
Network Working Group Sun Microsystems, Inc.
Request for Comments: 1050 April 1988

 RPC: Remote Procedure Call
 Protocol Specification

STATUS OF THIS MEMO

 This RFC describes a standard that Sun Microsystems and others are
 using and is one we wish to propose for the Internet’s consideration.
 This memo is not an Internet standard at this time. Distribution of
 this memo is unlimited.

1. INTRODUCTION

 This document specifies a message protocol used in implementing Sun’s
 Remote Procedure Call (RPC) package. The message protocol is
 specified with the eXternal Data Representation (XDR) language [9].
 This document assumes that the reader is familiar with XDR. It does
 not attempt to justify RPC or its uses. The paper by Birrell and
 Nelson [1] is recommended as an excellent background to and
 justification of RPC.

2. TERMINOLOGY

 This document discusses servers, services, programs, procedures,
 clients, and versions. A server is a piece of software where network
 services are implemented. A network service is a collection of one
 or more remote programs. A remote program implements one or more
 remote procedures; the procedures, their parameters, and results are
 documented in the specific program’s protocol specification (see
 Appendix A for an example). Network clients are pieces of software
 that initiate remote procedure calls to services. A server may
 support more than one version of a remote program in order to be
 forward compatible with changing protocols.

 For example, a network file service may be composed of two programs.
 One program may deal with high-level applications such as file system
 access control and locking. The other may deal with low-level file
 IO and have procedures like "read" and "write". A client machine of
 the network file service would call the procedures associated with
 the two programs of the service on behalf of some user on the client
 machine.

Sun Microsystems, Inc. [Page 1]

RFC 1050 Remote Procedure Call April 1988

3. THE RPC MODEL

 The remote procedure call model is similar to the local procedure
 call model. In the local case, the caller places arguments to a
 procedure in some well-specified location (such as a result
 register). It then transfers control to the procedure, and
 eventually gains back control. At that point, the results of the
 procedure are extracted from the well-specified location, and the
 caller continues execution.

 The remote procedure call is similar, in that one thread of control
 logically winds through two processes -- one is the caller’s process,
 the other is a server’s process. That is, the caller process sends a
 call message to the server process and waits (blocks) for a reply
 message. The call message contains the procedure’s parameters, among
 other things. The reply message contains the procedure’s results,
 among other things. Once the reply message is received, the results
 of the procedure are extracted, and caller’s execution is resumed.

 On the server side, a process is dormant awaiting the arrival of a
 call message. When one arrives, the server process extracts the
 procedure’s parameters, computes the results, sends a reply message,
 and then awaits the next call message.

 Note that in this model, only one of the two processes is active at
 any given time. However, this model is only given as an example.
 The RPC protocol makes no restrictions on the concurrency model
 implemented, and others are possible. For example, an implementation
 may choose to have RPC calls be asynchronous, so that the client may
 do useful work while waiting for the reply from the server. Another
 possibility is to have the server create a task to process an
 incoming request, so that the server can be free to receive other
 requests.

4. TRANSPORTS AND SEMANTICS

 The RPC protocol is independent of transport protocols. That is, RPC
 does not care how a message is passed from one process to another.
 The protocol deals only with specification and interpretation of
 messages.

 It is important to point out that RPC does not try to implement any
 kind of reliability and that the application must be aware of the
 type of transport protocol underneath RPC. If it knows it is running
 on top of a reliable transport such as TCP/IP [6], then most of the
 work is already done for it. On the other hand, if it is running on
 top of an unreliable transport such as UDP/IP [7], it must implement
 its own retransmission and time-out policy as the RPC layer does not

Sun Microsystems, Inc. [Page 2]

RFC 1050 Remote Procedure Call April 1988

 provide this service.

 Because of transport independence, the RPC protocol does not attach
 specific semantics to the remote procedures or their execution.
 Semantics can be inferred from (but should be explicitly specified
 by) the underlying transport protocol. For example, consider RPC
 running on top of an unreliable transport such as UDP/IP. If an
 application retransmits RPC messages after short time-outs, the only
 thing it can infer if it receives no reply is that the procedure was
 executed zero or more times. If it does receive a reply, then it can
 infer that the procedure was executed at least once.

 A server may wish to remember previously granted requests from a
 client and not regrant them in order to insure some degree of
 execute-at-most-once semantics. A server can do this by taking
 advantage of the transaction ID that is packaged with every RPC
 request. The main use of this transaction is by the client RPC layer
 in matching replies to requests. However, a client application may
 choose to reuse its previous transaction ID when retransmitting a
 request. The server application, knowing this fact, may choose to
 remember this ID after granting a request and not regrant requests
 with the same ID in order to achieve some degree of execute-at-most-
 once semantics. The server is not allowed to examine this ID in any
 other way except as a test for equality.

 On the other hand, if using a reliable transport such as TCP/IP, the
 application can infer from a reply message that the procedure was
 executed exactly once, but if it receives no reply message, it cannot
 assume the remote procedure was not executed. Note that even if a
 connection-oriented protocol like TCP is used, an application still
 needs time-outs and reconnection to handle server crashes.

