
Network Working Group David Cheriton
Request for Comments: 1045 Stanford University
 February 1988

 VMTP: VERSATILE MESSAGE TRANSACTION PROTOCOL
 Protocol Specification

STATUS OF THIS MEMO

This RFC describes a protocol proposed as a standard for the Internet
community. Comments are encouraged. Distribution of this document is
unlimited.

OVERVIEW

This memo specifies the Versatile Message Transaction Protocol (VMTP)
[Version 0.7 of 19-Feb-88], a transport protocol specifically designed
to support the transaction model of communication, as exemplified by
remote procedure call (RPC). The full function of VMTP, including
support for security, real-time, asynchronous message exchanges,
streaming, multicast and idempotency, provides a rich selection to the
VMTP user level. Subsettability allows the VMTP module for particular
clients and servers to be specialized and simplified to the services
actually required. Examples of such simple clients and servers include
PROM network bootload programs, network boot servers, data sensors and
simple controllers, to mention but a few examples.

RFC 1045 VMTP February 1988

 Table of Contents

1. Introduction 1

 1.1. Motivation 2
 1.1.1. Poor RPC Performance 2
 1.1.2. Weak Naming 3
 1.1.3. Function Poor 3
 1.2. Relation to Other Protocols 4
 1.3. Document Overview 5

2. Protocol Overview 6

 2.1. Entities, Processes and Principals 7
 2.2. Entity Domains 9
 2.3. Message Transactions 10
 2.4. Request and Response Messages 11
 2.5. Reliability 12
 2.5.1. Transaction Identifiers 13
 2.5.2. Checksum 14
 2.5.3. Request and Response Acknowledgment 14
 2.5.4. Retransmissions 15
 2.5.5. Timeouts 15
 2.5.6. Rate Control 18
 2.6. Security 19
 2.7. Multicast 21
 2.8. Real-time Communication 22
 2.9. Forwarded Message Transactions 24
 2.10. VMTP Management 25
 2.11. Streamed Message Transactions 25
 2.12. Fault-Tolerant Applications 28
 2.13. Packet Groups 29
 2.14. Runs of Packet Groups 31
 2.15. Byte Order 32
 2.16. Minimal VMTP Implementation 33
 2.17. Message vs. Procedural Request Handling 33
 2.18. Bibliography 34

3. VMTP Packet Formats 37

 3.1. Entity Identifier Format 37
 3.2. Packet Fields 38

Cheriton [page i]

RFC 1045 VMTP February 1988

 3.3. Request Packet 45
 3.4. Response Packet 47

4. Client Protocol Operation 49

 4.1. Client State Record Fields 49
 4.2. Client Protocol States 51
 4.3. State Transition Diagrams 51
 4.4. User Interface 52
 4.5. Event Processing 53
 4.6. Client User-invoked Events 54
 4.6.1. Send 54
 4.6.2. GetResponse 56
 4.7. Packet Arrival 56
 4.7.1. Response 58
 4.8. Management Operations 61
 4.8.1. HandleNoCSR 62
 4.9. Timeouts 64

5. Server Protocol Operation 66

 5.1. Remote Client State Record Fields 66
 5.2. Remote Client Protocol States 66
 5.3. State Transition Diagrams 67
 5.4. User Interface 69
 5.5. Event Processing 70
 5.6. Server User-invoked Events 71
 5.6.1. Receive 71
 5.6.2. Respond 72
 5.6.3. Forward 73
 5.6.4. Other Functions 74
 5.7. Request Packet Arrival 74
 5.8. Management Operations 78
 5.8.1. HandleRequestNoCSR 79
 5.9. Timeouts 82

6. Concluding Remarks 84

I. Standard VMTP Response Codes 85

II. VMTP RPC Presentation Protocol 87

Cheriton [page ii]

RFC 1045 VMTP February 1988

 II.1. Request Code Management 87

III. VMTP Management Procedures 89

 III.1. Entity Group Management 100
 III.2. VMTP Management Digital Signatures 101

IV. VMTP Entity Identifier Domains 102

 IV.1. Domain 1 102
 IV.2. Domain 3 104
 IV.3. Other Domains 105
 IV.4. Decentralized Entity Identifier Allocation 105

V. Authentication Domains 107

 V.1. Authentication Domain 1 107
 V.2. Other Authentication Domains 107

VI. IP Implementation 108

VII. Implementation Notes 109

 VII.1. Mapping Data Structures 109
 VII.2. Client Data Structures 111
 VII.3. Server Data Structures 111
 VII.4. Packet Group transmission 112
 VII.5. VMTP Management Module 113
 VII.6. Timeout Handling 114
 VII.7. Timeout Values 114
 VII.8. Packet Reception 115
 VII.9. Streaming 116
 VII.10. Implementation Experience 117

VIII. UNIX 4.3 BSD Kernel Interface for VMTP 118

Index 120

Cheriton [page iii]

RFC 1045 VMTP February 1988

 List of Figures

 Figure 1-1: Relation to Other Protocols 4
 Figure 3-1: Request Packet Format 45
 Figure 3-2: Response Packet Format 47
 Figure 4-1: Client State Transitions 52
 Figure 5-1: Remote Client State Transitions 68
 Figure III-1: Authenticator Format 92
 Figure VII-1: Mapping Client Identifier to CSR 109
 Figure VII-2: Mapping Server Identifiers 110
 Figure VII-3: Mapping Group Identifiers 111

Cheriton [page iv]

RFC 1045 VMTP February 1988

1. Introduction

The Versatile Message Transaction Protocol (VMTP) is a transport
protocol designed to support remote procedure call (RPC) and general
transaction-oriented communication. By transaction-oriented
communication, we mean that:

 - Communication is request-response: A client sends a request
 for a service to a server, the request is processed, and the
 server responds. For example, a client may ask for the next
 page of a file as the service. The transaction is terminated
 by the server responding with the next page.

 - A transaction is initiated as part of sending a request to a
 server and terminated by the server responding. There are no
 separate operations for setting up or terminating associations
 between clients and servers at the transport level.

 - The server is free to discard communication state about a
 client between transactions without causing incorrect behavior
 or failures.

The term message transaction (or transaction) is used in the reminder of
this document for a request-response exchange in the sense described
above.

VMTP handles the error detection, retransmission, duplicate suppression
and, optionally, security required for transport-level end-to-end
reliability.

The protocol is designed to provide a range of behaviors within the
transaction model, including:

 - Minimal two packet exchanges for short, simple transactions.

 - Streaming of multi-packet requests and responses for efficient
 data transfer.

 - Datagram and multicast communication as an extension of the
 transaction model.

Example Uses:

 - Page-level file access - VMTP is intended as the transport
 level for file access, allowing simple, efficient operation on
 a local network. In particular, VMTP is appropriate for use
 by diskless workstations accessing shared network file

Cheriton [page 1]

RFC 1045 VMTP February 1988

 servers.

 - Distributed programming - VMTP is intended to provide an
 efficient transport level protocol for remote procedure call
 implementations, distributed object-oriented systems plus
 message-based systems that conform to the request-response
 model.

 - Multicast communication with groups of servers to: locate a
 specific object within the group, update a replicated object,
 synchronize the commitment of a distributed transaction, etc.

 - Distributed real-time control with prioritized message
 handling, including datagrams, multicast and asynchronous
 calls.

The protocol is designed to operate on top of a simple unreliable
datagram service, such as is provided by IP.

1.1. Motivation

VMTP was designed to address three categories of deficiencies with
existing transport protocols in the Internet architecture. We use TCP
as the key current transport protocol for comparison.

1.1.1. Poor RPC Performance

First, current protocols provide poor performance for remote procedure
call (RPC) and network file access. This is attributable to three key
causes:

 - TCP requires excessive packets for RPC, especially for
 isolated calls. In particular, connection setup and clear
 generates extra packets over that needed for VMTP to support
 RPC.

 - TCP is difficult to implement, speaking purely from the
 empirical experience over the last 10 years. VMTP was
 designed concurrently with its implementation, with focus on
 making it easy to implement and providing sensible subsets of
 its functionality.

 - TCP handles packet loss due to overruns poorly. We claim that
 overruns are the key source of packet loss in a
 high-performance RPC environment and, with the increasing

Cheriton [page 2]

RFC 1045 VMTP February 1988

 performance of networks, will continue to be the key source.
 (Older machines and network interfaces cannot keep up with new
 machines and network interfaces. Also, low-end network
 interfaces for high-speed networks have limited receive
 buffering.)

VMTP is designed for ease of implementation and efficient RPC. In
addition, it provides selective retransmission with rate-based flow
control, thus addressing all of the above issues.

1.1.2. Weak Naming

Second, current protocols provide inadequate naming of transport-level
endpoints because the names are based on IP addresses. For example, a
TCP endpoint is named by an Internet address and port identifier.
Unfortunately, this makes the endpoint tied to a particular host
interface, not specifically the process-level state associated with the
transport-level endpoint. In particular, this form of naming causes
problems for process migration, mobile hosts and multi-homed hosts.
VMTP provides host-address independent names, thereby solving the above
mentioned problems.

In addition, TCP provides no security and reliability guarantees on the
dynamically allocated names. In particular, other than well-known
ports, (host-addr, port-id)-tuples can change meaning on reboot
following a crash. VMTP provides large identifiers with guarantee of
stability, meaning that either the identifier never changes in meaning
or else remains invalid for a significant time before becoming valid
again.

1.1.3. Function Poor

TCP does not support multicast, real-time datagrams or security. In
fact, it only supports pair-wise, long-term, streamed reliable
interchanges. Yet, multicast is of growing importance and is being
developed for the Internet (see RFC 966 and 988). Also, a datagram
facility with the same naming, transmission and reception facilities as
the normal transport level is a powerful asset for real-time and
parallel applications. Finally, security is a basic requirement in an
increasing number of environments. We note that security is natural to
implement at the transport level to provide end-to-end security (as
opposed to (inter)network level security). Without security at the
transport level, a transport level protocol cannot guarantee the
standard transport level service definition in the presence of an
intruder. In particular, the intruder can interject packets or modify

Cheriton [page 3]

RFC 1045 VMTP February 1988

packets while updating the checksum, making mockery out of the
transport-level claim of "reliable delivery".

In contrast, VMTP provides multicast, real-time datagrams and security,
addressing precisely these weaknesses.

In general, VMTP is designed with the next generation of communication
systems in mind. These communication systems are characterized as
follows. RPC, page-level file access and other request-response
behavior dominates. In addition, the communication substrate, both
local and wide-area, provides high data rates, low error rates and
relatively low delay. Finally, intelligent, high-performance network
interfaces are common and in fact required to achieve performance that
approximates the network capability. However, VMTP is also designed to
function acceptably with existing networks and network interfaces.

1.2. Relation to Other Protocols

VMTP is a transport protocol that fits into the layered Internet
protocol environment. Figure 1-1 illustrates the place of VMTP in the
protocol hierarchy.

 +-----------+ +----+ +-----------------+ +------+
 |File Access| |Time| |Program Execution| |Naming|... Application
 +-----------+ +----+ +-----------------+ +------+ Layer
 | | | | |
 +-----------+-----------+-------------+------+
 |
 +------------------+
 | RPC Presentation | Presentation
 +------------------+ Layer
 |
 +------+ +--------+
 | TCP | | VMTP | Transport
 +------+ +--------+ Layer
 | |
 +-----------------------------------+
 | Internet Protocol & ICMP | Internetwork
 +-----------------------------------+ Layer

 Figure 1-1: Relation to Other Protocols

The RPC presentation level is not currently defined in the Internet
suite of protocols. Appendix II defines a proposed RPC presentation
level for use with VMTP and assumed for the definition of the VMTP
management procedures. There is also a need for the definition of the

Cheriton [page 4]

RFC 1045 VMTP February 1988

Application layer protocols listed above.

If internetwork services are not required, VMTP can be used without the
IP layer, layered directly on top of the network or data link layers.

1.3. Document Overview

The next chapter gives an overview of the protocol, covering naming,
message structure, reliability, flow control, streaming, real-time,
security, byte-ordering and management. Chapter 3 describes the VMTP
packet formats. Chapter 4 describes the client VMTP protocol operation
in terms of pseudo-code for event handling. Chapter 5 describes the
server VMTP protocol operation in terms of pseudo-code for event
handling. Chapter 6 summarizes the state of the protocol, some
remaining issues and expected directions for the future. Appendix I
lists some standard Response codes. Appendix II describes the RPC
presentation protocol proposed for VMTP and used with the VMTP
management procedures. Appendix III lists the VMTP management
procedures. Appendix IV proposes initial approaches for handling entity
identification for VMTP. Appendix V proposes initial authentication
domains for VMTP. Appendix VI provides some details for implementing
VMTP on top of IP. Appendix VII provides some suggestions on host
implementation of VMTP, focusing on data structures and support
functions. Appendix VIII describes a proposed program interface for
UNIX 4.3 BSD and its descendants and related systems.

Cheriton [page 5]

RFC 1045 VMTP February 1988

2. Protocol Overview

VMTP provides an efficient, reliable, optionally secure transport
service in the message transaction or request-response model with the
following features:

 - Host address-independent naming with provision for multiple
 forms of names for endpoints as well as associated (security)
 principals. (See Sections 2.1, 2.2, 3.1 and Appendix IV.)

 - Multi-packet request and response messages, with a maximum
 size of 4 megaoctets per message. (Sections 2.3 and 2.14.)

 - Selective retransmission. (Section 2.13.) and rate-based flow
 control to reduce overrun and the cost of overruns. (Section
 2.5.6.)

 - Secure message transactions with provision for a variety of
 encryption schemes. (Section 2.6.)

 - Multicast message transactions with multiple response messages
 per request message. (Section 2.7.)

 - Support for real-time communication with idempotent message
 transactions with minimal server overhead and state (Section
 2.5.3), datagram request message transactions with no
 response, optional header-only checksum, priority processing
 of transactions, conditional delivery and preemptive handling
 of requests (Section 2.8)

 - Forwarded message transactions as an optimization for certain
 forms of nested remote procedure calls or message
 transactions. (Section 2.9.)

 - Multiple outstanding (asynchronous) message transactions per
 client. (Section 2.11.)

 - An integrated management module, defined with a remote
 procedure call interface on top of VMTP providing a variety of
 communication services (Section 2.10.)

 - Simple subset implementation for simple clients and simple
 servers. (Section 2.16.)

This chapter provides an overview of the protocol as introduction to the
basic ideas and as preparation for the subsequent chapters that describe
the packet formats and event processing procedures in detail.

Cheriton [page 6]

RFC 1045 VMTP February 1988

In overview, VMTP provides transport communication between network-
visible entities via message transactions. A message transaction
consists of a request message sent by the client, or requestor, to a
group of server entities followed by zero or more response messages to
the client, at most one from each server entity. A message is
structured as a message control portion and a segment data portion. A
message is transmitted as one or more packet groups. A packet group is
one or more packets (up to a maximum of 32 packets) grouped by the
protocol for acknowledgment, sequencing, selective retransmission and
rate control.

Entities and VMTP operations are managed using a VMTP management
mechanism that is accessed through a procedural interface (RPC)
implemented on top of VMTP. In particular, information about a remote
entity is obtained and maintained using the Probe VMTP management
operation. Also, acknowledgment information and requests for
retransmission are sent as notify requests to the management module.
(In the following description, reference to an "acknowledgment" of a
request or a response refers to a management-level notify operation that
is acknowledging the request or response.)

2.1. Entities, Processes and Principals

VMTP defines and uses three main types of identifiers: entity
identifiers, process identifiers and principal identifiers, each 64-bits
in length. Communication takes place between network-visible entities,
typically mapping to, or representing, a message port or procedure
invocation. Thus, entities are the VMTP communication endpoints. The
process associated with each entity designates the agent behind the
communication activity for purposes of resource allocation and
management. For example, when a lock is requested on a file, the lock
is associated with the process, not the requesting entity, allowing a
process to use multiple entity identifiers to perform operations without
lock conflict between these entities. The principal associated with an
entity specifies the permissions, security and accounting designation
associated with the entity. The process and principal identifiers are
included in VMTP solely to make these values available to VMTP users
with the security and efficiency provided by VMTP. Only the entity
identifiers are actively used by the protocol.

Entity identifiers are required to have three properties;

Uniqueness Each entity identifier is uniquely defined at any given
 time. (An entity identifier may be reused over time.)

Stability An entity identifier does not change between valid

Cheriton [page 7]

RFC 1045 VMTP February 1988

 meanings without suitable provision for removing
 references to the entity identifier. Certain entity
 identifiers are strictly stable, (i.e. never changing
 meaning), typically being administratively assigned
 (although they need not be bound to a valid entity at
 all times), often called well-known identifiers. All
 other entity identifiers are required to be T-stable,
 not change meaning without having remained invalid for
 at least a time interval T.

Host address independent
 An entity identifier is unique independent of the host
 address of its current host. Moreover, an entity
 identifier is not tied to a single Internet host
 address. An entity can migrate between hosts, reside on
 a mobile host that changes Internet addresses or reside
 on a multi-homed host. It is up to the VMTP
 implementation to determine and maintain up to date the
 host addresses of entities with which it is
 communicating.

The stability of entity identifiers guarantees that an entity identifier
represents the same logical communication entity and principal (in the
security sense) over the time that it is valid. For example, if an
entity identifier is authenticated as having the privileges of a given
user account, it continues to have those privileges as long as it is
continuously valid (unless some explicit notice is provided otherwise).
Thus, a file server need not fully authenticate the entity on every file
access request. With T-stable identifiers, periodically checking the
validity of an entity identifier with period less than T seconds detects
a change in entity identifier validity.

A group of entities can form an entity group, which is a set of zero or
more entities identified by a single entity identifier. For example,
one can have a single entity identifier that identifies the group of
name servers. An entity identifier representing an entity group is
drawn from the same name space as entity identifiers. However, single
entity identifiers are flagged as such by a bit in the entity
identifier, indicating that the identifier is known to identify at most
one entity. In addition to the group bit, each entity identifier
includes other standard type flags. One flag indicates whether the
identifier is an alias for an entity in another domain (See Section 2.2
below.). Another flag indicates, for an entity group identifier,
whether the identifier is a restricted group or not. A restricted group
is one in which an entity can be added only by another entity with group
management authorization. With an unrestricted group, an entity is
allowed to add itself. If an entity identifier does not represent a

Cheriton [page 8]

RFC 1045 VMTP February 1988

group, a type bit indicates whether the entity uses big-endian or
little-endian data representation (corresponding to Motorola 680X0 and
VAX byte orders, respectively). Further specification of the format of
entity identifiers is contained in Section 3.1 and Appendix IV.

An entity identifier identifies a Client, a Server or a group of
Servers <1>. A Client is always identified by a T-stable identifier. A
server or group of servers may be identified by a a T-stable identifier
(group or single entity) or by strictly stable (statically assigned)
entity group identifier. The same T-stable identifier can be used to
identify a Client and Server simultaneously as long as both are
logically associated with the same entity. The state required for
reliable, secure communication between entities is maintained in client
state records (CSRs), which include the entity identifier of the Client,
its principal, its current or next transaction identifier and so on.

2.2. Entity Domains

An entity domain is an administration or an administration mechanism
that guarantees the three required entity identifier properties of
uniqueness, stability and host address independence for the entities it
administers. That is, entity identifiers are only guaranteed to be
unique and stable within one entity domain. For example, the set of all
Internet hosts may function as one domain. Independently, the set of
hosts local to one autonomous network may function as a separate domain.
Each entity domain is identified by an entity domain identifier, Domain.
Only entities within the same domain may communicate directly via VMTP.
However, hosts and entities may participate in multiple entity domains
simultaneously, possibly with different entity identifiers. For
example, a file server may participate in multiple entity domains in
order to provide file service to each domain. Each entity domain
specifies the algorithms for allocation, interpretation and mapping of
entity identifiers.

Domains are necessary because it does not appear feasible to specify one
universal VMTP entity identification administration that covers all
entities for all time. Domains limit the number of entities that need
to be managed to maintain the uniqueness and stability of the entity

<1> Terms such as Client, Server, Request, Response, etc. are
capitalized in this document when they refer to their specific meaning
in VMTP.

Cheriton [page 9]

RFC 1045 VMTP February 1988

name space. Domains can also serve to separate entities of different
security levels. For instance, allocation of a unclassified entity
identifier cannot conflict with secret level entity identifiers because
the former is interpreted only in the unclassified domain, which is
disjoint from the secret domain.

It is intended that there be a small number of domains. In particular,
there should be one (or a few) domains per installation "type", rather
than per installation. For example, the Internet is expected to use one
domain per security level, resulting in at most 8 different domains.
Cluster-based internetwork architectures, those with a local cluster
protocol distinct from the wide-area protocol, may use one domain for
local use and one for wide-area use.

Additional details on the specification of specific domains is provided
in Appendix IV.

2.3. Message Transactions

The message transaction is the unit of interaction between a Client that
initiates the transaction and one or more Servers. A message
transaction starts with a request message generated by a client. At
the service interface, a server becomes involved with a transaction by
receiving and accepting the request. A server terminates its
involvement with a transaction by sending a response message. In a
group message transaction, the server entity designated by the client
corresponds to a group of entities. In this case, each server in the
group receives a copy of the request. In the client’s view, the
transaction is terminated when it receives the response message or, in
the case of a group message transaction, when it receives the last
response message. Because it is normally impractical to determine when
the last response message has been received. the current transaction is
terminated by VMTP when the next transaction is initiated.

Within an entity domain, a transaction is uniquely identified by the
tuple (Client, Transaction, ForwardCount). where Transaction is a
32-bit number and ForwardCount is a 4-bit value. A Client uses
monotonically increasing Transaction identifiers for new message
transactions. Normally, the next higher transaction number, modulo
2**32, is used for the next message transaction, although there are
cases in which it skips a small range of Transaction identifiers. (See
the description of the STI control flag.) The ForwardCount is used when
a message transaction is forwarded and is zero otherwise.

A Client generates a stream of message transactions with increasing
transaction identifiers, directed at a diversity of Servers. We say a

Cheriton [page 10]

RFC 1045 VMTP February 1988

Client has a transaction outstanding if it has invoked a message
transaction, but has not received the last Response (or possibly any
Response). Normally, a Client has only one transaction outstanding at a
time. However, VMTP allows a Client to have multiple message
transactions outstanding simultaneously, supporting streamed,
asynchronous remote procedure call invocations. In addition, VMTP
supports nested calls where, for example, procedure A calls procedure B
which calls procedure C, each on a separate host with different client
entity identifiers for each call but identified with the same process
and principal.

2.4. Request and Response Messages

A message transaction consists of a request message and one or more
Response messages. A message is structured as message control block
(MCB) and segment data, passed as parameters, as suggested below.

