last, this document examines two existing frameworks to maintain user privacy while preserving user quality of experience and network operation efficiency.</t>
            </abstract>
          </front>
          <seriesInfo name="Internet-Draft" value="draft-ietf-madinas-use-cases-19"/>
        </reference>
        <reference anchor="RFC9099" target="https://www.rfc-editor.org/info/rfc9099" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9099.xml">
          <front>
            <title>Operational Security Considerations for IPv6 Networks</title>
            <author fullname="É. Vyncke" surname="É. Vyncke"/>
            <author fullname="K. Chittimaneni" initials="K." surname="Chittimaneni"/>
            <author fullname="M. Kaeo" initials="M." surname="Kaeo"/>
            <author fullname="E. Rey" initials="E." surname="Rey"/>
            <date month="August" year="2021"/>
            <abstract>
              <t>Knowledge and experience on how to operate IPv4 networks securely is available, whether the operator is an Internet Service Provider (ISP) or an enterprise internal network. However, IPv6 presents some new security challenges. RFC 4942 describes security issues nature typically
result in the protocol, but network managers also need a more practical, operations-minded document to enumerate advantages and/or disadvantages of certain choices.</t>
              <t>This document analyzes the operational security issues associated with several types of networks and proposes technical and procedural mitigation techniques. This document precise language, which is only applicable to managed networks, such as enterprise networks, service provider networks, or managed residential networks.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="9099"/>
          <seriesInfo name="DOI" value="10.17487/RFC9099"/>
        </reference>
        <reference anchor="RFC8415" target="https://www.rfc-editor.org/info/rfc8415" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8415.xml">
          <front>
            <title>Dynamic Host Configuration Protocol for IPv6 (DHCPv6)</title>
            <author fullname="T. Mrugalski" initials="T." surname="Mrugalski"/>
            <author fullname="M. Siodelski" initials="M." surname="Siodelski"/>
            <author fullname="B. Volz" initials="B." surname="Volz"/>
            <author fullname="A. Yourtchenko" initials="A." surname="Yourtchenko"/>
            <author fullname="M. Richardson" initials="M." surname="Richardson"/>
            <author fullname="S. Jiang" initials="S." surname="Jiang"/>
            <author fullname="T. Lemon" initials="T." surname="Lemon"/>
            <author fullname="T. Winters" initials="T." surname="Winters"/>
            <date month="November" year="2018"/>
            <abstract>
              <t>This document describes the Dynamic Host Configuration Protocol helpful for IPv6 (DHCPv6): an extensible mechanism for configuring nodes with network configuration parameters, IP addresses, and prefixes. Parameters can be provided statelessly, or in combination with stateful assignment of one or more IPv6 addresses and/or IPv6 prefixes. DHCPv6 can operate either in place of or in addition to stateless address autoconfiguration (SLAAC).</t>
              <t>This document updates the text from RFC 3315 (the original DHCPv6 specification) and incorporates prefix delegation (RFC 3633), stateless DHCPv6 (RFC 3736), an option to specify an upper bound for how long a client readers.

For example, please consider whether "native" should wait before refreshing information (RFC 4242), a mechanism for throttling DHCPv6 clients when DHCPv6 service is not available (RFC 7083), and relay agent handling of unknown messages (RFC 7283). In addition, this document clarifies the interactions between models of operation (RFC 7550). As such, this document obsoletes RFC 3315, RFC 3633, RFC 3736, RFC 4242, RFC 7083, RFC 7283, and RFC 7550.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="8415"/>
          <seriesInfo name="DOI" value="10.17487/RFC8415"/>
        </reference>
        <reference anchor="I-D.ccc-v6ops-address-accountability" target="https://datatracker.ietf.org/doc/html/draft-ccc-v6ops-address-accountability-00" xml:base="https://bib.ietf.org/public/rfc/bibxml3/reference.I-D.ccc-v6ops-address-accountability.xml">
          <front>
            <title>IPv6 Address Accountability Considerations</title>
            <author fullname="Tim Chown" initials="T." surname="Chown">
              <organization>Jisc</organization>
            </author>
            <author fullname="Chris Cummings" initials="C." surname="Cummings">
              <organization>Energy Sciences Network</organization>
