
Network Working Group Internet Engineering Task Force
Request for Comments: 1123 R. Braden, Editor
 October 1989

 Requirements for Internet Hosts -- Application and Support

Status of This Memo

 This RFC is an official specification for the Internet community. It
 incorporates by reference, amends, corrects, and supplements the
 primary protocol standards documents relating to hosts. Distribution
 of this document is unlimited.

Summary

 This RFC is one of a pair that defines and discusses the requirements
 for Internet host software. This RFC covers the application and
 support protocols; its companion RFC-1122 covers the communication
 protocol layers: link layer, IP layer, and transport layer.

 Table of Contents

 1. INTRODUCTION ... 5
 1.1 The Internet Architecture 6
 1.2 General Considerations 6
 1.2.1 Continuing Internet Evolution 6
 1.2.2 Robustness Principle 7
 1.2.3 Error Logging 8
 1.2.4 Configuration 8
 1.3 Reading this Document 10
 1.3.1 Organization 10
 1.3.2 Requirements 10
 1.3.3 Terminology 11
 1.4 Acknowledgments .. 12

 2. GENERAL ISSUES ... 13
 2.1 Host Names and Numbers 13
 2.2 Using Domain Name Service 13
 2.3 Applications on Multihomed hosts 14
 2.4 Type-of-Service .. 14
 2.5 GENERAL APPLICATION REQUIREMENTS SUMMARY 15

Internet Engineering Task Force [Page 1]

RFC1123 INTRODUCTION October 1989

 3. REMOTE LOGIN -- TELNET PROTOCOL 16
 3.1 INTRODUCTION ... 16
 3.2 PROTOCOL WALK-THROUGH 16
 3.2.1 Option Negotiation 16
 3.2.2 Telnet Go-Ahead Function 16
 3.2.3 Control Functions 17
 3.2.4 Telnet "Synch" Signal 18
 3.2.5 NVT Printer and Keyboard 19
 3.2.6 Telnet Command Structure 20
 3.2.7 Telnet Binary Option 20
 3.2.8 Telnet Terminal-Type Option 20
 3.3 SPECIFIC ISSUES .. 21
 3.3.1 Telnet End-of-Line Convention 21
 3.3.2 Data Entry Terminals 23
 3.3.3 Option Requirements 24
 3.3.4 Option Initiation 24
 3.3.5 Telnet Linemode Option 25
 3.4 TELNET/USER INTERFACE 25
 3.4.1 Character Set Transparency 25
 3.4.2 Telnet Commands 26
 3.4.3 TCP Connection Errors 26
 3.4.4 Non-Default Telnet Contact Port 26
 3.4.5 Flushing Output 26
 3.5. TELNET REQUIREMENTS SUMMARY 27

 4. FILE TRANSFER .. 29
 4.1 FILE TRANSFER PROTOCOL -- FTP 29
 4.1.1 INTRODUCTION 29
 4.1.2. PROTOCOL WALK-THROUGH 29
 4.1.2.1 LOCAL Type 29
 4.1.2.2 Telnet Format Control 30
 4.1.2.3 Page Structure 30
 4.1.2.4 Data Structure Transformations 30
 4.1.2.5 Data Connection Management 31
 4.1.2.6 PASV Command 31
 4.1.2.7 LIST and NLST Commands 31
 4.1.2.8 SITE Command 32
 4.1.2.9 STOU Command 32
 4.1.2.10 Telnet End-of-line Code 32
 4.1.2.11 FTP Replies 33
 4.1.2.12 Connections 34
 4.1.2.13 Minimum Implementation; RFC-959 Section 34
 4.1.3 SPECIFIC ISSUES 35
 4.1.3.1 Non-standard Command Verbs 35
 4.1.3.2 Idle Timeout 36
 4.1.3.3 Concurrency of Data and Control 36
 4.1.3.4 FTP Restart Mechanism 36
 4.1.4 FTP/USER INTERFACE 39

Internet Engineering Task Force [Page 2]

RFC1123 INTRODUCTION October 1989

 4.1.4.1 Pathname Specification 39
 4.1.4.2 "QUOTE" Command 40
 4.1.4.3 Displaying Replies to User 40
 4.1.4.4 Maintaining Synchronization 40
 4.1.5 FTP REQUIREMENTS SUMMARY 41
 4.2 TRIVIAL FILE TRANSFER PROTOCOL -- TFTP 44
 4.2.1 INTRODUCTION 44
 4.2.2 PROTOCOL WALK-THROUGH 44
 4.2.2.1 Transfer Modes 44
 4.2.2.2 UDP Header 44
 4.2.3 SPECIFIC ISSUES 44
 4.2.3.1 Sorcerer’s Apprentice Syndrome 44
 4.2.3.2 Timeout Algorithms 46
 4.2.3.3 Extensions 46
 4.2.3.4 Access Control 46
 4.2.3.5 Broadcast Request 46
 4.2.4 TFTP REQUIREMENTS SUMMARY 47

 5. ELECTRONIC MAIL -- SMTP and RFC-822 48
 5.1 INTRODUCTION ... 48
 5.2 PROTOCOL WALK-THROUGH 48
 5.2.1 The SMTP Model 48
 5.2.2 Canonicalization 49
 5.2.3 VRFY and EXPN Commands 50
 5.2.4 SEND, SOML, and SAML Commands 50
 5.2.5 HELO Command 50
 5.2.6 Mail Relay .. 51
 5.2.7 RCPT Command 52
 5.2.8 DATA Command 53
 5.2.9 Command Syntax 54
 5.2.10 SMTP Replies 54
 5.2.11 Transparency 55
 5.2.12 WKS Use in MX Processing 55
 5.2.13 RFC-822 Message Specification 55
 5.2.14 RFC-822 Date and Time Specification 55
 5.2.15 RFC-822 Syntax Change 56
 5.2.16 RFC-822 Local-part 56
 5.2.17 Domain Literals 57
 5.2.18 Common Address Formatting Errors 58
 5.2.19 Explicit Source Routes 58
 5.3 SPECIFIC ISSUES .. 59
 5.3.1 SMTP Queueing Strategies 59
 5.3.1.1 Sending Strategy 59
 5.3.1.2 Receiving strategy 61
 5.3.2 Timeouts in SMTP 61
 5.3.3 Reliable Mail Receipt 63
 5.3.4 Reliable Mail Transmission 63
 5.3.5 Domain Name Support 65

Internet Engineering Task Force [Page 3]

RFC1123 INTRODUCTION October 1989

 5.3.6 Mailing Lists and Aliases 65
 5.3.7 Mail Gatewaying 66
 5.3.8 Maximum Message Size 68
 5.4 SMTP REQUIREMENTS SUMMARY 69

 6. SUPPORT SERVICES .. 72
 6.1 DOMAIN NAME TRANSLATION 72
 6.1.1 INTRODUCTION 72
 6.1.2 PROTOCOL WALK-THROUGH 72
 6.1.2.1 Resource Records with Zero TTL 73
 6.1.2.2 QCLASS Values 73
 6.1.2.3 Unused Fields 73
 6.1.2.4 Compression 73
 6.1.2.5 Misusing Configuration Info 73
 6.1.3 SPECIFIC ISSUES 74
 6.1.3.1 Resolver Implementation 74
 6.1.3.2 Transport Protocols 75
 6.1.3.3 Efficient Resource Usage 77
 6.1.3.4 Multihomed Hosts 78
 6.1.3.5 Extensibility 79
 6.1.3.6 Status of RR Types 79
 6.1.3.7 Robustness 80
 6.1.3.8 Local Host Table 80
 6.1.4 DNS USER INTERFACE 81
 6.1.4.1 DNS Administration 81
 6.1.4.2 DNS User Interface 81
 6.1.4.3 Interface Abbreviation Facilities 82
 6.1.5 DOMAIN NAME SYSTEM REQUIREMENTS SUMMARY 84
 6.2 HOST INITIALIZATION 87
 6.2.1 INTRODUCTION 87
 6.2.2 REQUIREMENTS 87
 6.2.2.1 Dynamic Configuration 87
 6.2.2.2 Loading Phase 89
 6.3 REMOTE MANAGEMENT 90
 6.3.1 INTRODUCTION 90
 6.3.2 PROTOCOL WALK-THROUGH 90
 6.3.3 MANAGEMENT REQUIREMENTS SUMMARY 92

 7. REFERENCES ... 93

Internet Engineering Task Force [Page 4]

RFC1123 INTRODUCTION October 1989

1. INTRODUCTION

 This document is one of a pair that defines and discusses the
 requirements for host system implementations of the Internet protocol
 suite. This RFC covers the applications layer and support protocols.
 Its companion RFC, "Requirements for Internet Hosts -- Communications
 Layers" [INTRO:1] covers the lower layer protocols: transport layer,
 IP layer, and link layer.

 These documents are intended to provide guidance for vendors,
 implementors, and users of Internet communication software. They
 represent the consensus of a large body of technical experience and
 wisdom, contributed by members of the Internet research and vendor
 communities.

 This RFC enumerates standard protocols that a host connected to the
 Internet must use, and it incorporates by reference the RFCs and
 other documents describing the current specifications for these
 protocols. It corrects errors in the referenced documents and adds
 additional discussion and guidance for an implementor.

 For each protocol, this document also contains an explicit set of
 requirements, recommendations, and options. The reader must
 understand that the list of requirements in this document is
 incomplete by itself; the complete set of requirements for an
 Internet host is primarily defined in the standard protocol
 specification documents, with the corrections, amendments, and
 supplements contained in this RFC.

 A good-faith implementation of the protocols that was produced after
 careful reading of the RFC’s and with some interaction with the
 Internet technical community, and that followed good communications
 software engineering practices, should differ from the requirements
 of this document in only minor ways. Thus, in many cases, the
 "requirements" in this RFC are already stated or implied in the
 standard protocol documents, so that their inclusion here is, in a
 sense, redundant. However, they were included because some past
 implementation has made the wrong choice, causing problems of
 interoperability, performance, and/or robustness.

 This document includes discussion and explanation of many of the
 requirements and recommendations. A simple list of requirements
 would be dangerous, because:

 o Some required features are more important than others, and some
 features are optional.

 o There may be valid reasons why particular vendor products that

Internet Engineering Task Force [Page 5]

RFC1123 INTRODUCTION October 1989

 are designed for restricted contexts might choose to use
 different specifications.

 However, the specifications of this document must be followed to meet
 the general goal of arbitrary host interoperation across the
 diversity and complexity of the Internet system. Although most
 current implementations fail to meet these requirements in various
 ways, some minor and some major, this specification is the ideal
 towards which we need to move.