 +-----------------------+
 | Message Control Block |
 +-----------------------+
 +-----------------------------------+
 | segment data |
 +-----------------------------------+

In the request message, the MCB specifies control information about the
request plus an optional data segment. The MCB has the following
format:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 + ServerEntityId (8 octets) +
 +-+
 | Flags | RequestCode |
 +-+
 + CoresidentEntity (8 octets) +
 +-+
 > User Data (12 octets) <
 +-+
 | MsgDelivery |
 +-+
 | SegmentSize |
 +-+

The ServerEntityId is the entity to which the Request MCB is to be sent
(or was sent, in the case of reception). The Flags indicate various
options in the request and response handling as well as whether the

Cheriton [page 11]

RFC 1045 VMTP February 1988

CoresidentEntity, MsgDelivery and SegmentSize fields are in use. The
RequestCode field specifies the type of Request. It is analogous to a
packet type field of the Ethernet, acting as a switch for higher-level
protocols. The CoresidentEntity field, if used, designates a subgroup
of the ServerEntityId group to which the Request should be routed,
namely those members that are co-resident with the specified entity (or
entity group). The primary intended use is to specify the manager for a
particular service that is co-resident with a particular entity, using
the well-known entity group identifier for the service manager in the
ServerEntityId field and the identifier for the entity in the
CoresidentEntity field. The next 12 octets are user- or
application-specified.

The MsgDelivery field is optionally used by the RPC or user level to
specify the portions of the segment data to transmit and on reception,
the portions received. It provides the client and server with
(optional) access to, and responsibility for, a simple selective
transmission and reception facility. For example, a client may request
retransmission of just those portions of the segment that it failed to
receive as part of the original Response. The primary intended use is
to support highly efficient multi-packet reading from a file server.
Exploiting user-level selective retransmission using the MsgDelivery
field, the file server VMTP module need not save multi-packet Responses
for retransmission. Retransmissions, when needed, are instead handled
directly from the file server buffers.

The SegmentSize field indicates the size of the data segment, if
present. The CoresidentEntity, MsgDelivery and SegmentSize fields are
usable as additional user data if they are not otherwise used.

The Flags field provides a simple mechanism for the user level to
communicate its use of VMTP options with the VMTP module as well as for
VMTP modules to communicate this use among themselves. The use of these
options is generally fixed for each remote procedure so that an RPC
mechanism using VMTP can treat the Flags as an integral part of the
RequestCode field for the purpose of demultiplexing to the correct stub.

A Response message control block follows the same format except the
Response is sent from the Server to the Client and there is no
Coresident Entity field (and thus 20 octets of user data).

2.5. Reliability

VMTP provides reliable, sequenced transfer of request and response
messages as well as several variants, such as unreliable datagram
requests. The reliability mechanisms include: transaction identifiers,

Cheriton [page 12]

RFC 1045 VMTP February 1988

checksums, positive acknowledgment of messages and timeout and
retransmission of lost packets.

2.5.1. Transaction Identifiers

Each message transaction is uniquely identified by the pair (Client,
Transaction). (We defer discussion of the ForwardCount field to Section
2.9.) The 32-bit transaction identifier is initialized to a random
value when the Client entity is created or allocated its entity
identifier. The transaction identifier is incremented at the end of
each message transaction. All Responses with the same specified
(Client, Transaction) pair are associated with this Request.

The transaction identifier is used for duplicate suppression at the
Server. A Server maintains a state record for each Client for which it
is processing a Request, identified by (Client, Transaction). A Request
with the same (Client, Transaction) pair is discarded as a duplicate.
(The ForwardCount field must also be equal.) Normally, this record is
retained for some period after the Response is sent, allowing the Server
to filter out subsequent duplicates of this Request. When a Request
arrives and the Server does not have a state record for the sending
Client, the Server takes one of three actions:

 1. The Server may send a Probe request, a simple query
 operation, to the VMTP management module associated with the
 requesting Client to determine the Client’s current
 Transaction identifier (and other information), initialize a
 new state record from this information, and then process the
 Request as above.

 2. The Server may reason that the Request must be a new request
 because it does not have a state record for this Client if it
 keeps these state records for the maximum packet lifetime of
 packets in the network (plus the maximum VMTP retransmission
 time) and it has not been rebooted within this time period.
 That is, if the Request is not new either the Request would
 have exceeded the maximum packet lifetime or else the Server
 would have a state record for the Client.

 3. The Server may know that the Request is idempotent or can be
 safely redone so it need not care whether the Request is a
 duplicate or not. For example, a request for the current
 time can be responded to with the current time without being
 concerned whether the Request is a duplicate. The Response
 is discarded at the Client if it is no longer of interest.

Cheriton [page 13]

RFC 1045 VMTP February 1988

2.5.2. Checksum

Each VMTP packet contains a checksum to allow the receiver to detect
corrupted packets independent of lower level checks. The checksum field
is 32 bits, providing greater protection than the standard 16-bit IP
checksum (in combination with an improved checksum algorithm). The
large packets, high packet rates and general network characteristics
expected in the future warrant a stronger checksum mechanism.

The checksum normally covers both the VMTP header and the segment data.
Optionally (for real-time applications), the checksum may apply only to
the packet header, as indicated by the HCO control bit being set in the
header. The checksum field is placed at the end of the packet to allow
it to be calculated as part of a software copy or as part of a hardware
transmission or reception packet processing pipeline, as expected in the
next generation of network interfaces. Note that the number of header
and data octets is an integral multiple of 8 because VMTP requires that
the segment data be padded to be a multiple of 64 bits. The checksum
field is appended after the padding, if any. The actual algorithm is
described in Section 3.2.

A zero checksum field indicates that no checksum was transmitted with
the packet. VMTP may be used without a checksum only when there is a
host-to-host error detection mechanism and the VMTP security facility is
not being used. For example, one could rely on the Ethernet CRC if
communication is restricted to hosts on the same Ethernet and the
network interfaces are considered sufficiently reliable.

2.5.3. Request and Response Acknowledgment

VMTP assumes an unreliable datagram network and internetwork interface.
To guarantee delivery of Requests and Response, VMTP uses positive
acknowledgments, retransmissions and timeouts.

A Request is normally acknowledged by receipt of a Response associated
with the Request, i.e. with the same (Client, Transaction). With
streamed message transactions, it may also be acknowledged by a
subsequent Response that acknowledges previous Requests in addition to
the transaction it explicitly identifies. A Response may be explicitly
acknowledged by a NotifyVmtpServer operation requested of the manager
for the Server. In the case of streaming, this is a cumulative
acknowledgment, acknowledging all Responses with a lower transaction
identifier as well.) In addition, with non-streamed communication, a
subsequent Request from the same Client acknowledges Responses to all
previous message transactions (at least in the sense that either the
client received a Response or is no longer interested in Responses to

Cheriton [page 14]

RFC 1045 VMTP February 1988

those earlier message transactions). Finally, a client response timeout
(at the server) acknowledges a Response at least in the sense that the
server need not be prepared to retransmit the Response subsequently.
Note that there is no end-to-end guarantee of the Response being
received by the client at the application level.

2.5.4. Retransmissions

In general, a Request or Response is retransmitted periodically until
acknowledged as above, up to some maximum number of retransmissions.
VMTP uses parameters RequestRetries(Server) and ResponseRetries(Client)
that indicate the number of retransmissions for the server and client
respectively before giving up. We suggest the value 5 be used for both
parameters based on our experience with VMTP and Internet packet loss.
Smaller values (such as 3) could be used in low loss environments in
which fast detection of failed hosts or communication channels is
required. Larger values should be used in high loss environments where
transport-level persistence is important.

In a low loss environment, a retransmission only includes the MCB and
not the segment data of the Request or Response, resulting in a single
(short) packet on retransmission. The intended recipient of the
retransmission can request selective retransmission of all or part of
the segment data as necessary. The selective retransmission mechanism
is described in Section 2.13.

If a Response is specified as idempotent, the Response is neither
retransmitted nor stored for retransmission. Instead, the Client must
retransmit the Request to effectively get the Response retransmitted.
The server VMTP module responds to retransmissions of the Request by
passing the Request on to the server again to have it regenerate the
Response (by redoing the operation), rather than saving a copy of the
Response. Only Request packets for the last transaction from this
client are passed on in this fashion; older Request packets from this
client are discarded as delayed duplicates. If a Response is not
idempotent, the VMTP module must ensure it has a copy of the Response
for retransmission either by making a copy of the Response (either
physically or copy-on-write) or by preventing the Server from continuing
until the Response is acknowledged.

2.5.5. Timeouts

There is one client timer for each Client with an outstanding
transaction. Similarly, there is one server timer for each Client
transaction that is "active" at the server, i.e. there is a transaction

Cheriton [page 15]

RFC 1045 VMTP February 1988

record for a Request from the Client.

When the client transmits a new Request (without streaming), the client
timer is set to roughly the time expected for the Response to be
returned. On timeout, the Request is retransmitted with the APG
(Acknowledge Packet Group) bit set. The timeout is reset to the
expected roundtrip time to the Server because an acknowledgment should
be returned immediately unless a Response has been sent. The Request
may also be retransmitted in response to receipt of a VMTP management
operation indicating that selected portions of the Request message
segment need to be retransmitted. With streaming, the timeout applies
to the oldest outstanding message transaction in the run of outstanding
message transactions. Without streaming, there is one message
transaction in the run, reducing to the previous situation. After the
first packet of a Response is received, the Client resets the timeout to
be the time expected before the next packet in the Response packet group
is received, assuming it is a multi-packet Response. If not, the timer
is stopped. Finally, the client timer is used to timeout waiting for
second and subsequent Responses to a multicast Request.

The client timer is set at different times to four different values:

TC1(Server) The expected time required to receive a Response from
 the Server. Set on initial Request transmission plus
 after its management module receives a NotifyVmtpClient
 operation, acknowledging the Request.

TC2(Server) The estimated round trip delay between the client and
 the server. Set when retransmitting after receiving no
 Response for TC1(Server) time and retransmitting the
 Request with the APG bit set.

TC3(Server) The estimated maximum expected interpacket time for
 multi-packet Responses from the Server. Set when
 waiting for subsequent Response packets within a packet
 group before timing out.

TC4 The time to wait for additional Responses to a group
 Request after the first Response is received. This is
 specified by the user level.

These values are selected as follows. TC1 can be set to TC2 plus a
constant, reflecting the time within which most servers respond to most
requests. For example, various measurements of VMTP usage at Stanford
indicate that 90 percent of the servers respond in less than 200
milliseconds. Setting TC1 to TC2 + 200 means that most Requests receive
a Response before timing out and also that overhead for retransmission

Cheriton [page 16]

RFC 1045 VMTP February 1988

for long running transactions is insignificant. A sophisticated
implementation may make the estimation of TC1 further specific to the
Server.

TC2 may be estimated by measuring the time from when a Probe request is
sent to the Server to when a response is received. TC2 can also be
measured as the time between the transmission of a Request with the APG
bit set to receipt of a management operation acknowledging receipt of
the Request.

When the Server is an entity group, TC1 and TC2 should be the largest of
the values for the members of the group that are expected to respond.
This information may be determined by probing the group on first use
(and using the values for the last responses to arrive). Alternatively,
one can resort to default values.

TC3 is set initially to 10 times the transmission time for the maximum
transmission unit (MTU) to be used for the Response. A sophisticated
implementation may record TC3 per Server and refine the estimate based
on measurements of actual interpacket gaps. However, a tighter estimate
of TC3 only improves the reaction time when a packet is lost in a packet
group, at some cost in unnecessary retransmissions when the estimate
becomes overly tight.

The server timer, one per active Client, takes on the following values:

TS1(Client) The estimated maximum expected interpacket time. Set
 when waiting for subsequent Request packets within a
 packet group before timing out.

TS2(Client) The time to wait to hear from a client before
 terminating the server processing of a Request. This
 limits the time spent processing orphan calls, as well
 as limiting how out of date the server’s record of the
 Client state can be. In particular, TS2 should be
 significantly less than the minimum time within which it
 is reasonable to reuse a transaction identifier.

TS3(Client) Estimated roundtrip time to the Client,

TS4(Client) The time to wait after sending a Response (or last
 hearing from a client) before discarding the state
 associated with the Request which allows it to filter
 duplicate Request packets and regenerate the Response.

TS5(Client) The time to wait for an acknowledgment after sending a
 Response before retransmitting the Response, or giving

Cheriton [page 17]

RFC 1045 VMTP February 1988

 up (after some number of retransmissions).

TS1 is set the same as TC3.

The suggested value for TS2 is TC1 + 3*TC2 for this server, giving the
Client time to timeout waiting for a Response and retransmit 3 Request
packets, asking for acknowledgments.

TS3 is estimated the same as TC1 except that refinements to the estimate
use measurements of the Response-to-acknowledgment times.

In the general case, TS4 is set large enough so that a Client issuing a
series of closely-spaced Requests to the same Server reuses the same
state record at the Server end and thus does not incur the overhead of
recreating this state. (The Server can recreate the state for a Client
by performing a Probe on the Client to get the needed information.) It
should also be set low enough so that the transaction identifier cannot
wrap around and so that the Server does not run out of CSR’s. We
suggest a value in the range of 500 milliseconds. However, if the
Server accepts non-idempotent Requests from this Client without doing a
Probe on the Client, the TS4 value for this CSR is set to at least 4
times the maximum packet lifetime.

TS5 is TS3 plus the expected time for transmission and reception of the
Response. We suggest that the latter be calculated as 3 times the
transmission time for the Response data, allowing time for reception,
processing and transmission of an acknowledgment at the Client end. A
sophisticated implementation may refine this estimate further over time
by timing acknowledgments to Responses.

2.5.6. Rate Control

VMTP is designed to deal with the present and future problem of packet
overruns. We expect overruns to be the major cause of dropped packets
in the future. A client is expected to estimate and adjust the
interpacket gap times so as to not overrun a server or intermediate
nodes. The selective retransmission mechanism allows the server to
indicate that it is being overrun (or some intermediate point is being
overrun). For example, if the server requests retransmission of every
Kth block, the client should assume overrun is taking place and increase
the interpacket gap times. The client passes the server an indication
of the interpacket gap desired for a response. The client may have to
increase the interval because packets are being dropped by an
intermediate gateway or bridge, even though it can handle a higher rate.
A conservative policy is to increase the interpacket gap whenever a
packet is lost as part of a multi-packet packet group.

Cheriton [page 18]

RFC 1045 VMTP February 1988

The provision of selective retransmission allows the rate of the client
and the server to "push up" against the maximum rate (and thus lose
packets) without significant penalty. That is, every time that packet
transmission exceeds the rate of the channel or receiver, the recovery
cost to retransmit the dropped packets is generally far less than
retransmitting from the first dropped packet.

The interpacket gap is expressed in 1/32nd’s of the MTU packet
transmission time. The minimum interpacket gap is 0 and the maximum gap
that can be described in the protocol is 8 packet times. This places a
limit on the slowest receivers that can be efficiently used on a
network, at least those handling multi-packet Requests and Responses.
This scheme also limits the granularity of adjustment. However, the
granularity is relative to the speed of the network, as opposed to an
absolute time. For entities on different networks of significantly
different speed, we assume the interconnecting gateways can buffer
packets to compensate<2>. With different network speeds and intermediary
nodes subject to packet loss, a node must adjust the interpacket gap
based on packet loss. The interpacket gap parameter may be of limited
use.

2.6. Security

VMTP provides an (optional) secure mode that protects against the usual
security threats of peeking, impostoring, message tampering and replays.
Secure VMTP must be used to guarantee any of the transport-level
reliability properties unless it is guaranteed that there are no
intruders or agents that can modify packets and update the packet
checksums. That is, non-secure VMTP provides no guarantees in the
presence of an intelligent intruder.

The design closely follows that described by Birrell [1]. Authenticated
information about a remote entity, including an encryption/decryption
key, is obtained and maintained using a VMTP management operation, the
authenticated Probe operation, which is executed as a non-secure VMTP
message transaction. If a server receives a secure Request for which
the server has no entity state, it sends a Probe request to the VMTP

<2> Gateways must also employ techniques to preserve or intelligently
modify (if appropriate) the interpacket gaps. In particular, they must
be sure not to arbitrarily remove interpacket gaps as a result of their
forwarding of packets.

Cheriton [page 19]

RFC 1045 VMTP February 1988

management module of the client, "challenging" it to provide an
authenticator that both authenticates the client as being associated
with a particular principal as well as providing a key for
encryption/decryption. The principal can include a real and effective
principal, as used in UNIX <3>. Namely, the real principal is the
principal on whose behalf the Request is being performed whereas the
effective principal is the principal of the module invoking the request
or remote procedure call.

Peeking is prevented by encrypting every Request and Response packet
with a working Key that is shared between Client and Server.
Impostoring and replays are detected by comparing the Transaction
identifier with that stored in the corresponding entity state record
(which is created and updated by VMTP as needed). Message tampering is
detected by encryption of the packet including the Checksum field. An
intruder cannot update the checksum after modifying the packet without
knowing the Key. The cost of fully encrypting a packet is close to the
cost of generating a cryptographic checksum (and of course, encryption
is needed in the general case), so there is no explicit provision for
cryptographic checksum without packet encryption.

A Client determines the Principal of the Server and acquires an
authenticator for this Server and Principal using a higher level
protocol. The Server cannot decrypt the authenticator or the Request
packets unless it is in fact the Principal expected by the Client.

An encrypted VMTP packet is flagged by the EPG bit in the VMTP packet
header. Thus, encrypted packets are easily detected and demultiplexed
from unencrypted packets. An encrypted VMTP packet is entirely
encrypted except for the Client, Version, Domain, Length and Packet
Flags fields at the beginning of the packet. Client identifiers can be
assigned, changed and used to have no real meaning to an intruder or to
only communicate public information (such as the host Internet address).
They are otherwise just a random means of identification and
demultiplexing and do not therefore divulge any sensitive information.
Further secure measures must be taken at the network or data link levels
if this information or traffic behavior is considered sensitive.

VMTP provides multiple authentication domains as well as an encryption
qualifier to accommodate different encryption algorithms and their

<3> Principal group membership must be obtained, if needed, by a
higher level protocol.

Cheriton [page 20]

RFC 1045 VMTP February 1988

corresponding security/performance trade-offs. (See Appendix V.) A
separate key distribution and authentication protocol is required to
handle generation and distribution of authenticators and keys. This
protocol can be implemented on top of VMTP and can closely follow the
Birrell design as well.

Security is optional in the sense that messages may be secure or
non-secure, even between consecutive message transactions from the same
client. It is also optional in that VMTP clients and servers are not
required to implement secure VMTP (although they are required to respond
intelligently to attempts to use secure VMTP). At worst, a Client may
fail to communicate with a Server if the Server insists on secure
communication and the Client does not implement security or vice versa.
However, a failure to communicate in this case is necessary from a
security standpoint.

2.7. Multicast

The Server entity identifier in a message transaction can identify an
entity group, in which case the Request is multicast to every Entity in
this group (on a best-efforts basis). The Request is retransmitted
until at least one Response is received (or an error timeout occurs)
unless it is a datagram Request. The Client can receive multiple
Responses to the Request.

The VMTP service interface does not directly provide reliable multicast
because it is expensive to provide, rarely needed by applications, and
can be implemented by applications using the multiple Response feature.
However, the protocol itself is adequate for reliable multicast using
positive acknowledgments. In particular, a sophisticated Client
implementation could maintain a list of members for each entity group of
interest and retransmit the Request until acknowledged by all members.
No modifications are required to the Server implementations.

VMTP supports a simple form of subgroup addressing. If the CRE bit is
set in a Request, the Request is delivered to the subgroup of entities
in the Server group that are co-resident with one or more entities in
the group (or individual entity) identified by the CoresidentEntity
field of the Request. This is commonly used to send to the manager
entity for a particular entity, where Server specifies the group of such
managers. Co-resident means "using the same VMTP module", and logically
on the same network host. In particular, a Probe request can be sent to
the particular VMTP management module for an entity by specifying the
VMTP management group as the Server and the entity in question as the
CoResidentEntity.

Cheriton [page 21]

RFC 1045 VMTP February 1988

As an experimental aspect of the protocol, VMTP supports the Server
sending a group Response which is sent to the Client as well as members
of the destination group of Servers to which the original Request was
sent. The MDG bit indicates whether the Client is a member of this
group, allowing the Server module to determine whether separately
addressed packet groups are required to send the Response to both the
Client and the Server group. Normally, a Server accepts a group
Response only if it has received the Request and not yet responded to
the Client. Also, the Server must explicitly indicate it wants to
accept group Responses. Logically, this facility is analogous to
responding to a mail message sent to a distribution list by sending a
copy of the Response to the distribution list.

2.8. Real-time Communication

VMTP provides three forms of support for real-time communication, in
addition to its standard facilities, which make it applicable to a wide
range of real-time applications. First, a priority is transmitted in
each Request and Response which governs the priority of its handling.
The priority levels are intended to correspond roughly to:

 - urgent/emergency.

 - important

 - normal

 - background.

with additional gradations for each level. The interpretation and
implementation of these priority levels is otherwise host-specific, e.g.
the assignment to host processing priorities.

Second, datagram Requests allow the Client to send a datagram to another
entity or entity group using the VMTP naming, transmission and delivery
mechanism, but without blocking, retransmissions or acknowledgment.
(The client can still request acknowledgment using the APG bit although
the Server does not expect missing portions of a multi-packet datagram
Request to be retransmitted even if some are not received.) A datagram
Request in non-streamed mode supersedes all previous Requests from the
same Client. A datagram Request in stream mode is queued (if necessary)
after previous datagram Requests on the same stream. (See Section
2.11.)

Finally, VMTP provides several control bit flags to modify the handling
of Requests and Responses for real-time requirements. First, the

Cheriton [page 22]

RFC 1045 VMTP February 1988

conditional message delivery (CMD) flag causes a Request to be discarded
if the recipient is not waiting for it when it arrives, similarly for
the Response. This option allows a client to send a Request that is
contingent on the server being able to process it immediately. The
header checksum only (HCO) flag indicates that the checksum has been
calculated only on the VMTP header and not on the data segment.
Applications such as voice and video can avoid the overhead of
calculating the checksum on data whose utility is insensitive to typical
bit errors without losing protection on the header information.
Finally, the No Retransmission (NRT) flag indicates that the recipient
of a message should not ask for retransmission if part of the message is
missing but rather either use what was received or discard it.

None of these facilities introduce new protocol states. In fact, the
total processing overhead in the normal case is a bit flag test for CMD,
HCO or NRT plus assignment of priority on packet transmission and
reception. (In fact, CMD and NRT are not tested in the normal case.)
The additional code complexity is minimal. We feel that the overhead
for providing these real-time facilities is minimal and that these
facilities are both important and adequate for a wide class of real-time
applications.

Several of the normal facilities of VMTP appear useful for real-time
applications. First, multicast is useful for distributed, replicated
(fault-tolerant) real-time applications, allowing efficient state query
and update for (for example) sensors and control state. Second, the DGM
or idempotent flag for Responses has some real-time benefits, namely: a
Request is redone to get the latest values when the Response is lost,
rather than just returning the old values. The desirability of this
behavior is illustrated by considering a request for the current time of
day. An idempotent handling of this request gives better accuracy in
returning the current time in the case that a retransmission is
necessary. Finally, the request-response semantics (in the absence of
streaming) of each new Request from a Client terminating the previous
message transactions from that Client, if any, provides the "most recent
is most important" handling of processing that most real-time
applications require.