            </author>
            <author fullname="Dale W. Carder" initials="D. W." surname="Carder">
              <organization>ESnet</organization>
            </author>
            <date day="21" month="October" year="2024"/>
            <abstract>
              <t>Hosts be updated in IPv4 networks typically acquire addresses by use of DHCP, and retain that address and only that address while the DHCP lease remains valid. In IPv6 networks, hosts may use DHCPv6, but may instead autoconfigure their own global address(es), and potentially use many privacy addresses over time. This behaviour places an additional burden on network operators who require address accountability for their users and devices. There has been some discussion of this issue on various mail lists; this text attempts to capture the issues to encourage further discussion.</t>
            </abstract>
          </front>
          <seriesInfo name="Internet-Draft" value="draft-ccc-v6ops-address-accountability-00"/>
        </reference>
        <reference anchor="RFC2026" target="https://www.rfc-editor.org/info/rfc2026" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2026.xml">
          <front>
            <title>The Internet Standards Process -- Revision 3</title>
            <author fullname="S. Bradner" initials="S." surname="Bradner"/>
            <date month="October" year="1996"/>
            <abstract>
              <t>This memo documents the process used by the Internet community for the standardization of protocols and procedures. It defines the stages in the standardization process, the requirements for moving a document between stages and the types of documents used during this process. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t>
            </abstract>
          </front>
          <seriesInfo name="BCP" value="9"/>
          <seriesInfo name="RFC" value="2026"/>
          <seriesInfo name="DOI" value="10.17487/RFC2026"/>
        </reference>
        <reference anchor="RFC7278" target="https://www.rfc-editor.org/info/rfc7278" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7278.xml">
          <front>
            <title>Extending an IPv6 /64 Prefix from a Third Generation Partnership Project (3GPP) Mobile Interface to a LAN Link</title>
            <author fullname="C. Byrne" initials="C." surname="Byrne"/>
            <author fullname="D. Drown" initials="D." surname="Drown"/>
            <author fullname="A. Vizdal" initials="A." surname="Vizdal"/>
            <date month="June" year="2014"/>
            <abstract>
              <t>This document describes requirements for extending an IPv6 /64 prefix from a User Equipment Third Generation Partnership Project (3GPP) radio interface to a LAN link and describes two implementation examples.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="7278"/>
          <seriesInfo name="DOI" value="10.17487/RFC7278"/>
        </reference>
        <reference anchor="RFC6085" target="https://www.rfc-editor.org/info/rfc6085" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6085.xml">
          <front>
            <title>Address Mapping of IPv6 Multicast Packets on Ethernet</title>
            <author fullname="S. Gundavelli" initials="S." surname="Gundavelli"/>
            <author fullname="M. Townsley" initials="M." surname="Townsley"/>
            <author fullname="O. Troan" initials="O." surname="Troan"/>
            <author fullname="W. Dec" initials="W." surname="Dec"/>
            <date month="January" year="2011"/>
            <abstract>
              <t>When transmitting an IPv6 packet with a multicast destination address, the IPv6 destination address is mapped to an Ethernet link-layer multicast address. This document clarifies that a mapping of an IPv6 packet with a multicast destination address may in some circumstances map to an Ethernet link-layer unicast address. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="6085"/>
          <seriesInfo name="DOI" value="10.17487/RFC6085"/>
        </reference>
        <reference anchor="RFC5517" target="https://www.rfc-editor.org/info/rfc5517" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5517.xml">
          <front>
            <title>Cisco Systems' Private VLANs: Scalable Security in a Multi-Client Environment</title>
            <author fullname="S. HomChaudhuri" initials="S." surname="HomChaudhuri"/>
            <author fullname="M. Foschiano" initials="M." surname="Foschiano"/>
            <date month="February" year="2010"/>
            <abstract>