 There are other possibilities for transports besides datagram- or
 connection-oriented protocols. For example, a request-reply protocol
 such as VMTP [2] is perhaps the most natural transport for RPC.

 Note: At Sun, RPC is currently implemented on top of both TCP/IP and
 UDP/IP transports.

5. BINDING AND RENDEZVOUS INDEPENDENCE

 The act of binding a client to a service is NOT part of the remote
 procedure call specification. This important and necessary function
 is left up to some higher-level software. (The software may use RPC
 itself; see Appendix A.)

 Implementors should think of the RPC protocol as the jump-subroutine
 instruction ("JSR") of a network; the loader (binder) makes JSR

Sun Microsystems, Inc. [Page 3]

RFC 1050 Remote Procedure Call April 1988

 useful, and the loader itself uses JSR to accomplish its task.
 Likewise, the network makes RPC useful, using RPC to accomplish this
 task.

6. AUTHENTICATION

 The RPC protocol provides the fields necessary for a client to
 identify itself to a service and vice-versa. Security and access
 control mechanisms can be built on top of the message authentication.
 Several different authentication protocols can be supported. A field
 in the RPC header indicates which protocol is being used. More
 information on specific authentication protocols is in section 9:
 "Authentication Protocols".

7. RPC PROTOCOL REQUIREMENTS

 The RPC protocol must provide for the following:

 (1) Unique specification of a procedure to be called.
 (2) Provisions for matching response messages to request messages.
 (3) Provisions for authenticating the caller to service and
 vice-versa.

 Besides these requirements, features that detect the following are
 worth supporting because of protocol roll-over errors, implementation
 bugs, user error, and network administration:

 (1) RPC protocol mismatches.
 (2) Remote program protocol version mismatches.
 (3) Protocol errors (such as misspecification of a procedure’s
 parameters).
 (4) Reasons why remote authentication failed.
 (5) Any other reasons why the desired procedure was not called.

7.1 RPC Programs and Procedures

 The RPC call message has three unsigned fields: remote program
 number, remote program version number, and remote procedure number.
 The three fields uniquely identify the procedure to be called.
 Program numbers are administered by some central authority (like
 Sun). Once an implementor has a program number, he can implement his
 remote program; the first implementation would most likely have the
 version number of 1. Because most new protocols evolve into better,
 stable, and mature protocols, a version field of the call message
 identifies which version of the protocol the caller is using.
 Version numbers make speaking old and new protocols through the same
 server process possible.

Sun Microsystems, Inc. [Page 4]

RFC 1050 Remote Procedure Call April 1988

 The procedure number identifies the procedure to be called. These
 numbers are documented in the specific program’s protocol
 specification. For example, a file service’s protocol specification
 may state that its procedure number 5 is "read" and procedure number
 12 is "write".

 Just as remote program protocols may change over several versions,
 the actual RPC message protocol could also change. Therefore, the
 call message also has in it the RPC version number, which is always
 equal to two for the version of RPC described here.

 The reply message to a request message has enough information to
 distinguish the following error conditions:

 (1) The remote implementation of RPC does speak protocol version 2.
 The lowest and highest supported RPC version numbers are
 returned.

 (2) The remote program is not available on the remote system.

 (3) The remote program does not support the requested version number.
 The lowest and highest supported remote program version numbers
 are returned.

 (4) The requested procedure number does not exist. (This is usually
 a caller side protocol or programming error.)

 (5) The parameters to the remote procedure appear to be garbage
 from the server’s point of view. (Again, this is usually
 caused by a disagreement about the protocol between client
 and service.)

Sun Microsystems, Inc. [Page 5]

RFC 1050 Remote Procedure Call April 1988

7.2 Authentication

 Provisions for authentication of caller to service and vice-versa are
 provided as a part of the RPC protocol. The call message has two
 authentication fields, the credentials and verifier. The reply
 message has one authentication field, the response verifier. The RPC
 protocol specification defines all three fields to be the following
 opaque type:

 enum auth_flavor {
 AUTH_NULL = 0,
 AUTH_UNIX = 1,
 AUTH_SHORT = 2,
 AUTH_DES = 3
 /* and more to be defined */
 };

 struct opaque_auth {
 auth_flavor flavor;
 opaque body<400>;
 };

 In simple English, any "opaque_auth" structure is an "auth_flavor"
 enumeration followed by bytes which are opaque to the RPC protocol
 implementation.

 The interpretation and semantics of the data contained within the
 authentication fields is specified by individual, independent
 authentication protocol specifications. (Section 9 defines the
 various authentication protocols.)

 If authentication parameters were rejected, the response message
 contains information stating why they were rejected.