In general, a key design goal of VMTP was provide an efficient
general-purpose transport protocol with the features required for
real-time communication. Further experience is required to determine
whether this goal has been achieved.

Cheriton [page 23]

RFC 1045 VMTP February 1988

2.9. Forwarded Message Transactions

A Server may invoke another Server to handle a Request. It is fairly
common for the invocation of the second Server to be the last action
performed by the first Server as part of handling the Request. For
example, the original Server may function primarily to select a process
to handle the Request. Also, the Server may simply check the
authorization on the Request. Describing this situation in the context
of RPC, a nested remote procedure call may be the last action in the
remote procedure and the return parameters are exactly those of the
nested call. (This situation is analogous to tail recursion.)

As an optimization to support this case, VMTP provides a Forward
operation that allows the server to send the nested Request to the other
server and have this other server respond directly to the Client.

If the message transaction being forwarded was not multicast, not secure
or the two Servers are the same principal and the ForwardCount of the
Request is less than the maximum forward count of 15, the Forward
operation is implemented by the Server sending a Request onto the next
Server with the forwarded Request identified by the same Client and
Transaction as the original Request and a ForwardCount one greater than
the Request received from the Client. In this case, the new Server
responds directly to the Client. A forwarded Request is illustrated in
the following figure.

 +---------+ Request +----------+
 | Client +---------------->| Server 1 |
 +---------+ +----------+
 ^ |
 | | forwarded Request
 | V
 | Response +----------+
 +----------------------| Server 2 |
 +----------+

If the message transaction does not meet the above requirements, the
Server’s VMTP module issues a nested call and simply maps the returned
Response to a Response to original Request without further Server-level
processing. In this case, the only optimization over a user-level
nested call is one fewer VMTP service operation; the VMTP module handles
the return to the invoking call directly. The Server may also use this
form of forwarding when the Request is part of a stream of message
transactions. Otherwise, it must wait until the forwarded message
transaction completes before proceeding with the subsequent message
transactions in the stream.

Cheriton [page 24]

RFC 1045 VMTP February 1988

Implementation of the user-level Forward operation is optional,
depending on whether the server modules require this facility. Handling
an incoming forwarded Request is a minor modification of handling a
normal incoming Request. In particular, it is only necessary to examine
the ForwardCount field when the Transaction of the Request matches that
of the last message transaction received from the Client. Thus, the
additional complexity in the VMTP module for the required forwarding
support is minimal; the complexity is concentrated in providing a highly
optimized user-level Forward primitive, and that is optional.

2.10. VMTP Management

VMTP management includes operations for creating, deleting, modifying
and querying VMTP entities and entity groups. VMTP management is
logically implemented by a VMTP management server module that is invoked
using a message transaction addressed to the Server, VMTP_MANAGER_GROUP,
a well-known group entity identifier, in conjunction with Coresident
Entity mechanism introduced in Section 2.7. A particular Request may
address the local module, the module managing a particular entity, the
set of modules managing those entities contained in a specific group or
all management modules, as appropriate.

The VMTP management procedures are specified in Appendix III.

2.11. Streamed Message Transactions

Streamed message transactions refer to two or more message transactions
initiated by a Client before it receives the response to the first
message transaction, with each transaction being processed and responded
to in order but asynchronous relative to the initiation of the
transactions. A Client streams messages transactions, and thereby has
multiple message transactions outstanding, by sending them as part of a
single run of message transactions. A run of message transactions is a
sequence of message transactions with the same Client and Server and
consecutive Transaction identifiers, with all but the first and last
Requests and Responses flagged with the NSR (Not Start Run) and NER
(Not End Run) control bits. (Conversely, the first Request and
Response does not have the NSR set and the last Request and Response
does not have the NER bit set.) The message transactions in a run use

Cheriton [page 25]

RFC 1045 VMTP February 1988

consecutive transaction identifiers (except if the STI bit <4> is used
in one, in which case the transaction identifier for the next message
transaction is 256 greater, rather than 1).

The Client retains a record for each outstanding transaction until it
gets a Response or is timed out in error. The record provides the
information required to retransmit the Request. On retransmission
timeout, the client retransmits the last Request for which it has not
received a Response the same as is done with non-streamed communication.
(I.e. there need be only one timeout for all the outstanding message
transactions associated with a single client.)

The consecutive transaction identifiers within a run of message
transactions are used as sequence numbers for error control. The Server
handles each message transaction in the sequence specified by its
transaction identifier. When it receives a message transaction that is
not marked as the beginning of a run, it checks that it previously
received a message transaction with the predecessor transaction
identifier, either 1 less than the current one or 256 less if the
previous one had the STI bit set. If not, the Server sends a
NotifyVmtpClient operation to the Client’s manager indicating either:
(1) the first message transaction was not fully received, or else (2) it
has no record of the last one received. If the NRT control flag is set,
it does not await nor expect retransmission but proceeds with handling
this Request. This flag is used primarily when datagram Requests are
used as part of a stream of message transactions. If NRT was not
specified, the Client must retransmit from the first message transaction
not fully received (either at all or in part) before the Server can
proceed with handling this run of Requests or else restart the run of
message transactions.

The Client expects to receive the Responses in a consecutive sequence,
using the Transaction identifier to detect missing Responses. Thus, the
Server must return Responses in sequence except possibly for some gaps,
as follows. The Server can specify in the PGcount field in a Response,
the number of consecutively previous Responses that this Response

<4> The STI bit is used by the Client to effectively allocate 255
transaction identifiers for use by the Server in returning a large
Response or stream of Responses.

Cheriton [page 26]

RFC 1045 VMTP February 1988

corresponds to, up to a maximum of 255 previous Responses <5>. Thus,
for example, a Response with Transaction identifier 46 and PGcount 3
represents Responses 43, 44, 45 and 46. This facility allows the Server
to eliminate sending Responses to Requests that require no Response,
effectively batching the Responses into one. It also allows the Server
to effectively maintain strictly consecutive sequencing when the Client
has skipped 256 Transaction identifiers using the STI bit and the Server
does not have that many Responses to return.

If the Client receives a Response that is not consecutive, it
retransmits the Request(s) for which the Response(s) is/are missing
(unless, of course, the corresponding Requests were sent as datagrams).
The Client should wait at the end of a run of message transactions for
the last one to complete.

When a Server receives a Request with the NSR bit clear and a higher
transaction identifier than it currently has for the Client, it
terminates all processing and discards Responses associated with the
previous Requests. Thus, a stream of message transactions is
effectively aborted by starting a new run, even if the Server was in the
middle of handling the previous run.

Using a mixture of datagram and normal Requests as part of a stream of
message transactions, particularly with the use of the NRT bit, can lead
to complex behavior under packet loss. It is recommended that a run of
message transactions be all of one type to avoid problems, i.e. all
normal or all datagrams. Finally, when a Server forwards a Request that
is part of a run, it must suspend further processing of the subsequent
Requests until the forwarded Request has been handled, to preserve order
of processing. The simplest handling of this situation is to use a real
nested call when forwarding with streamed message transactions.

Flow control of streamed message transactions relies on rate control at
the Client plus receipt (or non-receipt) of management notify operations
indicating the presence of overrunning. A Client must reduce the number
of outstanding message transactions at the Server when it receives a
NotifyVmtpServer operation with the MSGTRANS_OVERFLOW ResponseCode. The
transact parameter indicates the last packet group that was accepted.

<5> PGcount actually corresponds to packet groups which are described
in Section 2.13. This (simplified) description is accurate when there
is one Request or Response per packet group.

Cheriton [page 27]

RFC 1045 VMTP February 1988

The implementation of multiple outstanding message transactions requires
the ability to record, timeout and buffer multiple outstanding message
transactions at the Client end as well as the Server end. However, this
facility is optional for both the Client and the Server. Client systems
with heavy-weight processes and high network access cost are most likely
to benefit from this facility. Servers that serve a wide variety of
client machines should implement streaming to accommodate these types of
clients.

2.12. Fault-Tolerant Applications

One approach to fault-tolerant systems is to maintain a log of all
messages sent at each node and replay the messages at a node when the
node fails, after restarting it from the last checkpoint <6>. As an
experimental facility, VMTP provides a Receive Sequence Number field in
the NotifyVmtpClient and NotifyVmtpServer operations as well as the Next
Receive Sequence (NRS) flag in the Response packet to allow a sender to
log a receive sequence number with each message sent, allowing the
packets to be replayed at a recovering node in the same sequence as they
were originally received, thereby recovering to the same state as
before.

Basically, each sending node maintains a receive sequence number for
each receiving node. On sending a Request to a node, it presume that
the receive sequence number is one greater than the one it has recorded
for that node. If not, the receiving node sends a notify operation
indicating the receive sequence number assigned the Request. The NRS in
the Response confirms that the Request message was the next receive
sequence number, so the sender can detect if it failed to receive the
notify operation in the previous case. With Responses, the packets are
ordered by the Transaction identifier except for multicast message
transactions, in which there may be multiple Responses with the same
identification. In this case, NotifyVmtpServer operations are used to
provide receive sequence numbers.

This experimental extension of the protocol is focused on support for
fault-tolerant real-time distributed systems required in various
critical applications. It may be removed or extended, depending on
further investigations.

<6> The sender-based logging is being investigated by Willy Zwaenepoel
of Rice University.

Cheriton [page 28]

RFC 1045 VMTP February 1988

2.13. Packet Groups

A message (whether Request or Response) is sent as one or more packet
groups. A packet group is one or more packets, each containing the same
transaction identification and message control block. Each packet is
formatted as below with the message control block logically embedded in
the VMTP header.

 +------------------------------------++---------------------+
 | VMTP Header || |
 +------------+-----------------------|| segment data |
 |VMTP Control| Message Control Block || |
 +------------+-----------------------++---------------------+

The some fields of the VMTP control portion of the packet and data
segment portion can differ between packets within the same packet group.

The segment data portion of a packet group represents up to 16
kilooctets of the segment specified in the message control block. The
portion contained in each packet is indicated by the PacketDelivery
field contained in the VMTP header. The PacketDelivery field as a bit
mask has a similar interpretation to the MsgDelivery field in that each
bit corresponds to a segment data block of 512 octets. The
PacketDelivery field limits a packet group to 16 kilooctets and a
maximum of 32 VMTP packets (with a minimum of 1 packet). Data can be
sent in fewer packets by sending multiple data blocks per packet. We
require that the underlying datagram service support delivery of (at
minimum) the basic 580 octet VMTP packet <7>. To illustrate the use of
the PacketDelivery field, consider for example the Ethernet which has a
MTU of 1536 octets. so one would send 2 512-octet segment data blocks
per packet. (In fact, if a third block is last in the segment and less
than 512 octets and fits in the packet without making it too big, an
Ethernet packet could contain three data blocks. Thus, an Ethernet
packet group for a segment of size 0x1D00 octets (14.5 blocks) and
MsgDelivery 0x000074FF consists of 6 packets indicated as follows <8>.

<7> Note that with a 20 octet IP header, a VMTP packet is 600
octets. We propose the convention that any host implementing VMTP
implicitly agrees to accept IP/VMTP packets of at least 600 octets.

<8> We use the C notation 0xHHHH to represent a hexadecimal number.

Cheriton [page 29]

RFC 1045 VMTP February 1988

 Packet
 Delivery 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 . . .
 0000 0400 0800 0C00 1000 1400 1800 1C00
 +----+----+----+----+----+----+----+-+
 Segment |....|....|....|....|....|....|....|.|
 +----+----+----+----+----+----+----+-+
 : : : : : : : / / :
 v v v v v v v /| v
 +----+----+----+----+ +----+ +---+
 Packets | 1 | 2 | 3 | 4 | | 5 | | 6 |
 +----+----+----+----+ +----+ +---+

Each ’.’ is 256 octets of data. The PacketDelivery masks for the 6
packets are: 0x00000003, 0x0000000C, 0x00000030, 0x000000C0, 0x00001400
and 0x00006000, indicating the segment blocks contained in each of the
packets. (Note that the delivery bits are in little endian order.)

A packet group is sent as a single "blast" of packets with no explicit
flow control. However, the sender should estimate and transmit at a
rate of packet transmission to avoid congesting the network or
overwhelming the receiver, as described in Section 2.5.6. Packets in a
packet group can be sent in any order with no change in semantics.

When the first packet of a packet group is received (assuming the Server
does not decide to discard the packet group), the Server saves a copy of
the VMTP packet header, indicates it is currently receiving a packet
group, initializes a "current delivery mask" (indicating the data in the
segment received so far) to 0, accepts this packet (updating the current
delivery mask) and sets the timer for the packet group. Subsequent
packets in the packet group update the current delivery mask.

Reception of a packet group is terminated when either the current
delivery mask indicates that all the packets in the packet group have
been received or the packet group reception timer expires (set to TC3 or
TS1). If the packet group reception timer expires, if the NRT bit is
set in the Control flags then the packet group is discarded if not
complete unless MDM is set. In this case, the MsgDelivery field in the
message control block is set to indicate the segment data blocks
actually received and the message control block and segment data
received is delivered to application level.

If NRT is not set and not all data blocks have been received, a
NotifyVmtpClient (if a Request) or NotifyVmtpServer (if a Response) is
sent back with a PacketDelivery field indicating the blocks received.
The source of the packet group is then expected to retransmit the
missing blocks. If not all blocks of a Request are received after
RequestAckRetries(Client) retransmissions, the Request is discarded and

Cheriton [page 30]

RFC 1045 VMTP February 1988

a NotifyVmtpClient operation with an error response code is sent to the
client’s manager unless MDM is set. With a Response, there are
ResponseAckRetries(Server) retransmissions and then, if MDM is not set,
the requesting entity is returned the message control block with an
indication of the amount of segment data received extending contiguously
from the start of the segment. E.g. if the sender sent 6 512-octet
blocks and only the first two and the last two arrived, the receiver
would be told that 1024 octets were received. The ResponseCode field is
set to BAD_REPLY_SEGMENT. (Note that VMTP is only able to indicate the
specific segment blocks received if MDM is set.)

The parameters RequestAckRetries(Client) and ResponseAckRetries(Server)
could be set on a per-client and per-server basis in a sophisticated
implementation based on knowledge of packet loss.

If the APG flag is set, a NotifyVmtpClient or NotifyVmtpServer
operation is sent back at the end of the packet group reception,
depending on whether it is a Request or a Response.

At minimum, a Server should check that each packet in the packet group
contains the same Client, Server, Transaction identifier and SegmentSize
fields. It is a protocol error for any field other than the Checksum,
packet group control flags, Length and PacketDelivery in the VMTP header
to differ between any two packets in one packet group. A packet group
containing a protocol error of this nature should be discarded.

Notify operations should be sent (or invoked) in the manager whenever
there is a problem with a unicast packet. i.e. negative acknowledgments
are always sent in this case. In the case of problems with multicast
packets, the default is to send nothing in response to an error
condition unless there is some clear reason why no other node can
respond positively. For example, the packet might be a Probe for an
entity that is known to have been recently existing on the receiving
host but now invalid and could not have migrated. In this case, the
receiving host responds to the Probe indicating the entity is
nonexistent, knowing that no other host can respond to the Probe. For
packets and packet groups that are received and processed without
problems, a Notify operation is invoked only if the APG bit is set.

2.14. Runs of Packet Groups

A run of packet groups is a sequence of packet groups, all Request
packets or all Response packets, with the same Client and consecutive
transaction identifiers, all but the first and last packets flagged with
the NSR (Not Start Run) and NER (Not End Run) control bits. When each
packet group in the run corresponds to a single Request or Response, it

Cheriton [page 31]

RFC 1045 VMTP February 1988

is identical to a run of message transactions. (See Section 2.11)
However, a Request message or a Response message may consists of up to
256 packet groups within a run, for a maximum of 4 megaoctets of segment
data. A message that is continued in the next packet group in the run
is flagged in the current packet group by the CMG flag. Otherwise, the
next packet group in the run (if any) is treated as a separate Request
or Response.

Normally, each Request and Response message is sent as a single packet
group and each run consists of a single packet group. In this case
neither NSR or NER are set. For multi-packet group messages, the
PacketDelivery mask in the i-th packet group of a message corresponds to
the portion of the segment offset by i-1 times 16 kilooctets,
designating the the first packet group to have i = 1.

2.15. Byte Order

For purposes of transmission and reception, the MCB is treated as
consisting of 8 32-bit fields and the segment is a sequence of bytes.
VMTP transmits the MCB in big-endian order, performing byte-swapping, if
necessary, before transmission. A little-endian host must byte-swap the
MCB on reception. (The data segment is transmitted as a sequence of
bytes with no reordering.) The byte order of the sender of a message is
indicated by the LEE bit in the entity identifier for the sender, the
Client field if a Request and the Server field if a Response. The
sender and receiver of a message are required to agree in some higher
level protocol (such as an RPC presentation protocol) on who does
further swapping of the MCB and data segment if required by the types of
the data actually being transmitted. For example, the segment data may
contain a record with 8-bit, 16-bit and 32-bit fields, so additional
transformation is required to move the segment from a host of one byte
order to another.

VMTP to date has used a higher-level presentation protocol in which
segment data is sent in the native order of the sending host and
byte-swapped as necessary by the receiving host. This approach
minimizes the byte-swapping overhead between machines of common byte
order (including when the communication is transparently local to one
host), avoids a strong bias in the protocol to one byte-order, and
allows for the sending entity to be sending to a group of hosts with
different byte orders. (Note that the byte-swap overhead for the MCB is
minimal.) The presentation-level overhead is minimal because most
common operations, such as file access operations, have parameters that
fit the MCB and data segment data types exactly.

Cheriton [page 32]

RFC 1045 VMTP February 1988

2.16. Minimal VMTP Implementation

A minimal VMTP client needs to be able to send a Request packet group
and receive a Response packet group as well as accept and respond to
Requests sent to its management module, including Probe and NotifyClient
operations. It may also require the ability to invoke Probe and Notify
operations to locate a Server and acknowledge responses. (the latter
only if it is involved in transactions that are not idempotent or
datagram message transactions. However, a simple sensor, for example,
can transmit VMTP datagram Requests indicating its current state with
even less mechanism.) The minimal client thus requires very little code
and is suitable as a basis for (e.g.) a network boot loader.

A minimal VMTP server implements idempotent, non-encrypted message
transactions, possibly with no segment data support. It should use an
entity state record for each Request but need only retain it while
processing the Request. Without segment data larger than a packet,
there is no need for any timers, buffering (outside of immediate request
processing) or queuing. In particular, it needs only as many records as
message transactions it handles simultaneously (e.g. 1). The entity
state record is required to recognize and respond to Request
retransmissions during request processing.

The minimal server need only receive Requests and and be able to send
Response packets. It need have only a minimal management module
supporting Probe operations. (Support for the NotifyVmtpClient
operation is only required if it does not respond immediately to a
Request.) Thus the VMTP support for say a time server, sensor, or
actuator can be extremely simple. Note that the server need never issue
a Probe operation if it uses the host address of the Request for the
Response and does not require the Client information returned by the
Probe operation. The minimal server should also support reception of
forwarded Requests.

2.17. Message vs. Procedural Request Handling

A request-response protocol can be used to implement two forms of
semantics on reception. With procedural handling of a Request, a
Request is handled by a process associated with the Server that
effectively takes on the identity of the calling process, treating the
Request message as invoking a procedure, and relinquishing its
association to the calling process on return. VMTP supports multiple
nested calls spanning multiple machines. In this case, the distributed
call stack that results is associated with a single process from the
standpoint of authentication and resource management, using the
ProcessId field supported by VMTP. The entity identifiers effectively

Cheriton [page 33]

RFC 1045 VMTP February 1988

link these call frames together. That is, the Client field in a Request
is effectively the return link to the previous call frame.

With message handling of a Request, a Request message is queued for a
server process. The server process dequeues, reads, processes and
responds to the Request message, executing as a separate process.
Subsequent Requests to the same server are queued until the server asks
to receive the next Request.

Procedural semantics have the advantage of allowing each Request (up to
the resource limits of the Server) to execute concurrently at the
Server, with Request-specific synchronization. Message semantics have
the advantage that Requests are serialized at the Server and that the
request processing logically executes with the priority, protection and
independent execution of a separate process. Note that procedural and
message handling of a request appear no differently to the client
invoking the message transaction, except possibly for differences in
performance.

We view the two Request handling approaches as appropriate under
different circumstances. VMTP supports both models.

2.18. Bibliography

The basic protocol is similar to that used in the original form of the V
kernel [3, 4] as well as the transport protocol of Birrell and
Nelson’s [2] remote procedure call mechanism. An earlier version of the
protocol was described in SIGCOMM’86 [6]. The rate-based flow control
is similar to the techniques of Netblt [9]. The support for idempotency
draws, in part, on the favorable experience with idempotency in the V
distributed system. Its use was originally inspired by the Woodstock
File Server [11]. The multicast support draws on the multicast
facilities in V [5] and is designed to work with, and is now implemented
using, the multicast extensions to the Internet [8] described in RFC 966
and 988. The secure version of the protocol is similar to that
described by Birrell [1] for secure RPC. The use of runs of packet
groups is similar to Fletcher and Watson’s delta-T protocol [10]. The
use of "management" operations implemented using VMTP in place of
specialized packet types is viewed as part of a general strategy of
using recursion to simplify protocol architectures [7].

Finally, this protocol was designed, in part, to respond to the
requirements identified by Braden in RFC 955. We believe that VMTP
satisfies the requirements stated in RFC 955.

Cheriton [page 34]

RFC 1045 VMTP February 1988

[1] A.D. Birrell, "Secure Communication using Remote Procedure
 Calls", ACM. Trans. on Computer Systems 3(1), February, 1985.

[2] A. Birrell and B. Nelson, "Implementing Remote Procedure Calls",
 ACM Trans. on Computer Systems 2(1), February, 1984.

[3] D.R. Cheriton and W. Zwaenepoel, "The Distributed V Kernel and its
 Performance for Diskless Workstations", In Proceedings of the 9th
 Symposium on Operating System Principles, ACM, 1983.

[4] D.R. Cheriton, "The V Kernel: A Software Base for Distributed
 Systems", IEEE Software 1(2), April, 1984.

[5] D.R. Cheriton and W. Zwaenepoel, "Distributed Process Groups in
 the V Kernel", ACM Trans. on Computer Systems 3(2), May, 1985.

[6] D.R. Cheriton, "VMTP: A Transport Protocol for the Next
 Generation of Communication Systems", In Proceedings of
 SIGCOMM’86, ACM, Aug 5-7, 1986.

[7] D.R. Cheriton, "Exploiting Recursion to Simplify an RPC
 Communication Architecture", in preparation, 1988.

[8] D.R. Cheriton and S.E. Deering, "Host Groups: A Multicast
 Extension for Datagram Internetworks", In 9th Data Communication
 Symposium, IEEE Computer Society and ACM SIGCOMM, September, 1985.

[9] D.D. Clark and M. Lambert and L. Zhang, "NETBLT: A Bulk Data
 Transfer Protocol", Technical Report RFC 969, Defense Advanced
 Research Projects Agency, 1985.