              <t>This document describes a mechanism to achieve device isolation through the application of special Layer 2 forwarding constraints. Such a mechanism allows end devices to share the same IP subnet while being Layer 2 isolated, which in turn allows network designers to employ larger subnets and so reduce the address management overhead.</t>
              <t>Some of the numerous deployment scenarios of the aforementioned mechanism (which range from data center designs to Ethernet-to-the-home-basement networks)
below:

The switches are mentioned in the following text to exemplify the mechanism's possible usages; however, this document is not intended to cover all such deployment scenarios nor delve into their details. This document is not an Internet Standards Track specification; it is published for informational purposes.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="5517"/>
          <seriesInfo name="DOI" value="10.17487/RFC5517"/>
        </reference>
        <reference anchor="RFC7102" target="https://www.rfc-editor.org/info/rfc7102" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7102.xml">
          <front>
            <title>Terms Used in Routing for Low-Power and Lossy Networks</title>
            <author fullname="JP. Vasseur" initials="JP." surname="Vasseur"/>
            <date month="January" year="2014"/>
            <abstract>
              <t>This document provides a glossary of terminology used in routing requirements and solutions for networks referred to as Low-Power and Lossy Networks (LLNs). An LLN is typically composed of many embedded devices with limited power, memory, and processing resources interconnected by a variety of links. There is a wide scope of application areas for LLNs, including industrial monitoring, building automation (e.g., heating, ventilation, air conditioning, lighting, access control, fire), connected home, health care, environmental monitoring, urban sensor networks, energy management, assets tracking, and refrigeration.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="7102"/>
          <seriesInfo name="DOI" value="10.17487/RFC7102"/>
        </reference>
        <reference anchor="RFC9686" target="https://www.rfc-editor.org/info/rfc9686" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9686.xml">
          <front>
            <title>Registering Self-Generated IPv6 Addresses Using DHCPv6</title>
            <author fullname="W. Kumari" initials="W." surname="Kumari"/>
            <author fullname="S. Krishnan" initials="S." surname="Krishnan"/>
            <author fullname="R. Asati" initials="R." surname="Asati"/>
            <author fullname="L. Colitti" initials="L." surname="Colitti"/>
            <author fullname="J. Linkova" initials="J." surname="Linkova"/>
            <author fullname="S. Jiang" initials="S." surname="Jiang"/>
            <date month="December" year="2024"/>
            <abstract>
              <t>This document defines a method to inform a DHCPv6 server that a device has one or more self-generated or statically configured addresses.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="9686"/>
          <seriesInfo name="DOI" value="10.17487/RFC9686"/>
        </reference>
        <reference anchor="RFC2461" target="https://www.rfc-editor.org/info/rfc2461" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2461.xml">
          <front>
            <title>Neighbor Discovery for IP Version 6 (IPv6)</title>
            <author fullname="T. Narten" initials="T." surname="Narten"/>
            <author fullname="E. Nordmark" initials="E." surname="Nordmark"/>
            <author fullname="W. Simpson" initials="W." surname="Simpson"/>
            <date month="December" year="1998"/>
            <abstract>
              <t>This document specifies the Neighbor Discovery protocol for IP Version 6. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="2461"/>
          <seriesInfo name="DOI" value="10.17487/RFC2461"/>
        </reference>
        <reference anchor="RFC2462" target="https://www.rfc-editor.org/info/rfc2462" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2462.xml">
          <front>
            <title>IPv6 Stateless Address Autoconfiguration</title>
            <author fullname="S. Thomson" initials="S." surname="Thomson"/>
            <author fullname="T. Narten" initials="T." surname="Narten"/>
            <date month="December" year="1998"/>
            <abstract>
              <t>This document specifies the steps a host takes in deciding how to autoconfigure its interfaces in IP version 6. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="2462"/>
          <seriesInfo name="DOI" value="10.17487/RFC2462"/>
        </reference>
        <reference anchor="RFC6762" target="https://www.rfc-editor.org/info/rfc6762" xml:base="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6762.xml">