7.3 Program Number Assignment

 Program numbers are given out in groups of hexadecimal 20000000
 (decimal 536870912) according to the following chart:

 0 - 1fffffff defined by Sun
 20000000 - 3fffffff defined by user
 40000000 - 5fffffff transient
 60000000 - 7fffffff reserved
 80000000 - 9fffffff reserved
 a0000000 - bfffffff reserved
 c0000000 - dfffffff reserved
 e0000000 - ffffffff reserved

Sun Microsystems, Inc. [Page 6]

RFC 1050 Remote Procedure Call April 1988

 The first group is a range of numbers administered by Sun
 Microsystems and should be identical for all sites. The second range
 is for applications peculiar to a particular site. This range is
 intended primarily for debugging new programs. When a site develops
 an application that might be of general interest, that application
 should be given an assigned number in the first range. The third
 group is for applications that generate program numbers dynamically.
 The final groups are reserved for future use, and should not be used.

7.4 Other Uses of the RPC Protocol

 The intended use of this protocol is for calling remote procedures.
 That is, each call message is matched with a response message.
 However, the protocol itself is a message-passing protocol with which
 other (non-RPC) protocols can be implemented. Sun currently uses, or
 perhaps abuses, the RPC message protocol for the following two (non-
 RPC) protocols: batching (or pipelining) and broadcast RPC. These
 two protocols are discussed but not defined below.

7.4.1 Batching

 Batching allows a client to send an arbitrarily large sequence of
 call messages to a server; batching typically uses reliable byte
 stream protocols (like TCP/IP) for its transport. In the case of
 batching, the client never waits for a reply from the server, and the
 server does not send replies to batch requests. A sequence of batch
 calls is usually terminated by a legitimate RPC in order to flush the
 pipeline (with positive acknowledgement).

7.4.2 Broadcast RPC

 In broadcast RPC-based protocols, the client sends a broadcast packet
 to the network and waits for numerous replies. Broadcast RPC uses
 unreliable, packet-based protocols (like UDP/IP) as its transports.
 Servers that support broadcast protocols only respond when the
 request is successfully processed, and are silent in the face of
 errors. Broadcast RPC uses the Port Mapper RPC service to achieve
 its semantics. (See Appendix A for more information.)

8. THE RPC MESSAGE PROTOCOL

 This section defines the RPC message protocol in the XDR data
 description language. The message is defined in a top-down style.

 enum msg_type {
 CALL = 0,
 REPLY = 1
 };

Sun Microsystems, Inc. [Page 7]

RFC 1050 Remote Procedure Call April 1988

 /*
 * A reply to a call message can take on two forms:
 * The message was either accepted or rejected.
 */
 enum reply_stat {
 MSG_ACCEPTED = 0,
 MSG_DENIED = 1
 };

 /*
 * Given that a call message was accepted, the following is the
 * status of an attempt to call a remote procedure.
 */
 enum accept_stat {
 SUCCESS = 0, /* RPC executed successfully */
 PROG_UNAVAIL = 1, /* remote hasn’t exported program */
 PROG_MISMATCH = 2, /* remote can’t support version # */
 PROC_UNAVAIL = 3, /* program can’t support procedure */
 GARBAGE_ARGS = 4 /* procedure can’t decode params */
 };

 /*
 * Reasons why a call message was rejected:
 */
 enum reject_stat {
 RPC_MISMATCH = 0, /* RPC version number != 2 */
 AUTH_ERROR = 1 /* remote can’t authenticate caller */
 };

 /*
 * Why authentication failed:
 */
 enum auth_stat {
 AUTH_BADCRED = 1, /* bad credentials (seal broken) */
 AUTH_REJECTEDCRED = 2, /* client must begin new session */
 AUTH_BADVERF = 3, /* bad verifier (seal broken) */
 AUTH_REJECTEDVERF = 4, /* verifier expired or replayed */
 AUTH_TOOWEAK = 5 /* rejected for security reasons */
 };

 /*
 * The RPC message:
 * All messages start with a transaction identifier, xid,
 * followed by a two-armed discriminated union. The union’s
 * discriminant is a msg_type which switches to one of the two
 * types of the message. The xid of a REPLY message always
 * matches that of the initiating CALL message. NB: The xid
 * field is only used for clients matching reply messages with

Sun Microsystems, Inc. [Page 8]

RFC 1050 Remote Procedure Call April 1988

 * call messages or for servers detecting retransmissions; the
 * service side cannot treat this id as any type of sequence
 * number.
 */
 struct rpc_msg {
 unsigned int xid;
 union switch (msg_type mtype) {
 case CALL:
 call_body cbody;
 case REPLY:
 reply_body rbody;
 } body;
 };

 /*
 * Body of an RPC request call:
 * In version 2 of the RPC protocol specification, rpcvers must
 * be equal to 2. The fields prog, vers, and proc specify the
 * remote program, its version number, and the procedure within
 * the remote program to be called. After these fields are two
 * authentication parameters: cred (authentication credentials)
 * and verf (authentication verifier). The two authentication
 * parameters are followed by the parameters to the remote
 * procedure, which are specified by the specific program
 * protocol.
 */
 struct call_body {
 unsigned int rpcvers; /* must be equal to two (2) */
 unsigned int prog;
 unsigned int vers;
 unsigned int proc;
 opaque_auth cred;
 opaque_auth verf;
 /* procedure specific parameters start here */
 };