[10] J.G. Fletcher and R.W. Watson, "Mechanism for a Reliable Timer-
 based Protocol", Computer Networks 2:271-290, 1978.

Cheriton [page 35]

RFC 1045 VMTP February 1988

[11] D. Swinehart and G. McDaniel and D. Boggs, "WFS: A Simple File
 System for a Distributed Environment", In Proc. 7th Symp.
 Operating Systems Principles, 1979.

Cheriton [page 36]

RFC 1045 VMTP February 1988

3. VMTP Packet Formats

VMTP uses 2 basic packet formats corresponding to Request packets and
Response packets. These packet formats are identical in most of the
fields to simplify the implementation.

We first describe the entity identifier format and the packet fields
that are used in general, followed by a detailed description of each of
the packet formats. These fields are described below in detail. The
individual packet formats are described in the following subsections.
The reader and VMTP implementor may wish to refer to Chapters 4 and 5
for a description of VMTP event handling and only refer to this detailed
description as needed.

3.1. Entity Identifier Format

The 64-bit non-group entity identifiers have the following substructure.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R| |L|R|
 |A|0|E|E| Domain-specific structure
 |E| |E|S|
 +-+
 Domain-specific structure |
 +-+

The field meanings are as follows:

RAE Remote Alias Entity - the entity identifier identifies
 an entity that is acting as an alias for some entity
 outside this entity domain. This bit is used by
 higher-level protocols. For instance, servers may take
 extra security and protection measures with aliases.

GRP Group - 0, for non-group entity identifiers.

LEE Little-Endian Entity - the entity transmits data in
 little-endian (VAX) order.

RES Reserved - must be 0.

The 64-bit entity group identifiers have the following substructure.

Cheriton [page 37]

RFC 1045 VMTP February 1988

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R| |U|R|
 |A|1|G|E| Domain-specific structure
 |E| |P|S|
 +-+
 Domain-specific structure |
 +-+

The field meanings are as follows:

RAE Remote Alias Entity - same as for non-group entity
 identifier.

GRP Group - 1, for entity group identifiers.

UGP Unrestricted Group - no restrictions are placed on
 joining this group. I.e. any entity can join limited
 only by implementation resources.

RES Reserved - must be 0.

The all-zero entity identifier is reserved and guaranteed to be
unallocated in all domains. In addition, a domain may reserve part of
the entity identifier space for statically allocated identifiers.
However, this is domain-specific.

Description of currently defined entity identifier domains is provided
in Appendix IV.

3.2. Packet Fields

Client 64-bit identifier for the client entity associated with
 this packet. The structure, allocation and binding of
 this identifier is specific to the specified Domain. An
 entity identifier always includes 4 types bits as
 specified in Section 3.1.

Version The 3-bit identifier specifying the version of the
 protocol. Current version is version 0.

Domain The 13-bit identifier specifying the naming and
 administration domain for the client and server named in
 the packet.

Cheriton [page 38]

RFC 1045 VMTP February 1988

Packet Flags: 3 bits. (The normal case has none of the flags set.)

 HCO Header checksum only - checksum has only been calculated
 on the header. This is used in some real-time
 applications where the strict correctness of the data is
 not needed.

 EPG Encrypted packet group - part of a secure message
 transaction.

 MPG Multicast packet group - packet was multicast on
 transmission.

Length A 13-bit field that specifies the number of 32-bit words
 in the segment data portion of the packet (if any),
 excluding the checksum field. (Every VMTP packet is
 required to be a multiple of 64 bits, possibly by
 padding out the segment data.) The minimum legal Length
 is 0, the maximum length is 4096 and it must be an even
 number.

Control Flags: 9 bits. (The normal case has none of the flags set.)

 NRS Next Receive Sequence - the associated Request message
 (in a Response) or previous Response (if a Request) was
 received consecutive with the last Request from this
 entity. That is, there was no interfering messages
 received.

 APG Acknowledge Packet Group - Acknowledge packet group on
 receipt. If a Request, send back a Request to the
 client’s manager providing an update on the state of the
 transaction as soon as the request packet group is
 received, independent of the response being available.
 If a Response, send an update to the server’s manager as
 soon as possible after response packet group is received
 providing an update on the state of the transaction at
 the client

 NSR Not Start Run - 1 if this packet is not part of the
 first packet group of a run of packet groups.

 NER Not End Run - 1 if this packet is not part of the last
 packet group of a run of packet groups.

 NRT No Retransmission - do not ask for retransmissions of
 this packet group if not all received within timeout

Cheriton [page 39]

RFC 1045 VMTP February 1988

 period, just deliver or discard.

 MDG Member of Destination Group - this packet is sent to a
 group and the client is a member of this group.

 CMG Continued Message - the message (Request or Response) is
 continued in the next packet group. The next packet
 group has to be part of the same run of packet groups.

 STI Skip Transaction Identifiers - the next transaction
 identifier that the Client plans to use is the current
 transaction plus 256, if part of the same run and at
 least this big if not. In a Request, this authorizes
 the Server to send back up to 256 packet groups
 containing the Response.

 DRT Delay Response Transmission - set by request sender if
 multiple responses are expected (as indicated by the MRD
 flag in the RequestCode) and it may be overrun by
 multiple responses. The responder(s) should then
 introduce a short random delay in sending the Response
 to minimize the danger of overrunning the Client. This
 is normally only used for responding to multicast
 Requests where the Client may be receiving a large
 number of Responses, as indicated by the MRD flag in the
 Request flags. Otherwise, the Response is sent
 immediately.

RetransmitCount:
 3 bits - the ordinal number of transmissions of this
 packet group prior to this one, modulo 8. This field is
 used in estimation of roundtrip times. This count may
 wrap around during a message transaction. However, it
 should be sufficient to match acknowledgments and
 responses with a particular transmission.

ForwardCount: 4 bits indicating the number of times this Request has
 been forwarded. The original Request is always sent
 with a ForwardCount of 0.

Interpacket Gap: 8 bits.
 Indicates the recommended time to use between subsequent
 packet transmissions within a multi-packet packet group
 transmission. The Interpacket Gap time is in 1/32nd of
 a network packet transmission time for a packet of size
 MTU for the node. (Thus, the maximum gap time is 8
 packet times.)

Cheriton [page 40]

RFC 1045 VMTP February 1988

PGcount: 8 bits
 The number of packet groups that this packet group
 represents in addition to that specified by the
 Transaction field. This is used in acknowledging
 multiple packet groups in streamed communication.

Priority 4-bit identifier for priority for the processing of this
 request both on transmission and reception. The
 interpretation is:

 1100 urgent/emergency

 1000 important

 0000 normal

 0100 background

 Viewing the higher-order bit as a sign bit (with 1
 meaning negative), low values are high priority and high
 values are low priority. The low-order 2 bits indicate
 additional (lower) gradations for each level.

Function Code: 1 bit - types of VMTP packets. If the low-order bit of
 the function code is 0, the packet is sent to the
 Server, else it is sent to the Client.

 0 Request

 1 Response

Transaction: 32 bits:
 Identifier for this message transaction.

PacketDelivery: 32 bits:
 Delivery indicates the segment blocks contained in this
 packet. Each bit corresponds to one 512-octet block of
 segment data. A 1 bit in the i-th bit position
 (counting the LSB as 0) indicates the presence of the
 i-th segment block.

Server: 64 bits
 Entity identifier for the server or server group
 associated with this transaction. This is the receiver
 when a Request packet and the sender when a Response
 packet.

Cheriton [page 41]

RFC 1045 VMTP February 1988

Code: 32 bits The Request Code and Response Code, set either at the
 user level or VMTP level depending on use and packet
 type. Both the Request and Response codes include 8
 high-order bits from the following set of control bits:

 CMD Conditional Message Delivery - only deliver the request
 or response if the receiving entity is waiting for it at
 the time of delivery, otherwise drop the message.

 DGM DataGram Message - indicates that the message is being
 sent as a datagram. If a Request message, do not wait
 for reply, or retransmit. If a Response message, treat
 this message transaction as idempotent.

 MDM Message Delivery Mask - indicates that the MsgDelivery
 field is being used. Otherwise, the MsgDelivery field
 is available for general use.

 SDA Segment Data Appended - segment data is appended to the
 message control block, with the total size of the
 segment specified by the SegmentSize field. Otherwise,
 the segment data is null and the SegmentSize field is
 not used by VMTP and available for user- or RPC-level
 uses.

 CRE CoResident Entity - indicates that the CoResidentEntity
 field in the message should be interpreted by VMTP.
 Otherwise, this field is available for additional user
 data.

 MRD Multiple Responses Desired - multiple Responses are
 desired to to this Request if it is multicast.
 Otherwise, the VMTP module can discard subsequent
 Responses after the first Response.

 PIC Public Interface Code - Values for Code with this bit
 set are reserved for definition by the VMTP
 specification and other standard protocols defined on
 top of VMTP.

 RES Reserved for future use. Must be 0.

CoResidentEntity
 64-bit Identifier for an entity or group of entities
 with which the Server entity or entities must be
 co-resident, i.e. route only to entities (identified by
 Server) on the same host(s) as that specified by

Cheriton [page 42]

RFC 1045 VMTP February 1988

 CoResidentEntity, Only meaningful if CRE is set in the
 Code field.

User Data 12 octets Space in the header for the VMTP user to
 specify user-specific control and data.

MsgDelivery: 32 bits
 The segment blocks being transmitted (in total) in this
 packet group following the conventions for the
 PacketDelivery field. This field is ignored by the
 protocol and treated as an additional user data field if
 MDM is 0. On transmission, the user level sets the
 MsgDelivery to indicate those portions of the segment to
 be transmitted. On receipt, the MsgDelivery field is
 modified by the VMTP module to indicate the segment data
 blocks that were actually received before the message
 control block is passed to the user or RPC level. In
 particular, the kernel does not discard the packet group
 if segment data blocks are missing. A Server or Client
 entity receiving a message with a MsgDelivery in use
 must check the field to ensure adequate delivery and
 retry the operation if necessary.

SegmentSize: 32 bits
 Size of segment in octets, up to a maximum of 16
 kilooctets without streaming and 4 megaoctets with
 streaming, if SDA is set. Otherwise, this field is
 ignored by the protocol and treated as an additional
 user data field.

Segment Data: 0-16 kilooctets
 0 octets if SDA is 0, else the portion of the segment
 corresponding to the Delivery Mask, limited by the
 SegmentSize and the MTU, padded out to a multiple of 64
 bits.

Checksum: 32 bits.
 The 32-bit checksum for the header and segment data.

The VMTP checksum algorithm <9> develops a 32-bit checksum by computing

<9> This algorithm and description are largely due to Steve Deering of
Stanford University.

Cheriton [page 43]

RFC 1045 VMTP February 1988

two 16-bit, ones-complement sums (like IP), each covering different
parts of the packet. The packet is divided into clusters of 16 16-bit
words. The first, third, fifth,... clusters are added to the first sum,
and the second, fourth, sixth,... clusters are added to the second sum.
Addition stops at the end of the packet; there is no need to pad out to
a cluster boundary (although it is necessary that the packet be an
integral multiple of 64 bits; padding octets may have any value and are
included in the checksum and in the transmitted packet). If either of
the resulting sums is zero, it is changed to 0xFFFF. The two sums are
appended to the transmitted packet, with the first sum being transmitted
first. Four bytes of zero in place of the checksum may be used to
indicate that no checksum was computed.

The 16-bit, ones-complement addition in this algorithm is the same as
used in IP and, therefore, subject to the same optimizations. In
particular, the words may be added up 32-bits at a time as long as the
carry-out of each addition is added to the sum on the following
addition, using an "add-with-carry" type of instruction. (64-bit or
128-bit additions would also work on machines that have registers that
big.)

A particular weakness of this algorithm (shared by IP) is that it does
not detect the erroneous swapping of 16-bit words, which may easily
occur due to software errors. A future version of VMTP is expected to
include a more secure algorithm, but such an algorithm appears to
require hardware support for efficient execution.

Not all of these fields are used in every packet. The specific packet
formats are described below. If a field is not mentioned in the
description of a packet type, its use is assumed to be clear from the
above description.

Cheriton [page 44]

RFC 1045 VMTP February 1988

3.3. Request Packet

The Request packet (or packet group) is sent from the client to the
server or group of servers to solicit processing plus the return of zero
or more responses. A Request packet is identified by a 0 in the LSB of
the fourth 32-bit word in the packet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 + Client (8 octets) +
 +-+
Ver		H	E	M	
sion	Domain	C	P	P	Length
		O	G	G	
+-+					
N	A	N	N	N	M
R	P	S	E	R	D
S	G	R	R	T	G
+-+					
Transaction					
+-+					
PacketDelivery					
 +-+
 + Server (8 octets) +
 +-+
C	D	M	S	R	C	M	P	
M	G	D	D	E	R	R	I	RequestCode
D	M	M	A	S	E	D	C	
 +-+
 + CoResidentEntity (8 octets) +
 +-+
 > User Data (12 octets) <
 +-+
 | MsgDelivery |
 +-+
 | SegmentSize |
 +-+
 > segment data, if any <
 +-+
 | Checksum |
 +-+

 Figure 3-1: Request Packet Format

The fields of the Request packet are set according to the semantics
described in Section 3.2 with the following qualifications.

Cheriton [page 45]

RFC 1045 VMTP February 1988

InterPacketGap The estimated interpacket gap time the client would like
 for the Response packet group to be sent by the Server
 in responding to this Request.

Transaction Identifier for transaction, at least one greater than
 the previously issued Request from this Client.

Server Server to which this Request is destined.

RequestCode Request code for this request, indicating the operation
 to perform.

Cheriton [page 46]

RFC 1045 VMTP February 1988

3.4. Response Packet

The Response packet is sent from the Server to the Client in response to
a Request, identified by a 1 in the LSB of the fourth 32-bit word in the
packet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 + Client (8 octets) +
 +-+
Ver		H	E	M	
sion	Domain	C	P	P	Length
		O	G	G	
+-+					
N	A	N	N	N	R
R	P	S	E	R	E
S	G	R	R	T	S
+-+					
Transaction					
+-+					
PacketDelivery					
 +-+
 + Server (8 octets) +
 +-+
C	D	M	S	R	R	R	R	
M	G	D	D	E	E	E	E	ResponseCode
D	M	M	A	S	S	S	S	
 +-+
 > UserData (20 octets) <
 +-+
 | MsgDelivery |
 +-+
 | Segment Size |
 +-+
 > segment data, if any <
 +-+
 | Checksum |
 +-+

 Figure 3-2: Response Packet Format

The fields of the Response packet are set according to the semantics
described in Section 3.2 with the following qualifications.

Client, Version, Domain, Transaction
 Match those in the Request packet group to which this is

Cheriton [page 47]

RFC 1045 VMTP February 1988

 a response.

STI 1 if this Response is using one or more of the
 transaction identifiers skipped by the Client after the
 Request to which this is a Response. STI in the Request
 essentially allocates up to 256 transaction identifiers
 for the Server to use in a run of Response packet
 groups.

RetransmitCount The retransmit count from the last Request packet
 received to which this is a response.

ForwardCount The number of times the corresponding Request was
 forwarded before this Response was generated.

PGcount The number of consecutively previous packet groups that
 this response is acknowledging in addition to the one
 identified by the Transaction identifier.

Server Server sending this response. This may differ from that
 originally specified in the Request packet if the
 original Server was a server group, or the request was
 forwarded.

The next two chapters describes the protocol operation using these
packet formats, with the the Client and the Server portions described
separately.

Cheriton [page 48]

RFC 1045 VMTP February 1988

4. Client Protocol Operation

This chapter describes the operation of the client portion of VMTP in
terms of the procedures for handling VMTP user events, packet reception
events, management operations and timeout events. Note that the client
portion of VMTP is separable from the server portion. It is feasible to
have a node that only implements the client end of VMTP.

To simplify the description, we define a client state record (CSR) plus
some standard utility routines.

4.1. Client State Record Fields

In the following protocol description, there is one client state record
(CSR) per (client,transaction) outstanding message transaction. Here is
a suggested set of fields.

Link Link to next CSR when queued in one of the transmission,
 timeout or message queues.

QueuePtr Pointer to queue head in which this CSR is contained or
 NULL if none. Queue could be one of transmission queue,
 timeout queue, server queue or response queue.

ProcessIdentification
 The process identification and address space.

Priority Priority for processing, network service, etc.

State One of the client states described below.

FinishupFunc Procedure to be executed on the CSR when it is completes
 its processing in transmission or timeout queues.

TimeoutCount Time to remain in timeout queue.

TimeoutLimit User-specified time after which the message transaction
 is aborted. The timeout is infinite if set to zero.

RetransCount Number of retransmissions since last hearing from the
 Server.

LastTransmitTime
 The time at which the last packet was sent. This field
 is used to calculate roundtrip times, using the
 RetransmitCount to match the responding packet to a

Cheriton [page 49]

RFC 1045 VMTP February 1988

 particular transmission. I.e. Response or management
 NotifyVmtpClient operation to Request and a management
 NotifyVmtpServer operation to a Response.

TimetoLive Time to live to be used on transmission of IP packets.

TransmissionMask
 Bit mask indicating the portions of the segment to
 transmit. Set before entering the transmission queue
 and cleared incrementally as the 512-byte segment blocks
 of the segment are transmitted.

LocalClientLink Link to next CSR hashing to same hash index in the
 ClientMap.

LocalClient Entity identifier for client when this CSR is used to
 send a Request packet.

LocalTransaction
 Transaction identifier for current message transaction
 the local client has outstanding.

LocalPrincipal Account identification, possibly including key and key
 timeout.

LocalDelivery Bit mask of segment blocks that have not been
 acknowledged in the Request or have been received in the
 Response, depending on the state.

ResponseQueue Queue of CSR’s representing the queued Responses for
 this entity.

VMTP Header Prototype VMTP header, used to generate and store the
 header portion of a Request for transmission and
 retransmission on timeout.

SegmentDesc Description of the segment data associated with the CSR,
 either the area storing the original Request data, the
 area for receiving Request data, or the area storing the
 Response data that is returned.

HostAddr The network or internetwork host address to which the
 Client last transmitted. This field also indicates the
 type of the address, e.g. IP, Ethernet, etc.

Note: the CSR can be combined with a light-weight process descriptor
with considerable benefit if the process is designed to block when it

Cheriton [page 50]

RFC 1045 VMTP February 1988

issues a message transaction. In particular, by combining the two
descriptors, the implementation saves time because it only needs to
locate and queue one descriptor with various operations (rather than
having to locate two descriptors). It also saves space, given that the
VMTP header prototype provides space such as the user data field which
may serve to store processor state for when the process is preempted.
Non-preemptive blocking can use the process stack to store the processor
state so only a program counter and stack pointer may be required in the
process descriptor beyond what we have described. (This is the approach
used in the V kernel.)

4.2. Client Protocol States

A Client State Record records the state of message transaction generated
by this host, identified by the (Client, Transaction) values in the CSR.
As a client originating a transaction, it is in one of the following
states.

AwaitingResponse
 Waiting for a Response packet group to arrive with the
 same (Client,Transaction) identification.

ReceivingResponse
 Waiting for additional packets in the Response packet
 group it is currently receiving.

"Other" Not waiting for a response, which can be Processing or
 some other operating system state, or one of the Server
 states if it also acts as a server.

This covers all the states for a client.

4.3. State Transition Diagrams

The client state transitions are illustrated in Figure 4-1. The client
goes into the state AwaitingResponse on sending a request unless it is a
datagram request. In the AwaitingResponse state, it can timeout and
retry and eventually give up and return to the processing state unless
it receives a Response. (A NotifyVmtpClient operation resets the
timeout but does not change the state.) On receipt of a single packet
response, it returns to the processing state. Otherwise, it goes to
ReceivingResponse state. After timeout or final response packet is
received, the client returns to the processing state. The processing
state also includes any other state besides those associated with
issuing a message transaction.

Cheriton [page 51]

RFC 1045 VMTP February 1988

 +------------+
Processing	<--------------------		
	<-------------		
	<---		
 +|------^--^-+ Single Last |
 Transmit | | Packet Response |
 | | | Response Packet |
 | | | | | |
 +-DGM->+ Timeout | | Final timeout
 | | | | |
 +V-----------+ | +-----------+
 | Awaiting |----+ | Receiving |->Response-+
 | Response |->Response->| Response | |
 | | (multi- | |<----------+
 +-|--------^-+ packet) +----------^+
 V | | |
 +-Timeout+ +>Timeout+

 Figure 4-1: Client State Transitions

4.4. User Interface

The RPC or user interface to VMTP is implementation-dependent and may
use systems calls, functions or some other mechanism. The list of
requests that follow is intended to suggest the basic functionality that
should be available.

Send(mcb, timeout, segptr, segsize)
 Initiate a message transaction to the server and request
 message specified by mcb and return a response in mcb,
 if it is received within the specified timeout period
 (or else return USER_TIMEOUT in the Code field). The
 segptr parameter specifies the location from which the
 segment data is sent and the location into which the
 response data is to be delivered. The segsize field
 indicates the maximum length of this area.

GetResponse(responsemcb, timeout, segptr, segsize)
 Get the next response sent to this client as part of the
 current message transaction, returning the segment data,
 if any, into the memory specified by segptr and segsize.

This interface assumes that there is a client entity associated with the
invoking process that is to be used with these operations. Otherwise,
the client entity must be specified as an additional parameter.

Cheriton [page 52]

RFC 1045 VMTP February 1988

4.5. Event Processing

The following events may occur in the VMTP client:

 - User Requests

 * Send

 * GetResponse

 - Packet Arrival

 * Response Packet

 * Request

 The minimal Client implementation handles Request packets for
 its VMTP management (server) module and sends NotifyVmtpClient
 requests in response to others, indicating the specified
 server does not exist.

 - Management Operation - NotifyVmtpClient

 - Timeouts

 * Client Retransmission Timeout

The handling of these events is described in detail in the following
subsections.

We first describe some conventions and procedures used in the
description. A field of the received packet is indicated as (for
example) p.Transaction, for the Transaction field. Optional portions of
the code, such as the streaming handling code are prefixed with a "|" in
the first column.

MapClient(client)
 Return pointer to CSR for client with the specified
 clientId, else NULL.

SendPacketGroup(csr)
 Send the packet group (Request, Response) according to
 that specified by the CSR.

NotifyClient(csr, p, code)
 Invoke the NotifyVmtpClient operation with the
 parameters csr.RemoteClient, p.control,

Cheriton [page 53]

RFC 1045 VMTP February 1988

 csr.ReceiveSeqNumber, csr.RemoteTransaction and
 csr.RemoteDelivery, and code. If csr is NULL, use
 p.Client, p.Transaction and p.PacketDelivery instead and
 the global ReceiveSequenceNumber, if supported. This
 function simplifies the description over calling
 NotifyVmtpClient directly in the procedural
 specification below. (See Appendix III.)

NotifyServer(csr, p, code)
 Invoke the NotifyVmtpServer operation with the
 parameters p.Server, csr.LocalClient,
 csr.LocalTransaction, csr.LocalDelivery and code. Use
 p.Client, P.Transaction and 0 for the clientId, transact
 and delivery parameters if csr is NULL. This function
 simplifies the description over calling NotifyVmtpServer
 directly in the procedural specification below. (See
 Appendix III.)