 These requirements are based on the current level of Internet
 architecture. This document will be updated as required to provide
 additional clarifications or to include additional information in
 those areas in which specifications are still evolving.

 This introductory section begins with general advice to host software
 vendors, and then gives some guidance on reading the rest of the
 document. Section 2 contains general requirements that may be
 applicable to all application and support protocols. Sections 3, 4,
 and 5 contain the requirements on protocols for the three major
 applications: Telnet, file transfer, and electronic mail,
 respectively. Section 6 covers the support applications: the domain
 name system, system initialization, and management. Finally, all
 references will be found in Section 7.

 1.1 The Internet Architecture

 For a brief introduction to the Internet architecture from a host
 viewpoint, see Section 1.1 of [INTRO:1]. That section also
 contains recommended references for general background on the
 Internet architecture.

 1.2 General Considerations

 There are two important lessons that vendors of Internet host
 software have learned and which a new vendor should consider
 seriously.

 1.2.1 Continuing Internet Evolution

 The enormous growth of the Internet has revealed problems of
 management and scaling in a large datagram-based packet
 communication system. These problems are being addressed, and
 as a result there will be continuing evolution of the
 specifications described in this document. These changes will
 be carefully planned and controlled, since there is extensive
 participation in this planning by the vendors and by the
 organizations responsible for operations of the networks.

Internet Engineering Task Force [Page 6]

RFC1123 INTRODUCTION October 1989

 Development, evolution, and revision are characteristic of
 computer network protocols today, and this situation will
 persist for some years. A vendor who develops computer
 communication software for the Internet protocol suite (or any
 other protocol suite!) and then fails to maintain and update
 that software for changing specifications is going to leave a
 trail of unhappy customers. The Internet is a large
 communication network, and the users are in constant contact
 through it. Experience has shown that knowledge of
 deficiencies in vendor software propagates quickly through the
 Internet technical community.

 1.2.2 Robustness Principle

 At every layer of the protocols, there is a general rule whose
 application can lead to enormous benefits in robustness and
 interoperability:

 "Be liberal in what you accept, and
 conservative in what you send"

 Software should be written to deal with every conceivable
 error, no matter how unlikely; sooner or later a packet will
 come in with that particular combination of errors and
 attributes, and unless the software is prepared, chaos can
 ensue. In general, it is best to assume that the network is
 filled with malevolent entities that will send in packets
 designed to have the worst possible effect. This assumption
 will lead to suitable protective design, although the most
 serious problems in the Internet have been caused by
 unenvisaged mechanisms triggered by low-probability events;
 mere human malice would never have taken so devious a course!

 Adaptability to change must be designed into all levels of
 Internet host software. As a simple example, consider a
 protocol specification that contains an enumeration of values
 for a particular header field -- e.g., a type field, a port
 number, or an error code; this enumeration must be assumed to
 be incomplete. Thus, if a protocol specification defines four
 possible error codes, the software must not break when a fifth
 code shows up. An undefined code might be logged (see below),
 but it must not cause a failure.

 The second part of the principle is almost as important:
 software on other hosts may contain deficiencies that make it
 unwise to exploit legal but obscure protocol features. It is
 unwise to stray far from the obvious and simple, lest untoward
 effects result elsewhere. A corollary of this is "watch out

Internet Engineering Task Force [Page 7]

RFC1123 INTRODUCTION October 1989

 for misbehaving hosts"; host software should be prepared, not
 just to survive other misbehaving hosts, but also to cooperate
 to limit the amount of disruption such hosts can cause to the
 shared communication facility.

 1.2.3 Error Logging

 The Internet includes a great variety of host and gateway
 systems, each implementing many protocols and protocol layers,
 and some of these contain bugs and mis-features in their
 Internet protocol software. As a result of complexity,
 diversity, and distribution of function, the diagnosis of user
 problems is often very difficult.

 Problem diagnosis will be aided if host implementations include
 a carefully designed facility for logging erroneous or
 "strange" protocol events. It is important to include as much
 diagnostic information as possible when an error is logged. In
 particular, it is often useful to record the header(s) of a
 packet that caused an error. However, care must be taken to
 ensure that error logging does not consume prohibitive amounts
 of resources or otherwise interfere with the operation of the
 host.

 There is a tendency for abnormal but harmless protocol events
 to overflow error logging files; this can be avoided by using a
 "circular" log, or by enabling logging only while diagnosing a
 known failure. It may be useful to filter and count duplicate
 successive messages. One strategy that seems to work well is:
 (1) always count abnormalities and make such counts accessible
 through the management protocol (see Section 6.3); and (2)
 allow the logging of a great variety of events to be
 selectively enabled. For example, it might useful to be able
 to "log everything" or to "log everything for host X".

 Note that different managements may have differing policies
 about the amount of error logging that they want normally
 enabled in a host. Some will say, "if it doesn’t hurt me, I
 don’t want to know about it", while others will want to take a
 more watchful and aggressive attitude about detecting and
 removing protocol abnormalities.

 1.2.4 Configuration

 It would be ideal if a host implementation of the Internet
 protocol suite could be entirely self-configuring. This would
 allow the whole suite to be implemented in ROM or cast into
 silicon, it would simplify diskless workstations, and it would

Internet Engineering Task Force [Page 8]

RFC1123 INTRODUCTION October 1989

 be an immense boon to harried LAN administrators as well as
 system vendors. We have not reached this ideal; in fact, we
 are not even close.

 At many points in this document, you will find a requirement
 that a parameter be a configurable option. There are several
 different reasons behind such requirements. In a few cases,
 there is current uncertainty or disagreement about the best
 value, and it may be necessary to update the recommended value
 in the future. In other cases, the value really depends on
 external factors -- e.g., the size of the host and the
 distribution of its communication load, or the speeds and
 topology of nearby networks -- and self-tuning algorithms are
 unavailable and may be insufficient. In some cases,
 configurability is needed because of administrative
 requirements.

 Finally, some configuration options are required to communicate
 with obsolete or incorrect implementations of the protocols,
 distributed without sources, that unfortunately persist in many
 parts of the Internet. To make correct systems coexist with
 these faulty systems, administrators often have to "mis-
 configure" the correct systems. This problem will correct
 itself gradually as the faulty systems are retired, but it
 cannot be ignored by vendors.

 When we say that a parameter must be configurable, we do not
 intend to require that its value be explicitly read from a
 configuration file at every boot time. We recommend that
 implementors set up a default for each parameter, so a
 configuration file is only necessary to override those defaults
 that are inappropriate in a particular installation. Thus, the
 configurability requirement is an assurance that it will be
 POSSIBLE to override the default when necessary, even in a
 binary-only or ROM-based product.

 This document requires a particular value for such defaults in
 some cases. The choice of default is a sensitive issue when
 the configuration item controls the accommodation to existing
 faulty systems. If the Internet is to converge successfully to
 complete interoperability, the default values built into
 implementations must implement the official protocol, not
 "mis-configurations" to accommodate faulty implementations.
 Although marketing considerations have led some vendors to
 choose mis-configuration defaults, we urge vendors to choose
 defaults that will conform to the standard.

 Finally, we note that a vendor needs to provide adequate

Internet Engineering Task Force [Page 9]

RFC1123 INTRODUCTION October 1989

 documentation on all configuration parameters, their limits and
 effects.

 1.3 Reading this Document

 1.3.1 Organization

 In general, each major section is organized into the following
 subsections:

 (1) Introduction

 (2) Protocol Walk-Through -- considers the protocol
 specification documents section-by-section, correcting
 errors, stating requirements that may be ambiguous or
 ill-defined, and providing further clarification or
 explanation.

 (3) Specific Issues -- discusses protocol design and
 implementation issues that were not included in the walk-
 through.

 (4) Interfaces -- discusses the service interface to the next
 higher layer.

 (5) Summary -- contains a summary of the requirements of the
 section.

 Under many of the individual topics in this document, there is
 parenthetical material labeled "DISCUSSION" or
 "IMPLEMENTATION". This material is intended to give
 clarification and explanation of the preceding requirements
 text. It also includes some suggestions on possible future
 directions or developments. The implementation material
 contains suggested approaches that an implementor may want to
 consider.

 The summary sections are intended to be guides and indexes to
 the text, but are necessarily cryptic and incomplete. The
 summaries should never be used or referenced separately from
 the complete RFC.

 1.3.2 Requirements

 In this document, the words that are used to define the
 significance of each particular requirement are capitalized.
 These words are:

Internet Engineering Task Force [Page 10]

RFC1123 INTRODUCTION October 1989

 * "MUST"

 This word or the adjective "REQUIRED" means that the item
 is an absolute requirement of the specification.

 * "SHOULD"

 This word or the adjective "RECOMMENDED" means that there
 may exist valid reasons in particular circumstances to
 ignore this item, but the full implications should be
 understood and the case carefully weighed before choosing
 a different course.

 * "MAY"

 This word or the adjective "OPTIONAL" means that this item
 is truly optional. One vendor may choose to include the
 item because a particular marketplace requires it or
 because it enhances the product, for example; another
 vendor may omit the same item.

 An implementation is not compliant if it fails to satisfy one
 or more of the MUST requirements for the protocols it
 implements. An implementation that satisfies all the MUST and
 all the SHOULD requirements for its protocols is said to be
 "unconditionally compliant"; one that satisfies all the MUST
 requirements but not all the SHOULD requirements for its
 protocols is said to be "conditionally compliant".

 1.3.3 Terminology

 This document uses the following technical terms:

 Segment
 A segment is the unit of end-to-end transmission in the
 TCP protocol. A segment consists of a TCP header followed
 by application data. A segment is transmitted by
 encapsulation in an IP datagram.

 Message
 This term is used by some application layer protocols
 (particularly SMTP) for an application data unit.

 Datagram
 A [UDP] datagram is the unit of end-to-end transmission in
 the UDP protocol.

Internet Engineering Task Force [Page 11]

RFC1123 INTRODUCTION October 1989

 Multihomed
 A host is said to be multihomed if it has multiple IP
 addresses to connected networks.

 1.4 Acknowledgments

 This document incorporates contributions and comments from a large
 group of Internet protocol experts, including representatives of
 university and research labs, vendors, and government agencies.
 It was assembled primarily by the Host Requirements Working Group
 of the Internet Engineering Task Force (IETF).