          <front>
            <title>Multicast DNS</title>
            <author fullname="S. Cheshire" initials="S." surname="Cheshire"/>
            <author fullname="M. Krochmal" initials="M." surname="Krochmal"/>
            <date month="February" year="2013"/>
            <abstract>
              <t>As networked devices become smaller, more portable, and more ubiquitous, the ability to operate with less configured infrastructure is increasingly important. In particular, the ability to look up DNS resource record data types (including, but not limited to, host names) in the absence of a conventional managed DNS server is useful.</t>
              <t>Multicast DNS (mDNS) provides the ability to perform DNS-like operations on the local link in the absence of any conventional Unicast DNS server. In addition, Multicast DNS designates a portion of the DNS namespace to be free for local use, without the need to pay any annual fee, and without the need to set up delegations or otherwise configure a conventional DNS server to answer for those names.</t>
              <t>The primary benefits of Multicast DNS names are that (i) they require little or no administration native or configuration to set them up, (ii) they work when no infrastructure is present, and (iii) they work during infrastructure failures.</t>
            </abstract>
          </front>
          <seriesInfo name="RFC" value="6762"/>
          <seriesInfo name="DOI" value="10.17487/RFC6762"/>
        </reference>
      </references>
    </references>
    <?line 1029?>

<section numbered="false" anchor="acknowledgements">
      <name>Acknowledgements</name>
      <t>The authors would like to thank Eric Vyncke, Gunter Van de Velde,
   Lorenzo Colitti, Erik Kline, Warren Kumari, Mohamed Boucadair, Gorry
   Fairhurst, Pascal Thubert, Jen Linkova, Brian Carpenter, Mike
   Ackermann, Nalini Elkins, Ed Horley, Ole Troan, David Thaler,
   Chongfeng Xie, Chris Cummings, Dale Carder, Tim Chown, Priyanka
   Sinha, Aijun Wang, Ines Robles, Magnus Westerlund, Barry Leiba, Deb
   Cooley and Paul Wouters for their reviews and comments. The authors
   would also like to thank Tim Winters for being the document
   shepherd.</t>
    </section>
  </back>
  <!-- ##markdown-source:
H4sIAAAAAAAAA9V9a3MbyRHYd/6KCf3hCBvAiaRESkylYvAhHWOKhyL1uFQq
5VoAA2CtxS68D0K4k/Pb0895LJaUZJ8rDqsokcRuz0xPT7+7ZzAY7NVpndkz
s39r08VyUpTmMq2mxYMtt+aiyKt0ZsukTuEnk+bmevxwYi7tOiu2K5vX1f5e
MpmU9uHMmHw2mEbP782KaZ6sAPasTOb1ILX1fPBwUqyrwc6zg8Pne3t76bo8
M3XZVPXRs2evnh3tVXWSz5KsyC393e4lpU1grj+v3aTgAfM2yZOFxQnt720W
ZzzL4JkDGrVnPhblpzRfmDdl0az3Pm3gyby2ZW7rwSVOcW+a1GewzHmxVzWT
VVpV8Hq9XcPo11fvXu/tTYsZvH9mGljJy711emb+V11M+6Yqyrq08wp+2q7w
h/+9t5c09bIoz/bMYM/A17zJMsbGL+nYwiR+SZOCPinKRZKnv9Jcz8xPTbKx
qXlnp8u8yIpFait6yq6SNDszn9M1vPwZ3v3zkp4cTovV7hhXsyYpZ+ZDUqWZ
zT/9EwM96KtDS7C+Zbi3tv61Y6S/jG/N7fDDMATPQIcreOPPn9Z5N9g32yQ3
b9NqWSYdYD/YMv21AJrMpxHoBbw1rIYreu/PD/xU9wC36fSTOW/KZJGlXTi6
ym252Jr7aWrzqa3Mra03QEPhaBN5+8+2GgIhARED+ZQrAPBgz/bwyXd3h6en
Z/QOful5IyKFI1UvrYHDUNvPtSnm8PTg8Nnhvnt8ltTw9DzJKuv+5kgr+BpE
v+E6zsx5WSSzCZ6Q10XZrPoE/PSUZnV3Pb46PX75yLxGs1lpq8qMsqyYEjLo
oI3gRCxyPGhmXGTpdPv0POukXFg4Ucu6XldnP/642WyGJRAwIurHdTMBCHxC
fwRWUf2IHw1gTt+9TlxL8Le9vcFgYJJJVZfJtOY9ACR3MLiD28ueWZcFHOIi
MylwEzMt0xqmlcGerNbAeHLaFdgkBEO4ScrpMq3ttG5KOyTIDkJTAZGsmgwh
VDXu7irJt2YFqAQGVQ3NdY1gAEmFSaqqgQ9gyMpOGxgVnitmNjObpS0tPJOZ
HH6vDOLeZGn+CUa2zB7tjCj+vpku4TN4CHbFrGB5tZlYGNbO5ynSLE2hKlbW
VFObJ2VaADO0w8Wwj1OFhSGUaL6btLQZ7nzOpA5cEzAGU8plNjiHvKh5HvBE
vdwiEIHKm2qS6TSCQWiCAd1KkZgKZdBJhhCA2zaW+TkeCUBPMU2BqGawsDpd
MBFWRdYI34d5ANU0SIzwTJrTUgrE0BK4xtEzc/f6oqKB4W+0tbmFB+vCIFl8
wkEqG4yK73vwKSK9Amaf+WGGTEoFjlCbJIUDVS8Bsn5uYENXgORfASAugZBR
LWHQ28vWQDUiFNAJ1DaBvy6LDW14NKeiTBdpDhgw87JYwWelBU6RII3R7ssZ
RYGGo8lbMJ9VMgNUp6t1ZkszAWTHDwoIwExKHN9Nn8kStmOrK+jGPOzQzK7g
R0BkzVKDMJLCM/AwDLMsqhpxCMiepfM57ABhZwIEwe8jOVcwk9wsbbaGTaFj
IUwHR45Wa9406SwBDoyrg8P2AIrDzACbBYLK4CDikCQhqiatk0lmdSowb5Aw
y4K2fQ16Cs5jXdTwXwpH3G3LkFnGKp3NMru39wfUC8pi1kwRBO36Y8zjt9/+
C9DZ85cnh//4h6nWdprOU0UeSFaQJdWqYvQg80BQfI4OGEeIDNBGQAvBk8bS
oALZxAceDynMHFjRqsmRWVoloMwmJZDoBF41NgE2UMCb5dDc1/AQHWDHwhvk
Tfk8XTR83MzB/c1odNFDMG76RzD9SZNms4pnUcDIgJ5wDQUMWsvsFSBulE1L
BFVsRD2UbcR9+4hkzhTVIlMGs0q2BiRr0aAahkA2ab2EcfsmrYkyaNiH1G7o
XZoQs1L8Hd79jNNbELkUzWIJ2JDTlZaAwbkdTLfTzMI5TUjxo4UzXUb6J59s
EJJw6HFf+jQcbjOeSqC4KegrwkYqIDyQipuKpbsxh0NzczMyl6PLM5IGCACJ
c4U85wa2cXBToEDRDTmAp3u08cAA6Tkn0i6bdcbbrA9fWpQ0tGswQA8oAtfh
WbbSpQNxj3IZToFovrf3wH35w6OhuSNK8zQcTLiy+SyUXfJoBM4NcnAHYA2d
boYEK2UqVhpG8mXhKH+H1YA4nXkYtNUyymgGMOq0Ih0eZn03qnp9Oem4XmYd
eILn6WfPRVkDQMI3TuuCzfSLSoFHwQ7iRrgDfAGnxYJmV5dbv57bi6seMRQ6
qTLlBiYM857a9EGpFyYGQjwnha1MhFAcGHkP2BpKSBkcJmsAvECXicEgJDpW