DGMset(p) True if DGM bit set in packet (or csr) else False.
 (Similar functions are used for other bits.)

Timeout(csr, timeperiod, func)
 Set or reset timer on csr record for timeperiod later
 and invoke func if the timeout expires.

4.6. Client User-invoked Events

A user event occurs when a VMTP user application invokes one of the VMTP
interface procedures.

4.6.1. Send

Send(mcb, timeout, segptr, segsize)
 map to main CSR for this client.
 increment csr.LocalTransaction
 Init csr and check parameters and segment if any.
 Set SDA if sending appended data.
 Flush queued replies from previous transaction, if any.
 if local non-group server then
 deliver locally
 await response
 return
 if GroupId(server) then
 Check for and deliver to local members.
 if CRE request and non-group local CR entity then

Cheriton [page 54]

RFC 1045 VMTP February 1988

 await response
 return
 endif
 set MDG if member of this group.
 endif
 clear csr.RetransCount
 set csr.TransmissionMask
 set csr.TimeLimit to timeout
 set csr.HostAddr for csr.Server
 SendPacketGroup(csr)
 if DGMset(csr) then
 return
 endif
 set csr.State to AwaitingResponse
 Timeout(rootcsr, TC1(csr.Server), LocalClientTimeout)
 return
end Send

Notes:

 1. Normally, the HostAddr is extracted from the ServerHost
 cache, which maps server entity identifiers to host
 addresses. However, on cache miss, the client first queries
 the network using the ProbeEntity operation, as specified in
 Appendix III, determining the host address from the Response.
 The ProbeEntity operation is handled as a separate message
 transaction by the Client.

The stream interface incorporates a parameter to pass a responseHandler
procedure that is invoked when the message transaction completes.

StreamSend(mcb, timeout, segptr, segsize, responseHandler)
 map to main CSR for this client.
| Allocate a new csr if root in use.
| lastcsr := First csr for last request.
| if STIset(lastcsr)
| csr.LocalTransaction := lastcsr.LocalTransaction + 256
| else
| csr.LocalTransaction := lastcsr.LocalTransaction + 1
 Init csr and check parameters and segment if any.
 . . . (rest is the same as for the normal Send)

Notes:

 1. Each outstanding message transaction is represented by a CSR
 queued on the root CSR for this client entity. The root CSR
 is used to handle timeouts, etc. On timeout, the last packet

Cheriton [page 55]

RFC 1045 VMTP February 1988

 from the last packet group is retransmitted (with or without
 the segment data).

4.6.2. GetResponse

GetResponse(req, timeout, segptr, segsize)
 csr := CurrentCSR;
 if responses queued then return next response
 (in req, segptr to max of segsize)
 if timeout is zero then return KERNEL_TIMEOUT error
 set state to AWAITING_RESPONSE
 Timeout(csr, timeout, ReturnKernelTimeout);
end GetResponse

Notes:

 1. GetResponse is only used with multicast Requests, which is
 the only case in which multiple (different) Responses should
 be received.

 2. A response must remain queued until the next message
 transaction is invoked to filter out duplicates of this
 response.

 3. If the response is incomplete (only relevant if a
 multi-packet response), then the client may wait for the
 response to be fully received, including issuing requests for
 retransmission (using NotifyVmtpServer operations) before
 returning the response.

 4. As an optimization, a response may be stored in the CSR of
 the client. In this case, the response must be transferred
 to a separate buffer (for duplicate suppression) before
 waiting for another response. Using this optimization, a
 response buffer is not allocated in the common case of the
 client receiving only one response.

4.7. Packet Arrival

In general, on packet reception, a packet is mapped to the client state
record, decrypted if necessary using the key in the CSR. It then has
its checksum verified and then is transformed to the right byte order.
The packet is then processed fully relative to its packet function code.
It is discarded immediately if it is addressed to a different domain
than the domain(s) in which the receiving host participates.

Cheriton [page 56]

RFC 1045 VMTP February 1988

For each of the 2 packet types, we assume a procedure called with a
pointer p to the VMTP packet and psize, the size of the packet in
octets. Thus, generic packet reception is:

if not LocalDomain(p.Domain) then return;

csr := MapClient(p.Client)

if csr is NULL then
 HandleNoCsr(p, psize)
 return

if Secure(p) then
 if SecureVMTP not supported then
 { Assume a Request. }
 if not Multicast(p) then
 NotifyClient(NULL, p, SECURITY_NOT_SUPPORTED)
 return
 endif
| Decrypt(csr.Key, p, psize)

if p.Checksum not null then
 if not VerifyChecksum(p, psize) then return;
if OppositeByteOrder(p) then ByteSwap(p, psize)
if psize not equal sizeof(VmtpHeader) + 4*p.Length then
 NotifyClient(NULL, p, VMTP_ERROR)
 return
Invoke Procedure[p.FuncCode](csr, p, psize)
Discard packet and return

Notes:

 1. The Procedure[p.FuncCode] refers to one of the 2 procedures
 corresponding to the two different packet types of VMTP,
 Requests and Responses.

 2. In all the following descriptions, a packet is discarded on
 "return" unless otherwise stated.

 3. The procedure HandleNoCSR is a management routine that
 allocates and initializes a CSR and processes the packet or
 else sends an error indication to the sender of the packet.
 This procedure is described in greater detail in Section
 4.8.1.

Cheriton [page 57]

RFC 1045 VMTP February 1988

4.7.1. Response

This procedure handles incoming Response packets.

HandleResponse(csr, p, psize)
 if not LocalClient(csr) then
 if Multicast then return
| if Migrated(p.Client) then
| NotifyServer(csr, p ENTITY_MIGRATED)
| else
 NotifyServer(csr, p, ENTITY_NOT_HERE)
 return
 endif

 if NSRset(p) then
 if Streaming not supported then
 NotifyServer(csr, p, STREAMING_NOT_SUPPORTED)
 return STREAMED_RESPONSE
| Find csr corresponding to p.Transaction
| if none found then
| NotifyServer(csr, p, BAD_TRANSACTION_ID)
| return
 else
 if csr.LocalTransaction not equal p.Transaction then
 NotifyServer(csr, p, BAD_TRANSACTION_ID)
 return
 endif
 Locate reply buffer rb for this p.Server
 if found then
 if rb.State is not ReceivingResponse then
 { Duplicate }
 if APGset(p) or NERset(p) then
 { Send Response to stop response packets. }
 NotifyServer(csr, p, RESPONSE_DISCARDED)
 endif
 return
 endif
 { rb.State is ReceivingRequest}
 if new segment data then retain in CSR segment area.
 if packetgroup not complete then
 Timeout(rb, TC3(p.Server), LocalClientTimeout)
 return;
 endif
 goto EndPacketGroup
 endif
 { Otherwise, a new response message. }

Cheriton [page 58]

RFC 1045 VMTP February 1988

 if (NSRset(p) or NERset(p)) and NoStreaming then
 NotifyServer(csr, p, VMTP_ERROR)
 return
| if NSRset(p) then
| { Check consecutive with previous packet group }
| Find last packet group CSR from p.Server.
| if p.Transaction not
| lastcsr.RemoteTransaction+1 mod 2**32 then
| { Out of order packet group }
| NotifyServer(csr, p, BAD_TRANSACTION_ID)
| return
| endif
| if lastcsr not completed then
| NotifyServer(lastcsr, p, RETRY)
| endif
| if CMG(lastcsr) then
| Add segment data to lastcsr Response
| Notify lastcsr with new packet group.
| Clear lastcsr.VerifyInterval
| else
| if lastcsr available then
| use it for this packet group
| else allocate and initialize new CSR
| Save message and segment data in new CSR area.
| endif
| else { First packet group }
 Allocate and init reply buffer rb for this response.
 if allocation fails then
 NotifyServer(csr, p, BUSY)
 return
 Set rb.State to ReceivingResponse
 Copy message and segment data to rb’s segment area
 and set rb.PacketDelivery to that delivered.
 Save p.Server host address in ServerHost cache.
 endif
 if packetgroup not complete then
 Timeout(rb, TS1(p.Client), LocalClientTimeout)
 return;
 endif
endPacketGroup:
 { We have received last packet in packet group. }
 if APGset(p) then NotifyServer(csr, p, OK)
| if NERset(p) and CMGset(p) then
| Queue waiting for continuation packet group.
| Timeout(rb, TC2(rb.Server), LocalClientTimeout)
| return
| endif

Cheriton [page 59]

RFC 1045 VMTP February 1988

 { Deliver response message. }
 Deliver response to Client, or queue as appropriate.
end HandleResponse

Notes:

 1. The mechanism for handling streaming is optional and can be
 replaced with the tests for use of streaming. Note that the
 server should never stream at the Client unless the Client
 has streamed at the Server or has used the STI control bit.
 Otherwise, streamed Responses are a protocol error.

 2. As an optimization, a Response can be stored into the CSR for
 the Client rather than allocating a separate CSR for a
 response buffer. However, if multiple responses are handled,
 the code must be careful to perform duplicate detection on
 the Response stored there as well as those queued. In
 addition, GetResponse must create a queued version of this
 Response before allowing it to be overwritten.

 3. The handling of Group Responses has been omitted for brevity.
 Basically, a Response is accepted if there has been a Request
 received locally from the same Client and same Transaction
 that has not been responded to. In this case, the Response
 is delivered to the Server or queued.

Cheriton [page 60]

RFC 1045 VMTP February 1988

4.8. Management Operations

VMTP uses management operations (invoked as remote procedure calls) to
effectively acknowledge packet groups and request retransmissions. The
following routine is invoked by the Client’s management module on
request from the Server.

NotifyVmtpClient(clientId,ctrl,receiveSeqNumber,transact,delivery,code)
 Get csr for clientId
 if none then return
 if RemoteClient(csr) and not NotifyVmtpRemoteClient then
 return
| else (for streaming)
| Find csr with same LocalTransaction as transact
| if csr is NULL then return
 if csr.State not AwaitingResponse then return
 if ctrl.PGcount then ack previous packet groups.
 select on code
 case OK:
 Notify ack’ed segment blocks from delivery
 Clear csr.RetransCount;
 Timeout(csr, TC1(csr.Server), LocalClientTimeout)
 return
 case RETRY:
 Set csr.TransmissionMask to missing segment blocks,
 as specified by delivery
 SendPacketGroup(csr)
 Timeout(csr, TC1(csr.Server), LocalClientTimeout)
 case RETRY_ALL
 Set csr.TransmissionMask to retransmit all blocks.
 SendPacketGroup(csr)
 Timeout(csr, TC1(csr.Server), LocalClientTimeout)
| if streaming then
| Restart transmission of packet groups,
| starting from transact+1
 return
 case BUSY:
 if csr.TimeLimit exceeded then
 Set csr.Code to USER_TIMEOUT
 return Response to application
 return;
 Set csr.TransmissionMask for full retransmission
 Clear csr.RetransCount
 Timeout(csr, TC1(csr.Server), LocalClientTimeout)
 return
 case ENTITY_MIGRATED:
 Get new host address for entity

Cheriton [page 61]

RFC 1045 VMTP February 1988

 Set csr.TransmissionMask for full retransmission
 Clear csr.RetransCount
 SendPacketGroup(csr)
 Timeout(csr, TC1(csr.Server), LocalClientTimeout)
 return

 case STREAMING_NOT_SUPPORTED:
 Record that server does not support streaming
 if CMG(csr) then forget this packet group
 else resend Request as separate packet group.
 return
 default:
 Set csr.Code to code
 return Response to application
 return;
 endselect
end NotifyVmtpClient

Notes:

 1. The delivery parameter indicates the segment blocks received
 by the Server. That is, a 1 bit in the i-th position
 indicates that the i-th segment block in the segment data of
 the Request was received. All subsequent NotifyVmtpClient
 operations for this transaction should be set to acknowledge
 a superset of the segment blocks in this packet. In
 particular, the Client need not be prepared to retransmit the
 segment data once it has been acknowledged by a Notify
 operation.

4.8.1. HandleNoCSR

HandleNoCSR is called when a packet arrives for which there is no CSR
matching the client field of the packet.

HandleNoCSR(p, psize)
 if Secure(p) then
 if SecureVMTP not supported then
 { Assume a Request }
 if not Multicast(p) then
 NotifyClient(NULL,p,SECURITY_NOT_SUPPORTED)
 return
 endif
 HandleRequestNoCSR(p, psize)
 return
 endif

Cheriton [page 62]

RFC 1045 VMTP February 1988

 if p.Checksum not null then
 if not VerifyChecksum(p, psize) then return;
 if OppositeByteOrder(p) then ByteSwap(p, psize)
 if psize not equal sizeof(VmtpHeader) + 4*p.Length then
 NotifyClient(NULL, p, VMTP_ERROR)
 return

 if p.FuncCode is Response then
| if Migrated(p.Client) then
| NotifyServer(csr, p ENTITY_MIGRATED)
| else
 NotifyServer(csr, p, NONEXISTENT_ENTITY)
 return
 endif

 if p.FuncCode is Request then
 HandleRequestNoCSR(p, psize)
 return
end HandleNoCSR

Notes:

 1. The node need only check to see if the client entity has
 migrated if in fact it supports migration of entities.

 2. The procedure HandleRequestNoCSR is specified in Section
 5.8.1. In the minimal client version, it need only handle
 Probe requests and can do so directly without allocating a
 new CSR.

Cheriton [page 63]

RFC 1045 VMTP February 1988

4.9. Timeouts

A client with a message transaction in progress has a single timer
corresponding to the first unacknowledged request message. (In the
absence of streaming, this request is also the last request sent.) This
timeout is handled as follows:

LocalClientTimeout(csr)
 select on csr.State
 case AwaitingResponse:
 if csr.RetransCount > MaxRetrans(csr.Server) then
 terminate Client’s message transactions up to
 and including the current message transaction.
 set return code to KERNEL_TIMEOUT
 return
 increment csr.RetransCount
 Resend current packet group with APG set.
 Timeout(csr, TC2(csr.Server), LocalClientTimeout)
 return
 case ReceivingResponse:
 if DGMset(csr) or csr.RetransCount > Max then
 if MDMset(csr) then
 Set MCB.MsgDeliveryMask to blocks received.
 else
 Set csr.Code to BAD_REPLY_SEGMENT
 return to user Client
 endif
 increment csr.RetransCount
 NotifyServer with RETRY
 Timeout(csr, TC3(csr.Server), LocalClientTimeout)
 return
 end select
end LocalClientTimeout

Notes:

 1. A Client can only request retransmission of a Response if the
 Response is not idempotent. If idempotent, it must
 retransmit the Request. The Server should generally support
 the MsgDeliveryMask for Requests that it treats as idempotent
 and that require multi-packet Responses. Otherwise, there is
 no selective retransmission for idempotent message
 transactions.

 2. The current packet group is the last one transmitted. Thus,
 with streaming, there may be several packet groups
 outstanding that precede the current packet group.

Cheriton [page 64]

RFC 1045 VMTP February 1988

 3. The Request packet group should be retransmitted without the
 segment data, resulting in a single short packet in the
 retransmission. The Server must then send a
 NotifyVmtpClient with a RETRY or RETRY_ALL code to get the
 segment data transmitted as needed. This strategy minimizes
 the overhead on the network and the server(s) for
 retransmissions.

Cheriton [page 65]

RFC 1045 VMTP February 1988

5. Server Protocol Operation

This section describes the operation of the server portion of the
protocol in terms of the procedures for handling VMTP user events,
packet reception events and timeout events. Each server is assumed to
implement the client procedures described in the previous chapter.
(This is not strictly necessary but it simplifies the exposition.)

5.1. Remote Client State Record Fields

The CSR for a server is extended with the following fields, in addition
to the ones listed for the client version.

RemoteClient Identifier for remote client that sent the Request that
 this CSR is handling.

RemoteClientLink
 Link to next CSR hashing to same hash index in the
 ClientMap.

RemoteTransaction
 Transaction identifier for Request from remote client.

RemoteDelivery The segment blocks received so far as part of a Request
 or yet to be acknowledged as part of a Response.

VerifyInterval Time interval since there was confirmation that the
 remote Client was still valid.

RemotePrincipal Account identification, possibly including key and key
 timeout for secure communication.

5.2. Remote Client Protocol States

A CSR in the server end is in one of the following states.

AwaitingRequest Waiting for a Request packet group. It may be marked as
 waiting on a specific Client, or on any Client.

ReceivingRequest
 Waiting to receive additional Request packets in a
 multi-packet group Request.

Responded The Response has been sent and the CSR is timing out,
 providing duplicate suppression and retransmission (if

Cheriton [page 66]

RFC 1045 VMTP February 1988

 the Response was not idempotent).

ResponseDiscarded
 Response has been acknowledged or has timed out so
 cannot be retransmitted. However, duplicates are still
 filtered and CSR can be reused for new message
 transaction.

Processing Executing on behalf of the Client.

Forwarded The message transaction has been forwarded to another
 Server that is to respond directly to the Client.

5.3. State Transition Diagrams

The CSR state transitions in the server are illustrated in Figure 5-1.
The CSR generally starts in the AwaitingRequest state. On receipt of a
Request, the Server either has an up-to-date CSR for the Client or else
it sends a Probe request (as a separate VMTP message transaction) to the
VMTP management module associated with the Client. In the latter case,
the processing of the Request is delayed until a Response to the Probe
request is received. At that time, the CSR information is brought up to
date and the Request is processed. If the Request is a single-packet
request, the CSR is then set in the Processing state to handle the
request. Otherwise (a multi-packet Request), the CSR is put into the
ReceivingResponse state, waiting to receive subsequent Request packets
that constitute the Request message. It exits the ReceivingRequest
state on timeout or on receiving the last Request packet. In the former
case, the request is delivered with an indication of the portion
received, using the MsgDelivery field if MDM is set. After request
processing is complete, either the Response is sent and the CSR enters
the Responded state or the message transaction is forwarded and the CSR
enters the Forwarded state.

In the Responded state, if the Response is not marked as idempotent, the
Response is retransmitted on receipt of a retransmission of the
corresponding Request, on receipt of a NotifyVmtpServer operation
requesting retransmission or on timeout at which time APG is set,
requesting an acknowledgment from the Client. The Response is
retransmitted some maximum number of times at which time the Response is
discarded and the CSR is marked accordingly. If a Request or a
NotifyVmtpServer operation is received expecting retransmission of the
Response after the CSR has entered the ResponseDiscarded state, a
NotifyVmtpClient operation is sent back (or invoked in the Client
management module) indicating that the response was discarded unless the
Request was multicast, in which case no action is taken. After a

Cheriton [page 67]

RFC 1045 VMTP February 1988

 (Retransmit Forwarded Request and NotifyVmtpClient)
 Request/
 Ack/
 +Timeout+
 V |
 +-|-------^-+
 | |
 +-Time-| Forwarded |<-------------+
 | out +-----------+ |
 | |
 | (Retransmit Response) |
 | Request |
 V Ack |
 | +-Timeout-+ |
 | V | |
 +---------+ Ack/ +|---------^+ |
 +-Time-|Response |<-Timeout--| Responded | |
out	Discarded	+----^------+
+---------+		
+------------+		
		->-Send Response-+
		->-forward Request--------+
+->	Processing	<----------------------+
		<----------------+
		<---
+-	--------^-+	Last
Receive		Request
	Timeout Single Packet	
		Packet
		Request ^ ^
		^ +
+-V--------	-+	
 +->| Awaiting |->--+->Request->| Request |--+ out
 | Request | | (multi- +---------+
 +------|-----+ ^ packet)
 Request |
 | Response
 Send Probe to
 | Probe
 +---V----+ |
 |Awaiting| ^
 |Response|-->--+
 |to Probe|
 +--------+

 Figure 5-1: Remote Client State Transitions

timeout corresponding to the time required to filter out duplicates, the

Cheriton [page 68]

RFC 1045 VMTP February 1988

CSR returns either to the AwaitingRequest state or to the Processing
state. Note that "Ack" refers to acknowledgment by a Notify operation.

A Request that is forwarded leaves the CSR in the Forwarded state. In
the Forwarded state, the forwarded Request is retransmitted
periodically, expecting NotifyRemoteClient operations back from the
Server to which the Request was forwarded, analogous to the Client
behavior in the AwaitingResponse state. In this state, a
NotifyRemoteClient from this Server acknowledges the Request or asks
that it be retransmitted or reports an error. A retransmission of the
Request from the Client causes a NotifyVmtpClient to be returned to the
Client if APG is set. The CSR leaves the Forwarded state after timing
out in the absence of NotifyRemoteClient operations from the forward
Server or on receipt of a NotifyRemoteClient operation indicating the
forward Server has sent a Response and received an acknowledgement. It
then enters the ResponseDiscarded state.

Receipt of a new Request from the same Client aborts the current
transaction, independent of its state, and initiates a new transaction
unless the new Request is part of a run of message transactions. If it
is part of a run of message transactions, the handling follows the state
diagram except the new Request is not Processed until there has been a
response sent to the previous transaction.

5.4. User Interface

The RPC or user interface to VMTP is implementation-dependent and may
use systems calls, functions or some other mechanism. The list of
requests that follow is intended to suggest the basic functionality that
should be available.

AcceptMessage(reqmcb, segptr, segsize, client, transid, timeout)
 Accept a new Request message in the specified reqmcb
 area, placing the segment data, if any, in the area
 described by segptr and segsize. This returns the
 Server in the entityId field of the reqmcb and actual
 segment size in the segsize parameters. It also returns
 the Client and Transaction for this message transaction
 in the corresponding parameters. This procedure
 supports message semantics for request processing. When
 a server process executes this call, it blocks until a
 Request message has been queued for the server.
 AcceptMessage returns after the specified timeout period
 if a message has not been received by that time.

RespondMessage(responsemcb, client, transid, segptr)

Cheriton [page 69]

RFC 1045 VMTP February 1988

 Respond to the client with the specified response
 message and segment, again with message semantics.

RespondCall(responsemcb, segptr)
 Respond to the client with the specified response
 message and segment, with remote procedure call
 semantics. This procedure does not return. The
 lightweight process that executes this procedure is
 matched to a stack, program counter, segment area and
 priority from the information provided in a
 ModifyService call, as specified in Appendix III.

ForwardMessage(requestmcb, transid, segptr, segsize, forwardserver)
 Forward the client to the specified forwardserver with
 the request specified in mcb.

ForwardCall(requestmcb, segptr, segsize, forwardserver)
 Forward the client transaction to the specified
 forwardserver with the request specified by requestmcb.
 This procedure does not return.

GetRemoteClientId()
 Return the entityId for the remote client on whose
 behave the process is executing. This is only
 applicable in the procedure call model of request
 handling.

GetForwarder(client)
 Return the entity that forwarded this Request, if any.

GetProcess(client)
 Return an identifier for the process associated with
 this client entity-id.

GetPrincipal(client)
 Return the principal associated with this client
 entity-id.

5.5. Event Processing

The following events may occur in VMTP servers.