 The Editor would especially like to acknowledge the tireless
 dedication of the following people, who attended many long
 meetings and generated 3 million bytes of electronic mail over the
 past 18 months in pursuit of this document: Philip Almquist, Dave
 Borman (Cray Research), Noel Chiappa, Dave Crocker (DEC), Steve
 Deering (Stanford), Mike Karels (Berkeley), Phil Karn (Bellcore),
 John Lekashman (NASA), Charles Lynn (BBN), Keith McCloghrie (TWG),
 Paul Mockapetris (ISI), Thomas Narten (Purdue), Craig Partridge
 (BBN), Drew Perkins (CMU), and James Van Bokkelen (FTP Software).

 In addition, the following people made major contributions to the
 effort: Bill Barns (Mitre), Steve Bellovin (AT&T), Mike Brescia
 (BBN), Ed Cain (DCA), Annette DeSchon (ISI), Martin Gross (DCA),
 Phill Gross (NRI), Charles Hedrick (Rutgers), Van Jacobson (LBL),
 John Klensin (MIT), Mark Lottor (SRI), Milo Medin (NASA), Bill
 Melohn (Sun Microsystems), Greg Minshall (Kinetics), Jeff Mogul
 (DEC), John Mullen (CMC), Jon Postel (ISI), John Romkey (Epilogue
 Technology), and Mike StJohns (DCA). The following also made
 significant contributions to particular areas: Eric Allman
 (Berkeley), Rob Austein (MIT), Art Berggreen (ACC), Keith Bostic
 (Berkeley), Vint Cerf (NRI), Wayne Hathaway (NASA), Matt Korn
 (IBM), Erik Naggum (Naggum Software, Norway), Robert Ullmann
 (Prime Computer), David Waitzman (BBN), Frank Wancho (USA), Arun
 Welch (Ohio State), Bill Westfield (Cisco), and Rayan Zachariassen
 (Toronto).

 We are grateful to all, including any contributors who may have
 been inadvertently omitted from this list.

Internet Engineering Task Force [Page 12]

RFC1123 APPLICATIONS LAYER -- GENERAL October 1989

2. GENERAL ISSUES

 This section contains general requirements that may be applicable to
 all application-layer protocols.

 2.1 Host Names and Numbers

 The syntax of a legal Internet host name was specified in RFC-952
 [DNS:4]. One aspect of host name syntax is hereby changed: the
 restriction on the first character is relaxed to allow either a
 letter or a digit. Host software MUST support this more liberal
 syntax.

 Host software MUST handle host names of up to 63 characters and
 SHOULD handle host names of up to 255 characters.

 Whenever a user inputs the identity of an Internet host, it SHOULD
 be possible to enter either (1) a host domain name or (2) an IP
 address in dotted-decimal ("#.#.#.#") form. The host SHOULD check
 the string syntactically for a dotted-decimal number before
 looking it up in the Domain Name System.

 DISCUSSION:
 This last requirement is not intended to specify the complete
 syntactic form for entering a dotted-decimal host number;
 that is considered to be a user-interface issue. For
 example, a dotted-decimal number must be enclosed within
 "[]" brackets for SMTP mail (see Section 5.2.17). This
 notation could be made universal within a host system,
 simplifying the syntactic checking for a dotted-decimal
 number.

 If a dotted-decimal number can be entered without such
 identifying delimiters, then a full syntactic check must be
 made, because a segment of a host domain name is now allowed
 to begin with a digit and could legally be entirely numeric
 (see Section 6.1.2.4). However, a valid host name can never
 have the dotted-decimal form #.#.#.#, since at least the
 highest-level component label will be alphabetic.

 2.2 Using Domain Name Service

 Host domain names MUST be translated to IP addresses as described
 in Section 6.1.

 Applications using domain name services MUST be able to cope with
 soft error conditions. Applications MUST wait a reasonable
 interval between successive retries due to a soft error, and MUST

Internet Engineering Task Force [Page 13]

RFC1123 APPLICATIONS LAYER -- GENERAL October 1989

 allow for the possibility that network problems may deny service
 for hours or even days.

 An application SHOULD NOT rely on the ability to locate a WKS
 record containing an accurate listing of all services at a
 particular host address, since the WKS RR type is not often used
 by Internet sites. To confirm that a service is present, simply
 attempt to use it.

 2.3 Applications on Multihomed hosts

 When the remote host is multihomed, the name-to-address
 translation will return a list of alternative IP addresses. As
 specified in Section 6.1.3.4, this list should be in order of
 decreasing preference. Application protocol implementations
 SHOULD be prepared to try multiple addresses from the list until
 success is obtained. More specific requirements for SMTP are
 given in Section 5.3.4.

 When the local host is multihomed, a UDP-based request/response
 application SHOULD send the response with an IP source address
 that is the same as the specific destination address of the UDP
 request datagram. The "specific destination address" is defined
 in the "IP Addressing" section of the companion RFC [INTRO:1].

 Similarly, a server application that opens multiple TCP
 connections to the same client SHOULD use the same local IP
 address for all.

 2.4 Type-of-Service

 Applications MUST select appropriate TOS values when they invoke
 transport layer services, and these values MUST be configurable.
 Note that a TOS value contains 5 bits, of which only the most-
 significant 3 bits are currently defined; the other two bits MUST
 be zero.

 DISCUSSION:
 As gateway algorithms are developed to implement Type-of-
 Service, the recommended values for various application
 protocols may change. In addition, it is likely that
 particular combinations of users and Internet paths will want
 non-standard TOS values. For these reasons, the TOS values
 must be configurable.

 See the latest version of the "Assigned Numbers" RFC
 [INTRO:5] for the recommended TOS values for the major
 application protocols.

Internet Engineering Task Force [Page 14]

RFC1123 APPLICATIONS LAYER -- GENERAL October 1989

 2.5 GENERAL APPLICATION REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
 | | | | | | |
User interfaces: | | | | | | |
 Allow host name to begin with digit |2.1 |x| | | | |
 Host names of up to 635 characters |2.1 |x| | | | |
 Host names of up to 255 characters |2.1 | |x| | | |
 Support dotted-decimal host numbers |2.1 | |x| | | |
 Check syntactically for dotted-dec first |2.1 | |x| | | |
 | | | | | | |
Map domain names per Section 6.1 |2.2 |x| | | | |
Cope with soft DNS errors |2.2 |x| | | | |
 Reasonable interval between retries |2.2 |x| | | | |
 Allow for long outages |2.2 |x| | | | |
Expect WKS records to be available |2.2 | | | |x| |
 | | | | | | |
Try multiple addr’s for remote multihomed host |2.3 | |x| | | |
UDP reply src addr is specific dest of request |2.3 | |x| | | |
Use same IP addr for related TCP connections |2.3 | |x| | | |
Specify appropriate TOS values |2.4 |x| | | | |
 TOS values configurable |2.4 |x| | | | |
 Unused TOS bits zero |2.4 |x| | | | |
 | | | | | | |
 | | | | | | |

Internet Engineering Task Force [Page 15]

RFC1123 REMOTE LOGIN -- TELNET October 1989

3. REMOTE LOGIN -- TELNET PROTOCOL

 3.1 INTRODUCTION

 Telnet is the standard Internet application protocol for remote
 login. It provides the encoding rules to link a user’s
 keyboard/display on a client ("user") system with a command
 interpreter on a remote server system. A subset of the Telnet
 protocol is also incorporated within other application protocols,
 e.g., FTP and SMTP.

 Telnet uses a single TCP connection, and its normal data stream
 ("Network Virtual Terminal" or "NVT" mode) is 7-bit ASCII with
 escape sequences to embed control functions. Telnet also allows
 the negotiation of many optional modes and functions.

 The primary Telnet specification is to be found in RFC-854
 [TELNET:1], while the options are defined in many other RFCs; see
 Section 7 for references.

 3.2 PROTOCOL WALK-THROUGH

 3.2.1 Option Negotiation: RFC-854, pp. 2-3

 Every Telnet implementation MUST include option negotiation and
 subnegotiation machinery [TELNET:2].

 A host MUST carefully follow the rules of RFC-854 to avoid
 option-negotiation loops. A host MUST refuse (i.e, reply
 WONT/DONT to a DO/WILL) an unsupported option. Option
 negotiation SHOULD continue to function (even if all requests
 are refused) throughout the lifetime of a Telnet connection.

 If all option negotiations fail, a Telnet implementation MUST
 default to, and support, an NVT.

 DISCUSSION:
 Even though more sophisticated "terminals" and supporting
 option negotiations are becoming the norm, all
 implementations must be prepared to support an NVT for any
 user-server communication.

 3.2.2 Telnet Go-Ahead Function: RFC-854, p. 5, and RFC-858

 On a host that never sends the Telnet command Go Ahead (GA),
 the Telnet Server MUST attempt to negotiate the Suppress Go
 Ahead option (i.e., send "WILL Suppress Go Ahead"). A User or
 Server Telnet MUST always accept negotiation of the Suppress Go

Internet Engineering Task Force [Page 16]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 Ahead option.

 When it is driving a full-duplex terminal for which GA has no
 meaning, a User Telnet implementation MAY ignore GA commands.

 DISCUSSION:
 Half-duplex ("locked-keyboard") line-at-a-time terminals
 for which the Go-Ahead mechanism was designed have largely
 disappeared from the scene. It turned out to be difficult
 to implement sending the Go-Ahead signal in many operating
 systems, even some systems that support native half-duplex
 terminals. The difficulty is typically that the Telnet
 server code does not have access to information about
 whether the user process is blocked awaiting input from
 the Telnet connection, i.e., it cannot reliably determine
 when to send a GA command. Therefore, most Telnet Server
 hosts do not send GA commands.

 The effect of the rules in this section is to allow either
 end of a Telnet connection to veto the use of GA commands.

 There is a class of half-duplex terminals that is still
 commercially important: "data entry terminals," which
 interact in a full-screen manner. However, supporting
 data entry terminals using the Telnet protocol does not
 require the Go Ahead signal; see Section 3.3.2.

 3.2.3 Control Functions: RFC-854, pp. 7-8

 The list of Telnet commands has been extended to include EOR
 (End-of-Record), with code 239 [TELNET:9].

 Both User and Server Telnets MAY support the control functions
 EOR, EC, EL, and Break, and MUST support AO, AYT, DM, IP, NOP,
 SB, and SE.

 A host MUST be able to receive and ignore any Telnet control
 functions that it does not support.

 DISCUSSION:
 Note that a Server Telnet is required to support the
 Telnet IP (Interrupt Process) function, even if the server
 host has an equivalent in-stream function (e.g., Control-C
 in many systems). The Telnet IP function may be stronger
 than an in-stream interrupt command, because of the out-
 of-band effect of TCP urgent data.