xSrWMOjLkfXEEgd07/1QmUVWTICYrseOXQKYqk5hoCb/lMMpHDo4dPxqvwfA
EuFfFIN0rmBGG1TbE7MGgQj4RdnoRnJQZEQZjo7mBocT6nXzgH9ERhBxy/K9
MreLBpnpMTD4948doDc8+vucydIdInij52D/9tt/BzZ2/OLlKbAxOsXw/N8b
a1on7z2ePH74+eGrY3gYZ4oyxoEKjtZ9RbOFeQ2JN5BIxdOwxQ1j6b3G9bIe
4FVhFaiEJiSFeVMSlcJxQWHVgFZAS8bRYU6Ch+dDoNLP9WBZrAE6bNUKxb/i
cxfNZ36DEWVufLfBeKbd7vqNm6clLE9HsKjd0exCEsx1IqQ56dkucReLfEDC
ibbpYLNMQfqkVfQ24KaWuYPud03U3QmyHxyJDGz72dYsE49JYvqOaNzJ7AYZ
zwyXG/CajJTz1u6iUvA4EQuldi2KqRfMIVyIrQAoL6QqmnK6w3uI8B0YPQA7
4PiJF0AEIBuBgEuU68kkzZDgAjlw+/6yFxwUsjma3K3KI6/o2OMkZ36J8pdZ
sJxL5SKemfHwmZWJnQxZmGXJFuEIvoRRIcdrQEFDsj/D3UmUX2XuHc8JoneZ
o6Am0NognGFbMNyCYAgXqOMCCDQ3NsFwXp0sjF9zFYr6kAYjIQ8nPc2SEhmx
XddMerUaEjkpq21RimIBDLNk1ld9ztOWubMzsKumdTAKwkQ4rAbOCuITy+QB
TMqRnjeWycHrsBQWdGjNIH6AD5HiO7E1s3Y5D0pk+BBsAsgqtAh57aBFfcVO
7bN1V3ltiywQZ5L2SVv3mivtnoo7ICbmm7yyAu2cFT68EWa1ZTuWsKgiiFlU
JRKoYtKu1GxE8KDwkhavCju8fFHk0xIoPNv2zQMat00VW1rd9gsiGRBmyWL0
NhoioW0+Amnm06whp59oe3/EId4hesxbNNd5oHdgriQwfxFEpy9O/vGPvr5w
j1Yvaa/y8avTw+Dji3K7rotFmayX6HjItuaNzVExhUmNVJf2rx4FrwLIcVl8
3qpMO375Kvj0ZxBOK5Q4Uz/28+dHr2IAuFWrAtgMIMX5i/jhk+cv4GH++fTZ
ycnui6iOzaL3yNsVP/gWyJc3QcC+OH0RTdP5AWRBwHRWlXv45XHw8Ef1T8CT
Bx9TNsHouVMEyj+/fPHM//zq6GXwM6/nenA5JHf0CVDmIF0/nAzwEA/U+xEM
CNI/wvHJqxfh8u6Z46uG8SHJwFKltV6vUH8lxmUUhcch7rt0X7B08TjIUId+
GaeHhyEarvIl2sOzJy0GefPFUTRhIDEykUd3Y/fEy3Brgds0U1R4u5Vzeec0
IkRRt8akoJsxvPUTyiZB+9HpcUwRTJnsZSU6elcmebVOyE9APnlQsHNZBvC4
mwI5ydxx/htyHxy8u7u+uVECeHn8LJzRG6CpJq2JJ+za7vzKq8Pj8CDyNgNe
fhTqvvowvnWPooXf95YHrJlMscufLtDolZVfAvkIwzngTwbjS7KUxJNqBVVu
Kdf+bUsiw1xk6rm7Qf8pe3HF2GN/ms7p5ATwKl6pJxxRwEGRmbHdmwBHtoOq
BiEBg6JnBsj3IFH0ku8lXZFk2aArNF+wYWSTKkWhSp69YWs89ByRD2+GnhXx
gHgHjtg3IWeewYJz95iqr223DQmE0C0k8Mh47nDneD8iYOUPfzDvSPvB6Ma2
A0sEihZs0dbgKZEgCL06QzxZqfAnepKkH7of/QtkzFVMsLwhb0cXZwZ/OEOP
YfJQpDPymjQYU2LNi3UVslCcz6S/ozC5j2hM2rOS/ZiwaTBK8IBOJHZY0km8
VsySN/2ssnDYvsFXV5TsqmNIN8dtOInEB9ABh0ooMgG20omUI7PEmIgfhDQM
0pmVLEunk/VnccK6SYWAeH5gN6YPpFSgP7Y1PjoXJ+RHp3M365wQKgbLBPG5
QiHVd9jowAVqIQCQHRzRZNRfR1i6OYqRdCa+pxWcIFADqtAVmYiti9oV6dv4
ICmrIXxREUkFzLbMGFDBPTIHN0e9J3AXAvHrYdfMZWPV3refQUkgPgDn9C1q
hQNksOaeFr67f89fPUN+3oUr9usKplLvzuzaO/LMA2ux/QhnQL3kH4RVgLm9
jYiuH8JBJhB+uPNiCNSm5B+lDTr+084eJWt4A5EfAaQRgkejVaSoPye5BQkD
g30LAcvK22so4occIY2TktjazmTZBwjkDZMFSbXe0QCBMz2kU9Wx9au0QHYV
DqE2dwW7BCQ3QwPMWUluV5/au4+ATn2E/tQn56yzKJwHK3CL4Ot24eI1MCA9
vwZdpFrBMUWDZ1qskQeSR9vNFzXMbYw1v25eKrJ7UFzIUwxEfJ3j8SrKlGMv
1yQSSCK8dVN8C0R6Qd61MdtpFGDADbmzWap2t74Ko15LKA3exjnumlEoJsEA
h49G8M8d/kTgRuQJBwU7jrYJg1qCcgIEFIXspqBwJRi606gdoITiaxzmQjV1
5qJr/RZMCuPshgEdW+kAajLSNIDSFChF/dqxQFE1tmu2U9oDT9EGshisJGjJ
Cv36uB0uPip2KInpjkFFrSBYYKmBDNOPDFoXm3RWL8kkg4E4zEz2NIe2ULFb
kv3N+gUYVDP//jrYY9Fgj58fqfZ03RH4bK+uhVFUiR7YhmzykigGQ4XMVRPa
VSBomN9ESQmVIFRzJa8EjwBMijUwYmxZsUEfYVInBq0/XkiGsUo086fo3M3s
bKG+kHvRj4+Hh/iA6qmHwAB6ooPoAgYwQZWBDg0aZmTdLDCgndUPgpGjaqJN
wjm0MElvCtPpMIdnGgAB/RfRjtsRHqoBMcI82Goc9bbtEMKoGLsTBd8rjG8T
lZRslpNLo1lN0Bc5Z07lRQKoQ8Q3iPlSaBENfcdj3CC9vvhyZJRbWOB02eEA
9mF7IkuUauyO78AiOTduQ3ZH8x7GmDo6E6PqhwoRlBYzsM3f5xUHWSzxCnNZ
wtFHFKLiVv3gAJ4n6OPZAjaDKM2I1cIFeQzQd5CBYVWzfgiKvjhWfGSBxNPb
69u/Xl7djP7nX8+v3n28urr9693o3hwcowaLMZpeX8PwmIgA303VIHAfc8lh
JASPbqZN4fxAQfAHk6JQrqTonMzSTxbewLAbItBv2S4qh7DsDU6zT/x0wose
rPFswLJ4z1s7pvSKO7RJPlG8ZGWaNXMCRKeEBBlaamMrtrVJx2cajniUnEnj
Szgjjo9AC8bzYKPVML+LXcu0u34Et5rvHOnFGUH6N45zgM7S1xLBuK+b2bYn
pEnmhw57wQL/dvT1wcj6AVY4K1bEVXCbSF9ATEcmTRjhcU6bFcJOqgFQ0oCE
MSqjTKyieZI3E2mk6zR/E8en2FyJpBxRrkbKsqJiH+S5ROiQWmr2AeaFBDsr
wij8OnNOGrVlZ+SksTPiXgHMgMnsvMSmA6yuyfX1YcTlTRkoLmprl/ar/PvE
8+9b0J4vCswcQbeqaEIZqfLe8+a0gQjKqT823weFfNIFZo+F6QOgAWRZWrlc
H/sZ0LtCcMpO4viLOC8wWLopwtUTH8YtXFrYUM7tAvG6VJmyxiQx/Ku4DNC1
C3Q4AIY3YF3Ya4o/S4DpXvOYWuqhS7Ii2oPN786H6rMi6XMg0GiZEFsM0qpg
fSA16xqpI4qrs4LkAsOcjkAqEE+PZLbOUDAROqZFU3j2CjSFNi28PFOX5vXY
He37dVHMcYABSnE3JZxGxM2D2BLwoyBEnVRheEz/CiIcwzbstgk5uZjINYYv
meTJtkK4HNyPpoC5VIHUbXJAvWozLnKC3j+bgzk1KOaDe1uSfXRwWdz3BFib
nF+dyQs4TSTq3bWDgYIK7wyIC35kLuFtbhihTleAB3zZR1Zw3zSbwD0iGHHv
xvk6QdCoMPMkzfpC9AiHTExYhxjzreFbizp8hnJp0VAiQ8eKKGCMH1HWDQJg
gRuG3OKNSVxItnNfWvvh4ET7ApPv3oND0CyJ9lAzkjcenTbIl4Wd7Yywsxb8
vXQBNVILxCxpozCzixReQxYsATkgV5vN27NErQ72H87xiJfRMcVpssZ8UUBE
ls46SF4ywRgMqS+UrME8iVWJwe3F1QCO+CWH0zxXes1BNPJGg54PdhkGdK8+
LxNkZZieQLm7mg82pXyrDgOXs7V0rU+miUj4cdLU3uuyZT2TtG6fbzMI8m3a
eTYIg6K/nJHA9iNigkQCBqWZ6V3fXvz8dnxz9e7KVJjfFiUWEZk5wc3h9vA0
CDdyOvaAZu4lvZy9oU+mCCLzCAA3BVVGFy0fUfqPKOnIwQKVpR/m2zTrmU+Q
5EwGAsL+SuWNqvygA7eueIU4/7ur0cVPo/ObK5VtpZ1sKS0Z5KqyEIt4FQNF
jGHUXVpuYiEgQWtARN0e4056e0zosIBhOfJHORGgQsck+NihZUPZPIDCGjia
0GWgAWFKIcdxcpiKeCrrQLa0eKqDodRRqFsC7EZbkoWLAeqnKMvDcFwW00JI
dlm/JK+qBVseuNxWSTYH5qcpaYDlhyZDM41PXt/l/85wi/ZjhPnE+vYW9f2J
K+3fm5RzMD1umS+LKkCsyjEqZ5XssAxUyvn0yxlPyjJ9wLNYByItzJeQ9U4a
9FtWlFuELi6ch12tmT7DBJRwbyQ1JDg2giCGhu/OcFaV8h72d868rT8D0ZvP