 /*
 * Body of a reply to an RPC request:
 * The call message was either accepted or rejected.
 */
 union reply_body switch (reply_stat stat) {
 case MSG_ACCEPTED:
 accepted_reply areply;
 case MSG_DENIED:
 rejected_reply rreply;
 } reply;

 /*

Sun Microsystems, Inc. [Page 9]

RFC 1050 Remote Procedure Call April 1988

 * Reply to an RPC request that was accepted by the server:
 * there could be an error even though the request was accepted.
 * The first field is an authentication verifier that the server
 * generates in order to validate itself to the caller. It is
 * followed by a union whose discriminant is an enum
 * accept_stat. The SUCCESS arm of the union is protocol
 * specific. The PROG_UNAVAIL, PROC_UNAVAIL, and GARBAGE_ARGS
 * arms of the union are void. The PROG_MISMATCH arm specifies
 * the lowest and highest version numbers of the remote program
 * supported by the server.
 */
 struct accepted_reply {
 opaque_auth verf;
 union switch (accept_stat stat) {
 case SUCCESS:
 opaque results[0];
 /*
 * procedure-specific results start here
 */
 case PROG_MISMATCH:
 struct {
 unsigned int low;
 unsigned int high;
 } mismatch_info;
 default:
 /*
 * Void. Cases include PROG_UNAVAIL, PROC_UNAVAIL,
 * and GARBAGE_ARGS.
 */
 void;
 } reply_data;
 };

 /*
 * Reply to an RPC request that was rejected by the server:
 * The request can be rejected for two reasons: either the
 * server is not running a compatible version of the RPC
 * protocol (RPC_MISMATCH), or the server refuses to
 * authenticate the caller (AUTH_ERROR). In case of an RPC
 * version mismatch, the server returns the lowest and highest
 * supported RPC version numbers. In case of refused
 * authentication, failure status is returned.
 */
 union rejected_reply switch (reject_stat stat) {
 case RPC_MISMATCH:
 struct {
 unsigned int low;
 unsigned int high;

Sun Microsystems, Inc. [Page 10]

RFC 1050 Remote Procedure Call April 1988

 } mismatch_info;
 case AUTH_ERROR:
 auth_stat stat;
 };

9. AUTHENTICATION PROTOCOLS

 As previously stated, authentication parameters are opaque, but
 open-ended to the rest of the RPC protocol. This section defines
 some "flavors" of authentication implemented at (and supported by)
 Sun. Other sites are free to invent new authentication types, with
 the same rules of flavor number assignment as there is for program
 number assignment.

9.1 Null Authentication

 Often calls must be made where the caller does not know who he is or
 the server does not care who the caller is. In this case, the flavor
 value (the discriminant of the opaque_auth’s union) of the RPC
 message’s credentials, verifier, and response verifier is
 "AUTH_NULL". The bytes of the opaque_auth’s body are undefined. It
 is recommended that the opaque length be zero.

9.2 UNIX Authentication

 The caller of a remote procedure may wish to identify himself as he
 is identified on a UNIX(tm) system. The value of the credential’s
 discriminant of an RPC call message is "AUTH_UNIX". The bytes of the
 credential’s opaque body encode the the following structure:

 struct auth_unix {
 unsigned int stamp;
 string machinename<255>;
 unsigned int uid;
 unsigned int gid;
 unsigned int gids<10>;
 };

 The "stamp" is an arbitrary ID which the caller machine may generate.
 The "machinename" is the name of the caller’s machine (like
 "krypton"). The "uid" is the caller’s effective user ID. The "gid"
 is the caller’s effective group ID. The "gids" is a counted array of
 groups which contain the caller as a member. The verifier
 accompanying the credentials should be of "AUTH_NULL" (defined
 above).

 The value of the discriminant of the response verifier received in
 the reply message from the server may be "AUTH_NULL" or "AUTH_SHORT".

Sun Microsystems, Inc. [Page 11]

RFC 1050 Remote Procedure Call April 1988

 In the case of "AUTH_SHORT", the bytes of the response verifier’s
 string encode an opaque structure. This new opaque structure may now
 be passed to the server instead of the original "AUTH_UNIX" flavor
 credentials. The server keeps a cache which maps shorthand opaque
 structures (passed back by way of an "AUTH_SHORT" style response
 verifier) to the original credentials of the caller. The caller can
 save network bandwidth and server cpu cycles by using the new
 credentials.

 The server may flush the shorthand opaque structure at any time. If
 this happens, the remote procedure call message will be rejected due
 to an authentication error. The reason for the failure will be
 "AUTH_REJECTEDCRED". At this point, the caller may wish to try the
 original "AUTH_UNIX" style of credentials.

9.3 DES Authentication

 UNIX authentication suffers from two major problems:

 (1) The naming is too UNIX oriented.
 (2) There is no verifier, so credentials can easily be faked.

 DES authentication attempts to fix these two problems.

9.3.1 Naming

 The first problem is handled by addressing the caller by a simple
 string of characters instead of by an operating system specific
 integer. This string of characters is known as the "netname" or
 network name of the caller. The server is not allowed to interpret
 the contents of the caller’s name in any other way except to identify
 the caller. Thus, netnames should be unique for every caller in the
 Internet.

