Net

wor k Wor ki ng Group R Fox

Request for Comments: 1106 Tandem

June 1989

TCP Big Wndow and Nak Options

Status of this Meno

This meno di scusses two extensions to the TCP protocol to provide a
nore efficient operation over a network with a hi gh bandw dt h*del ay
product. The extensions described in this docunent have been

i mpl ement ed and shown to work using resources at NASA. This meno
descri bes an Experinental Protocol, these extensions are not proposed
as an Internet standard, but as a starting point for further

research. Distribution of this nenmo is unlinted.

Abst ract

Fox

Two extensions to the TCP protocol are described in this RFC in order
to provide a nore efficient operation over a network with a high

bandwi dt h*del ay product. The main issue that still needs to be
solved is congestion versus noise. This issue is touched onin this
meno, but further research is still needed on the applicability of

the extensions in the Internet as a whole infrastructure and not just
hi gh bandwi dt h*del ay product networks. Even with this outstanding

i ssue, this docunment does describe the use of these options in the
isolated satellite network environment to help facilitate nore
efficient use of this special nediumto help off |oad bulk data
transfers fromlinks needed for interactive use.

I nt roducti on

Recent work on TCP has shown great performance gains over a variety
of network paths [1]. However, these changes still do not work well
over network paths that have a large round trip delay (satellite with
a 600 ns round trip delay) or a very large bandw dth
(transcontinental DS3 line). These two networks exhibit a higher
bandwi dt h*del ay product, over 10**6 bits, than the 10**5 bits that
TCP is currently linmted to. This high bandw dt h*del ay product
refers to the anpbunt of data that may be unacknow edged so that all

of the networks bandwidth is being utilized by TCP. This may al so be
referred to as "filling the pipe" [2] so that the sender of data can
al ways put data onto the network and the receiver will always have
sonmething to read, and neither end of the connection will be forced
to wait for the other end.

After the last batch of algorithminprovenents to TCP, perfornance

[Page 1]

RFC 1106 TCP Big Wndow and Nak Options June 1989

over hi gh bandwi dt h*del ay networks is still very poor. It appears
that no al gorithm changes alone will nake any significant

i mprovenents over high bandwi dt h*del ay networks, but will require an
extension to the protocol itself. This RFC di scusses two possible
options to TCP for this purpose.

The two options inplenented and di scussed in this RFC are:
1. NAKs

This extension allows the receiver of data to informthe sender
that a packet of data was not received and needs to be resent.
This option proves to be useful over any network path (both high
and | ow bandwi dt h*del ay type networks) that experiences periodic
errors such as | ost packets, noisy links, or dropped packets due
to congestion. The information conveyed by this option is
advisory and if ignored, does not have any effect on TCP what so
ever.

2. Big Wndows

This option will give a nethod of expanding the current 16 bit (64
Kbyt es) TCP window to 32 bits of which 30 bits (over 1 gigabytes)
are allowed for the receive window. (The nmaxi num w ndow si ze
allowed in TCP due to the requirenent of TCP to detect old data
versus new data. For a good expl anation please see [2].) No
changes are required to the standard TCP header [6]. The 16 bit
field in the TCP header that is used to convey the receive w ndow
wi |l remain unchanged. The 32 bit receive window is achieved
through the use of an option that contains the upper half of the
window. It is this option that is necessary to fill large data
pi pes such as a satellite link

This RFC is broken up into the follow ng sections: section 2 will

di scuss the operation of the NAK option in greater detail, section 3
will discuss the big window option in greater detail. Section 4 will
di scuss other effects of the big wi ndows and nak feature when used
together. Included in this section will be a brief discussion on the
ef fects of congestion versus noise to TCP and possi bl e options for
satellite networks. Section 5 will be a conclusion with sone hints
as to what future devel opnent nmay be done at NASA, and then an
appendi x containing sone test results is included.