 The EOR control function may be used to delimit the

Internet Engineering Task Force [Page 17]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 stream. An important application is data entry terminal
 support (see Section 3.3.2). There was concern that since
 EOR had not been defined in RFC-854, a host that was not
 prepared to correctly ignore unknown Telnet commands might
 crash if it received an EOR. To protect such hosts, the
 End-of-Record option [TELNET:9] was introduced; however, a
 properly implemented Telnet program will not require this
 protection.

 3.2.4 Telnet "Synch" Signal: RFC-854, pp. 8-10

 When it receives "urgent" TCP data, a User or Server Telnet
 MUST discard all data except Telnet commands until the DM (and
 end of urgent) is reached.

 When it sends Telnet IP (Interrupt Process), a User Telnet
 SHOULD follow it by the Telnet "Synch" sequence, i.e., send as
 TCP urgent data the sequence "IAC IP IAC DM". The TCP urgent
 pointer points to the DM octet.

 When it receives a Telnet IP command, a Server Telnet MAY send
 a Telnet "Synch" sequence back to the user, to flush the output
 stream. The choice ought to be consistent with the way the
 server operating system behaves when a local user interrupts a
 process.

 When it receives a Telnet AO command, a Server Telnet MUST send
 a Telnet "Synch" sequence back to the user, to flush the output
 stream.

 A User Telnet SHOULD have the capability of flushing output
 when it sends a Telnet IP; see also Section 3.4.5.

 DISCUSSION:
 There are three possible ways for a User Telnet to flush
 the stream of server output data:

 (1) Send AO after IP.

 This will cause the server host to send a "flush-
 buffered-output" signal to its operating system.
 However, the AO may not take effect locally, i.e.,
 stop terminal output at the User Telnet end, until
 the Server Telnet has received and processed the AO
 and has sent back a "Synch".

 (2) Send DO TIMING-MARK [TELNET:7] after IP, and discard
 all output locally until a WILL/WONT TIMING-MARK is

Internet Engineering Task Force [Page 18]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 received from the Server Telnet.

 Since the DO TIMING-MARK will be processed after the
 IP at the server, the reply to it should be in the
 right place in the output data stream. However, the
 TIMING-MARK will not send a "flush buffered output"
 signal to the server operating system. Whether or
 not this is needed is dependent upon the server
 system.

 (3) Do both.

 The best method is not entirely clear, since it must
 accommodate a number of existing server hosts that do not
 follow the Telnet standards in various ways. The safest
 approach is probably to provide a user-controllable option
 to select (1), (2), or (3).

 3.2.5 NVT Printer and Keyboard: RFC-854, p. 11

 In NVT mode, a Telnet SHOULD NOT send characters with the
 high-order bit 1, and MUST NOT send it as a parity bit.
 Implementations that pass the high-order bit to applications
 SHOULD negotiate binary mode (see Section 3.2.6).

 DISCUSSION:
 Implementors should be aware that a strict reading of
 RFC-854 allows a client or server expecting NVT ASCII to
 ignore characters with the high-order bit set. In
 general, binary mode is expected to be used for
 transmission of an extended (beyond 7-bit) character set
 with Telnet.

 However, there exist applications that really need an 8-
 bit NVT mode, which is currently not defined, and these
 existing applications do set the high-order bit during
 part or all of the life of a Telnet connection. Note that
 binary mode is not the same as 8-bit NVT mode, since
 binary mode turns off end-of-line processing. For this
 reason, the requirements on the high-order bit are stated
 as SHOULD, not MUST.

 RFC-854 defines a minimal set of properties of a "network
 virtual terminal" or NVT; this is not meant to preclude
 additional features in a real terminal. A Telnet
 connection is fully transparent to all 7-bit ASCII
 characters, including arbitrary ASCII control characters.

Internet Engineering Task Force [Page 19]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 For example, a terminal might support full-screen commands
 coded as ASCII escape sequences; a Telnet implementation
 would pass these sequences as uninterpreted data. Thus,
 an NVT should not be conceived as a terminal type of a
 highly-restricted device.

 3.2.6 Telnet Command Structure: RFC-854, p. 13

 Since options may appear at any point in the data stream, a
 Telnet escape character (known as IAC, with the value 255) to
 be sent as data MUST be doubled.

 3.2.7 Telnet Binary Option: RFC-856

 When the Binary option has been successfully negotiated,
 arbitrary 8-bit characters are allowed. However, the data
 stream MUST still be scanned for IAC characters, any embedded
 Telnet commands MUST be obeyed, and data bytes equal to IAC
 MUST be doubled. Other character processing (e.g., replacing
 CR by CR NUL or by CR LF) MUST NOT be done. In particular,
 there is no end-of-line convention (see Section 3.3.1) in
 binary mode.

 DISCUSSION:
 The Binary option is normally negotiated in both
 directions, to change the Telnet connection from NVT mode
 to "binary mode".

 The sequence IAC EOR can be used to delimit blocks of data
 within a binary-mode Telnet stream.

 3.2.8 Telnet Terminal-Type Option: RFC-1091

 The Terminal-Type option MUST use the terminal type names
 officially defined in the Assigned Numbers RFC [INTRO:5], when
 they are available for the particular terminal. However, the
 receiver of a Terminal-Type option MUST accept any name.

 DISCUSSION:
 RFC-1091 [TELNET:10] updates an earlier version of the
 Terminal-Type option defined in RFC-930. The earlier
 version allowed a server host capable of supporting
 multiple terminal types to learn the type of a particular
 client’s terminal, assuming that each physical terminal
 had an intrinsic type. However, today a "terminal" is
 often really a terminal emulator program running in a PC,
 perhaps capable of emulating a range of terminal types.
 Therefore, RFC-1091 extends the specification to allow a

Internet Engineering Task Force [Page 20]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 more general terminal-type negotiation between User and
 Server Telnets.

 3.3 SPECIFIC ISSUES

 3.3.1 Telnet End-of-Line Convention

 The Telnet protocol defines the sequence CR LF to mean "end-
 of-line". For terminal input, this corresponds to a command-
 completion or "end-of-line" key being pressed on a user
 terminal; on an ASCII terminal, this is the CR key, but it may
 also be labelled "Return" or "Enter".

 When a Server Telnet receives the Telnet end-of-line sequence
 CR LF as input from a remote terminal, the effect MUST be the
 same as if the user had pressed the "end-of-line" key on a
 local terminal. On server hosts that use ASCII, in particular,
 receipt of the Telnet sequence CR LF must cause the same effect
 as a local user pressing the CR key on a local terminal. Thus,
 CR LF and CR NUL MUST have the same effect on an ASCII server
 host when received as input over a Telnet connection.

 A User Telnet MUST be able to send any of the forms: CR LF, CR
 NUL, and LF. A User Telnet on an ASCII host SHOULD have a
 user-controllable mode to send either CR LF or CR NUL when the
 user presses the "end-of-line" key, and CR LF SHOULD be the
 default.

 The Telnet end-of-line sequence CR LF MUST be used to send
 Telnet data that is not terminal-to-computer (e.g., for Server
 Telnet sending output, or the Telnet protocol incorporated
 another application protocol).

 DISCUSSION:
 To allow interoperability between arbitrary Telnet clients
 and servers, the Telnet protocol defined a standard
 representation for a line terminator. Since the ASCII
 character set includes no explicit end-of-line character,
 systems have chosen various representations, e.g., CR, LF,
 and the sequence CR LF. The Telnet protocol chose the CR
 LF sequence as the standard for network transmission.

 Unfortunately, the Telnet protocol specification in RFC-
 854 [TELNET:1] has turned out to be somewhat ambiguous on
 what character(s) should be sent from client to server for
 the "end-of-line" key. The result has been a massive and
 continuing interoperability headache, made worse by
 various faulty implementations of both User and Server

Internet Engineering Task Force [Page 21]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 Telnets.

 Although the Telnet protocol is based on a perfectly
 symmetric model, in a remote login session the role of the
 user at a terminal differs from the role of the server
 host. For example, RFC-854 defines the meaning of CR, LF,
 and CR LF as output from the server, but does not specify
 what the User Telnet should send when the user presses the
 "end-of-line" key on the terminal; this turns out to be
 the point at issue.

 When a user presses the "end-of-line" key, some User
 Telnet implementations send CR LF, while others send CR
 NUL (based on a different interpretation of the same
 sentence in RFC-854). These will be equivalent for a
 correctly-implemented ASCII server host, as discussed
 above. For other servers, a mode in the User Telnet is
 needed.

 The existence of User Telnets that send only CR NUL when
 CR is pressed creates a dilemma for non-ASCII hosts: they
 can either treat CR NUL as equivalent to CR LF in input,
 thus precluding the possibility of entering a "bare" CR,
 or else lose complete interworking.

 Suppose a user on host A uses Telnet to log into a server
 host B, and then execute B’s User Telnet program to log
 into server host C. It is desirable for the Server/User
 Telnet combination on B to be as transparent as possible,
 i.e., to appear as if A were connected directly to C. In
 particular, correct implementation will make B transparent
 to Telnet end-of-line sequences, except that CR LF may be
 translated to CR NUL or vice versa.

 IMPLEMENTATION:
 To understand Telnet end-of-line issues, one must have at
 least a general model of the relationship of Telnet to the
 local operating system. The Server Telnet process is
 typically coupled into the terminal driver software of the
 operating system as a pseudo-terminal. A Telnet end-of-
 line sequence received by the Server Telnet must have the
 same effect as pressing the end-of-line key on a real
 locally-connected terminal.

 Operating systems that support interactive character-at-
 a-time applications (e.g., editors) typically have two
 internal modes for their terminal I/O: a formatted mode,
 in which local conventions for end-of-line and other

Internet Engineering Task Force [Page 22]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 formatting rules have been applied to the data stream, and
 a "raw" mode, in which the application has direct access
 to every character as it was entered. A Server Telnet
 must be implemented in such a way that these modes have
 the same effect for remote as for local terminals. For
 example, suppose a CR LF or CR NUL is received by the
 Server Telnet on an ASCII host. In raw mode, a CR
 character is passed to the application; in formatted mode,
 the local system’s end-of-line convention is used.

 3.3.2 Data Entry Terminals

 DISCUSSION:
 In addition to the line-oriented and character-oriented
 ASCII terminals for which Telnet was designed, there are
 several families of video display terminals that are
 sometimes known as "data entry terminals" or DETs. The
 IBM 3270 family is a well-known example.