 It is up to each operating system’s implementation of DES
 authentication to generate netnames for its users that insure this
 uniqueness when they call upon remote servers. Operating systems
 already know how to distinguish users local to their systems. It is
 usually a simple matter to extend this mechanism to the network. For
 example, a UNIX user at Sun with a user ID of 515 might be assigned
 the following netname: "unix.515@sun.com". This netname contains
 three items that serve to insure it is unique. Going backwards,
 there is only one naming domain called "sun.com" in the Internet.
 Within this domain, there is only one UNIX user with user ID 515.
 However, there may be another user on another operating system, for
 example VMS, within the same naming domain that, by coincidence,
 happens to have the same user ID. To insure that these two users can
 be distinguished, we add the operating system name. So, one user is

Sun Microsystems, Inc. [Page 12]

RFC 1050 Remote Procedure Call April 1988

 "unix.515@sun.com" and the other is "vms.515@sun.com".

 The first field is actually a naming method rather than an operating
 system name. It just happens that today, there is almost a one-to-
 one correspondence between naming methods and operating systems. If
 the world could agree on a naming standard, the first field could be
 the name of that standard, instead of an operating system name.

9.3.2 DES Authentication Verifiers

 Unlike UNIX authentication, DES authentication does have a verifier
 so the server can validate the client’s credential (and vice-versa).
 The contents of this verifier is primarily an encrypted timestamp.
 The server can decrypt this timestamp, and if it is close to what the
 real time is, then the client must have encrypted it correctly. The
 only way the client could encrypt it correctly is to know the
 "conversation key" of the RPC session. And, if the client knows the
 conversation key, then it must be the real client.

 The conversation key is a DES [5] key which the client generates and
 notifies the server of in its first RPC call. The conversation key
 is encrypted using a public key scheme in this first transaction.
 The particular public key scheme used in DES authentication is
 Diffie-Hellman [3], with 128-bit keys. The details of this
 encryption method are described later.

 The client and the server need the same notion of the current time in
 order for all of this to work. If network time synchronization
 cannot be guaranteed, then client can synchronize with the server
 before beginning the conversation, perhaps by consulting the Internet
 Time Server (TIME [4]).

 The way a server determines if a client timestamp is valid is
 somewhat complicated. For any other transaction but the first, the
 server just checks for two things:

 (1) the timestamp is greater than the one previously seen from
 the same client.

 (2) the timestamp has not expired.

 A timestamp is expired if the server’s time is later than the sum of
 the client’s timestamp, plus what is known as the client’s "window".
 The "window" is a number the client passes (encrypted) to the server
 in its first transaction. You can think of it as a lifetime for the
 credential.

 This explains everything but the first transaction. In the first

Sun Microsystems, Inc. [Page 13]

RFC 1050 Remote Procedure Call April 1988

 transaction, the server checks only that the timestamp has not
 expired. If this was all that was done though, then it would be
 quite easy for the client to send random data in place of the
 timestamp with a fairly good chance of succeeding. As an added
 check, the client sends an encrypted item in the first transaction
 known as the "window verifier" which must be equal to the window
 minus 1, or the server will reject the credential.

 The client too, must check the verifier returned from the server to
 be sure it is legitimate. The server sends back to the client the
 encrypted timestamp it received from the client, minus one second.
 If the client gets anything different than this, it will reject it.

9.3.3 Nicknames and Clock Synchronization

 After the first transaction, the server’s DES authentication
 subsystem returns in its verifier to the client an integer "nickname"
 which the client may use in its further transactions instead of
 passing its netname, encrypted DES key, and window every time. The
 nickname is most likely an index into a table on the server which
 stores for each client its netname, decrypted DES key, and window.

 Though they originally were synchronized, the client’s and server’s
 clocks can get out of sync again. When this happens, the client RPC
 subsystem most likely will get back "RPC_AUTHERROR" at which point it
 should resynchronize.

 A client may still get the "RPC_AUTHERROR" error even though it is
 synchronized with the server. The reason is that the server’s
 nickname table is a limited size, and it may flush entries whenever
 it wants. A client should resend its original credential in this
 case and the server will give it a new nickname. If a server
 crashes, the entire nickname table gets flushed, and all clients will
 have to resend their original credentials.

9.3.4 DES Authentication Protocol Specification (in XDR language)

 /*
 * There are two kinds of credentials: one in which the client uses
 * its full network name, and one in which it uses its "nickname"
 * (just an unsigned integer) given to it by the server. The
 * client must use its fullname in its first transaction with the
 * server, in which the server will return to the client its
 * nickname. The client may use its nickname in all further
 * transactions with the server. There is no requirement to use the
 * nickname, but it is wise to use it for performance reasons.
 */
 enum authdes_namekind {

Sun Microsystems, Inc. [Page 14]

RFC 1050 Remote Procedure Call April 1988

 ADN_FULLNAME = 0,
 ADN_NICKNAME = 1
 };

 /*
 * A 64-bit block of encrypted DES data
 */
 typedef opaque des_block[8];