2. NAK Option
Any packet loss in a high bandw dt h*del ay network will have a

cat astrophic effect on throughput because of the sinple
acknow edgenent of TCP. TCP always acks the stream of data that has

Fox [Page 2]

RFC 1106 TCP Big Wndow and Nak Options June 1989

successfully been received and tells the sender the next byte of data
of the streamthat is expected. |If a packet is |ost and succeeding
packets arrive the current protocol has no way of telling the sender
that it mssed one packet but received foll ow ng packets. TCP
currently resends all of the data over again, after a tineout or the
sender suspects a | ost packet due to a duplicate ack algorithm[1],
until the receiver receives the | ost packet and can then ack the | ost
packet as well as succeedi ng packets received. On a normal |ow
bandwi dt h*del ay network this effect is mininmal if the timeout period
is set short enough. However, on a long delay network such as a T1
satellite channel this is catastrophic because by the tine the |ost
packet can be sent and the ack returned the TCP wi ndow woul d have
been exhausted and both the sender and receiver would be tenporarily
stalled waiting for the packet and ack to fully travel the data pipe.
Thi s causes the pipe to becone enpty and requires the sender to
refill the pipe after the ack is received. This will cause a m ni mum
of 3*X bandwi dth | oss, where X is the one way del ay of the nedi um and
may be much hi gher depending on the size of the tineout period and
bandwi dt h*del ay product. Its 1X for the packet to be resent, 1X for
the ack to be received and 1X for the next packet being sent to reach
the destination. This calculation assumes that the w ndow size is
much small er than the pipe size (window = 1/2 data pipe or 1X), which
is the typical case with the current TCP wi ndow limtation over |ong
del ay networks such as a T1 satellite link

An attenpt to reduce this wasted bandwi dth from 3*X was introduced in
[1] by having the sender resend a packet after it notices that a
nunber of consecutively received acks conpl etely acknow edges al ready
acknow edged data. On a typical network this will reduce the |ost
bandwi dth to alnbst nil, since the packet will be resent before the
TCP wi ndow i s exhausted and with the data pi pe being nuch snaller
than the TCP wi ndow, the data pipe will not becone enpty and no
bandwi dth will be lost. On a high delay network the reduction of

| ost bandwidth is miniml such that |ost bandwidth is stil
significant. On a very noisy satellite, for instance, the |ost

bandwi dth is very high (see appendi x for sone performance figures)
and performance is very poor.

There are two nethods of informing the sender of |ost data.

Sel ective acknow edgenents and NAKS. Sel ective acknow edgenents have
been the object of research in a nunber of experinental protocols
including VMIP [3], NETBLT [4], and SatFTP [5]. The idea behind
selective acks is that the receiver tells the sender which pieces it
received so that the sender can resend the data not acked but already
sent once. NAKs on the other hand, tell the sender that a particul ar
packet of data needs to be resent.

There are a coupl e of disadvantages of selective acks. Nanely, in

Fox [Page 3]

RFC 1106 TCP Big Wndow and Nak Options June 1989

2.1

Fox

sonme of the protocols nentioned above, the receiver waits a certain
tinme before sending the selective ack so that acks may be bundl ed up
This delay can cause sonme wasted bandwi dth and requires nore conpl ex
state information than the sinple nak. Even if the receiver doesn’t
bundl e up the selective acks but sends themas it notices that
packets have been lost, nore conplex state information is needed to
det ermi ne whi ch packets have been acked and which packets need to be
resent. Wth naks, only the i medi ate data needed to nove the |eft
edge of the wi ndow is naked, thus al nost conpletely elininating all
state information.

The sel ective ack has one advantage over naks. |If the link is very
noi sy and packets are being |ost close together, then the sender will
find out about all of the missing data at once and can send all of
the mssing data out imediately in an attenpt to nove the left

wi ndow edge in the acknow edge nunber of the TCP header, thus keeping
the data pipe flowing. Wereas with naks, the sender will be
notified of |ost packets one at a tine and this will cause the sender
to process extra packets conpared to sel ective acks. However,
enpirical studies has shown that nost |ost packets occur far enough
apart that the advantage of selective acks over naks is rarely seen
Also, if naks are sent out as soon as a packet has been deterni ned