 Two Internet protocols have been designed to support
 generic DETs: SUPDUP [TELNET:16, TELNET:17], and the DET
 option [TELNET:18, TELNET:19]. The DET option drives a
 data entry terminal over a Telnet connection using (sub-)
 negotiation. SUPDUP is a completely separate terminal
 protocol, which can be entered from Telnet by negotiation.
 Although both SUPDUP and the DET option have been used
 successfully in particular environments, neither has
 gained general acceptance or wide implementation.

 A different approach to DET interaction has been developed
 for supporting the IBM 3270 family through Telnet,
 although the same approach would be applicable to any DET.
 The idea is to enter a "native DET" mode, in which the
 native DET input/output stream is sent as binary data.
 The Telnet EOR command is used to delimit logical records
 (e.g., "screens") within this binary stream.

 IMPLEMENTATION:
 The rules for entering and leaving native DET mode are as
 follows:

 o The Server uses the Terminal-Type option [TELNET:10]
 to learn that the client is a DET.

 o It is conventional, but not required, that both ends
 negotiate the EOR option [TELNET:9].

 o Both ends negotiate the Binary option [TELNET:3] to

Internet Engineering Task Force [Page 23]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 enter native DET mode.

 o When either end negotiates out of binary mode, the
 other end does too, and the mode then reverts to
 normal NVT.

 3.3.3 Option Requirements

 Every Telnet implementation MUST support the Binary option
 [TELNET:3] and the Suppress Go Ahead option [TELNET:5], and
 SHOULD support the Echo [TELNET:4], Status [TELNET:6], End-of-
 Record [TELNET:9], and Extended Options List [TELNET:8]
 options.

 A User or Server Telnet SHOULD support the Window Size Option
 [TELNET:12] if the local operating system provides the
 corresponding capability.

 DISCUSSION:
 Note that the End-of-Record option only signifies that a
 Telnet can receive a Telnet EOR without crashing;
 therefore, every Telnet ought to be willing to accept
 negotiation of the End-of-Record option. See also the
 discussion in Section 3.2.3.

 3.3.4 Option Initiation

 When the Telnet protocol is used in a client/server situation,
 the server SHOULD initiate negotiation of the terminal
 interaction mode it expects.

 DISCUSSION:
 The Telnet protocol was defined to be perfectly
 symmetrical, but its application is generally asymmetric.
 Remote login has been known to fail because NEITHER side
 initiated negotiation of the required non-default terminal
 modes. It is generally the server that determines the
 preferred mode, so the server needs to initiate the
 negotiation; since the negotiation is symmetric, the user
 can also initiate it.

 A client (User Telnet) SHOULD provide a means for users to
 enable and disable the initiation of option negotiation.

 DISCUSSION:
 A user sometimes needs to connect to an application
 service (e.g., FTP or SMTP) that uses Telnet for its

Internet Engineering Task Force [Page 24]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 control stream but does not support Telnet options. User
 Telnet may be used for this purpose if initiation of
 option negotiation is disabled.

 3.3.5 Telnet Linemode Option

 DISCUSSION:
 An important new Telnet option, LINEMODE [TELNET:12], has
 been proposed. The LINEMODE option provides a standard
 way for a User Telnet and a Server Telnet to agree that
 the client rather than the server will perform terminal
 character processing. When the client has prepared a
 complete line of text, it will send it to the server in
 (usually) one TCP packet. This option will greatly
 decrease the packet cost of Telnet sessions and will also
 give much better user response over congested or long-
 delay networks.

 The LINEMODE option allows dynamic switching between local
 and remote character processing. For example, the Telnet
 connection will automatically negotiate into single-
 character mode while a full screen editor is running, and
 then return to linemode when the editor is finished.

 We expect that when this RFC is released, hosts should
 implement the client side of this option, and may
 implement the server side of this option. To properly
 implement the server side, the server needs to be able to
 tell the local system not to do any input character
 processing, but to remember its current terminal state and
 notify the Server Telnet process whenever the state
 changes. This will allow password echoing and full screen
 editors to be handled properly, for example.

 3.4 TELNET/USER INTERFACE

 3.4.1 Character Set Transparency

 User Telnet implementations SHOULD be able to send or receive
 any 7-bit ASCII character. Where possible, any special
 character interpretations by the user host’s operating system
 SHOULD be bypassed so that these characters can conveniently be
 sent and received on the connection.

 Some character value MUST be reserved as "escape to command
 mode"; conventionally, doubling this character allows it to be
 entered as data. The specific character used SHOULD be user
 selectable.

Internet Engineering Task Force [Page 25]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 On binary-mode connections, a User Telnet program MAY provide
 an escape mechanism for entering arbitrary 8-bit values, if the
 host operating system doesn’t allow them to be entered directly
 from the keyboard.

 IMPLEMENTATION:
 The transparency issues are less pressing on servers, but
 implementors should take care in dealing with issues like:
 masking off parity bits (sent by an older, non-conforming
 client) before they reach programs that expect only NVT
 ASCII, and properly handling programs that request 8-bit
 data streams.

 3.4.2 Telnet Commands

 A User Telnet program MUST provide a user the capability of
 entering any of the Telnet control functions IP, AO, or AYT,
 and SHOULD provide the capability of entering EC, EL, and
 Break.

 3.4.3 TCP Connection Errors

 A User Telnet program SHOULD report to the user any TCP errors
 that are reported by the transport layer (see "TCP/Application
 Layer Interface" section in [INTRO:1]).

 3.4.4 Non-Default Telnet Contact Port

 A User Telnet program SHOULD allow the user to optionally
 specify a non-standard contact port number at the Server Telnet
 host.

 3.4.5 Flushing Output

 A User Telnet program SHOULD provide the user the ability to
 specify whether or not output should be flushed when an IP is
 sent; see Section 3.2.4.

 For any output flushing scheme that causes the User Telnet to
 flush output locally until a Telnet signal is received from the
 Server, there SHOULD be a way for the user to manually restore
 normal output, in case the Server fails to send the expected
 signal.

Internet Engineering Task Force [Page 26]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 3.5. TELNET REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
 | | | | | | |
Option Negotiation |3.2.1 |x| | | | |
 Avoid negotiation loops |3.2.1 |x| | | | |
 Refuse unsupported options |3.2.1 |x| | | | |
 Negotiation OK anytime on connection |3.2.1 | |x| | | |
 Default to NVT |3.2.1 |x| | | | |
 Send official name in Term-Type option |3.2.8 |x| | | | |
 Accept any name in Term-Type option |3.2.8 |x| | | | |
 Implement Binary, Suppress-GA options |3.3.3 |x| | | | |
 Echo, Status, EOL, Ext-Opt-List options |3.3.3 | |x| | | |
 Implement Window-Size option if appropriate |3.3.3 | |x| | | |
 Server initiate mode negotiations |3.3.4 | |x| | | |
 User can enable/disable init negotiations |3.3.4 | |x| | | |
 | | | | | | |
Go-Aheads | | | | | | |
 Non-GA server negotiate SUPPRESS-GA option |3.2.2 |x| | | | |
 User or Server accept SUPPRESS-GA option |3.2.2 |x| | | | |
 User Telnet ignore GA’s |3.2.2 | | |x| | |
 | | | | | | |
Control Functions | | | | | | |
 Support SE NOP DM IP AO AYT SB |3.2.3 |x| | | | |
 Support EOR EC EL Break |3.2.3 | | |x| | |
 Ignore unsupported control functions |3.2.3 |x| | | | |
 User, Server discard urgent data up to DM |3.2.4 |x| | | | |
 User Telnet send "Synch" after IP, AO, AYT |3.2.4 | |x| | | |
 Server Telnet reply Synch to IP |3.2.4 | | |x| | |
 Server Telnet reply Synch to AO |3.2.4 |x| | | | |
 User Telnet can flush output when send IP |3.2.4 | |x| | | |
 | | | | | | |
Encoding | | | | | | |
 Send high-order bit in NVT mode |3.2.5 | | | |x| |
 Send high-order bit as parity bit |3.2.5 | | | | |x|
 Negot. BINARY if pass high-ord. bit to applic |3.2.5 | |x| | | |
 Always double IAC data byte |3.2.6 |x| | | | |

Internet Engineering Task Force [Page 27]

RFC1123 REMOTE LOGIN -- TELNET October 1989

 Double IAC data byte in binary mode |3.2.7 |x| | | | |
 Obey Telnet cmds in binary mode |3.2.7 |x| | | | |
 End-of-line, CR NUL in binary mode |3.2.7 | | | | |x|
 | | | | | | |
End-of-Line | | | | | | |
 EOL at Server same as local end-of-line |3.3.1 |x| | | | |
 ASCII Server accept CR LF or CR NUL for EOL |3.3.1 |x| | | | |
 User Telnet able to send CR LF, CR NUL, or LF |3.3.1 |x| | | | |
 ASCII user able to select CR LF/CR NUL |3.3.1 | |x| | | |
 User Telnet default mode is CR LF |3.3.1 | |x| | | |
 Non-interactive uses CR LF for EOL |3.3.1 |x| | | | |
 | | | | | | |
User Telnet interface | | | | | | |
 Input & output all 7-bit characters |3.4.1 | |x| | | |
 Bypass local op sys interpretation |3.4.1 | |x| | | |
 Escape character |3.4.1 |x| | | | |
 User-settable escape character |3.4.1 | |x| | | |
 Escape to enter 8-bit values |3.4.1 | | |x| | |
 Can input IP, AO, AYT |3.4.2 |x| | | | |
 Can input EC, EL, Break |3.4.2 | |x| | | |
 Report TCP connection errors to user |3.4.3 | |x| | | |
 Optional non-default contact port |3.4.4 | |x| | | |
 Can spec: output flushed when IP sent |3.4.5 | |x| | | |
 Can manually restore output mode |3.4.5 | |x| | | |
 | | | | | | |

Internet Engineering Task Force [Page 28]

RFC1123 FILE TRANSFER -- FTP October 1989

4. FILE TRANSFER

 4.1 FILE TRANSFER PROTOCOL -- FTP

 4.1.1 INTRODUCTION

 The File Transfer Protocol FTP is the primary Internet standard
 for file transfer. The current specification is contained in
 RFC-959 [FTP:1].

 FTP uses separate simultaneous TCP connections for control and
 for data transfer. The FTP protocol includes many features,
 some of which are not commonly implemented. However, for every
 feature in FTP, there exists at least one implementation. The
 minimum implementation defined in RFC-959 was too small, so a
 somewhat larger minimum implementation is defined here.