 - User Requests

 * Receive

Cheriton [page 70]

RFC 1045 VMTP February 1988

 * Respond

 * Forward

 * GetForwarder

 * GetProcess

 * GetPrincipal

 - Packet Arrival

 * Request Packet

 - Management Operations

 * NotifyVmtpServer

 - Timeouts

 * Client State Record Timeout

The handling of these events is described in detail in the following
subsections. The conventions of the previous chapter are followed,
including the use of the various subroutines in the description.

5.6. Server User-invoked Events

A user event occurs when a VMTP server invokes one of the VMTP interface
procedures.

5.6.1. Receive

AcceptMessage(reqmcb, segptr, segsize, client, transid, timeout)
 Locate server’s request queue.
 if request is queued then
 Remember CSR associated with this Request.
 return Request in reqmcb, segptr and segsize
 and client and transaction id.
 Wait on server’s request queue for next request
 up time timeout seconds.
end ReceiveCall

Notes:

Cheriton [page 71]

RFC 1045 VMTP February 1988

 1. If a multi-packet Request is partially received at the time
 of the AcceptMessage, the process waits until it completes.

 2. The behavior of a process accepting a Request as a
 lightweight thread is similar except that the process
 executes using the Request data logically as part of the
 requesting Client process.

5.6.2. Respond

RespondCall is described as one case of the Respond transmission
procedure; RespondMessage is similar.

RespondCall(responsemcb, responsesegptr)
 Locate csr for this client.
 Check segment data accessible, if any
 if local client then
 Handle locally
 return
 endif
 if responsemcb.Code is RESPONSE_DISCARDED then
 Mark as RESPONSE_DISCARDED
 return
 SendPacketGroup(csr)
 set csr.State to Responded.
 if DGM reply then { Idempotent }
 release segment data
 Timeout(csr, TS4(csr.Client), FreeCsr);
 else { Await acknowledgement or new Request else ask for ack. }
 Timeout(csr, TS5(csr.Client), RemoteClientTimeout)
end RespondCall

Notes:

 1. RespondMessage is similar except the Server process must be
 synchronized with the release of the segment data (if any).

 2. The non-idempotent Response with segment data is sent first
 without a request for an acknowledgement. The Response is
 retransmitted after time TS5(client) if no acknowledgment or
 new Request is received from the client in the meantime. At
 this point, the APG bit is sent.

 3. The MCB of the Response is buffered in the client CSR, which
 remains for TS4 seconds, sufficient to filter old duplicates.
 The segment data (if any) must be retained intact until: (1)

Cheriton [page 72]

RFC 1045 VMTP February 1988

 after transmission if idempotent or (2) after acknowledged or
 timeout has occurred if not idempotent. Techniques such as
 copy-on-write might be used to keep a copy of the Response
 segment data without incurring the cost of a copy.

5.6.3. Forward

Forwarding is logically initiating a new message transaction between the
Server (now acting as a Client) and the server to which the Request is
forwarded. When the second server returns a Response, the same Response
is immediately returned to the Client. The forwarding support in VMTP
preserves these semantics while providing some performance optimizations
in some cases.

ForwardCall(req, segptr, segsize, forwardserver)
 Locate csr for this client.
 Check segment data accessible, if any

 if local client or Request was multicast or secure
 or csr.ForwardCount == 15 then
 Handle as a new Send operation
 return
 if forwardserver is local then
 Handle locally
 return
 Set csr.funccode to Request
 Increment csr.ForwardCount
 Set csr.State to Responded
 SendPacketGroup(csr) { To ForwardServer }
 Timeout(csr, TS4(csr.Client), FreeAlien)
end ForwardCall

Notes:

 1. A Forward is logically a new call or message transaction. It
 must be really implemented as a new message transaction if
 the original Request was multicast or secure (with the
 optional further refinement that it can be used with a secure
 message transaction when the Server and ForwardServer are the
 same principal and the Request was not multicast).

 2. A Forward operation is never handled as an idempotent
 operation because it requires knowledge that the
 ForwardServer will treat the forwarded operation as
 idempotent as well. Thus, a Forward operation that includes
 a segment should set APG on the first transmission of the

Cheriton [page 73]

RFC 1045 VMTP February 1988

 forwarded Request to get an acknowledgement for this data.
 Once the acknowledgement is received, the forwarding Server
 can discard the segment data, leaving only the basic CSR to
 handle retransmissions from the Client.

5.6.4. Other Functions

GetRemoteClient is a simple local query of the CSR. GetProcess and
GetPrincipal also extract this information from the CSR. A server
module may defer the Probe callback to the Client to get that
information until it is requested by the Server (assuming it is not
using secure communication and duplicate suppression is adequate without
callback.) GetForwarder is implemented as a callback to the Client,
using a GetRequestForwarder VMTP management operation. Additional
management procedures for VMTP are described in Appendix III.

5.7. Request Packet Arrival

The basic packet reception follows that described for the Client
routines. A Request packet is handled by the procedure HandleRequest.

HandleRequest(csr, p, psize)

 if LocalClient(csr) then
 { Forwarded Request on local Client }
 if csr.LocalTransaction != p.Transaction then return
 if csr.State != AwaitingResponse then return
 if p.ForwardCount < csr.ForwardCount then
 Discard Request and return.
 Find a CSR for Client as a remote Client.
 if not found then
 if packet group complete then
 handle as a local message transaction
 return
 Allocate and init CSR
 goto newTransaction
 { Otherwise part of current transaction }
 { Handle directly below. }n
 if csr.RemoteTransaction = p.Transaction then
 { Matches current transaction }
 if OldForward(p.ForwardCount,csr.ForwardCount) then
 return
 if p.ForwardCount > csr.ForwardCount then
 { New forwarded transaction }
 goto newTransaction

Cheriton [page 74]

RFC 1045 VMTP February 1988

 { Otherwise part of current transaction }
 if csr.State = ReceivingRequest then
 if new segment data then retain in CSR segment area.
 if Request not complete then
 Timeout(csr, TS1(p.Client), RemoteClientTimeout)
 return;
 endif
 goto endPacketGroup
 endif
 if csr.State is Responded then
 { Duplicate }
 if csr.Code is RESPONSE_DISCARDED
 and Multicast(p) then
 return
 endif
 if not DGM(csr) then { Not idempotent }
 if SegmentData(csr) then set APG
 { Resend Response or Request, if Forwarded }
 SendPacketGroup(csr)
 timeout=if SegmentData(csr) then TS5(csr.Client)
 else TS4(csr.Client)
 Timeout(csr, timeout, RemoteClientTimeout)
 return
 { Else idempotent - fall thru to newTransaction }
 else { Presume it is a retransmission }
 NotifyClient(csr, p, OK)
 return
 else if OldTransaction(csr.RemoteTransact,p.Transaction) then
 return
 { Otherwise, a new message transaction. }
newTransaction:
 Abort handling of previous transactions for this Client.

 if (NSRset(p) or NERset(p)) and NoStreaming then
 NotifyClient(csr, p, STREAMING_NOT_SUPPORTED)
 return
| if NSRset(p) then { Streaming }
| { Check that consecutive with previous packet group }
| Find last packet group CSR from this client.
| if p.Transaction not lastcsr.RemoteTransaction+1 mod 2**32
| and not STIset(lastcsr) or
| p.Transaction not lastcsr.RemoteTransaction+256 mod **32
| then
| { Out of order packet group }
| NotifyClient(csr, p, BAD_TRANSACTION_ID)
| return
| endif

Cheriton [page 75]

RFC 1045 VMTP February 1988

| if lastcsr not completed then
| NotifyClient(lastcsr, p, RETRY)
| endif
| if lastcsr available then use it for this packet group
| else allocate and initialize new CSR
| if CMG(lastcsr) then
| Add segment data to lastcsr Request
| Keep csr as record of this packet group.
| Clear lastcsr.VerifyInterval
| endif
| else { First packet group }
 if MultipleRemoteClients(csr) then ScavengeCsrs(p.Client)
 Set csr.RemoteTransaction, csr.Priority
 Copy message and segment data to csr’s segment area
 and set csr.PacketDelivery to that delivered.
 Clear csr.PacketDelivery
 Clear csr.VerifyInterval
 SaveNetworkAddress(csr, p)
 endif
 if packetgroup not complete then
 Timeout(csr, TS3(p.Client), RemoteClientTimeout)
 return;
 endif
endPacketGroup:
 { We have received complete packet group. }
 if APG(p) then NotifyClient(csr, p, OK)
 endif
| if NERset(p) and CMG(p) then
| Queue waiting for continuation packet group.
| Timeout(csr, TS3(csr.Client), RemoteClientTimeout)
| return
| endif
 { Deliver request message. }
 if GroupId(csr.Server) then
 For each server identified by csr.Server
 Replicate csr and associated data segment.
 if CMDset(csr) and Server busy then
 Discard csr and data
 else
 Deliver or invoke csr for each Server.
 if not DGMset(csr) then queue for Response
 else Timeout(csr, TS4(csr.Client), FreeCsr)
 endfor
 else
 if CMDset(csr) and Server busy then
 Discard csr and data
 else

Cheriton [page 76]

RFC 1045 VMTP February 1988

 Deliver or invoke csr for this server.
 if not DGMset(csr) then queue for Response
 else Timeout(csr, TS4(csr.Client), FreeCsr)
 endif
end HandleRequest

Notes:

 1. A Request received that specifies a Client that is a local
 entity should be a Request forwarded by a remote server to a
 local Server.

 2. An alternative structure for handling a Request sent to a
 group when there are multiple local group members is to
 create a remote CSR for each group member on reception of the
 first packet and deliver a copy of each packet to each such
 remote CSR as each packet arrives.

Cheriton [page 77]

RFC 1045 VMTP February 1988

5.8. Management Operations

VMTP uses management operations (invoked as remote procedure calls) to
effectively acknowledge packet groups and request retransmissions. The
following routine is invoked by the Server’s management module on
request from the Client.

NotifyVmtpServer(server,clientId,transact,delivery,code)
 Find csr with same RemoteTransaction and RemoteClient
 as clientId and transact.
 if not found or csr.State not Responded then return
 if DGMset(csr) then
 if transmission of Response in progress then
 Abort transmission
 if code is migrated then
 restart transmission with new host addr.
 if Retry then Report protocol error
 return
 endif
 select on code
 case RETRY:
 if csr.RetransCount > MaxRetrans(clientId) then
 if response data segment then
 Discard data and mark as RESPONSE_DISCARDED
| if NERset(csr) and subsequent csr then
| Deallocate csr and use later csr for
| future duplicate suppression
| endif
 return
 endif
 increment csr.RetransCount
 Set csr.TransmissionMask to missing segment blocks,
 as specified by delivery
 SendPacketGroup(csr)
 Timeout(csr, TS3(csr.Client), RemoteClientTimeout)
 case BUSY:
 if csr.TimeLimit exceeded then
 if response data segment then
 Discard data and mark as RESPONSE_DISCARDED
| if NERset(csr) and subsequent csr then
| Deallocate csr and use later csr for
| future duplicate suppression
| endif
 endif
 endif
 Set csr.TransmissionMask for full retransmission
 Clear csr.RetransCount

Cheriton [page 78]

RFC 1045 VMTP February 1988

 Timeout(csr, TS3(csr.Server), RemoteClientTimeout)
 return

 case ENTITY_MIGRATED:
 Get new host address for entity
 Set csr.TransmissionMask for full retransmission
 Clear csr.RetransCount
 SendPacketGroup(csr)
 Timeout(csr, TS3(csr.Server), RemoteClientTimeout)
 return

 case default:
 Abort transmission of Response if in progress.
 if response data segment then
 Discard data and mark as RESPONSE_DISCARDED
 if NERset(csr) and subsequent csr then
 Deallocate csr and use later csr for
 future duplicate suppression
 endif
 return
 endselect
end NotifyVmtpServer

Notes:

 1. A NotifyVmtpServer operation requesting retransmission of
 the Response is acceptable only if the Response was not
 idempotent. When the Response is idempotent, the Client must
 be prepared to retransmit the Request to effectively request
 retransmission of the Response.

 2. A NotifyVmtpServer operation may be received while the
 Response is being transmitted. If an error return, as an
 efficiency, the transmission should be aborted, as suggested
 when the Response is a datagram.

 3. A NotifyVmtpServer operation indicating OK or an error
 allows the Server to discard segment data and not provide for
 subsequent retransmission of the Response.

5.8.1. HandleRequestNoCSR

When a Request is received from a Client for which the node has no CSR,
the node allocates and initializes a CSR for this Client and does a
callback to the Client’s VMTP management module to get the Principal,
Process and other information associated with this Client. It also

Cheriton [page 79]

RFC 1045 VMTP February 1988

checks that the TransactionId is correct in order to filter out
duplicates.

HandleRequestNoCSR(p, psize)
| if Secure(p) then
| Allocate and init CSR
| SaveSourceHostAddr(csr, p)
| ProbeRemoteClient(csr, p, AUTH_PROBE)
| if no response or error then
| delete CSR
| return
| Decrypt(csr.Key, p, psize)
| if p.Checksum not null then
| if not VerifyChecksum(p, psize) then return;
| if OppositeByteOrder(p) then ByteSwap(p, psize)
| if psize not equal sizeof(VmtpHeader) + 4*p.Length then
| NotifyClient(NULL, p, VMTP_ERROR)
| return
| HandleRequest(csr, p, psize)
| return
 if Server does not exist then
 NotifyClient(csr, p, NONEXISTENT_ENTITY)
 return
 endif
 if security required by server then
 NotifyClient(csr, p, SECURITY_REQUIRED)
 return
 endif
 Allocate and init CSR
 SaveSourceHostAddr(csr, p);
 if server requires Authentication then
 ProbeRemoteClient(csr, p, AUTH_PROBE)
 if no response or error then
 delete CSR
 return
 endif
 { Setup immediately as a new message transaction }
 set csr.Server to p.Server
 set csr.RemoteTransaction to p.Transaction-1

 HandleRequest(csr, p, psize)
 endif

Notes:

 1. A Probe request is always handled as a Request not requiring
 authentication so it never generates a callback Probe to the

Cheriton [page 80]

RFC 1045 VMTP February 1988

 Client.

 2. If the Server host retains remote client CSR’s for longer
 than the maximum packet lifetime and the Request
 retransmission time, and the host has been running for at
 least that long, then it is not necessary to do a Probe
 callback unless the Request is secure. A Probe callback can
 take place when the Server asks for the Process or
 PrincipalId associated with the Client.

Cheriton [page 81]

RFC 1045 VMTP February 1988

5.9. Timeouts

The server must implement a timeout for remote client CSRs. There is a
timeout for each CSR in the server.

RemoteClientTimeout(csr)
 select on csr.State
 case Responded:
 if RESPONSE_DISCARDED then
 mark as timed out
 Make a candidate for reuse.
 return
 if csr.RetransCount > MaxRetrans(Client) then
 discard Response
 mark CSR as RESPONSE_DISCARDED
 Timeout(csr, TS4(Client), RemoteClientTimeout)
 return
 increment csr.RetransCount
 { Retransmit Response or forwarded Request }
 Set APG to get acknowledgement.
 SendPacketGroup(csr)
 Timeout(csr, TS3(Client), RemoteClientTimeout)
 return
 case ReceivingRequest:
 if csr.RetransCount > MaxRetrans(csr.Client)
 or DGMset(csr) or NRTset(csr) then
 Modify csr.segmentSize and csr.MsgDelivery
 to indicate packets received.
 if MDMset(csr) then
 Invoke processing on Request
 return
 else
 discard Request and reuse CSR
 (Note: Need not remember Request discarded.)
 return
 increment csr.RetransCount
 NotifyClient(csr, p, RETRY)
 Timeout(csr, TS3(Client), RemoteClientTimeout)
 return
 default:
 Report error - invalid state for RemoteClientTimeout
 endselect
end RemoteClientTimeout

Notes:

 1. When a CSR in the Responded state times out after discarding

Cheriton [page 82]

RFC 1045 VMTP February 1988

 the Response, it can be made available for reuse, either by
 the same Client or a different one. The CSR should be kept
 available for reuse by the Client for as long as possible to
 avoid unnecessary callback Probes.

Cheriton [page 83]

RFC 1045 VMTP February 1988

6. Concluding Remarks

This document represents a description of the current state of the VMTP
design. We are currently engaged in several experimental
implementations to explore and refine all aspects of the protocol.
Preliminary implementations are running in the UNIX 4.3BSD kernel and in
the V kernel.

Several issues are still being discussed and explored with this
protocol. First, the size of the checksum field and the algorithm to
use for its calculation are undergoing some discussion. The author
believes that the conventional 16-bit checksum used with TCP and IP is
too weak for future high-speed networks, arguing for at least a 32-bit
checksum. Unfortunately, there appears to be limited theory covering
checksum algorithms that are suitable for calculation in software.

Implementation of the streaming facilities of VMTP is still in progress.
This facility is expected to be important for wide-area, long delay
communication.

Cheriton [page 84]

RFC 1045 VMTP February 1988

I. Standard VMTP Response Codes

The following are the numeric values of the response codes used in VMTP.

0 OK

1 RETRY

2 RETRY_ALL

3 BUSY

4 NONEXISTENT_ENTITY

5 ENTITY_MIGRATED

6 NO_PERMISSION

7 NOT_AWAITING_MSG

8 VMTP_ERROR

9 MSGTRANS_OVERFLOW

10 BAD_TRANSACTION_ID

11 STREAMING_NOT_SUPPORTED

12 NO_RUN_RECORD

13 RETRANS_TIMEOUT

14 USER_TIMEOUT

15 RESPONSE_DISCARDED

16 SECURITY_NOT_SUPPORTED

17 BAD_REPLY_SEGMENT

18 SECURITY_REQUIRED

19 STREAMED_RESPONSE

20 TOO_MANY_RETRIES

21 NO_PRINCIPAL

Cheriton [page 85]

RFC 1045 VMTP February 1988

22 NO_KEY

23 ENCRYPTION_NOT_SUPPORTED

24 NO_AUTHENTICATOR

25-63 Reserved for future VMTP assignment.

Other values of the codes are available for use by higher level
protocols. Separate protocol documents will specify further standard
values.

Applications are free to use values starting at 0x00800000 (hex) for
application-specific return values.

Cheriton [page 86]

RFC 1045 VMTP February 1988

II. VMTP RPC Presentation Protocol

For complete generality, the mapping of the procedures and the
parameters onto VMTP messages should be defined by a RPC presentation
protocol. In the absence of an accepted standard protocol, we define an
RPC presentation protocol for VMTP as follows.

Each procedure is assigned an identifying Request Code. The Request
code serves effectively the same as a tag field of variant record,
identifying the format of the Request and associated Response as a
variant of the possible message formats.

The format of the Request for a procedure is its Request Code followed
by its parameters sequentially in the message control block until it is
full.

The remaining parameters are sent as part of the message segment data
formatted according to the XDR protocol (RFC ??). In this case, the
size of the segment is specified in the SegmentSize field.

The Response for a procedure consists of a ResponseCode field followed
by the return parameters sequentially in the message control block,
except if there is a parameter returned that must be transmitted as
segment data, its size is specified in the SegmentSize field and the
parameter is stored in the SegmentData field.

Attributes associated with procedure definitions should indicate the
Flags to be used in the RequestCode. Request Codes are assigned as
described below.

II.1. Request Code Management

Request codes are divided into Public Interface Codes and
application-specific, according to whether the PIC value is set. An
interface is a set of request codes representing one service or module
function. A public interface is one that is to be used in multiple
independently developed modules. In VMTP, public interface codes are
allocated in units of 256 structured as

 +-------------+----------------+-------------------+
 | ControlFlags| Interface | Version/Procedure |
 +-------------+----------------+-------------------+
 8 bits 16 bits 8 bits

An interface is free to allocate the 8 bits for version and procedure as
desired. For example, all 8 bits can be used for procedures. A module
requiring more than 256 Version/Procedure values can be allocated

Cheriton [page 87]

RFC 1045 VMTP February 1988

multiple Interface values. They need not be consecutive Interface
values.

Cheriton [page 88]

RFC 1045 VMTP February 1988

III. VMTP Management Procedures

Standard procedures are defined for VMTP management, including creation,
deletion and query of entities and entity groups, probing to get
information about entities, and updating message transaction information
at the client or the server.

The procedures are implemented by the VMTP manager that constitutes a
portion of every complete VMTP module. Each procedure is invoked by
sending a Request to the VMTP manager that handles the entity specified
in the operation or the local manager. The Request sent using the
normal Send operation with the Server specified as the well-known entity
group VMTP_MANGER_GROUP, using the CoResident Entity mechanism to direct
the request to the specific manager that should handle the Request.
(The ProbeEntity operation is multicast to the VMTP_MANAGER_GROUP if the
host address for the entity is not known locally and the host address is
determined as the host address of the responder. For all other
operations, a ProbeEntity operation is used to determine the host
address if it is not known.) Specifying co-resident entity 0 is
interpreted as the co-resident with the invoking process. The
co-resident entity identifier may also specify a group in which case,
the Request is sent to all managers with members in this group.

The standard procedures with their RequestCode and parameters are listed
below with their semantics. (The RequestCode range 0xVV000100 to
0xVV0001FF is reserved for use by the VMTP management routines, where VV
is any choice of control flags with the PIC bit set. The flags are set
below as required for each procedure.)

0x05000101 - ProbeEntity(CREntity, entityId, authDomain) -> (code,
 <staterec>)
 Request and return information on the specified entity
 in the specified authDomain, sending the Request to the
 VMTP management module coresident with CREntity. An
 error return is given if the requested information
 cannot be provided in the specified authDomain. The
 <staterec> returned is structured as the following
 fields.

 Transaction identifier
 The current or next transaction
 identifier being used by the probed
 entity.

 ProcessId: 64 bits
 Identifier for client process. The
 meaning of this is specified as part of

Cheriton [page 89]

RFC 1045 VMTP February 1988

 the Domain definition.

 PrincipalId The identifier for the principal or
 account associated with the process
 specified by ProcessId. The meaning of
 this field is specified as part of the
 Domain definition.

 EffectivePrincipalId
 The identifier for the principal or
 account associated with the Client port,
 which may be different from the
 PrincipalId especially if this is an
 nested call. The meaning of this field
 is specified as part of the Domain
 definition.

 The code field indicates whether this is an error
 response or not. The codes and their interpretation
 are:

 OK
 No error. Probe was completed OK.

 NONEXISTENT_ENTITY
 Specified entity does not exist.

 ENTITY_MIGRATED
 The entity has migrated and is no longer at the host to
 which the request was sent.

 NO_PERMISSION
 Entity has refused to provide ProbeResponse.

 VMTP_ERROR
 The Request packet group was in error relative to the
 VMTP protocol specification.

 "default"
 Some type of error - discard ProbeResponse.

0x0D000102 - AuthProbeEntity(CREntity,entityId,authDomain,randomId) ->
 (code,ProbeAuthenticator,EncryptType,EntityAuthenticator)

 Request authentication of the entity specified by
 entityId from the VMTP manager coresident with CREntity
 in authDomain authentication domain, returning the

Cheriton [page 90]

RFC 1045 VMTP February 1988

 information contained in the return parameters. The
 fields are set the same as that specified for the basic
 ProbeResponse except as noted below.