WOcJpvODgjAVqLv9KHGgrbnTFweECAO7p2a/8xx41DkohML9jsMUIh8MtRvx
5TzCisUwoiTVfkvwLiQlQCRWSP8RN3S0MQFTHk26jThx9GC5xJxAPYM5pC5P
kTgKYoPPzYydvX6tHO+USM7zwxdifOkEVJ1Fb1WYt7hr0oEeT9yqdnmwCrzK
i2INCKZUy0dUaAeGyyWqZsKHCWeg1WCwXuAWZBZxHUWw5oMgZ5YjRj0XvuSq
FMnudw445dfRpnkYBYXokJVnmUVLWEzW6XQqVW8CYRBDwAgjYhgzuZ2LT71y
bq/avrK+86QlMzhfKeXiFyWbPE1O5hZQsYXDMMVSpMB5w/gJMAbAXBbfGoMO
0waMJtBn15yKkWAGSao74WcS78jQvAX7qiDPTUGudCWJZeKIiRV+YMB+/yg1
JUiil/x+Mpxd+jkrbXWZ2gfx7syD/Qt3HJNZ8hR9//miz/Z3rUFd9ZgeDU/Y
Z+rtIFa07slSJldtEDYwUj+kqUUEFjOfG6BnAi2AK4B8iFM9Gh73W6Y3QiHr
W5OaxDADebYKCzzWZUpT4Ej3mVdUCGORdcq5WBxj6OBUQ3OFzsBcwrP51of4
KxdJ3xRNNuOQgSRLsTiZFqVkbHsZLzNHGMWkAhtKksxlx8xCqzRQwQuKToJo
Pf56ezlgtYpd0i5eD387OOx1OK1DDYPyNHbcr0FwqPhGp/Sw4x1Q5GNnbOyL
dR7Ym3Te+X7gOZy5MddPj+ll8nf67+jrKwsS5+BjoH8mc/17B/hjFCB7dAO+
z6sUj6rOoQ6w3+dmegQs0dpRr+M4mW6ii6bwpI+k4/m2K6GLWkPDvOvzLku4
67kdW5TXetzrVuq/YbW7ynzXQ4+rll1Pf1UXUqYbVOgBN/WpPqEmnWqyp2ge
sDA4n5TWilASSv0miafuuaE3d6OKO4RQTKdNKeV/XM41RW1TCt77HNIguLOH
tFI5q9VET1TNPSQpJd4RF91qbM3bAGKReMPKpxOFoW3Mp/Tw7xU+I4ymcxim
f2E478npECNgSWcOB4cvdiblhebzobmXxOi4DnOB9fR21gcBt0jzXE6BmLpF
ZWODl1DECRIsVTDVnckwAktyppxR2GeSoKQVXV926yBDY7A9x56kGItdgUCu
MCroGJ/gmesEqTBggmYdnBlN5kpQNxoI+tkPQ8JXCnOp4UHqeyJ4aJwUJrhz
cQb3eR9D45yoPUUfRArCdUoeDyoten1h8LdFwQqIGEwdu2cOKlAUzi/G5pXo
4UfPjk5AdaI8PVyJlBUwFJbYAhoOS0+P+T1YHPfUYaGcVZiCCSfyYFwWqMrO
3Cd9Q70Rgt9V89LmCe4jSc2/ArhXn0HupXhkEikpuIa/XvsqLf3zOfz5HE/r
RVNS/suY/fFitLyHj99zXZM5oFIaBICBTs2+m2zZkr9697q3t/d/4Ave/NMA
v/4k3+2vP7V/aP0vbwOcL3B+4F9A8Reajo+14NcXkjkD+EECA1+QUeIHrzeg
fsHbhRkNvyAc3LvBl3o7YDhh2BPhCNv7wm774RditkPzhY3zL8Aca4ZD+/pl
bc2XYH3t729Yl8wfvw/h+wi+j+H7OXy/gO8T/OwU/3k5ODyiBw+P6YXD5/TO
C/h3B8//wnzenp8/nHwBIvkSCuwRnE6XUzpzKnORPcBv7a/fdT6veT7v/1Pm
8348/skofr6YX4L/9Wf5QTf2F///F/7395wPpt4D3HugTcRJhAhkQzfFZjCm
fBZKoiuqauvTlw9ubm6r3u86n3tMZ/8CrOeLo2vTwpX+s/v/l99/v5hvIH7+
pfl8oRT3XRjx9/+H66LU+v+gdWEmCMA931nL/6P5vLkb3V7u4vmXr87nl3/P
fO5HH65//Nf36wvY1CbgY0/A+eVJOG9+fPOn/yT6wTKlb1tXx/r+DfN5dfLy
5JFz+k34+Z3lRetLDJWht19IaOyIVlbn0DMHfOc+0ODfcsGab3BEzTXUU0d5
JE5bDso0XNOl4zfjsbka3+9HlW59eUB8i/TQhc0ydIeym2TflXJRNRwJt/2r
z7UEIxJpgfHjyXOp6UE4XDyJsYZyprV9ODFM8IZfqmW6xtqjv2FA+gAH7en6
SMOeJ6wMU9j1ZnRL1U9uIkenL0Hzp6zZLINVdmLGHJB+1ROTOI5SOHs0Vs99
/xzzCT5fFylmncJjgSOuqcmj55PeNaWYbTyayfsKlICrvzfpmhy0B++vev24
OmGMoAd1MaAfwAQ5AgxQoouYkNZFntrQfXwEzJtNsh1Szzr79waGyrZh5yiq
wIoTvALnuKmbMte0dCmmjh1qiAeYmFQ4BPW6sCmtQJYrawjCrv6rFYDlaA0G
2yWdy4+465xKK069ROfWQ5K7jg2ag3G+jcdyZQ3zNKs5sMaVzC2EzsDoW1PJ
34hrfWMwrl6gTznPGNlMp5RfwxkV0vCCg6HLpPRpJ9wwLCoPwrMhJToYoNCM
XUBcseAadd11TyCCd4nIrJs6TPWl+gkpaJIEKcSslCroTN6Cea8x+wMevy8p
2HC+emaSyhEO8RNFGYJY5LopKd7DNv59SuEO7t+0U/gWVCSXPpcP09T5BYQg
D3TFFNCnEb857GKIr6kQ95/mh3VnEzpfzsuTVB7TNZg5eK0sps1f6APt64DZ
efMseSjK0KN/ND4zV51c5M5WLBaAI73hQ24O7t4gD2kVOSmVPMU1/JzFGFGY
DsrB+e2b3pD9NrTiympvB8U2HBGJ65MjQpsFBKF/4rZD4jh++5/cXTadHLU6
lsjlWI4xvh33zgisHkePpzdBTE2qZyWSnWuojmtlwrewEBcTIm8wRM/VkuqY
QVz8fPOux4Escovh+F9H8e2boXHNxegLu3NMlxi7I3fNOkuovjjRdUTd1j6g
iIui+j7imM9capwmwMAUKeUhK6afKMg1LzGVmWTuxBLv43Mb5IZNYO8t8DEM
Rgpq1kVZV//VZYLR63E1AXwEksLBID7cYOsySo4KcYG8EIl2gxkMtAG+ssrv
kSb0BJExSUrD53DveWjX+8uVlr6L3cRx0zk8XyivE/Re1668g87gADeQfNdB
C0MKZoYOX3fou3rxTUB9mQPegrxRDMCsZAXd1fI+rnDtyCiaQpAJMyke5MDl
5OnDAxTETHwuJLtuS5uQON7krllSJJNcIVrQGYWIF6sXZGOGVKHrvNNpnMTF
EfF0TY7a1AU/8AlcrSZdJRj898uneDUdap/zLQndbh+N7KXiNFSumMYCf2NE
mf7kRApAq9rORBoOHBys428pORTLdhgjqo5BhL3nXAlq6/gP40njmjqUF+5u
iRkVvkTlm5QXbmXodZhHtZZ2RZDbKN+Yy0e5XYZ0mVafVLPZ1X1auo4j+2/X
bPyW+nc8a+l6m/POiC1WlprQKYSgZyZWuWqDiXbk7l28ZnguUTJwXclCfYZz
fkJlR1CX1H5FGwoTqC4ICAuyC+i8Wvb9xTA6MxOiybL65DFSksR/pHi2H9YQ
+i/l6CJOKl49ci/qCxiLKj/vXUrRRfjj9ZUOUcBHWmQrTCVaoyb47ALpu8Qp
f9QLt44YdHBwmrhojGohOlGY1i0gyCodLrk5hBSRUW1w4ptJ+aY8MQTUlB/S
WZNkvk1P6toissRYE80tXUvMWcA6+UsExLOXlEHGsbUg5SmwqTgtemrjHmP0
5ZEWPi8K7d1oVz//Dt3cfUgR9CjESE9Tt9RYKdc+KEFTD2o7QEkYB+jD79GM
yJvf6mUbi2DfJ8H4fjzS8MOcF5iJzBHSLps9et1nv3H3SyTaqFOCBMm1zzOn
cUbdGTwITNAbjC9xx4E16OHEPJy8BcanbrmURNer06ouTEHKPMis2qOzzHKc
vQqESkrZdn0OJe2VzkHZ5JowSQycsli58xt3bpSsauFiD2kSrsFZ6jofYGUh
8nhNqCrg4I0W/zJZRVjeF25cae1/2EPAarcen3NHod0gbc31odC0PimVr/Zd
LdHHdPA6xQS3K+Qvats+5Z+RhH5ZO2rhrhlG0Oqx3xKR7oR9u9jokhShoisW
vm/GjLl9WF7XLR3c/P8prkm5GGHuLFerznd5Jjm+NAWAOyMoENzzyTbi7nAu
lTOGfTll1XMuCA+aPzjR5aw6ZkRepEkLYDavdhqOaIMNmiBmy3uM+nqVsGcD
EneoUIXYDm0Kb0/t4NUZGHowPIekFZP91plJ5NvB7UV82WGUEnjY1tHkiOgE
hdkQ1M5lX49CGloYTl/SdsqtdjNcW8AdQGxeaas9sX2dXUDVByLgxLnq2yj7
vn9ee6ASFeqtx6vcBzbc1MxvXKo2rpHdUb6pTLOiIlJ3avs8LVzLfsekaEm+
G953Tkp5o2Qoub5FrvkMTWVcpg+oApOpzZvw4sXhaZiJrAXWHTD6HUvsBzaE
MmmcOf6DYLRJL7YASKR5M2bDcpVArU2v712RDnV/dNYPgqBLOyKm3WFjIBUS
FUQEKOXpzHO1aEOzj372mdaRe5hzjNKhBUtD86P65phE1Iu+OWHn/2mv32p+
5uS9EHulb7/gFyIZVwdH1KmeXQ11V4Vr1XRA8GgavaBOn4GsC5BivuEEpkoG
dqe8C7Mm6iX9IVgaQTvxaXCs1IQt9/ABbguENWz4/u/QkA+UK81CIu6DiUg9