| ost, then the advantage of selective acks becones no nore than

possi bly a nore aesthetic algorithmfor handling | ost data, but

of fers no gains over naks as described in this paper. It is this
reason that the sinplicity of naks was chosen over selective acks for
the current inplenentation

| mpl enent ati on details

When the receiver of data notices a gap between the expected sequence
nunber and the actual sequence nunber of the packet received, the
recei ver can assune that the data between the two sequence nunbers is
either going to arrive late or is lost forever. Since the receiver
can not distinguish between the two events a nak should be sent in
the TCP option field. Naking a packet still destined to arrive has
the effect of causing the sender to resend the packet, wasting one
packets worth of bandwidth. Since this event is fairly rare, the

| ost bandwidth is insignificant as conpared to that of not sending a
nak when the packet is not going to arrive. The option will take the
formas foll ows:

+ + + + +
+option= + | engt h= + sequence numnber of + nunber of +
+ A + 7 + first byte being naked + segnents naked +
+ + + + +

This option contains the first sequence nunber not received and a

[Page 4]

RFC 1106 TCP Big Wndow and Nak Options June 1989

count of how nmany segnents of bytes needed to be resent, where
segnents is the size of the current TCP MSS being used for the
connection. Since a nak is an advisory piece of information, the
sending of a nak is unreliable and no neans for retransmitting a nak
is provided at this tine.

When the sender of data receives the option it may either choose to
do nothing or it will resend the nissing data i mediately and then
continue sending data where it left off before receiving the nak

The receiver will keep track of the last nak sent so that it will not
repeat the same nak. |If it were to repeat the sanme nak the protoco
could get into the node where on every reception of data the receiver
woul d nak the first missing data frane. Since the data pipe nay be
very large by the time the first nak is read and responded to by the
sender, many naks woul d have been sent by the receiver. Since the
sender does not know that the naks are repetitious it will resend the
data each tine, thus wasting the network bandwi dth with usel ess
retransm ssions of the sane piece of data. Having an unreliable nak
may result in a nak bei ng danaged and not being received by the
sender, and in this case, we will let the tcp recover by its normal
means. Enpirical data has shown that the l|ikelihood of the nak being
lost is quite snall and thus, this advisory nak option works quite
wel | .

3. Big Wndow Option

Currently TCP has a 16 bit window limtation built into the protocol
This limts the amount of outstandi ng unacknow edged data to 64
Kbytes. W have already seen that sonme networks have a pipe |arger
than 64 Kbytes. A T1 satellite channel and a cross country DS3
network with a 30ns del ay have data pi pes nmuch | arger than 64 Kbytes.
Thus, even on a perfectly conditioned Iink with no bandw dth wasted
due to errors, the data pipe will not be filled and bandwidth will be
wasted. Wiat is needed is the ability to send nore unacknow edged
data. This is achieved by having bigger wi ndows, bigger than the
current limtation of 16 bits. This option to expands the w ndow
size to 30 bits or over 1 gigabytes by literally expandi ng the w ndow
size mechanismcurrently used by TCP. The added option contains the
upper 15 bits of the wi ndow while the lower 16 bits will continue to
go where they normally go [6] in the TCP header.

A TCP session will use the big wi ndow options only if both sides
agree to use them otherwi se the option is not used and the nornmal 16
bit windows will be used. Once the 2 sides agree to use the big

wi ndows then every packet thereafter will be expected to contain the
wi ndow option with the current upper 15 bits of the wi ndow The
negoti ati on to deci de whether or not to use the bigger w ndows takes
pl ace during the SYN and SYN ACK segnents of the TCP connection

Fox [Page 5]

RFC 1106 TCP Big Wndow and Nak Options June 1989

startup process. The originator of the connection will include in
t he SYN segnment the follow ng option:

1 byte 1 byte 4 bytes
+ + + +
+option=B + length=6 + 30 bit w ndow +
+ + + +

If the other end of the connection wants to use big windows it wll

i nclude the sane option back in the SYN ACK segnent that it nust
send. At this point, both sides have agreed to use big w ndows and
the specified windows will be used. It should be noted that the SYN
and SYN ACK segnents will use the small w ndows, and once the big

wi ndow option has been negotiated then the bigger windows will be
used.