 Internet users have been unnecessarily burdened for years by
 deficient FTP implementations. Protocol implementors have
 suffered from the erroneous opinion that implementing FTP ought
 to be a small and trivial task. This is wrong, because FTP has
 a user interface, because it has to deal (correctly) with the
 whole variety of communication and operating system errors that
 may occur, and because it has to handle the great diversity of
 real file systems in the world.

 4.1.2. PROTOCOL WALK-THROUGH

 4.1.2.1 LOCAL Type: RFC-959 Section 3.1.1.4

 An FTP program MUST support TYPE I ("IMAGE" or binary type)
 as well as TYPE L 8 ("LOCAL" type with logical byte size 8).
 A machine whose memory is organized into m-bit words, where
 m is not a multiple of 8, MAY also support TYPE L m.

 DISCUSSION:
 The command "TYPE L 8" is often required to transfer
 binary data between a machine whose memory is organized
 into (e.g.) 36-bit words and a machine with an 8-bit
 byte organization. For an 8-bit byte machine, TYPE L 8
 is equivalent to IMAGE.

 "TYPE L m" is sometimes specified to the FTP programs
 on two m-bit word machines to ensure the correct
 transfer of a native-mode binary file from one machine
 to the other. However, this command should have the
 same effect on these machines as "TYPE I".

Internet Engineering Task Force [Page 29]

RFC1123 FILE TRANSFER -- FTP October 1989

 4.1.2.2 Telnet Format Control: RFC-959 Section 3.1.1.5.2

 A host that makes no distinction between TYPE N and TYPE T
 SHOULD implement TYPE T to be identical to TYPE N.

 DISCUSSION:
 This provision should ease interoperation with hosts
 that do make this distinction.

 Many hosts represent text files internally as strings
 of ASCII characters, using the embedded ASCII format
 effector characters (LF, BS, FF, ...) to control the
 format when a file is printed. For such hosts, there
 is no distinction between "print" files and other
 files. However, systems that use record structured
 files typically need a special format for printable
 files (e.g., ASA carriage control). For the latter
 hosts, FTP allows a choice of TYPE N or TYPE T.

 4.1.2.3 Page Structure: RFC-959 Section 3.1.2.3 and Appendix I

 Implementation of page structure is NOT RECOMMENDED in
 general. However, if a host system does need to implement
 FTP for "random access" or "holey" files, it MUST use the
 defined page structure format rather than define a new
 private FTP format.

 4.1.2.4 Data Structure Transformations: RFC-959 Section 3.1.2

 An FTP transformation between record-structure and file-
 structure SHOULD be invertible, to the extent possible while
 making the result useful on the target host.

 DISCUSSION:
 RFC-959 required strict invertibility between record-
 structure and file-structure, but in practice,
 efficiency and convenience often preclude it.
 Therefore, the requirement is being relaxed. There are
 two different objectives for transferring a file:
 processing it on the target host, or just storage. For
 storage, strict invertibility is important. For
 processing, the file created on the target host needs
 to be in the format expected by application programs on
 that host.

 As an example of the conflict, imagine a record-
 oriented operating system that requires some data files
 to have exactly 80 bytes in each record. While STORing

Internet Engineering Task Force [Page 30]

RFC1123 FILE TRANSFER -- FTP October 1989

 a file on such a host, an FTP Server must be able to
 pad each line or record to 80 bytes; a later retrieval
 of such a file cannot be strictly invertible.

 4.1.2.5 Data Connection Management: RFC-959 Section 3.3

 A User-FTP that uses STREAM mode SHOULD send a PORT command
 to assign a non-default data port before each transfer
 command is issued.

 DISCUSSION:
 This is required because of the long delay after a TCP
 connection is closed until its socket pair can be
 reused, to allow multiple transfers during a single FTP
 session. Sending a port command can avoided if a
 transfer mode other than stream is used, by leaving the
 data transfer connection open between transfers.

 4.1.2.6 PASV Command: RFC-959 Section 4.1.2

 A server-FTP MUST implement the PASV command.

 If multiple third-party transfers are to be executed during
 the same session, a new PASV command MUST be issued before
 each transfer command, to obtain a unique port pair.

 IMPLEMENTATION:
 The format of the 227 reply to a PASV command is not
 well standardized. In particular, an FTP client cannot
 assume that the parentheses shown on page 40 of RFC-959
 will be present (and in fact, Figure 3 on page 43 omits
 them). Therefore, a User-FTP program that interprets
 the PASV reply must scan the reply for the first digit
 of the host and port numbers.

 Note that the host number h1,h2,h3,h4 is the IP address
 of the server host that is sending the reply, and that
 p1,p2 is a non-default data transfer port that PASV has
 assigned.

 4.1.2.7 LIST and NLST Commands: RFC-959 Section 4.1.3

 The data returned by an NLST command MUST contain only a
 simple list of legal pathnames, such that the server can use
 them directly as the arguments of subsequent data transfer
 commands for the individual files.

 The data returned by a LIST or NLST command SHOULD use an

Internet Engineering Task Force [Page 31]

RFC1123 FILE TRANSFER -- FTP October 1989

 implied TYPE AN, unless the current type is EBCDIC, in which
 case an implied TYPE EN SHOULD be used.

 DISCUSSION:
 Many FTP clients support macro-commands that will get
 or put files matching a wildcard specification, using
 NLST to obtain a list of pathnames. The expansion of
 "multiple-put" is local to the client, but "multiple-
 get" requires cooperation by the server.

 The implied type for LIST and NLST is designed to
 provide compatibility with existing User-FTPs, and in
 particular with multiple-get commands.

 4.1.2.8 SITE Command: RFC-959 Section 4.1.3

 A Server-FTP SHOULD use the SITE command for non-standard
 features, rather than invent new private commands or
 unstandardized extensions to existing commands.

 4.1.2.9 STOU Command: RFC-959 Section 4.1.3

 The STOU command stores into a uniquely named file. When it
 receives an STOU command, a Server-FTP MUST return the
 actual file name in the "125 Transfer Starting" or the "150
 Opening Data Connection" message that precedes the transfer
 (the 250 reply code mentioned in RFC-959 is incorrect). The
 exact format of these messages is hereby defined to be as
 follows:

 125 FILE: pppp
 150 FILE: pppp

 where pppp represents the unique pathname of the file that
 will be written.

 4.1.2.10 Telnet End-of-line Code: RFC-959, Page 34

 Implementors MUST NOT assume any correspondence between READ
 boundaries on the control connection and the Telnet EOL
 sequences (CR LF).

 DISCUSSION:
 Thus, a server-FTP (or User-FTP) must continue reading
 characters from the control connection until a complete
 Telnet EOL sequence is encountered, before processing
 the command (or response, respectively). Conversely, a
 single READ from the control connection may include

Internet Engineering Task Force [Page 32]

RFC1123 FILE TRANSFER -- FTP October 1989

 more than one FTP command.

 4.1.2.11 FTP Replies: RFC-959 Section 4.2, Page 35

 A Server-FTP MUST send only correctly formatted replies on
 the control connection. Note that RFC-959 (unlike earlier
 versions of the FTP spec) contains no provision for a
 "spontaneous" reply message.

 A Server-FTP SHOULD use the reply codes defined in RFC-959
 whenever they apply. However, a server-FTP MAY use a
 different reply code when needed, as long as the general
 rules of Section 4.2 are followed. When the implementor has
 a choice between a 4xx and 5xx reply code, a Server-FTP
 SHOULD send a 4xx (temporary failure) code when there is any
 reasonable possibility that a failed FTP will succeed a few
 hours later.

 A User-FTP SHOULD generally use only the highest-order digit
 of a 3-digit reply code for making a procedural decision, to
 prevent difficulties when a Server-FTP uses non-standard
 reply codes.

 A User-FTP MUST be able to handle multi-line replies. If
 the implementation imposes a limit on the number of lines
 and if this limit is exceeded, the User-FTP MUST recover,
 e.g., by ignoring the excess lines until the end of the
 multi-line reply is reached.

 A User-FTP SHOULD NOT interpret a 421 reply code ("Service
 not available, closing control connection") specially, but
 SHOULD detect closing of the control connection by the
 server.

 DISCUSSION:
 Server implementations that fail to strictly follow the
 reply rules often cause FTP user programs to hang.
 Note that RFC-959 resolved ambiguities in the reply
 rules found in earlier FTP specifications and must be
 followed.

 It is important to choose FTP reply codes that properly
 distinguish between temporary and permanent failures,
 to allow the successful use of file transfer client
 daemons. These programs depend on the reply codes to
 decide whether or not to retry a failed transfer; using
 a permanent failure code (5xx) for a temporary error
 will cause these programs to give up unnecessarily.

Internet Engineering Task Force [Page 33]

RFC1123 FILE TRANSFER -- FTP October 1989

 When the meaning of a reply matches exactly the text
 shown in RFC-959, uniformity will be enhanced by using
 the RFC-959 text verbatim. However, a Server-FTP
 implementor is encouraged to choose reply text that
 conveys specific system-dependent information, when
 appropriate.

 4.1.2.12 Connections: RFC-959 Section 5.2

 The words "and the port used" in the second paragraph of
 this section of RFC-959 are erroneous (historical), and they
 should be ignored.

 On a multihomed server host, the default data transfer port
 (L-1) MUST be associated with the same local IP address as
 the corresponding control connection to port L.

 A user-FTP MUST NOT send any Telnet controls other than
 SYNCH and IP on an FTP control connection. In particular, it
 MUST NOT attempt to negotiate Telnet options on the control
 connection. However, a server-FTP MUST be capable of
 accepting and refusing Telnet negotiations (i.e., sending
 DONT/WONT).

 DISCUSSION:
 Although the RFC says: "Server- and User- processes
 should follow the conventions for the Telnet
 protocol...[on the control connection]", it is not the
 intent that Telnet option negotiation is to be
 employed.

 4.1.2.13 Minimum Implementation; RFC-959 Section 5.1

 The following commands and options MUST be supported by
 every server-FTP and user-FTP, except in cases where the
 underlying file system or operating system does not allow or
 support a particular command.

 Type: ASCII Non-print, IMAGE, LOCAL 8
 Mode: Stream
 Structure: File, Record*
 Commands:
 USER, PASS, ACCT,
 PORT, PASV,
 TYPE, MODE, STRU,
 RETR, STOR, APPE,
 RNFR, RNTO, DELE,
 CWD, CDUP, RMD, MKD, PWD,

Internet Engineering Task Force [Page 34]

RFC1123 FILE TRANSFER -- FTP October 1989

 LIST, NLST,
 SYST, STAT,
 HELP, NOOP, QUIT.

 *Record structure is REQUIRED only for hosts whose file
 systems support record structure.