 /*
 * Maximum length of a network user’s name
 */
 const MAXNETNAMELEN = 255;

 /*
 * A fullname contains the network name of the client, an encrypted
 * conversation key, and the window. The window is actually a
 * lifetime for the credential. If the time indicated in the
 * verifier timestamp plus the window has past, then the server
 * should expire the request and not grant it. To insure that
 * requests are not replayed, the server should insist that
 * timestamps are greater than the previous one seen, unless it is
 * the first transaction. In the first transaction, the server
 * checks instead that the window verifier is one less than the
 * window.
 */
 struct authdes_fullname {
 string name<MAXNETNAMELEN>; /* name of client */
 des_block key; /* PK encrypted conversation key */
 unsigned int window; /* encrypted window */
 };

 /*
 * A credential is either a fullname or a nickname
 */
 union authdes_cred switch (authdes_namekind adc_namekind) {
 case ADN_FULLNAME:
 authdes_fullname adc_fullname;
 case ADN_NICKNAME:
 unsigned int adc_nickname;
 };

 /*
 * A timestamp encodes the time since midnight, January 1, 1970.
 */
 struct timestamp {
 unsigned int seconds; /* seconds */
 unsigned int useconds; /* and microseconds */

Sun Microsystems, Inc. [Page 15]

RFC 1050 Remote Procedure Call April 1988

 };

 /*
 * Verifier: client variety
 * The window verifier is only used in the first transaction. In
 * conjunction with a fullname credential, these items are packed
 * into the following structure before being encrypted:
 *
 * struct {
 * adv_timestamp; -- one DES block
 * adc_fullname.window; -- one half DES block
 * adv_winverf; -- one half DES block
 * }
 * This structure is encrypted using CBC mode encryption with an
 * input vector of zero. All other encryptions of timestamps use
 * ECB mode encryption.
 */
 struct authdes_verf_clnt {
 timestamp adv_timestamp; /* encrypted timestamp */
 unsigned int adv_winverf; /* encrypted window verifier */
 };

 /*
 * Verifier: server variety
 * The server returns (encrypted) the same timestamp the client
 * gave it minus one second. It also tells the client its nickname
 * to be used in future transactions (unencrypted).
 */
 struct authdes_verf_svr {
 timestamp adv_timeverf; /* encrypted verifier */
 unsigned int adv_nickname; /* new nickname for client */
 };

9.3.5 Diffie-Hellman Encryption

 In this scheme, there are two constants "PROOT" and "MODULUS". The
 particular values Sun has chosen for these for the DES authentication
 protocol are:

 const PROOT = 2;
 const MODULUS = "b520985fb31fcaf75036701e37d8b857"; /* in hex */

 The way this scheme works is best explained by an example. Suppose
 there are two people "A" and "B" who want to send encrypted messages
 to each other. So, A and B both generate "secret" keys at random
 which they do not reveal to anyone. Let these keys be represented as
 SK(A) and SK(B). They also publish in a public directory their
 "public" keys. These keys are computed as follows:

Sun Microsystems, Inc. [Page 16]

RFC 1050 Remote Procedure Call April 1988

 PK(A) = (PROOT ** SK(A)) mod MODULUS
 PK(B) = (PROOT ** SK(B)) mod MODULUS

 The "**" notation is used here to represent exponentiation. Now,
 both A and B can arrive at the "common" key between them, represented
 here as CK(A, B), without revealing their secret keys.

 A computes:

 CK(A, B) = (PK(B) ** SK(A)) mod MODULUS

 while B computes:

 CK(A, B) = (PK(A) ** SK(B)) mod MODULUS

 These two can be shown to be equivalent:

 (PK(B) ** SK(A)) mod MODULUS = (PK(A) ** SK(B)) mod MODULUS

 We drop the "mod MODULUS" parts and assume modulo arithmetic to
 simplify things:

 PK(B) ** SK(A) = PK(A) ** SK(B)

 Then, replace PK(B) by what B computed earlier and likewise for
 PK(A).

 ((PROOT ** SK(B)) ** SK(A) = (PROOT ** SK(A)) ** SK(B)

 which leads to:

 PROOT ** (SK(A) * SK(B)) = PROOT ** (SK(A) * SK(B))

 This common key CK(A, B) is not used to encrypt the timestamps used
 in the protocol. Rather, it is used only to encrypt a conversation
 key which is then used to encrypt the timestamps. The reason for
 doing this is to use the common key as little as possible, for fear
 that it could be broken. Breaking the conversation key is a far less
 serious offense, since conversations are relatively short-lived.

 The conversation key is encrypted using 56-bit DES keys, yet the
 common key is 128 bits. To reduce the number of bits, 56 bits are
 selected from the common key as follows. The middle-most 8-bytes are
 selected from the common key, and then parity is added to the lower
 order bit of each byte, producing a 56-bit key with 8 bits of parity.