Once both sides have agreed to use 32 bit wi ndows the protocol will
function just as it did before with no difference in operation, even
in the event of lost packets. This claimholds true since the
rcv_wnd and snd_wnd variables of tcp contain the 16 bit w ndows until
the big wi ndow option is negotiated and then they are replaced with
the appropriate 32 bit values. Thus, the use of big w ndows becones
part of the state infornation kept by TCP.

O her nethods of expanding the wi ndows have been presented, including
a window multiple [2] or streaming [5], but this solution is nore

el egant in the sense that it is a true extension of the wi ndow t hat
one day nmay easily become part of the protocol and not just be an
option to the protocol.

3.1 How does it work

Once a connection has decided to use big wi ndows every succeedi ng
packet nust contain the follow ng option:

+ + + +
+opti on=C + |l ength=4 + upper 15 bits of rcv_wnd +
+ + + +

Wth all segments sent, the sender supplies the size of its receive
wi ndow. |f the connection is only using 16 bits then this option is
not supplied, otherwise the lower 16 bits of the receive w ndow go
into the tcp header where it currently resides [6] and the upper 15
bits of the windowis put into the data portion of the option C
When the receiver processes the packet it nmust first reformthe

wi ndow and then process the packet as it would in the absence of the
option.

Fox [Page 6]

RFC 1106 TCP Big Wndow and Nak Options June 1989

3.2 Inpact of changes

In inplenenting the first version of the big wi ndow option there was
very little change required to the source. State information nust be
added to the protocol to determine if the big wi ndow option is to be
used and all 16 bit variables that dealt w th w ndow i nformation nust
now beconme 32 bit quantities. A future docunent will describe in
nore detail the changes required to the 4.3 bsd tcp source code.

Test results of the wi ndow change only are presented in the appendi x.
When expanding 16 bit quantities to 32 bit quantities in the TCP
control block in the source (4.3 bsd source) may cause the structure
to becone larger than the nbuf used to hold the structure. Care nust
be taken to insure this doesn't occur with your system or
undet erm ned events may take pl ace.

4. Effects of Big Wndows and Naks when used together

Wth big windows alone, transfer tines over a satellite were quite

i npressive with the absence of any introduced errors. However, when
an error sinmulator was used to create randomerrors during transfers,
performance went down extrenely fast. Wen the nak opti on was added
to the big wi ndow option performance in the face of errors went up
some but not to the level that was expected. This section will

di scuss sone issues that were overcone to produce the results given
in the appendi x.

4.1 Wndow Size and Nak benefits

Wth out errors, the wi ndow size required to keep the data pipe ful
is equal to the round trip delay * throughput desired, or the data
pi pe bandwidth (called Z fromnow on). This and other cal cul ati ons
assume that processing time of the hosts is negligible. In the event
of an error (w thout NAKs), the wi ndow size needs to becone |arger
than Z in order to keep the data pipe full while the sender is
waiting for the ack of the resent packet. |If the wi ndow size is
equaled to Z and we assune that the retransnission tiner is equal ed
to Z, then when a packet is lost, the retransnission tiner will go

off as the last piece of data in the windowis sent. In this case,
the | ost piece of data can be resent with no delay. The data pipe
will enpty out because it will take 1/2Z worth of data to get the ack

back to the sender, an additional 1/2Z worth of data to get the data
pipe refilled with new data. This causes the required w ndow to be

2Z, 1Z to keep the data pipe full during normal operations and 1Z to
keep the data pipe full while waiting for a | ost packet to be resent
and acked.