 ProbeAuthenticator
 20 bytes consisting of the EntityId, the
 randomId and the probed Entity’s current
 Transaction value plus a 32-bit checksum
 for these two fields (checksummed using
 the standard packet Checksum algorithm),
 all encrypted with the Key supplied in
 the Authenticator.

 EncryptType An identifier that identifies the
 variant of encryption method being used
 by the probed Entity for packets it
 transmits and packets it is able to
 receive. (See Appendix V.) The
 high-order 8 bits of the EncryptType
 contain the XOR of the 8 octets of the
 PrincipalId associated with private key
 used to encrypt the EntityAuthenticator.
 This value is used by the requestor or
 Client as an aid in locating the key to
 decrypt the authenticator.

 EntityAuthenticator
 (returned as segment data) The
 ProcessId, PrincipalId,
 EffectivePrincipal associated with the
 ProbedEntity plus the private
 encryption/decryption key and its
 lifetime limit to be used for
 communication with the Entity. The
 authenticator is encrypted with a
 private key associated with the Client
 entity such that it can be neither read
 nor forged by a party not trusted by the
 Client Entity. The format of the
 Authenticator in the message segment is
 shown in detail in Figure III-1.

 Key: 64 bits Encryption key to be used for encrypting
 and decrypting packets sent to and
 received from the probed Entity. This
 is the "working" key for packet
 transmissions. VMTP only uses private

Cheriton [page 91]

RFC 1045 VMTP February 1988

 +---+
 | ProcessId (8 octets) |
 +---+
 | PrincipalId (8 octets) |
 +---+
 | EffectivePrincipalId (8 octets) |
 +---+
 | Key (8 octets) |
 +---+
 | KeyTimeLimit |
 +---+
 | AuthDomain |
 +---+
 | AuthChecksum |
 +---+

 Figure III-1: Authenticator Format

 key encryption for data transmission.

 KeyTimeLimit: 32 bits
 The time in seconds since Dec. 31st,
 1969 GMT at which one should cease to
 use the Key.

 AuthDomain: 32 bits
 The authentication domain in which to
 interpret the principal identifiers.
 This may be different from the
 authDomain specified in the call if the
 Server cannot provide the authentication
 information in the request domain.

 AuthChecksum: 32 bits
 Contains the checksum (using the same
 Checksum algorithm as for packet) of
 KeyTimeLimit, Key, PrincipalId and
 EffectivePrincipalId.

 Notes:

 1. A authentication Probe Request and Response
 are sent unencrypted in general because it is
 used prior to there being a secure channel.
 Therefore, specific fields or groups of
 fields checksummed and encrypted to prevent
 unauthorized modification or forgery. In

Cheriton [page 92]

RFC 1045 VMTP February 1988

 particular, the ProbeAuthenticator is
 checksummed and encrypted with the Key.

 2. The ProbeAuthenticator authenticates the
 Response as responding to the Request when
 its EntityId, randomId and Transaction values
 match those in the Probe request. The
 ProbeAutenticator is bound to the
 EntityAutenticator by being encrypted by the
 private Key contained in that authenticator.

 3. The authenticator is encrypted such that it
 can be decrypted by a private key, known to
 the Client. This authenticator is presumably
 obtained from a key distribution center that
 the Client trusts. The AuthChecksum prevents
 undetected modifications to the
 authenticator.

0x05000103 - ProbeEntityBlock(entityId) -> (code, entityId)
 Check whether the block of 256 entity identifiers
 associated with this entityId are in use. The entityId
 returned should match that being queried or else the
 return value should be ignored and the operation redone.

0x05000104 - QueryVMTPNode(entityId) -> (code, MTU, flags, authdomain,
 domains, authdomains, domainlist)
 Query the VMTP management module for entityId to get
 various module- or node-wide parameters, including: (1)
 MTU - Maximum transmission unit or packet size handled
 by this node. (2) flags- zero or more of the following
 bit fields:

 1 Handles streamed Requests.

 2 Can issue streamed message transactions
 for clients.

 4 Handles secure Requests.

 8 Can issue secure message transactions.

 The authdomain indicates the primary authentication
 domain supported. The domains and authdomains
 parameters indicate the number of entity domains and
 authentication domains supported by this node, which are
 listed in the data segment parameter domainlist if

Cheriton [page 93]

RFC 1045 VMTP February 1988

 either parameter is non-zero. (All the entity domains
 precede the authentication domains in the data segment.)

0x05000105 - GetRequestForwarder(CREntity, entityId1) -> (code,
 entityId2, principal, authDomain)
 Return the forwarding server’s entity identifer and
 principal for the forwarder of entityId1. CREntity
 should be zero to get the local VMTP management module.

0x05000106 - CreateEntity(entityId1) -> (code, entityId2)
 Create a new entity and return its entity identifier in
 entityId2. The entity is created local to the entity
 specified in entityId1 and local to the requestor if
 entityId1 is 0.

0x05000107 - DeleteEntity(entityId) -> (code)
 Delete the entity specified by entityId, which may be a
 group. If a group, the deletion is only on a best
 efforts basis. The client must take additional measures
 to ensure complete deletion if required.

0x0D000108 -QueryEntity(entityId) -> (code, descriptor)
 Return a descriptor of entityId in arg of a maximum of
 segmentSize bytes.

0x05000109 - SignalEntity(entityId, arg)->(code)
 Send the signal specified by arg to the entity specified
 by entityId. (arg is 32 bits.)

0x0500010A - CreateGroup(CREntity,entityGroupId,entityId,perms)->(code)
 Request that the VMTP manager local to CREntity create
 an new entity group, using the specified entityGroupId
 with entityId as the first member and permissions
 "perms", a 32-bit field described later. The invoker is
 registered as a manager of the new group, giving it the
 permissions to add or remove members. (Normally
 CREntity is 0, indicating the VMTP manager local to the
 requestor.)

0x0500010B - AddToGroup(CREntity, entityGroupId, entityId,
 perms)->(code)
 Request that the VMTP manager local to CREntity add the
 specified entityId to the entityGroupId with the
 specified permissions. If entityGroupId specifies a
 restricted group, the invoker must have permission to
 add members to the group, either because the invoker is

Cheriton [page 94]

RFC 1045 VMTP February 1988

 a manager of the group or because it was added to the
 group with the required permissions. If CREntity is 0,
 then the local VMTP manager checks permissions and
 forwards the request with CREntity set to entityId and
 the entityId field set to a digital signature (see
 below) of the Request by the VMTP manager, certifying
 that the Client has the permissions required by the
 Request. (If entityGroupId specifies an unrestricted
 group, the Request can be sent directly to the handling
 VMTP manager by setting CREntity to entityId.)

0x0500010C - RemoveFromGroup(CREntity, entityGroupId, entityId)->(code)
 Request that the VMTP manager local to CREntity remove
 the specified entityId from the group specified by
 entityGroupId. Normally CREntity is 0, indicating the
 VMTP manager local to the requestor. If CREntity is 0,
 then the local VMTP manager checks permissions and
 forwards the request with CREntity set to entityId and
 the entityId field a digital signature of the Request by
 the VMTP manager, certifying that the Client has the
 permissions required by the Request.

0x0500010D - QueryGroup(entityId)->(code, record)...
 Return information on the specified entity. The
 Response from each responding VMTP manager is (code,
 record). The format of the record is (memberCount,
 member1, member2, ...). The Responses are returned on a
 best efforts basis; there is no guarantee that responses
 from all managers with members in the specified group
 will be received.

0x0500010E - ModifyService(entityId,flags,count,pc,threadlist)->(code,
 count)
 Modify the service associated with the entity specified
 by entityId. The flags may indicate a message service
 model, in which case the call "count" parameter
 indicates the maximum number of queued messages desired;
 the return "count" parameter indicates the number of
 queued message allowed. Alternatively, the "flags"
 parameters indicates the RPC thread service model, in
 which case "count" threads are requested, each with an
 inital program counter as specified and stack, priority
 and message receive area indicated by the threadlist.
 In particular, "threadlist" consists of "count" records
 of the form
 (priority,stack,stacksize,segment,segmentsize), each one
 assigned to one of the threads. Flags defined for the

Cheriton [page 95]

RFC 1045 VMTP February 1988

 "flags" parameter are:

 1 THREAD_SERVICE - otherwise the message
 model.

 2 AUTHENTICATION_REQUIRED - Sent a Probe
 request to determine principal
 associated with the Client, if not
 known.

 4 SECURITY_REQUIRED - Request must be
 encrypted or else reject.

 8 INCREMENTAL - treat the count value as
 an increment (or decrement) relative to
 the current value rather than an
 absolute value for the maximum number of
 queued messages or threads.

 In the thread model, the count must be a positive
 increment or else 0, which disables the service. Only a
 count of 0 terminates currently queued requests or
 in-progress request handling.

0x4500010F -
 NotifyVmtpClient(client,cntrl,recSeq,transact,delivery,code)->()

 Update the state associated with the transaction
 specified by client and transact, an entity identifier
 and transaction identifier, respectively. This
 operation is normally used only by another VMTP
 management module. (Note that it is a datagram
 operation.) The other parameters are as follows:

 ctrl A 32-bit value corresponding to 4th
 32-bit word of the VMTP header of a
 Response packet that would be sent in
 response to the Request that this is
 responding to. That is, the control
 flags, ForwardCount, RetransmitCount and
 Priority fields match those of the
 Request. (The NRS flag is set if the
 receiveSeqNumber field is used.) The
 PGCount subfield indicates the number of
 previous Request packet groups being
 acknowledged by this Notify operation.
 (The bit fields that are reserved in

Cheriton [page 96]

RFC 1045 VMTP February 1988

 this word in the header are also
 reserved here and must be zero.)

 recSeq Sequence number of reception at the
 Server if the NRS flag is set in the
 ctrl parameter, otherwise reserved and
 zero. (This is used for sender-based
 logging of message activity for replay
 in case of failure - an optional
 facility.)

 delivery Indicates the segment blocks of the
 packet group have been received at the
 Server.

 code indicates the action the client should
 take, as described below.

 The VMTP management module should take action on this
 operation according to the code, as specified below.

 OK Do nothing at this time, continue
 waiting for the response with a reset
 timer.

 RETRY Retransmit the request packet group
 immediately with at least the segment
 blocks that the Server failed to
 receive, the complement of those
 indicated by the delivery parameter.

 RETRY_ALL Retransmit the request packet group
 immediately with at least the segment
 blocks that the Server failed to
 receive, as indicated by the delivery
 field plus all subsequently transmitted
 packets that are part of this packet
 run. (The latter is applicable only for
 streamed message transactions.)

 BUSY The server was unable to accept the
 Request at this time. Retry later if
 desired to continue with the message
 transaction.

 NONEXISTENT_ENTITY
 Specified Server entity does not exist.

Cheriton [page 97]

RFC 1045 VMTP February 1988

 ENTITY_MIGRATED The server entity has migrated and is no
 longer at the host to which the request
 was sent. The Server should attempt to
 determine the new host address of the
 Client using the VMTP management
 ProbeEntity operation (described
 earlier).

 NO_PERMISSION Server has not authorized reception of
 messages from this client.

 NOT_AWAITING_MSG
 The conditional message delivery bit was
 set for the Request packet group and the
 Server was not waiting for it so the
 Request packet group was discarded.

 VMTP_ERROR The Request packet group was in error
 relative to the VMTP protocol
 specification.

 BAD_TRANSACTION_ID
 Transaction identifier is old relative
 to the transaction identifier held for
 the Client by the Server.

 STREAMING_NOT_SUPPORTED
 Server does not support multiple
 outstanding message transactions from
 the same Client, i.e. streamed message
 transactions.

 SECURITY_NOT_SUPPORTED
 The Request was secure and this Server
 does not support security.

 SECURITY_REQUIRED
 The Server is refusing the Request
 because it was not encrypted.

 NO_RUN_RECORD Server has no record of previous packets
 in this run of packet groups. This can
 occur if the first packet group is lost
 or if the current packet group is sent
 significantly later than the last one
 and the Server has discarded its client
 state record.

Cheriton [page 98]

RFC 1045 VMTP February 1988

0x45000110 - NotifyVmtpServer(server,client,transact,delivery,code)->()
 Update the server state associated with the transaction
 specified by client and transact, an entity identifier
 and transaction identifier, respectively. This
 operation is normally used only by another VMTP
 management module. (Note that it is a datagram
 operation.) The other parameters are as follows:

 delivery Indicates the segment blocks of the
 Response packet group that have been
 received at the Client.

 code indicates the action the Server should
 take, as listed below.

 The VMTP management module should take action on this
 operation according to the code, as specified below.

 OK Client is satisfied with Response data.
 The Server can discard the response
 data, if any.

 RETRY Retransmit the Response packet group
 immediately with at least the segment
 blocks that the Client failed to
 receive, as indicated by the delivery
 parameter. (The delivery parameter
 indicates those segment blocks received
 by the Client).

 RETRY_ALL Retransmit the Response packet group
 immediately with at least the segment
 blocks that the Client failed to
 receive, as indicated by the (complement
 of) the delivery parameter. Also,
 retransmit all Response packet groups
 send subsequent to the specified packet
 group.

 NONEXISTENT_ENTITY
 Specified Client entity does not exist.

 ENTITY_MIGRATED The Client entity has migrated and is no
 longer at the host to which the response
 was sent.

 RESPONSE_DISCARDED

Cheriton [page 99]

RFC 1045 VMTP February 1988

 The Response was discarded and no longer
 of interest to the Client. This may
 occur if the conditional message
 delivery bit was set for the Response
 packet group and the Client was not
 waiting for it so the Response packet
 group was discarded.

 VMTP_ERROR The Response packet group was in error
 relative to the VMTP protocol
 specification.

0x41000111 -
 NotifyRemoteVmtpClient(client,ctrl,recSeq,transact,delivery,code->(
)

 The same as NotifyVmtpClient except the co-resident
 addressing is not used. This operation is used to
 update client state that is remote when a Request is
 forwarded.

Note the use of the CRE bit in the RequestCodes to route the request to
the correct VMTP management module(s) to handle the request.

III.1. Entity Group Management

An entity in a group has a set of permissions associated with its
membership, controling whether it can add or remove others, whether it
can remove itself, and whether others can remove it from the group. The
permissions for entity groups are as follows:
VMTP_GRP_MANAGER 0x00000001 { Manager of group. }
VMTP_REM_BY_SELF 0x00000002 { Can be removed self. }
VMTP_REM_BY_PRIN 0x00000004 { Can be rem’ed by same principal}
VMTP_REM_BY_OTHE 0x00000008 { Can be removed any others. }
VMTP_ADD_PRIN 0x00000010 { Can add by same principal. }
VMTP_ADD_OTHE 0x00000020 { Can add any others. }
VMTP_REM_PRIN 0x00000040 { Can remove same principal. }
VMTP_REM_OTHE 0x00000080 { Can remove any others. }

To remove an entity from a restricted group, the invoker must have
permission to remove that entity and the entity must have permissions
that allow it to be removed by that entity. With an unrestricted group,
only the latter condition applies.

With a restricted group, a member can only be added by another entity
with the permissions to add other entities. The creator of a group is
given full permissions on a group. A entity adding another entity to a

Cheriton [page 100]

RFC 1045 VMTP February 1988

group can only give the entity it adds a subset of its permissions.
With unrestricted groups, any entity can add itself to the group. It
can also add other entities to the group providing the entity is not
marked as immune to such requests. (This is an implementation
restriction that individual entities can impose.)

III.2. VMTP Management Digital Signatures

As mentioned above, the entityId field of the AddToGroup and
RemoveFromGroup is used to transmit a digital signature indicating the
permission for the operation has been checked by the sending kernel.
The digital signature procedures have not yet been defined. This field
should be set to 0 for now to indicate no signature after the CREntity
parameter is set to the entity on which the operation is to be
performed.

Cheriton [page 101]

RFC 1045 VMTP February 1988

IV. VMTP Entity Identifier Domains

VMTP allows for several disjoint naming domains for its endpoints. The
64-bit entity identifier is only unique and meaningful within its
domain. Each domain can define its own algorithm or mechanism for
assignment of entity identifiers, although each domain mechanism must
ensure uniqueness, stability of identifiers and host independence.

IV.1. Domain 1

For initial use of VMTP, we define the domain with Domain identifier 1
as follows:

 +-----------+----------------+------------------------+
 | TypeFlags | Discriminator | Internet Address |
 +-----------+----------------+------------------------+
 4 bits 28 bits 32 bits

The Internet address is the Internet address of the host on which this
entity-id is originally allocated. The Discriminator is an arbitrary
value that is unique relative to this Internet host address. In
addition, the host must guarantee that this identifier does not get
reused for a long period of time after it becomes invalid. ("Invalid"
means that no VMTP module considers in bound to an entity.) One
technique is to use the lower order bits of a 1 second clock. The clock
need not represent real-time but must never be set back after a crash.
In a simple implementation, using the low order bits of a clock as the
time stamp, the generation of unique identifiers is overall limited to
no more than 1 per second on average. The type flags were described in
Section 3.1.

An entity may migrate between hosts. Thus, an implementation can
heuristically use the embedded Internet address to locate an entity but
should be prepared to maintain a cache of redirects for migrated
entities, plus accept Notify operations indicating that migration has
occurred.

Entity group identifiers in Domain 1 are structured in one of two forms,
depending on whether they are well-known or dynamically allocated
identifiers. A well-known entity identifier is structured as:

 +-----------+----------------+------------------------+
 | TypeFlags | Discriminator |Internet Host Group Addr|
 +-----------+----------------+------------------------+
 4 bits 28 bits 32 bits

Cheriton [page 102]

RFC 1045 VMTP February 1988

with the second high-order bit (GRP) set to 1. This form of entity
identifier is mapped to the Internet host group address specified in the
low-order 32 bits. The Discriminator distinguishes group identifiers
using the same Internet host group. Well-known entity group identifiers
should be allocated to correspond to the basic services provided by
hosts that are members of the group, not specifically because that
service is provided by VMTP. For example, the well-known entity group
identifier for the domain name service should contain as its embedded
Internet host group address the host group for Domain Name servers.

A dynamically allocated entity identifier is structured as:

 +-----------+----------------+------------------------+
 | TypeFlags | Discriminator | Internet Host Addr |
 +-----------+----------------+------------------------+
 4 bits 28 bits 32 bits

with the second high-order bit (GRP) set to 1. The Internet address in
the low-order 32 bits is a Internet address assigned to the host that
dynamically allocates this entity group identifier. A dynamically
allocated entity group identifier is mapped to Internet host group
address 232.X.X.X where X.X.X are the low-order 24 bits of the
Discriminator subfield of the entity group identifier.

We use the following notation for Domain 1 entity identifiers <10> and
propose it use as a standard convention.

 <flags>-<discriminator>-<Internet address>

where <flags> are [X]{BE,LE,RG,UG}[A]

 X = reserved
 BE = big-endian entity
 LE = little-endian entity
 RG = restricted group
 UG = unrestricted group
 A = alias

and <discriminator> is a decimal integer and <Internet address> is in
standard dotted decimal IP address notation.

Examples:

<10> This notation was developed by Steve Deering.

Cheriton [page 103]

RFC 1045 VMTP February 1988

BE-25593-36.8.0.49 is big-endian entity #25593 created on host
 36.8.0.49.

RG-1-224.0.1.0 is the well-known restricted VMTP managers group.

UG-565338-36.8.0.77 is unrestricted entity group #565338 created on host
 36.8.0.77.

LEA-7823-36.8.0.77 is a little-endian alias entity #7823 created on host
 36.8.0.77.

This notation makes it easy to communicate and understand entity
identifiers for Domain 1.

The well-known entity identifiers specified to date are:

VMTP_MANAGER_GROUP RG-1-224.0.1.0
 Managers for VMTP operations.

VMTP_DEFAULT_BECLIENT BE-1-224.0.1.0
 Client entity identifier to use when a (big-endian) host
 has not determined or been allocated any client entity
 identifiers.

VMTP_DEFAULT_LECLIENT LE-1-224.0.1.0
 Client entity identifier to use when a (little-endian)
 host has not determined or been allocated any client
 entity identifiers.

Note that 224.0.1.0 is the host group address assigned to VMTP and to
which all VMTP hosts belong.

Other well-known entity group identifiers will be specified in
subsequent extensions to VMTP and in higher-level protocols that use
VMTP.

IV.2. Domain 3

Domain 3 is reserved for embedded systems that are restricted to a
single network and are independent of IP. Entity identifiers are
allocated using the decentralized approach described below. The mapping
of entity group identifiers is specific to the type of network being
used and not defined here. In general, there should be a simple
algorithmic mapping from entity group identifier to multicast address,
similar to that described for Domain 1. Similarly, the values for
default client identifier are specific to the type of network and not

Cheriton [page 104]

RFC 1045 VMTP February 1988

defined here.

IV.3. Other Domains

Definition of additional VMTP domains is planned for the future.
Requests for allocation of VMTP Domains should be addressed to the
Internet protocol administrator.

IV.4. Decentralized Entity Identifier Allocation

The ProbeEntityBlock operation may be used to determine whether a block
of entity identifiers is in use. ("In use" means valid or reserved by a
host for allocation.) This mechanism is used to detect collisions in
allocation of blocks of entity identifiers as part of the implementation
of decentralized allocation of entity identifiers. (Decentralized
allocation is used in local domain use of VMTP such as in embedded
systems- see Domain 3.)

Basically, a group of hosts can form a Domain or sub-Domain, a group of
hosts managing their own entity identifier space or subspace,
respectively. As an example of a sub-Domain, a group of hosts in Domain
1 all identified with a particular host group address can manage the
sub-Domain corresponding to all entity identifiers that contain that
host group address. The ProbeEntityBlock operation is used to allocate
the random bits of these identifiers as follows.

When a host requires a new block of entity identifiers, it selects a new
block (randomly or by some choice algorithm) and then multicasts a
ProbeEntityBlock request to the members of the (sub-)Domain some R
times. If no response is received after R (re)transmissions, the host
concludes that it is free to use this block of identifiers. Otherwise,
it picks another block and tries again.

Notes:

 1. A block of 256 identifiers is specified by an entity
 identifier with the low-order 8 bits all zero.

 2. When a host allocates an initial block of entity identifiers
 (and therefore does not yet have a specified entity
 identifier to use) it uses VMTP_DEFAULT_BECLIENT (if
 big-endian, else VMTP_DEFAULT_LECLIENT if little-endian) as
 its client identifier in the ProbeEntityBlock Request and a
 transaction identifier of 0. As soon as it has allocated a
 block of entity identifiers, it should use these identifiers

Cheriton [page 105]

 RFC 1045 VMTP February 1988

 for all subsequent communication. The default client
 identifier values are defined for each Domain.

 3. The set of hosts using this decentralized allocation must not
 be subject to network partitioning. That is, the R
 transmissions must be sufficient to ensure that every host
 sees the ProbeEntityBlock request and (reliably) sends a
 response. (A host that detects a collision can retransmit
 the response multiple times until it sees a new
 ProbeEntityBlock operation from the same host/Client up to a
 maximum number of times.) For instance, a set of machines
 connected by a single local network may able to use this type
 of allocation.