Sun Microsystems, Inc. [Page 17]

RFC 1050 Remote Procedure Call April 1988

10. RECORD MARKING STANDARD

 When RPC messages are passed on top of a byte stream protocol (like
 TCP/IP), it is necessary, or at least desirable, to delimit one
 message from another in order to detect and possibly recover from
 user protocol errors. This is called record marking (RM). Sun uses
 this RM/TCP/IP transport for passing RPC messages on TCP streams.
 One RPC message fits into one RM record.

 A record is composed of one or more record fragments. A record
 fragment is a four-byte header followed by 0 to (2**31)-1 bytes of
 fragment data. The bytes encode an unsigned binary number; as with
 XDR integers, the byte order is from highest to lowest. The number
 encodes two values -- a boolean which indicates whether the fragment
 is the last fragment of the record (bit value 1 implies the fragment
 is the last fragment) and a 31-bit unsigned binary value which is the
 length in bytes of the fragment’s data. The boolean value is the
 highest-order bit of the header; the length is the 31 low-order bits.
 (Note that this record specification is NOT in XDR standard form!)

11. THE RPC LANGUAGE

 Just as there was a need to describe the XDR data-types in a formal
 language, there is also need to describe the procedures that operate
 on these XDR data-types in a formal language as well. We use the RPC
 Language for this purpose. It is an extension to the XDR language.
 The following example is used to describe the essence of the
 language.

11.1 An Example Service Described in the RPC Language

 Here is an example of the specification of a simple ping program:

 /*
 * Simple ping program
 */
 program PING_PROG {
 /*
 * Latest and greatest version
 */
 version PING_VERS_PINGBACK {
 void
 PINGPROC_NULL(void) = 0;

 /*
 * Ping the caller, return the round-trip time
 * (in microseconds). Returns -1 if the operation
 * timed out.

Sun Microsystems, Inc. [Page 18]

RFC 1050 Remote Procedure Call April 1988

 */
 int
 PINGPROC_PINGBACK(void) = 1;
 } = 2;

 /*
 * Original version
 */
 version PING_VERS_ORIG {
 void
 PINGPROC_NULL(void) = 0;
 } = 1;
 } = 1;

 const PING_VERS = 2; /* latest version */

 The first version described is PING_VERS_PINGBACK with two
 procedures, PINGPROC_NULL and PINGPROC_PINGBACK. PINGPROC_NULL takes
 no arguments and returns no results, but it is useful for computing
 round-trip times from the client to the server and back again. By
 convention, procedure 0 of any RPC protocol should have the same
 semantics, and never require any kind of authentication. The second
 procedure is used for the client to have the server do a reverse ping
 operation back to the client, and it returns the amount of time (in
 microseconds) that the operation used. The next version,
 PING_VERS_ORIG, is the original version of the protocol and it does
 not contain PINGPROC_PINGBACK procedure. It is useful for
 compatibility with old client programs, and as this program matures
 it may be dropped from the protocol entirely.

11.1 The RPC Language Specification

 The RPC language is identical to the XDR language, except for the
 added definition of a "program-def" described below.

 program-def:
 "program" identifier "{"
 version-def
 version-def *
 "}" "=" constant ";"

 version-def:
 "version" identifier "{"
 procedure-def
 procedure-def *
 "}" "=" constant ";"

 procedure-def:

Sun Microsystems, Inc. [Page 19]

RFC 1050 Remote Procedure Call April 1988

 type-specifier identifier "(" type-specifier ")"
 "=" constant ";"

11.2 Syntax Notes

 (1) The following keywords are added and cannot be used as
 identifiers: "program" and "version";

 (2) A version name cannot occur more than once within the scope
 of a program definition. Nor can a version number occur more
 than once within the scope of a program definition.

 (3) A procedure name cannot occur more than once within the scope
 of a version definition. Nor can a procedure number occur
 more than once within the scope of version definition.

 (4) Program identifiers are in the same name space as constant
 and type identifiers.

 (5) Only unsigned constants can be assigned to programs, versions,
 and procedures.

APPENDIX A: PORT MAPPER PROGRAM PROTOCOL

 The port mapper program maps RPC program and version numbers to
 transport-specific port numbers. This program makes dynamic binding
 of remote programs possible.

 This is desirable because the range of reserved port numbers is very
 small, and the number of potential remote programs is very large. By
 running only the port mapper on a reserved port, the port numbers of
 other remote programs can be ascertained by querying the port mapper.

 The port mapper also aids in broadcast RPC. A given RPC program will
 usually have different port number bindings on different machines, so
 there is no way to directly broadcast to all of these programs. The
 port mapper, however, does have a fixed port number. So, to
 broadcast to a given program, the client actually sends its message
 to the port mapper located at the broadcast address. Each port
 mapper that picks up the broadcast then calls the local service
 specified by the client. When the port mapper gets the reply from
 the local service, it sends the reply on back to the client.