If the same scenario in the last paragraph is used with the addition
of NAKs, the required wi ndow size still needs to be 2Z to avoid

Fox [Page 7]

RFC 1106 TCP Big Wndow and Nak Options June 1989

4.2

Fox

wasting any bandwi dth in the event of a dropped packet. This appears
to nean that the nak option does not provide any benefits at all
Testing showed that the retransmission tinmer was |larger than the data
pi pe and in the event of errors becane much bigger than the data

pi pe, because of the retransm ssion backoff. Thus, the nak option
bounds the required wi ndow to 2Z such that in the event of an error
there is no | ost bandwi dth, even with the retransm ssion timer
fluctuations. The results in the appendi x shows that by using naks,
bandwi dt h waste associated with the retransmission timer facility is
el i m nat ed.

Congestions vs Noi se

An issue that nust be | ooked at when inplenenting both the NAKs and
bi g wi ndow schene together is in the area of congestion versus | ost
packets due to the medium or noise. In the recent algorithm
enhancenents [1], slow start was introduced so that whenever a data
transfer is being started on a connection or right after a dropped
packet, the effective send wi ndow would be set to a very small size
(typically would equal the MSS being used). This is done so that a
new connection woul d not cause congestion by i medi ately overl oadi ng
the network, and so that an existing connection would back off the
network if a packet was dropped due to congestion and allow the
network to clear up. |f a connection using big w ndows |oses a
packet due to the nedium (a packet corrupted by an error) the |ast
thing that should be done is to close the send wi ndow so that the
connection can only send 1 packet and nust use the slow start
algorithmto slowy work itself back up to sending full wi ndows worth
of data. This algorithmwould quickly limt the useful ness of the
bi g wi ndow and nak options over |ossy links.

On the other hand, if a packet was dropped due to congestion and the
sender assunes the packet was dropped because of noise the sender

will continue sending |arge anounts of data. This action will cause
the congestion to continue, nore packets will be dropped, and that
part of the network will collapse. 1In this instance, the sender

woul d want to back off fromsending at the current window limt.
Using the current slow start mechani smover a satellite builds up the
wi ndow too slowy [1]. Possibly a better solution would be for the
wi ndow to be opened 2*R og2(W instead of R*log2(W [1] (open w ndow
by 2 packets instead of 1 for each acked packet). This will reduce

t he wasted bandw dth by openi ng the wi ndow nuch qui cker while giving
the network a chance to clear up. Mre experinmentation is necessary
to find the optimal rate of opening the wi ndow, especially when |arge
wi nhdows are bei ng used.

The current recommendation for TCP is to use the slow start nechani sm
in the event of any lost packet. |If an application knows that it

[Page 8]

RFC 1106 TCP Big Wndow and Nak Options June 1989

will be using a satellite with a high error rate, it doesn't nake
sense to force it to use the slow start nechani smfor every dropped
packet. Instead, the application should be able to choose what
action should happen in the event of a | ost packet. |In the BSD
environnment, a setsockopt call should be provided so that the
application may inform TCP to handl e | ost packets in a special way
for this particular connection. |f the known error rate of a link is
known to be small, then by using slow start with nodified rate from
above, will cause the anmbunt of bandwidth |oss to be very small in
respect to the amount of bandwi dth actually utilized. 1In this case,

t he setsockopt call should not be used. Wat is really needed is a
way for a host to determine if a packet or packets are being dropped
due to congestion or noise. Then, the host can choose to do the
right thing. This will require a mechanismlike source quench to be
used. For this to happen nore experinmentation is necessary to
determine a solid definition on the use of this nechanism Nowit is
bel i eved by sone that using source quench to avoid congestion only
adds to the problem not help suppress it.

The TCP used to gather the results in the appendix for the big w ndow
with nak experiment, assunmed that |ost packets were the result of

noi se and not congestion. This assunption was used to show how to
make the current TCP work in such an environnent. The actua
satellite used in the experinment (when the satellite sinmulator was
not used) only experienced an error rate around 10e-10. Wth this
error rate it is suggested that in practice when big wi ndows are used
over the link, TCP should use the slow start mechanismfor all [|ost
packets with the 2*R og2(W rate di scussed above. Under nost
situations when | ong del ay networks are being used (transcontinenta
DS3 networks using fiber with very low error rates, or satellite
links with low error rates) big wi ndows and naks should be used with
the assunption that |ost packets are the result of congestion until a
better algorithmis devised [7].