 DISCUSSION:
 Vendors are encouraged to implement a larger subset of
 the protocol. For example, there are important
 robustness features in the protocol (e.g., Restart,
 ABOR, block mode) that would be an aid to some Internet
 users but are not widely implemented.

 A host that does not have record structures in its file
 system may still accept files with STRU R, recording
 the byte stream literally.

 4.1.3 SPECIFIC ISSUES

 4.1.3.1 Non-standard Command Verbs

 FTP allows "experimental" commands, whose names begin with
 "X". If these commands are subsequently adopted as
 standards, there may still be existing implementations using
 the "X" form. At present, this is true for the directory
 commands:

 RFC-959 "Experimental"

 MKD XMKD
 RMD XRMD
 PWD XPWD
 CDUP XCUP
 CWD XCWD

 All FTP implementations SHOULD recognize both forms of these
 commands, by simply equating them with extra entries in the
 command lookup table.

 IMPLEMENTATION:
 A User-FTP can access a server that supports only the
 "X" forms by implementing a mode switch, or
 automatically using the following procedure: if the
 RFC-959 form of one of the above commands is rejected
 with a 500 or 502 response code, then try the
 experimental form; any other response would be passed
 to the user.

Internet Engineering Task Force [Page 35]

RFC1123 FILE TRANSFER -- FTP October 1989

 4.1.3.2 Idle Timeout

 A Server-FTP process SHOULD have an idle timeout, which will
 terminate the process and close the control connection if
 the server is inactive (i.e., no command or data transfer in
 progress) for a long period of time. The idle timeout time
 SHOULD be configurable, and the default should be at least 5
 minutes.

 A client FTP process ("User-PI" in RFC-959) will need
 timeouts on responses only if it is invoked from a program.

 DISCUSSION:
 Without a timeout, a Server-FTP process may be left
 pending indefinitely if the corresponding client
 crashes without closing the control connection.

 4.1.3.3 Concurrency of Data and Control

 DISCUSSION:
 The intent of the designers of FTP was that a user
 should be able to send a STAT command at any time while
 data transfer was in progress and that the server-FTP
 would reply immediately with status -- e.g., the number
 of bytes transferred so far. Similarly, an ABOR
 command should be possible at any time during a data
 transfer.

 Unfortunately, some small-machine operating systems
 make such concurrent programming difficult, and some
 other implementers seek minimal solutions, so some FTP
 implementations do not allow concurrent use of the data
 and control connections. Even such a minimal server
 must be prepared to accept and defer a STAT or ABOR
 command that arrives during data transfer.

 4.1.3.4 FTP Restart Mechanism

 The description of the 110 reply on pp. 40-41 of RFC-959 is
 incorrect; the correct description is as follows. A restart
 reply message, sent over the control connection from the
 receiving FTP to the User-FTP, has the format:

 110 MARK ssss = rrrr

 Here:

 * ssss is a text string that appeared in a Restart Marker

Internet Engineering Task Force [Page 36]

RFC1123 FILE TRANSFER -- FTP October 1989

 in the data stream and encodes a position in the
 sender’s file system;

 * rrrr encodes the corresponding position in the
 receiver’s file system.

 The encoding, which is specific to a particular file system
 and network implementation, is always generated and
 interpreted by the same system, either sender or receiver.

 When an FTP that implements restart receives a Restart
 Marker in the data stream, it SHOULD force the data to that
 point to be written to stable storage before encoding the
 corresponding position rrrr. An FTP sending Restart Markers
 MUST NOT assume that 110 replies will be returned
 synchronously with the data, i.e., it must not await a 110
 reply before sending more data.

 Two new reply codes are hereby defined for errors
 encountered in restarting a transfer:

 554 Requested action not taken: invalid REST parameter.

 A 554 reply may result from a FTP service command that
 follows a REST command. The reply indicates that the
 existing file at the Server-FTP cannot be repositioned
 as specified in the REST.

 555 Requested action not taken: type or stru mismatch.

 A 555 reply may result from an APPE command or from any
 FTP service command following a REST command. The
 reply indicates that there is some mismatch between the
 current transfer parameters (type and stru) and the
 attributes of the existing file.

 DISCUSSION:
 Note that the FTP Restart mechanism requires that Block
 or Compressed mode be used for data transfer, to allow
 the Restart Markers to be included within the data
 stream. The frequency of Restart Markers can be low.

 Restart Markers mark a place in the data stream, but
 the receiver may be performing some transformation on
 the data as it is stored into stable storage. In
 general, the receiver’s encoding must include any state
 information necessary to restart this transformation at
 any point of the FTP data stream. For example, in TYPE

Internet Engineering Task Force [Page 37]

RFC1123 FILE TRANSFER -- FTP October 1989

 A transfers, some receiver hosts transform CR LF
 sequences into a single LF character on disk. If a
 Restart Marker happens to fall between CR and LF, the
 receiver must encode in rrrr that the transfer must be
 restarted in a "CR has been seen and discarded" state.

 Note that the Restart Marker is required to be encoded
 as a string of printable ASCII characters, regardless
 of the type of the data.

 RFC-959 says that restart information is to be returned
 "to the user". This should not be taken literally. In
 general, the User-FTP should save the restart
 information (ssss,rrrr) in stable storage, e.g., append
 it to a restart control file. An empty restart control
 file should be created when the transfer first starts
 and deleted automatically when the transfer completes
 successfully. It is suggested that this file have a
 name derived in an easily-identifiable manner from the
 name of the file being transferred and the remote host
 name; this is analogous to the means used by many text
 editors for naming "backup" files.

 There are three cases for FTP restart.

 (1) User-to-Server Transfer

 The User-FTP puts Restart Markers <ssss> at
 convenient places in the data stream. When the
 Server-FTP receives a Marker, it writes all prior
 data to disk, encodes its file system position and
 transformation state as rrrr, and returns a "110
 MARK ssss = rrrr" reply over the control
 connection. The User-FTP appends the pair
 (ssss,rrrr) to its restart control file.

 To restart the transfer, the User-FTP fetches the
 last (ssss,rrrr) pair from the restart control
 file, repositions its local file system and
 transformation state using ssss, and sends the
 command "REST rrrr" to the Server-FTP.

 (2) Server-to-User Transfer

 The Server-FTP puts Restart Markers <ssss> at
 convenient places in the data stream. When the
 User-FTP receives a Marker, it writes all prior
 data to disk, encodes its file system position and

Internet Engineering Task Force [Page 38]

RFC1123 FILE TRANSFER -- FTP October 1989

 transformation state as rrrr, and appends the pair
 (rrrr,ssss) to its restart control file.

 To restart the transfer, the User-FTP fetches the
 last (rrrr,ssss) pair from the restart control
 file, repositions its local file system and
 transformation state using rrrr, and sends the
 command "REST ssss" to the Server-FTP.

 (3) Server-to-Server ("Third-Party") Transfer

 The sending Server-FTP puts Restart Markers <ssss>
 at convenient places in the data stream. When it
 receives a Marker, the receiving Server-FTP writes
 all prior data to disk, encodes its file system
 position and transformation state as rrrr, and
 sends a "110 MARK ssss = rrrr" reply over the
 control connection to the User. The User-FTP
 appends the pair (ssss,rrrr) to its restart
 control file.

 To restart the transfer, the User-FTP fetches the
 last (ssss,rrrr) pair from the restart control
 file, sends "REST ssss" to the sending Server-FTP,
 and sends "REST rrrr" to the receiving Server-FTP.

 4.1.4 FTP/USER INTERFACE

 This section discusses the user interface for a User-FTP
 program.

 4.1.4.1 Pathname Specification

 Since FTP is intended for use in a heterogeneous
 environment, User-FTP implementations MUST support remote
 pathnames as arbitrary character strings, so that their form
 and content are not limited by the conventions of the local
 operating system.

 DISCUSSION:
 In particular, remote pathnames can be of arbitrary
 length, and all the printing ASCII characters as well
 as space (0x20) must be allowed. RFC-959 allows a
 pathname to contain any 7-bit ASCII character except CR
 or LF.

Internet Engineering Task Force [Page 39]

RFC1123 FILE TRANSFER -- FTP October 1989

 4.1.4.2 "QUOTE" Command

 A User-FTP program MUST implement a "QUOTE" command that
 will pass an arbitrary character string to the server and
 display all resulting response messages to the user.

 To make the "QUOTE" command useful, a User-FTP SHOULD send
 transfer control commands to the server as the user enters
 them, rather than saving all the commands and sending them
 to the server only when a data transfer is started.

 DISCUSSION:
 The "QUOTE" command is essential to allow the user to
 access servers that require system-specific commands
 (e.g., SITE or ALLO), or to invoke new or optional
 features that are not implemented by the User-FTP. For
 example, "QUOTE" may be used to specify "TYPE A T" to
 send a print file to hosts that require the
 distinction, even if the User-FTP does not recognize
 that TYPE.

 4.1.4.3 Displaying Replies to User

 A User-FTP SHOULD display to the user the full text of all
 error reply messages it receives. It SHOULD have a
 "verbose" mode in which all commands it sends and the full
 text and reply codes it receives are displayed, for
 diagnosis of problems.

 4.1.4.4 Maintaining Synchronization

 The state machine in a User-FTP SHOULD be forgiving of
 missing and unexpected reply messages, in order to maintain
 command synchronization with the server.