A.1 Port Mapper Protocol Specification (in RPC Language)

 const PMAP_PORT = 111; /* portmapper port number */

Sun Microsystems, Inc. [Page 20]

RFC 1050 Remote Procedure Call April 1988

 /*
 * A mapping of (program, version, protocol) to port number
 */
 struct mapping {
 unsigned int prog;
 unsigned int vers;
 unsigned int prot;
 unsigned int port;
 };

 /*
 * Supported values for the "prot" field
 */
 const IPPROTO_TCP = 6; /* protocol number for TCP/IP */
 const IPPROTO_UDP = 17; /* protocol number for UDP/IP */

 /*
 * A list of mappings
 */
 struct *pmaplist {
 mapping map;
 pmaplist next;
 };
 /*
 * Arguments to callit
 */
 struct call_args {
 unsigned int prog;
 unsigned int vers;
 unsigned int proc;
 opaque args<>;
 };
 /*
 * Results of callit
 */
 struct call_result {
 unsigned int port;
 opaque res<>;
 };

 /*
 * Port mapper procedures
 */
 program PMAP_PROG {
 version PMAP_VERS {
 void
 PMAPPROC_NULL(void) = 0;

Sun Microsystems, Inc. [Page 21]

RFC 1050 Remote Procedure Call April 1988

 bool
 PMAPPROC_SET(mapping) = 1;

 bool
 PMAPPROC_UNSET(mapping) = 2;

 unsigned int
 PMAPPROC_GETPORT(mapping) = 3;

 pmaplist
 PMAPPROC_DUMP(void) = 4;

 call_result
 PMAPPROC_CALLIT(call_args) = 5;
 } = 2;
 } = 100000;

A.2 Port Mapper Operation

 The portmapper program currently supports two protocols (UDP/IP and
 TCP/IP). The portmapper is contacted by talking to it on assigned
 port number 111 (SUNRPC [8]) on either of these protocols. The
 following is a description of each of the portmapper procedures:

 PMAPPROC_NULL:

 This procedure does no work. By convention, procedure zero of
 any protocol takes no parameters and returns no results.

 PMAPPROC_SET:

 When a program first becomes available on a machine, it
 registers itself with the port mapper program on the same
 machine. The program passes its program number "prog", version
 number "vers", transport protocol number "prot", and the port
 "port" on which it awaits service request. The procedure
 returns a boolean response whose value is "TRUE" if the
 procedure successfully established the mapping and "FALSE"
 otherwise. The procedure refuses to establish a mapping if one
 already exists for the tuple "(prog, vers, prot)".

 PMAPPROC_UNSET:

 When a program becomes unavailable, it should unregister itself
 with the port mapper program on the same machine. The
 parameters and results have meanings identical to those of
 "PMAPPROC_SET". The protocol and port number fields of the
 argument are ignored.

Sun Microsystems, Inc. [Page 22]

RFC 1050 Remote Procedure Call April 1988

 PMAPPROC_GETPORT:

 Given a program number "prog", version number "vers", and
 transport protocol number "prot", this procedure returns the
 port number on which the program is awaiting call requests. A
 port value of zeros means the program has not been registered.
 The "port" field of the argument is ignored.

 PMAPPROC_DUMP:

 This procedure enumerates all entries in the port mapper’s
 database. The procedure takes no parameters and returns a list
 of program, version, protocol, and port values.

 PMAPPROC_CALLIT:

 This procedure allows a caller to call another remote procedure
 on the same machine without knowing the remote procedure’s port
 number. It is intended for supporting broadcasts to arbitrary
 remote programs via the well-known port mapper’s port. The
 parameters "prog", "vers", "proc", and the bytes of "args" are
 the program number, version number, procedure number, and
 parameters of the remote procedure. Note:

 (1) This procedure only sends a response if the procedure
 was successfully executed and is silent (no response)
 otherwise.

 (2) The port mapper communicates with the remote program
 using UDP/IP only.

 The procedure returns the remote program’s port number, and the
 bytes of results are the results of the remote procedure.

REFERENCES

 [1] Birrel, A. D., and Nelson, B. J., "Implementing Remote
 Procedure Calls", XEROX CSL-83-7, October 1983.

 [2] Cheriton, D., "VMTP: Versatile Message Transaction Protocol",
 Version 0.7, RFC-1045, Stanford University, February 1988.

 [3] Diffie & Hellman, "Net Directions in Cryptography", IEEE
 Transactions on Information Theory IT-22, November 1976.

 [4] Postel, J., and Harrenstien, K., "Time Protocol", RFC-868,
 Network Information Center, SRI, May 1983.

Sun Microsystems, Inc. [Page 23]

RFC 1050 Remote Procedure Call April 1988

 [5] National Bureau of Standards, "Data Encryption Standard",
 Federal Information Processing Standards Publication 46,
 January 1977.

 [6] Postel, J., "Transmission Control Protocol - DARPA Internet
 Program Protocol Specification", RFC-793; Network Information
 Center, SRI, September 1981.

 [7] Postel, J., "User Datagram Protocol", RFC-768, Network
 Information Center, SRI, August 1980.

 [8] Reynolds, J. and Postel, J.; "Assigned Numbers", RFC-1010,
 Network Information Center, SRI, May 1987.

 [9] Sun Microsystems; "XDR: External Data Representation
 Standard", RFC-1014; Sun Microsystems, June 1987.

Sun Microsystems, Inc. [Page 24]