Anot her problem noticed, while testing the affects of slow start over
a satellite link, was at times, the retransm ssion tiner was set so
restrictive, that nilliseconds before a naked packet’'s ack is
received the retransm ssion tinmer would go off due to a tinmed packet
within the send window The tiner was set at the round trip delay of
the network allowing no time for packet processing. |If this tiner
went off due to congestion then backing off is the right thing to do,
otherwi se to avoid the scenario discovered by experinentation, the
transmit tiner should be set a little |Ionger so that the

retransm ssion tiner does not go off too early. Care nust be taken
to make sure the right thing is done in the inplenmentation in
guestion so that a packet isn't retransnmitted too soon, and bl amed on
congestion when in fact, the ack is on its way.

Fox [Page 9]

RFC 1106 TCP Big Wndow and Nak Options June 1989

4.3 Duplicate Acks

Anot her problem found with the 4.3bsd inplenentation is in the area
of duplicate acks. Wen the sender of data receives a certain nunber
of acks (3 in the current Berkeley rel ease) that acknow edge
previously acked data before, it then assunes that a packet has been
lost and will resend the one packet assuned lost, and close its send
wi ndow as if the network is congested and the slow start algorithm
nmention above will be used to open the send window. This facility is
no | onger needed since the sender can use the reception of a nak as

its indicator that a particul ar packet was dropped. |f the nak
packet is lost then the retransnmt tinmer will go off and t he packet
will be retransmtted by nornmal neans. |If a senders al gorithm

continues to count duplicate acks the sender will find itself

possi bly receiving many duplicate acks after it has already resent

t he packet due to a nak being received because of the |arge size of
the data pipe. By receiving all of these duplicate acks the sender
may find itself doing nothing but resending the sane packet of data
unnecessarily while keeping the send wi ndow cl osed for absolutely no
reason. By renoving this feature of the inplenmentation a user can
expect to find a satellite connection working nuch better in the face
of errors and other connections should not see any performance | oss,
but a slight inprovenent in performance if anything at all

5. Concl usi on

Thi s paper has described two new options that if used will make TCP a
nmore efficient protocol in the face of errors and a nore efficient
prot ocol over networks that have a high bandw dt h*del ay product

wi t hout decreasing performance over nore common networks. [|f a
systemthat inplenents the options talks with one that does not, the
two systens should still be able to conmunicate with no probl ens.
This assunes that the system doesn’t use the option nunbers defined
in this paper in sonme other way or doesn’'t panic when faced with an
option that the machi ne does not inplenment. Currently at NASA, there
are nany nmachines that do not inplenent either option and comunicate
just fine with the systens that do inplenent them

The drive for inplenmenting big wi ndows has been the direct result of
trying to make TCP nore efficient over |large delay networks [2,3,4,5]
such as a T1 satellite. However, another practical use of large

wi ndows is becom ng nore apparent as the |ocal area networks being
devel oped are beconing faster and supporting nuch |arger MU s.
Hyperchannel, for instances, has been stated to be able to support 1
Mega bit MU s in their new line of products. Wth the current

i npl ement ati on of TCP, efficient use of hyperchannel is not utilized
as it shoul d because the physical nmediunms MU is |arger than the

maxi mum wi ndow of the protocol being used. By increasing the TCP

Fox [Page 10]

RFC 1106 TCP Big Wndow and Nak Options June 1989

6.

[

[

[

[

[

[

Fox

wi ndow si ze, better utilization of networks |ike hyperchannel wll be
gai ned instantly because the sender can send 64 Kbyte packets (IP
limtation) but not have to operate in a stop and wait fashion

Future work is being started to increase the |IP maxi num dat agram si ze
so that even better utilization of fast |local area networks wll be
seen by having the TCP/IP protocols being able to send | arge packets
over nmediunms with very large MiUs. This will hopefully, elininate
the network protocol as the bottleneck in data transfers while

wor kst ati ons and workstation file systemtechnol ogy advances even
nmore so, than it already has.