 4. To guarantee T-stability, a host must prevent reuse of a
 block of identifiers if any of the identifiers in the block
 are currently valid or have been valid less than T seconds
 previously. To this end, a host must remember recently used
 identifiers and object to their reuse in response to a
 ProbeEntityBlock operation.

 5. Care is required in a VMTP implementation to ensure that
 Probe operations cannot be discarded due to lack of buffer
 space or queued or delayed so that a response is not
 generated quickly. This is required not only to detect
 collisions but also to provide accurate roundtrip estimates
 as part of ProbeEntity operations.

Cheriton [page 106]

RFC 1045 VMTP February 1988

V. Authentication Domains

A VMTP authentication domain defines the format and interpretation for
principal identifiers and encryption keys. In particular, an
authentication domain must specify a means by which principal
identifiers are allocated and guaranteed unique and stable. The
currently defined authentication domains are as follows (0 is reserved).

Ideally, all entities within one entity domain are also associated with
one authentication domain. However, authentication domains are
orthogonal to entity domains. Entities within one domain may have
different authentication domains. (In this case, it is generally
necessary to have some correspondence between principals in the
different domains.) Also, one entity identifier may be associated with
multiple authentication domains. Finally, one authentication domain may
be used across multiple entity domains.

V.1. Authentication Domain 1

A principal identifier is structured as follows.

 +---------------------------+------------------------+
 | Internet Address | Local User Identifier |
 +---------------------------+------------------------+
 32 bits 32 bits

The Internet Address may specify an individual host (such as a UNIX
machine) or may specify a host group address corresponding to a cluster
of machines operating under a single adminstration. In both cases,
there is assumed to be an adminstration associated with the embedded
Internet address that guarantees the uniqueness and stability of the
User Identifier relative to the Internet address. In particular, that
administration is the only one authorized to allocate principal
identifiers with that Internet address prefix, and it may allocate any
of these identifiers.

In authentication domain 1, the standard EncryptionQualifiers are:

0 Clear text - no encryption.

1 use 64-bit CBC DES for encryption and decryption.

V.2. Other Authentication Domains

Other authentication domains will be defined in the future as needed.

Cheriton [page 107]

RFC 1045 VMTP February 1988

VI. IP Implementation

VMTP is designed to be implemented on the DoD IP Internet Datagram
Protocol (although it may also be implemented as a local network
protocol directly in "raw" network packets.)

VMTP is assigned the protocol number 81.

With a 20 octet IP header and one segment block, a VMTP packet is 600
octets. By convention, any host implementing VMTP implicitly agrees to
accept VMTP/IP packets of at least 600 octets.

VMTP multicast facilities are designed to work with, and have been
implemented using, the multicast extensions to the Internet [8]
described in RFC 966 and 988. The wide-scale use of full VMTP/IP
depends on the availability of IP multicast in this form.

Cheriton [page 108]

RFC 1045 VMTP February 1988

VII. Implementation Notes

The performance and reliability of a protocol in operation is highly
dependent on the quality of its implementation, in addition to the
"intrinsic" quality of the protocol design. One of the design goals of
the VMTP effort was to produce an efficiently implementable protocol.
The following notes and suggestions are based on experience with
implementing VMTP in the V distributed system and the UNIX 4.3 BSD
kernel. The following is described for a client and server handling
only one domain. A multi-domain client or server would replicate these
structures for each domain, although buffer space may be shared.

VII.1. Mapping Data Structures

The ClientMap procedure is implemented using a hash table that maps to
the Client State Record whether this entity is local or remote, as shown
in Figure VII-1.

 +---+---+--------------------------+
 ClientMap | | x | |
 +---+-|-+--------------------------+
 | +--------------+ +--------------+
 +-->| LocalClient |--->| LocalClient |
 +--------------+ +--------------+
 | RemoteClient | | RemoteClient |-> ...
 +--------------+ +--------------+
 | | | |
 | | | |
 +--------------+ +--------------+

 Figure VII-1: Mapping Client Identifier to CSR

Local clients are linked through the LocalClientLink, similarly for the
RemoteClientLink. Once a CSR with the specified Entity Id is found,
some field or flag indicates whether it is identifying a local or remote
Entity. Hash collisions are handled with the overflow pointers
LocalClientLink and RemoteClientLink (not shown) in the CSR for the
LocalClient and RemoteClient fields, respectively. Note that a CSR
representing an RPC request has both a local and remote entity
identifier mapping to the same CSR.

The Server specified in a Request is mapped to a server descriptor using
the ServerMap (with collisions handled by the overflow pointer.). The
server descriptor is the root of a queue of CSR’s for handling requests
plus flags that modify the handling of the Request. Flags include:

Cheriton [page 109]

RFC 1045 VMTP February 1988

 +-------+---+-------------------------+
 ServerMap | | x | |
 +-------+-|-+-------------------------+
 | +--------------+
 | | OverflowLink |
 | +--------------+
 +-->| Server |
 +--------------+
 | Flags | Lock |
 +--------------+
 | Head Pointer |
 +--------------+
 | Tail Pointer |
 +--------------+

 Figure VII-2: Mapping Server Identifiers

THREAD_QUEUE Request is to be invoked directly as a remote procedure
 invocation, rather than by a server process in the
 message model.

AUTHENTICATION_REQUIRED
 Sent a Probe request to determine principal associated
 with the Client, if not known.

SECURITY_REQUIRED
 Request must be encrypted or else reject.

REQUESTS_QUEUED Queue contains waiting requests, rather than free CSR’s.
 Queue this request as well.

SERVER_WAITING The server is waiting and available to handle incoming
 Request immediately, as required by CMD.

Alternatively, the Server identifiers can be mapped to a CSR using the
MapToClient mechanism with a pointer in the CSR refering to the server
descriptor, if any. This scheme is attractive if there are client CSR’s
associated with a service to allow it to communicate as a client using
VMTP with other services.

Finally, a similar structure is used to expand entity group identifiers
to the local membership, as shown in Figure VII-3. A group identifier
is hashed to an index in the GroupMap. The list of group descriptors
rooted at that index in the GroupMap contains a group descriptor for
each local member of the group. The flags are the group permissions
defined in Appendix III.

Cheriton [page 110]

RFC 1045 VMTP February 1988

 +-------+---+----------------------------------+
 GroupMap | | x | |
 +-------+-|-+----------------------------------+
 | +--------------+
 | | OverflowLink |
 | +--------------+
 +-->|EntityGroupId |
 +--------------+
 | Flags |
 +--------------+
 | Member Entity|
 +--------------+

 Figure VII-3: Mapping Group Identifiers

Note that the same pool of descriptors could be used for the server and
group descriptors given that they are similar in size.

VII.2. Client Data Structures

Each client entity is represented as a client state record. The CSR
contains a VMTP header as well as other bookkeeping fields, including
timeout count, retransmission count, as described in Section 4.1. In
addition, there is a timeout queue, transmission queue and reception
queue. Finally, there is a ServerHost cache that maps from server
entity-id records to host address, estimated round trip time,
interpacket gap, MTU size and (optimally) estimated processing time for
this server entity.

VII.3. Server Data Structures

The server maintains a heap of client state records (CSR), one for each
(Client, Transaction). (If streams are not supported, there is, at
worst, a CSR per Client with which the server has communicated with
recently.) The CSR contains a VMTP header as well as various
bookkeeping fields including timeout count, retransmission count. The
server maintains a hash table mapping of Client to CSR as well as the
transmission, timeout and reception queues. In a VMTP module
implementing both the client and server functions, the same timeout
queue and transmission queue are used for both.

Cheriton [page 111]

RFC 1045 VMTP February 1988

VII.4. Packet Group transmission

The procedure SendPacketGroup(csr) transmits the packet group
specified by the record CSR. It performs:

 1. Fragmentation of the segment data, if any, into packets.
 (Note, segment data flagged by SDA bit.)

 2. Modifies the VMTP header for each packet as required e.g.
 changing the delivery mask as appropriate.

 3. Computes the VMTP checksum.

 4. Encrypts the appropriate portion of the packet, if required.

 5. Prepends and appends network-level header and trailer using
 network address from ServerHost cache, or from the responding
 CSR.

 6. Transmits the packet with the interpacket gap specified in
 the cache. This may involve round-robin scheduling between
 hosts as well as delaying transmissions slightly.

 7. Invokes the finish-up procedure specified by the CSR record,
 completing the processing. Generally, this finish-up
 procedure adds the record to the timeout queue with the
 appropriate timeout queue.

The CSR includes a 32-bit transmission mask that indicates the portions
of the segment to transmit. The SendPacketGroup procedure is assumed to
handle queuing at the network transmission queue, queuing in priority
order according to the priority field specified in the CSR record.
(This priority may be reflected in network transmission behavior for
networks that support priority.)

The SendPacketGroup procedure only looks at the following fields of a
CSR

 - Transmission mask

 - FuncCode

 - SDA

 - Client

 - Server

Cheriton [page 112]

RFC 1045 VMTP February 1988

 - CoResidentEntity

 - Key

It modifies the following fields

 - Length

 - Delivery

 - Checksum

In the case of encrypted transmission, it encrypts the entire packet,
not including the Client field and the following 32-bits.

If the packet group is a Response, (i.e. lower-order bit of function
code is 1) the destination network address is determined from the
Client, otherwise the Server. The HostAddr field is set either from the
ServerHost cache (if a Request) or from the original Request if a
Response, before SendPacketGroup is called.

The CSR includes a timeout and TTL fields indicating the maximum time to
complete the processing and the time-to-live for the packets to be
transmitted.

SendPacketGroup is viewed as the right functionality to implement for
transmission in an "intelligent" network interface.

Finally, it appears preferable to be able to assume that all portions of
the segment remain memory-resident (no page faults) during transmission.
In a demand-paged systems, some form of locking is required to keep the
segment data in memory.

VII.5. VMTP Management Module

The implementation should implement the management operations as a
separate module that is invoked from within the VMTP module. When a
Request is received, either from the local user level or the network,
for the VMTP management module, the management module is invoked as a
remote or local procedure call to handle this request and return a
response (if not a datagram request). By registering as a local server,
the management module should minimize the special-case code required for
its invocation. The management module is basically a case statement
that selects the operation based on the RequestCode and then invokes the
specified management operation. The procedure implementing the
management operation, especially operations like NotifyVmtpClient and

Cheriton [page 113]

RFC 1045 VMTP February 1988

NotifyVmtpServer, are logically part of the VMTP module because they
require full access to the basic data structures of the VMTP
implementation.

The management module should be implemented so that it can respond
quickly to all requests, particularly since the timing of management
interactions is used to estimate round trip time. To date, all
implementations of the management module have been done at the kernel
level, along with VMTP proper.

VII.6. Timeout Handling

The timeout queue is a queue of CSR records, ordered by timeout count,
as specified in the CSR record. On entry into the timeout queue, the
CSR record has the timeout field set to the time (preferable in
milliseconds or similar unit) to remain in the queue plus the finishup
field set to the procedure to execute on removal on timeout from the
queue. The timeout field for a CSR in the queue is the time relative to
the record preceding it in the queue (if any) at which it is to be
removed. Some system-specific mechanism decrements the time for the
record at the front of the queue, invoking the finishup procedure when
the count goes to zero.

Using this scheme, a special CSR is used to timeout and scan CSR’s for
non-recently pinged CSR’s. That is, this CSR times out and invokes a
finishup procedure that scans for non-recently pinged CSR that are
"AwaitingResponse" and signals the request processing entity and deletes
the CSR. It then returns to the timeout queue.

The timeout mechanism tends to be specific to an operating system. The
scheme described may have to be adapted to the operating system in which
VMTP is to be implemented.

This mechanism handles client request timeout and client response
timeout. It is not intended to handle interpacket gaps given that these
times are expected to be under 1 millisecond in general and possibly
only a few microseconds.

VII.7. Timeout Values

Roundtrip timeout values are estimated by matching Responses or
NotifyVmtpClient Requests to Request transmission, relying on the
retransmitCount to identify the particular transmission of the Request
that generated the response. A similar technique can be used with
Responses and NotifyVmtpServer Requests. The retransmitCount is

Cheriton [page 114]

RFC 1045 VMTP February 1988

incremented each time the Response is sent, whether the retransmission
was caused by timeout or retransmission of the Request.

The ProbeEntity request is recommended as a basic way of getting
up-to-date information about a Client as well as predictable host
machine turnaround in processing a request. (VMTP assumes and requires
an efficient, bounded response time implementation of the ProbeEntity
operation.)

Using this mechanism for measuring RTT, it is recommended that the
various estimation and smoothing techniques developed for TCP RTT
estimation be adapted and used.

VII.8. Packet Reception

Logically a network packet containing a VMTP packet is 5 portions:

 - network header, possibly including lower-level headers

 - VMTP header

 - data segment

 - VMTP checksum

 - network trailer, etc.

It may be advantageous to receive a packet fragmented into these
portions, if supported by the network module. In this case, ideally the
VMTP header may be received directly into a CSR, the data segment into a
page that can be mapped, rather than copied, to its final destination,
with VMTP checksum and network header in a separate area (used to
extract the network address corresponding to the sender).

Packet reception is described in detail by the pseudo-code in Section
4.7.

With a response, normally the CSR has an associated segment area
immediately available so delivery of segment data is immediate.
Similarly, server entities should be "armed" with CSR’s with segment
areas that provide for immediate delivery of requests. It is reasonable
to discard segment data that cannot be immediately delivered in this
way, providing that clients and servers are able to preallocate CSR’s
with segment areas for requests and responses. In particular, a client
should be able to provide some number of additional CSR’s for receiving
multiple responses to a multicast request.

Cheriton [page 115]

RFC 1045 VMTP February 1988

The CSR data structure is intended to be the interface data structure
for an intelligent network interface. For reception, the interface is
"armed" with CSR’s that may point to segment areas in main memory, into
which it can deliver a packet group. Ideally, the interface handles all
the processing of all packets, interacting with the host after receiving
a complete Request or Response packet group. An implementation should
use an interface based on SendPacketGroup(CSR) and
ReceivePacketGroup(CSR) to facilitate the introduction of an intelligent
network interface.

ReceivePacketGroup(csr) provides the interface with a CSR descriptor and
zero or more bytes of main memory to receive segment data. The CSR
describes whether it is to receive responses (and if so, for which
client) or requests (and if so for which server).

The procedure ReclaimCSR(CSR) reclaims the specified record from the
interface before it has been returned after receiving the specified
packet group.

A finishup procedure is set in the CSR to be invoked when the CSR is
returned to the host by the normal processing sequence in the interface.
Similarly, the timeout parameter is set to indicate the maximum time the
host is providing for the routine to perform the specified function.
The CSR and associated segment memory is returned to the host after the
timeout period with an indication of progress after the timeout period.
It is not returned earlier.

VII.9. Streaming

The implementation of streaming is optional in both VMTP clients and
servers. Ideally, all performance-critical servers should implement
streaming. In addition, clients that have high context switch overhead,
network access overhead or expect to be communicating over long delay
links should also implement streaming.

A client stream is implemented by allocating a CSR for each outstanding
message transaction. A stream of transactions is handled similarly to
multiple outstanding transactions from separate clients except for the
interaction between consecutive numbered transactions in a stream.

For the server VMTP module, streamed message transactions to a server
are queued (if accepted) subordinate to the first unprocessed CSR
corresponding to this Client. Thus, streamed transactions from a given
Client are always performed in the order specified by the transaction
identifiers.

Cheriton [page 116]

RFC 1045 VMTP February 1988

If a server does not implement streaming, it must refuse streamed
message transactions using the NotifyVmtpClient operation. Also, all
client VMTP’s that support streaming must support the streamed interface
to a server that does not support streaming. That is, it must perform
the message transactions one at a time. Consequently, a program that
uses the streaming interface to a non-streaming server experiences
degraded performance, but not failure.

VII.10. Implementation Experience

The implementation experience to date includes a partial implementation
(minus the streaming and full security) in the V kernel plus a similar
preliminary implementation in the 4.3 BSD Unix kernel. In the V kernel
implementation, the CSR’s are part of the (lightweight) process
descriptor.

The V kernel implementation is able to perform a VMTP message
transaction with no data segment between two Sun-3/75’s connected by 10
Mb Ethernet in 2.25 milliseconds. It is also able to transfer data at
4.7 megabits per second using 16 kilobyte Requests (but null checksums.)
The UNIX kernel implementation running on Microvax II’s achieves a basic
message transaction time of 9 milliseconds and data rate of 1.9 megabits
per second using 16 kilobyte Responses. This implementation is using
the standard VMTP checksum.

We hope to report more extensive implementation experience in future
revisions of this document.

Cheriton [page 117]

RFC 1045 VMTP February 1988

VIII. UNIX 4.3 BSD Kernel Interface for VMTP

UNIX 4.3 BSD includes a socket-based design for program interfaces to a
variety of protocol families and types of protocols (streams,
datagrams). In this appendix, we sketch an extension to this design to
support a transaction-style protocol. (Some familiarity with UNIX 4.2/3
IPC is assumed.) Several extensions are required to the system
interface, rather than just adding a protocol, because no provision was
made for supporting transaction protocols in the original design. These
extensions include a new "transaction" type of socket plus new system
calls invoke, getreply, probeentity, recreq, sendreply and forward.

A socket of type transaction bound to the VMTP protocol type
IPPROTO_VMTP is created by the call

 s = socket(AF_INET, SOCK_TRANSACT, VMTP);

This socket is bound to an entity identifier by

 bind(s, &entityid, sizeof(entityid));

The first address/port bound to a socket is considered its primary name
and is the one used on packet transmission. A message transaction is
invoked between the socket named by s and the Server specified by mcb by

 invoke(s, mcb, segptr, seglen, timeout);

The mcb is a message control block whose format was described in Section
2.4. The message control block specifies the request to send plus the
destination Server. The response message control block returned by the
server is stored in mcb when invoke returns. The invoking process is
blocked until a response is received or the message transaction times
out unless the request is a datagram request. (Non-blocking versions
with signals on completion could also be provided, especially with a
streaming implementation.)

For multicast message transactions (sent to an entity group), the next
response to the current message transaction (if it arrives in less than
timeout milliseconds) is returned by

 getreply(s, mcb, segptr, maxseglen, timeout);

The invoke operation sent to an entity group completes as soon as the
first response is received. A request is retransmitted until the first
reply is received (assuming the request is not a datagram). Thus, the
system does not retransmit while getreply is timing out even if no
replies are available.

Cheriton [page 118]

RFC 1045 VMTP February 1988

The state of an entity associated with entityId is probed using

 probeentity(entityId, state);

A UNIX process acting as a VMTP server accepts a Request by the
operation

 recvreq(s, mcb, segptr, maxseglen);

The request message for the next queued transaction request is returned
in mcb, plus the segment data of maximum length maxseglen, starting at
segptr in the address space. On return, the message control block
contains the values as set in invoke except: (1) the Client field
indicates the Client that sent the received Request message. (2) the
Code field indicates the type of request. (3) the MsgDelivery field
indicates the portions of the segment actually received within the
specified segment size, if MDM is 1 in the Code field. A segment block
is marked as missing (i.e. the corresponding bit in the MsgDelivery
field is 0) unless it is received in its entirety or it is all of the
data in last segment contained in the segment.

To complete a transaction, the reply specified by mcb is sent to the
client specified by the MCB using

 sendreply(s, mcb, segptr);

The Client field of the MCB indicates the client to respond to.

Finally, a message transaction specified by mcb is forwarded to
newserver as though it were sent there by its original invoker using

 forward(s, mcb, segptr, timeout);

Cheriton [page 119]

RFC 1045 VMTP February 1988

Index

 Acknowledgment 14
 APG 16, 31, 39
 Authentication domain 20

 Big-endian 9

 Checksum 14, 43
 Checksum, not set 44
 Client 7, 10, 38
 Client timer 16
 CMD 42, 110
 CMG 32, 40
 Co-resident entity 25
 Code 42
 CoResidentEntity 42, 43
 CRE 21, 42

 DGM 42
 Digital signature, VMTP management 95, 101
 Diskless workstations 2
 Domain 9, 38
 Domain 1 102
 Domain 3 104

 Entity 7
 Entity domain 9
 Entity group 8
 Entity identifier 37
 Entity identifier allocation 105
 Entity identifier, all-zero 38
 EPG 20, 39

 Features 6
 ForwardCount 24
 Forwarding 24
 FunctionCode 41

 Group 8
 Group message transaction 10
 Group timeouts 16
 GRP 37

 HandleNoCSR 62
 HandleRequestNoCSR 79
 HCO 14, 23, 39

Cheriton [page 120]

RFC 1045 VMTP February 1988

 Host independence 8

 Idempotent 15
 Interpacket gap 18, 40
 IP 108

 Key 91

 LEE 32, 37
 Little-endian 9

 MCB 118
 MDG 22, 40
 MDM 30, 42
 Message control block 118
 Message size 6
 Message transaction 7, 10
 MPG 39
 MsgDelivery 43
 MSGTRANS_OVERFLOW 27
 Multicast 4, 21, 120
 Multicast, reliable 21

 Naming 6
 Negative acknowledgment 31
 NER 25, 31, 39
 NRT 26, 30, 39
 NSR 25, 27, 31, 39

 Object-oriented 2
 Overrun 18

 Packet group 7, 29, 39
 Packet group run 31
 PacketDelivery 29, 31, 41
 PGcount 26, 41
 PIC 42
 Principal 11
 Priority 41
 Process 11
 ProcessId 89
 Protocol number,IP 108

 RAE 37
 Rate control 18
 Real-time 2, 4
 Realtime 22

Cheriton [page 121]

RFC 1045 VMTP February 1988

 Reliability 12
 Request message 10
 RequestAckRetries 30
 RequestRetries 15
 Response message 10
 ResponseAckRetries 31
 ResponseRetries 15
 Restricted group 8
 Retransmission 15
 RetransmitCount 17
 Roundtrip time 17
 RPC 2
 Run 31, 39
 Run, message transactions 25

 SDA 42
 Security 4, 19
 Segment block 41
 Segment data 43
 SegmentSize 42, 43
 Selective retransmission 18
 Server 7, 10, 41
 Server group 8
 Sockets, VMTP 118
 STI 26, 40
 Streaming 25, 55
 Strictly stable 8
 Subgroups 21

 T-stable 8
 TC1(Server) 16
 TC2(Server) 16
 TC3(Server) 16
 TC4 16
 TCP 2
 Timeouts 15
 Transaction 10, 41
 Transaction identification 10
 TS1(Client) 17
 TS2(Client) 17
 TS3(Client) 17
 TS4(Client) 17
 TS5(Client) 17
 Type flags 8

 UNIX interface 118
 Unrestricted group 8, 38

Cheriton [page 122]

RFC 1045 VMTP February 1988

 NotifyVmtpClient 7, 26, 27, 30
 NotifyVmtpServer 7, 14, 30
 User Data 43

 Version 38
 VMTP Management digital signature 95, 101

Cheriton [page 123]