1yEsQW/bLOFUIsz7cXwSRoxUcZdzQIT7WNqBBk4OsV0cEjyA0fortsgiTjax
y+Qhxcx61LqjDqUkV3Bgrb3wvUBjqSyswQtmTrlFaCpRqLDSi9vSLjC5rZRy
j6AHWB3JVaFs7ey9AzO03slod13nA2cYF4rk7sYMGb1MOHkjKScpVxeE1Oml
60ZiWE7MBdYnKckdekTl24S64MIwdhpSy7QqNsoe79IrIDqmUCEnlbMZKMvk
+sQTMb7+uWduBhPugfTM221X3v3nsSgBmJYDxBz44oKT4fHwOZ49X9PQc/Pi
jGvvPubsVRZ41N1N4jo0CEwHKVayVZFOAzqIXMuxdYJsFt/znTTwZQRSNWt0
dGrUCQU37itTsfQQGUhwI2jBqgyX9WoRVhPLdsGM+6ST/8snypqC0bsReQIC
uajE4g5kypRvkSDVVXy+3t/GVX8zbebnO1fuZrOPpcMQ23vf8GDU+tJsEqob
bSctOq2IzR3rPgYRPmNL7ejZ4WmfnK5bm2D5zVxOLeVzbjjm4ZrMDl2/CMpj
ndmEimOwGa1pJDLQla5LUWQqbUEzXdOSgztdujJ2K3M8PKETfDxEMZVKi0VD
7QXU4KQWgFZvsokTpfHhS2xHdIFKG6zu4PKi6gW5sK6D06xYwSaCjbSmaENJ
rSxcdy+Q6Nw2n3QC/LXvlER8wCuIceDCVEA+06Vv6F9pz54PaVk3vElvqW0e
HoIPb7FzTcX6hLQJkue5GQ9bSwzUtzdKg36jrOAmJqf7m9DYQoaOOZi+d5F3
wjMkUdCxZi1sfA+ydtwP3RI96VhWa9r1njBxbgHpj1sElzioby+wwwDZ0gX9
A7FDTlDWtQjp1DC5rpwhAduOv6ILKIpZXxOYWUHe1qIf+Jc33OgtIXgyo/Xa
UrhLw98SuAGIe4FR4YwT2f4Rd8Xou21lJufKzOn2EQ6mR2BcknoLVS46UdpV
Uftt5fiLoFeDslFTO0evcbYA28GhH4nGJkaQ/upK8hz5UJ/wRU71gvg+dhVo
pnjIRzs7KCsiALt0oRXm0gcyWo5uIdEOggGuzzjRloNprd0omEbmDYd1dmWl
0gmxExwrRCddp4OuhuuxbzYprr0FVu+5FTo/nG/F1TFY1F6cpXhwfN5TExcO
lPY5OsXqJ7rGtB4RvQsB0e845R6LqPYNpYPOiyk7+nKeOJmPXnvpnCtimz05
LIxarQErEi2qXiOUHRYIUwEuySILZ0HB5q6Wx5jZSbj46lNRh+NAW1ZVmbUm
H4fm5QcN4l5gRNu1sdNiFeq8RGEWMQ/IUpvz27JpPL7NH9KyyH2HgBvcPHyu
b+ifp6ffsRGxk6DDEcEiN+XbAbzeI3VtocZz2GNkR+2bYfpqcKuwcGavNwgw
C5U9sjsvY34qnvDAfx21gt7dBueO6xCiF9U3SMxIJnYJza9LTFnKA9UiXWEh
8cH4quc8QpzFdKU+p7bcw0WTUGrgj5konuMrpAk3CRZ0VcCNO87+7cizdPKe
77A8xrfjZehJTHG9OLkafSpwBtcJB+rEFeFekYe9hMGX1Pl1TiVDLlXE6XsH
52/GPV8OBKsiySqrCRjhD50LkrtgmDkjFBHXeNVFLo5Q6k6hQZf2ClWCtSCw
0BlfsahgHu6Zb4d8cjz3ayfId5Z5VFC1j3LnISA0/ROsVFrXPNlMnrtUBplZ
5O3X3u8PFJ0VhxbLOu1aa7TwTpz8pGVrQ8W4PWLcy1tMb/FXc+he7OXQ88ZB
kFoTI5Mqs3YNgKvambT0ajzURpu8tl6kTl7ovqsq1Cq92MSX2F+5uz2qHUoH
RLrODN+RtEqhv7CPIdB4VyEVVWX5q+kS7zThTkgwFk7EeydC43lJ9eFSCk5d
ae5Zj1Qnw93IHATt1CLvhGRwhEgCYRV1NqhcIa2/zsrB8MxXdb2O4CD2VcGm
SqKqbLD/UdxCO3Cjc9cUIhnO77obdfoMdNmEHBw4XAPoTnQmp9vAiy1b0JZU
R12S6um7CQ4o95/FEv0Y3VbQIf7Ve8WHto6ygzAHye/siCNpfK9MGA5Bhi1m
vE9rwPt0wpZ8fm9ZJXXZkz7d04WRtJUTAQnv/aIJkCqF5yxseOTA378b3VwF
NbquKU10hRpfZiZ9atoxLCM2NsIgtky3/yFcmkzQ1QrreVfU/J2KyA+kjzb3
opCtQyinw6PhEatRJJ/wXmE6T9E1TSBEK80FDy5lkoaDfKRR3kdeRPuIb8tn
IRJREy3QgiSBQQtHu+uuOT6RBg26OB3JnY3OMI56xV9TKWmCkZd2OzHv5Ccp
huZgLh6ab7oM5QBrSXpB24quK1DYkQMPRnengCIRhrs5a5dcN4HVmVAyHwUp
MN5A3I/NMa54/xvlxU2zJF1FFjOlAPpoZlhBHPjApPOZRmywJp/rTz0HQ3so
aIUY9tTqvO3l4G40oJ+c63zn4hdWouK1k/mccM6Fy4CSxUsILUoLCzXFyK3n
rhkO8SALbHX7I2Ef5HzRDnGTc15CVOWt97G1mlGKZvD6wlDVzKUFOkFWRXd/
xqQWNjEI7wPaQcYMgFTeLdsCw82xeHhCpefJx3ymS/SCr4gvIu48y+TbidD/
z0LBcSlM63lNKWlw0Ml5p0sHlX7qzXN/Y2kRty2mLy8vxDijpDYAFrYoBXV3
seD0/fAmOfoiTkuR23BiLimTOokPKHGIL6Fw97lSt3rXmTIGGrRVD26ruBi/
50YLoMKWW9cTrQqSbWMwKM/A7MlWQWbzB8DxI9gE+6zAK2d+5S4x43AaXNou
jJxiB3TtKK++Pa7InA6yCbqoixK4T61YtVJe3NZsIP3wKWvwwR/cfWeyR0EW
ngSksGUSOQ84p2N/GA+75qscOLcyaOfruXeLYKUV9rVrT2v7QUzqQXA4Tdax
TcCYWVOoVWRzuIFTbMXIIlFHclcp8sWJibQ9DueYyAUrMFooZoNQwCdUjp0Z
5DMhXK+qxAfbpbuiTxX0Q2msQBqRUUoaB/L1ULTuPSL7ggNlJN9tNh8s3N1p
4UX2eEVicF2TtmaAR54/2kmLnWrSc6qjbZrzolEqMMA12BNJKp4pwlyLU62j
NdlQhj9R0pIkJhL3Ep7hWC7o+jG7Cqgaq/w6VUIfPJX7r6m8jlgm6yaCB5SN
PGmRGKRaIRlId3eOOMSIxTXhjcBTpWh3G/TM76ao45ZakVWP4Zi1vrCzV+sO
abl7SiNxEb6xqIUmP9zBiGsilsQhYu0/s4NSICV/p9qIQ9vhH6LL1DoQHkTm
6HFs09uUvrin1VGmSuuGL3TBniBFsaYeJyiinE5NYDaiZSE4BsEPD+KHo4Qk
VUAJYQrAGz02bEjMg9LtjGgeEUAU+eR0q6LKBQkewQkXseDGo9bxQflbVCpD
V1biHYqiPdxSbziJDob3IeLyaKPD6akQba9LmI/0UffPhNgJ4dDtXMABQT/X
Hr47O9zSk7GWRL3NpCJYKvMkMwsWxZlJUn+EAkf9fWfdW0QgqMckdvLBmwws
JQtlLu9aOrvCMasqV+Pl704k8h1zSSgOTs0v5+4qqA/j20qv91y5l7o9mHwB
Y4cHU3oibehUku61JCXiIi2nDdpqB6OLqveI9zBpO1o5bI1cwTXc/jD+eO9v
l6C4KUDkvKl5kNpBKzAHlOdPXmlOwXQuXeef0cyiyrymup87NH34hg+Cjq5B
dNu4QB/tG2dbUNM6j6tKJqk0l5gLeBG0A/WkXlz1lO60tqMdMRJjQGI4Fpvw
RSh3bhiOxqNNYuLcu2jPHUn6ZsHfQpQkU1pEqajuQHPnVsJGEVt9imq7SdbX
dF9qix4yNDj2hmZrDVpgya39KQnbBVQz/vQh+tSLR1YJdulZrHXJanEOP8rv
uecCikcbYeG1IsEtsDxVL0/Ub/hOPXoOE61b/55Ayh/cDbAdzp57q74eRIDm
XmAUxrYujO0M/FCOoE9zdH7l6Hpeum83vFiAYGsdKCfFk85M7gVRgfuGc9++
7Xrag4s37mp1vqSW7azWjPFarJE0Eh1ggtSUoFdbbIPJfOFdCky7TlbrH0lU
iO5tkgb0mFJjSzN/z6bLulJzoR/6A1x20h6bNehAVRuoLw4BcjDzpUrqYWqq
wCbADQUGlNda/0UW5qW71ko2+TsQ1bXf8HfZT1duh+1kQ6DaC/eT5QwkQU10
bYZ4AGmH3QTjfDQZRhU6XZFrNmCutQ9DCXb29WWPPRrxONKKvOGkXOKL0VRB
h1wqO/TTlhCUb6wdz539FFxknCBG5Pm4G+la4nhEP3rRwMRyBg1rlOjE9JY3
iX6nOjrHDj6IWAd8Nyufdxy0/ScVytcvkEd/giYKOeYlHapYTdKo4ZoBnDEw
7q6KIVdpf4v+QbQ3CTuultFFDl0Tb86KQJPqMybkEUCKTAMxF7k2aW3NVMon
GvFQ1iHAtPKdicmbMyvo7hRktTIdwDs2/lWHp2sJDBKqLjH9dIUuiRUr/h6a
x6O0D1bmFSeglxb9SnYW5IjJudFLrFX87d5obQ7CzCzQP9BzR4yPwkAuKkq9
GRDK3wptDcdXBY6DqwKdnKSMNcldcZcuGl83EbzpSkn4j5JHoR4334WAmhQ4
X0TK6rem/WAUQdRRJaH9CYDZx/St4CZZS9e4OyjY14AOVQ9fWxR86YfXKudR