An area of concern when using the big wi ndow nechanismis the use of
machi ne resources. Wen running over a satellite and a packet is
dropped such that 2Z (where Z is the round trip delay) worth of data
i s unacknow edged, both ends of the connection need to be able to
buffer the data using machi ne nbufs (or whatever nechani smthe
machi ne uses), usually a valuable and scarce commodity. If the

W ndow si ze is not chosen properly, sone machines will crash when the
menory is all used up, or it will keep other parts of the system from
running. Thus, setting the window to sone fairly large arbitrary
nunber is not a good idea, especially on a general purpose machine
where many users log on at any tinme. Wat is currently being
engineered at NASA is the ability for certain prograns to use the

set sockopt feature or 4.3bsd asking to use big wi ndows such that the
average user nmay not have access to the large windows, thus linting
the use of big windows to applications that absolutely need them and
to protect a valuable systemresource.

Ref er ences

1] Jacobson, V., "Congestion Avoi dance and Control", SIGCOW 88,
Stanford, Ca., August 1988.

2] Jacobson, V., and R Braden, "TCP Extensions for Long-Del ay
Pat hs", LBL, USC/Information Sciences Institute, RFC 1072,
Cct ober 1988.

3] Cheriton, D., "VMIP. Versatile Message Transaction Protocol", RFC
1045, Stanford University, February 1988.

4] dark, D., M Lanbert, and L. Zhang, "NETBLT: A Bulk Data
Transfer Protocol", RFC 998, MT, March 1987.

5] Fox, R, "Draft of Proposed Solution for High Delay Grcuit File
Transfer", GE/ NAS |Internal Docunent, March 1988.

6] Postel, J., "Transm ssion Control Protocol - DARPA Internet
Program Prot ocol Specification", RFC 793, DARPA, Septenber 1981.

[Page 11]

RFC 1106 TCP Big Wndow and Nak Options June 1989
[7] Leiner, B., "Critical |ssues in H gh Bandw dth Networking", RFC
1077, DARPA, Novenber 1989.
7. Appendi x
Bot h options have been inplenented and tested. Contained in this
section is sone performance gathered to support the use of these two

options. The satellite channel used was a 1.544 Miit link with a
580ms round trip delay. Al values are given as units of bytes.

TCP with Big Wndows, No Naks:

[-=--cmma - transfer rates---------------------- |
Wndow Size | no error | 10e-7 error rate | 10e-6 error rate |
Ceak | 94K | sk | 14Kk |
7k | 108K | sik | 15K |
g0k | 115k | a2k | 14K |
Cek | 115k | 3K | 1K
100k | 138K | 66k | 15k |
a2k | 126k | s3k | 17k
124K | 154k | sk | 14K
ek | 160k | 66k | 15k |
sk | 167k | sk | 14K |
- Fgwe1

Fox [Page 12]

RFC 1106 TCP Big Wndow and Nak Options June 1989

Aut

Fox

TCP with Big Wndows, and Naks:

[--------------- transfer rates---------------------- |
Wndow Size | no error | 10e-7 error rate | 10e-6 error rate |
Ceak | ek | B3k | 3K
72k | 104K | g7k | a9k |
Csok | 17k | o6k | 62k |
Ce2k | 124k | 119K | 39K |
100K | 140K | 124k | sk |
112k | 151K | 128k | 53k |
124k | 160K | 140K | K |
136K | 167K | 148K | 8K |
C1sek | 167K | 160K | 38K |
- Fgwe2

Wth a 10e-6 error rate, many naks as well as data packets were
dropped, causing the wild swing in transfer tinmes. Al so, please note
that the machines used are SA Iris 2500 Turbos with the 3.6 CS with
the new TCP enhancenents. The perfornmance associated with the Irises
are slower than a Sun 3/260, but due to sone source code restrictions
the Iris was used. Initial results on the Sun showed slightly higher
performance and | ess vari ance.

hor’s Address

Ri chard Fox

950 Li nden #208
Sunnyval e, Cal, 94086

EMail : rfox@ andem com

[Page 13]