/u+EG1/Kx1G1sV/OI7NC1gMfsEbF176anwC0h8LvrGyCHpIpH/1KIzremQQW
YroQD7U7dsGdFzwLUcR9oH93jkHF0O6VGXH0CCMK/FuUwVNEUH8I0lZ3cCnG
PV6tEd7nQH4fudkwj/xv7O4Qy2MXHnUKJ4d8th1GpPU4Xa0xzKt0gyc/RG8b
AVRkEnhTBKM8Zb57wjlDea4UanFgtNUFTaJFVufacJOUVA7RpN7l+ghhqUnm
Wv4rhXdgJ2qtwSlL/miJIekAa0rA51TcZh2eS7K3tKaYwai5OIx5C0ZUQPfH
An5NHgoTZirKmOl3JbQQo6aclvDhEzFpOuPn4YOnPeF5DLfCxurqbYj/pPzv
eStBXjW/ytpPRN7oTsFb1EKvVHx9kFyl4K5rpYYH8yaj3hZsirk4MChTZbNW
EQDEN8ck8Mq7ojTAyO4NAhGc4NYaMimukey7IMymvgPQOllrXgX+81beulfJ
EaZq19SFHeQ2Vx/D+Oou4RVSzHhLHYHEwRngB5v9VMyEKazhrlrbWUHoR7K1
Zl14J3q4ATgISGg4tcM2mFUxY5NFQpLCHzPjVPyj52rCiKnj/oyX2qtQ956V
DXe2Z7MW2AwI18TV9tfelFKPk7SrdfeEPmUyubRxV3jl324tjFzywy76fcKb
EjjfeuIWYRfVN9mY5k2DZ5fcm/j5WPpnsPo1Dm6DDxv4n2/pcgWtVQ8vjQ+v
pQ86XXhrkRRKNRgfdRdjkpQGKEir9YpOpWWVCZoAlAomwZ3Hmk/XVPbhLuPF
u09QDlSFJl/z+4UMwmK8y7wNai+GYI/jwxIu4cH9kzh+TZdnpitmC0Gevov1
hIHDPdZxUEUMe2Fj/2FhuN2YwgdycSKCZCn1Gq7HsOby5RFRg6CRsy/mwGRk
m60JtEALAPE1ie52CsrOIcMBl+swRBoNw9KASUgmzpUrno4bm5T+agB/abhT
eK5c3kHUpJtugg6v2423ABDFoSLNs260O3afjSNu4/yrUPKKT/wcdgeZN4wH
SgP14674Zmn45kuxsAKjBDFCPCO4v+HM7Mcly/u0o7lvHmJo5+zCeSqV0vgy
h66LHKhYj+5gON69RZ2tHUorxqfEPVxxMjA9LvnAaoLgiy7nsTYTLH+/OdbI
CcAOmgr5WIGkrlOKCZes0X3KqOm7SiNXo9dV5xpk16FfouvqDQIStCKjwKCt
wrFl+jOXcy5Xqa4o9l5hSbCPqkvUCX8Oq0DFxnBd0BFuVMPfdynZWir1SHYH
p6+5DJJZlAjAm4Vgwv1ypyHKvw73+Yj2+esb3Gp7QBngT7Y66IeGaEgFRPSu
55sUTItX2B3ajC5/evD8bqU1RhSyiApYJVzl+lZom5iAMvj4KXE8Xn9OFf9x
ik7YGqXzVql9vlPG1qBXxensx8PjENXHZ9Q2ElnSU2fK5ig2SdwECPedBG4v
+5Lz2VJyKdikiduhVus1Wr3AxsNFBp2IcchGNiGcjH6QHFRY74owJhZOBuZd
9aP2RMJ+iKu56jPx2heetXl8SwL1UBiqz4jm+mNpdEAExIfRb7zvfpKWSkUs
UWgo5x0Py481XzsogTDVFA583EdEmSEqhu4iGzq3Qax7p+Ce9/b5GUbHBtcO
E63bHajgG6Vx61iVdiXps35LuOadu1Q6NU51cc/rd/dS3tEz71eGKiiWNtlk
xkQybShpKLjox4U32feId0dVvloqgalvK7JZV1z254r9CZnkZJLiOd8/I7rn
ndScorQRu+ar4uW8ahooeQwzFwSDnW1SpLS+2DWe3Jhwwm31NEYb3HcqfhVk
W5AUnUvuFCf6NNQZgj3t1ERGLiVxzOCbeQFFrzqug4pobegPPd4IXVZoI+KK
BCXiDt3dSqlN4boPXyv+QVQSz/jfUu5AxSbrzvM3x3/aYUHnYXu4wrQ6IMZl
qjLNkAn4XWSnoq8O5YSsw2HE9ai/65kZiX3tNgDUOlLj2jIDXpbL8rSDDAwO
ShG7EFAls5XeJzFFLpRr+gRdJO+LW6VVZitNstbuRNiJUl4M2wUjIS5BIG0H
GwwE1f0gjBm1ZOB3GVbYnsHoreScR0K3yRBejoatJgQj14hHcSSVJz5ViBUH
W7kGKIqUvm+Q5xsEGckMBpxppw05aShzuHI44/t3Eu5TFUatsRnma/X3UH0k
RnYwkQyvn+NrCTGTh2wNd60I5/ZgkOzu+o7ppZhgpYA2/fzx6JW2/wg6D/32
2931+Or0+CX3lULlwZnxx6ArwnLxsR9PnjMUh4hB0OKHU3JzUnmBQRKuQwoI
7hLiLddbxNtGc99JXVFvXYK1b/hmfY8tmV0VZPq/v9Lru7lLtdeQQ2AvTnaB
LYEvlBhIQGABYGmOdvem8s0e+yFb9qQ8t0nYT6IOlSSmveMhE+9U7hJmAygm
Rw0oCfdQmtxtodfRPo8NU395e1QgYTgYNN22+hhOgmaFQVdxPtvYUEGIOaSA
wPGRYFqn1ACzwIxuhpQD6veWwUyL4lNKZgHVZa1W3CO0amnZ8VLTGDUMyV9l
9QnFEYzhW23JTdtTyrRgf5MhJZ33QMsnah2Q1GyuDMVCaG4hx1v3XPtGmHtp
DEBtNI53OOw7n1xPTFb7CGCCdfC0UyO0Q2Ok3Ov5byXxwV9eYMnsDfGnW18b
w+O5qGRFN15PMIqOvbJlZuLcCzhuSvroLL6UtKlq4Tu1BFbVeOA5ZcWCD2/o
ntYsRsqDsTNhenFn4IT5KkPxzDX1s1b2yi2+4/7SvPwTtw0Ukjov6joDjjr9
JGv0/euiZrDf0/TQ0UR4Tat2/oiqXCdudBSY6EIYRB0XW5eonSJCyNaolU2Q
9ECnyICDCL6HqaQBVbIu9zvrTyVSaVSMGy836IHTOnjBEJekpptb6iZEWQWu
HQ17UnU7xNMtnfs61ZundBtD5S5PaDfIA5w60/eZ6dzFKQ1u0SvmcZ96vTUx
MHW6LpPsd77EBU7+IsSNtudxF+dGzV/w1Z9bWfphb9rKBtaF9rGmu5fVlJ6C
FQ0syJbk+tUMKAUR2djt6wWlnj5qlRUkefW90y+yq2CpARxjWshCxOd2kaWL
lPSj1pCssIuMcKq6yug0d9kFHmGgmccDxkUNU0xTKSVnnHs/u2o+H1O+DRo8
hTrsbg8CVPKYlfEsfbwOSVSvqMMAlikpPAood6cS77z+xPfSa9BmG24I37y3
dtpKq1shD7yjfT964y2IkKPhoVPOH1NCVUn9irRRfaKbG6rI+l5t47ED/qgf
Zfeg33HBbMBn3jFPPAsOi983NSYD5xA/3o/vV+5opxS2OJxgbQHorRq0EC8m
eSlczkPkpMAv9Yu09jBYzO4mdKHizBnukRB1hSVJ51s+QhVw6Cf8TV9zNmk+
j0w2OB1SShkHg0baM7rDiMWdDa+RTCKCcN4JsRVcMsYa4+N6Ma4k+z0eBYoj
4EGgJnLCoDu+debCGI9YLV6hoUNLajdwJ2ROvnsMerB27ynl3R9p6+yFYklS
v6LrStszcaFiqqTfI36nF21GCAmwATNbqBfIBUDEo6Op4zqKBCg3FpTbKqDL
e3UA7U6Im1izGyP2/3BodBVc4EAObmo3ZUl9wc6JlPwQJvr5fAycRdeQ1Ntm
bjedr+8Min5my6ldXiFo8pY/4x37FVJK2GfdreVE4YBGqFLzFfYsc9Hfpm6w
KcUb5nFzzN3zSx365/6NlG88WMuFpO3hU+6Ui1frBpfraHUByJTAsc3asQvq
dt7GGjc+26QVRxmC9brEyJUsiN2/gkJXUU9fWGekzDA2s8WRg8W4mB/nHCP3
oPxInlLHkeP2ObCSVE5poaluBf+GNMrOXwlmc+IiN2Znb9lUpfc0vKL8YlkU
cvc5d5DaKuSdSaAmLrQVCepOBkN+ZQtC4FHKdu+7QKLXblwX0LYS0g9ivQ6A
uhPwwtcoFqxV1mt3//Jwd91mf9N9tPbZurVU2Ud5RbMwLE1fyO5ld9uZ27Wd
LknaV1FroHxLgVK+RsXBaflKsZkKb7W/1sWnojrJJcqh79KnKrNzVVIewr0q
gBfCTZPQVx/cgMNJlKW7wplvs40TD3x+Acc80LUvLJYGoTwJR4Ygz8uCEnZw
4ZTor++365XTztfold2qXHM9uh19fT3LRFI6OQ0S9gHfAwCDwYDSsBCUGfla
S6bM387YQLaz/7Y/BzZt9//hgwOU3l1JxixFBklOJKBpX5Ug2z5s8+knWM+b
Bk1r84HkrPlgsxlbQjew2vzXAiYPJFmnfXzrk/kLCr2++ZhgSwzzlwZvSumb
t8UywYSj86KZJrMkLQFsUZbEzl/Dr8umxLbY4wTbPcH0Gpg0/P4/kF+D6l88
JH1zDoI4NxdJuabeeAAU5kxCF/NtwUKDQ3WLhc2pucpAI4djdDUDs7jMLJzI
nzO8IqNI4KHLBNQNTKHKxE6HM5Qv5hY2/5cU5n6xBNPKXDQrTHWq8Hl49wIv
tIFB36UrfH6TY/OWdAvYItfofZovYY6j9G9NDovHKzOuUUW6w5gMwHibLHLg
XR8tlk5mDWoe54Cirbmx6QRevLQT1h6LDMseUC9Lmsx8lBi1ZMmnpRB1JTfz
rFi2hhtK8TfaU5LL8cbi7D+muYPJ9/XgqVRSI51raddAzyBD/y8igndxr7wA
AA== overlay L2 network.
-->

</rfc>