Internet Engineering Task Force [Page 40]

RFC1123 FILE TRANSFER -- FTP October 1989

 4.1.5 FTP REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
Implement TYPE T if same as TYPE N |4.1.2.2 | |x| | | |
File/Record transform invertible if poss. |4.1.2.4 | |x| | | |
User-FTP send PORT cmd for stream mode |4.1.2.5 | |x| | | |
Server-FTP implement PASV |4.1.2.6 |x| | | | |
 PASV is per-transfer |4.1.2.6 |x| | | | |
NLST reply usable in RETR cmds |4.1.2.7 |x| | | | |
Implied type for LIST and NLST |4.1.2.7 | |x| | | |
SITE cmd for non-standard features |4.1.2.8 | |x| | | |
STOU cmd return pathname as specified |4.1.2.9 |x| | | | |
Use TCP READ boundaries on control conn. |4.1.2.10 | | | | |x|
 | | | | | | |
Server-FTP send only correct reply format |4.1.2.11 |x| | | | |
Server-FTP use defined reply code if poss. |4.1.2.11 | |x| | | |
 New reply code following Section 4.2 |4.1.2.11 | | |x| | |
User-FTP use only high digit of reply |4.1.2.11 | |x| | | |
User-FTP handle multi-line reply lines |4.1.2.11 |x| | | | |
User-FTP handle 421 reply specially |4.1.2.11 | | | |x| |
 | | | | | | |
Default data port same IP addr as ctl conn |4.1.2.12 |x| | | | |
User-FTP send Telnet cmds exc. SYNCH, IP |4.1.2.12 | | | | |x|
User-FTP negotiate Telnet options |4.1.2.12 | | | | |x|
Server-FTP handle Telnet options |4.1.2.12 |x| | | | |
Handle "Experimental" directory cmds |4.1.3.1 | |x| | | |
Idle timeout in server-FTP |4.1.3.2 | |x| | | |
 Configurable idle timeout |4.1.3.2 | |x| | | |
Receiver checkpoint data at Restart Marker |4.1.3.4 | |x| | | |
Sender assume 110 replies are synchronous |4.1.3.4 | | | | |x|
 | | | | | | |
Support TYPE: | | | | | | |
 ASCII - Non-Print (AN) |4.1.2.13 |x| | | | |
 ASCII - Telnet (AT) -- if same as AN |4.1.2.2 | |x| | | |
 ASCII - Carriage Control (AC) |959 3.1.1.5.2 | | |x| | |
 EBCDIC - (any form) |959 3.1.1.2 | | |x| | |
 IMAGE |4.1.2.1 |x| | | | |
 LOCAL 8 |4.1.2.1 |x| | | | |

Internet Engineering Task Force [Page 41]

RFC1123 FILE TRANSFER -- FTP October 1989

 LOCAL m |4.1.2.1 | | |x| | |2
 | | | | | | |
Support MODE: | | | | | | |
 Stream |4.1.2.13 |x| | | | |
 Block |959 3.4.2 | | |x| | |
 | | | | | | |
Support STRUCTURE: | | | | | | |
 File |4.1.2.13 |x| | | | |
 Record |4.1.2.13 |x| | | | |3
 Page |4.1.2.3 | | | |x| |
 | | | | | | |
Support commands: | | | | | | |
 USER |4.1.2.13 |x| | | | |
 PASS |4.1.2.13 |x| | | | |
 ACCT |4.1.2.13 |x| | | | |
 CWD |4.1.2.13 |x| | | | |
 CDUP |4.1.2.13 |x| | | | |
 SMNT |959 5.3.1 | | |x| | |
 REIN |959 5.3.1 | | |x| | |
 QUIT |4.1.2.13 |x| | | | |
 | | | | | | |
 PORT |4.1.2.13 |x| | | | |
 PASV |4.1.2.6 |x| | | | |
 TYPE |4.1.2.13 |x| | | | |1
 STRU |4.1.2.13 |x| | | | |1
 MODE |4.1.2.13 |x| | | | |1
 | | | | | | |
 RETR |4.1.2.13 |x| | | | |
 STOR |4.1.2.13 |x| | | | |
 STOU |959 5.3.1 | | |x| | |
 APPE |4.1.2.13 |x| | | | |
 ALLO |959 5.3.1 | | |x| | |
 REST |959 5.3.1 | | |x| | |
 RNFR |4.1.2.13 |x| | | | |
 RNTO |4.1.2.13 |x| | | | |
 ABOR |959 5.3.1 | | |x| | |
 DELE |4.1.2.13 |x| | | | |
 RMD |4.1.2.13 |x| | | | |
 MKD |4.1.2.13 |x| | | | |
 PWD |4.1.2.13 |x| | | | |
 LIST |4.1.2.13 |x| | | | |
 NLST |4.1.2.13 |x| | | | |
 SITE |4.1.2.8 | | |x| | |
 STAT |4.1.2.13 |x| | | | |
 SYST |4.1.2.13 |x| | | | |
 HELP |4.1.2.13 |x| | | | |
 NOOP |4.1.2.13 |x| | | | |
 | | | | | | |

Internet Engineering Task Force [Page 42]

RFC1123 FILE TRANSFER -- FTP October 1989

User Interface: | | | | | | |
 Arbitrary pathnames |4.1.4.1 |x| | | | |
 Implement "QUOTE" command |4.1.4.2 |x| | | | |
 Transfer control commands immediately |4.1.4.2 | |x| | | |
 Display error messages to user |4.1.4.3 | |x| | | |
 Verbose mode |4.1.4.3 | |x| | | |
 Maintain synchronization with server |4.1.4.4 | |x| | | |

Footnotes:

(1) For the values shown earlier.

(2) Here m is number of bits in a memory word.

(3) Required for host with record-structured file system, optional
 otherwise.

Internet Engineering Task Force [Page 43]

RFC1123 FILE TRANSFER -- TFTP October 1989

 4.2 TRIVIAL FILE TRANSFER PROTOCOL -- TFTP

 4.2.1 INTRODUCTION

 The Trivial File Transfer Protocol TFTP is defined in RFC-783
 [TFTP:1].

 TFTP provides its own reliable delivery with UDP as its
 transport protocol, using a simple stop-and-wait acknowledgment
 system. Since TFTP has an effective window of only one 512
 octet segment, it can provide good performance only over paths
 that have a small delay*bandwidth product. The TFTP file
 interface is very simple, providing no access control or
 security.

 TFTP’s most important application is bootstrapping a host over
 a local network, since it is simple and small enough to be
 easily implemented in EPROM [BOOT:1, BOOT:2]. Vendors are
 urged to support TFTP for booting.

 4.2.2 PROTOCOL WALK-THROUGH

 The TFTP specification [TFTP:1] is written in an open style,
 and does not fully specify many parts of the protocol.

 4.2.2.1 Transfer Modes: RFC-783, Page 3

 The transfer mode "mail" SHOULD NOT be supported.

 4.2.2.2 UDP Header: RFC-783, Page 17

 The Length field of a UDP header is incorrectly defined; it
 includes the UDP header length (8).

 4.2.3 SPECIFIC ISSUES

 4.2.3.1 Sorcerer’s Apprentice Syndrome

 There is a serious bug, known as the "Sorcerer’s Apprentice
 Syndrome," in the protocol specification. While it does not
 cause incorrect operation of the transfer (the file will
 always be transferred correctly if the transfer completes),
 this bug may cause excessive retransmission, which may cause
 the transfer to time out.

 Implementations MUST contain the fix for this problem: the
 sender (i.e., the side originating the DATA packets) must
 never resend the current DATA packet on receipt of a

Internet Engineering Task Force [Page 44]

RFC1123 FILE TRANSFER -- TFTP October 1989

 duplicate ACK.

 DISCUSSION:
 The bug is caused by the protocol rule that either
 side, on receiving an old duplicate datagram, may
 resend the current datagram. If a packet is delayed in
 the network but later successfully delivered after
 either side has timed out and retransmitted a packet, a
 duplicate copy of the response may be generated. If
 the other side responds to this duplicate with a
 duplicate of its own, then every datagram will be sent
 in duplicate for the remainder of the transfer (unless
 a datagram is lost, breaking the repetition). Worse
 yet, since the delay is often caused by congestion,
 this duplicate transmission will usually causes more
 congestion, leading to more delayed packets, etc.

 The following example may help to clarify this problem.

 TFTP A TFTP B

 (1) Receive ACK X-1
 Send DATA X
 (2) Receive DATA X
 Send ACK X
 (ACK X is delayed in network,
 and A times out):
 (3) Retransmit DATA X

 (4) Receive DATA X again
 Send ACK X again
 (5) Receive (delayed) ACK X
 Send DATA X+1
 (6) Receive DATA X+1
 Send ACK X+1
 (7) Receive ACK X again
 Send DATA X+1 again
 (8) Receive DATA X+1 again
 Send ACK X+1 again
 (9) Receive ACK X+1
 Send DATA X+2
 (10) Receive DATA X+2
 Send ACK X+3
 (11) Receive ACK X+1 again
 Send DATA X+2 again
 (12) Receive DATA X+2 again
 Send ACK X+3 again

Internet Engineering Task Force [Page 45]

RFC1123 FILE TRANSFER -- TFTP October 1989

 Notice that once the delayed ACK arrives, the protocol
 settles down to duplicate all further packets
 (sequences 5-8 and 9-12). The problem is caused not by
 either side timing out, but by both sides
 retransmitting the current packet when they receive a
 duplicate.

 The fix is to break the retransmission loop, as
 indicated above. This is analogous to the behavior of
 TCP. It is then possible to remove the retransmission
 timer on the receiver, since the resent ACK will never
 cause any action; this is a useful simplification where
 TFTP is used in a bootstrap program. It is OK to allow
 the timer to remain, and it may be helpful if the
 retransmitted ACK replaces one that was genuinely lost
 in the network. The sender still requires a retransmit
 timer, of course.

 4.2.3.2 Timeout Algorithms

 A TFTP implementation MUST use an adaptive timeout.

 IMPLEMENTATION:
 TCP retransmission algorithms provide a useful base to
 work from. At least an exponential backoff of
 retransmission timeout is necessary.

 4.2.3.3 Extensions

 A variety of non-standard extensions have been made to TFTP,
 including additional transfer modes and a secure operation
 mode (with passwords). None of these have been
 standardized.

 4.2.3.4 Access Control

 A server TFTP implementation SHOULD include some
 configurable access control over what pathnames are allowed
 in TFTP operations.

 4.2.3.5 Broadcast Request

 A TFTP request directed to a broadcast address SHOULD be
 silently ignored.

 DISCUSSION:
 Due to the weak access control capability of TFTP,
 directed broadcasts of TFTP requests to random networks

Internet Engineering Task Force [Page 46]

RFC1123 FILE TRANSFER -- TFTP October 1989

 could create a significant security hole.

 4.2.4 TFTP REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
Fix Sorcerer’s Apprentice Syndrome |4.2.3.1 |x| | | | |
Transfer modes: | | | | | | |
 netascii |RFC-783 |x| | | | |
 octet |RFC-783 |x| | | | |
 mail |4.2.2.1 | | | |x| |
 extensions |4.2.3.3 | | |x| | |
Use adaptive timeout |4.2.3.2 |x| | | | |
Configurable access control |4.2.3.4 | |x| | | |
Silently ignore broadcast request |4.2.3.5 | |x| | | |
---|--------|-|-|-|-|-|--
---|--------|-|-|-|-|-|--

Internet Engineering Task Force [Page 47]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

5. ELECTRONIC MAIL -- SMTP and RFC-822

 5.1 INTRODUCTION

 In the TCP/IP protocol suite, electronic mail in a format
 specified in RFC-822 [SMTP:2] is transmitted using the Simple Mail
 Transfer Protocol (SMTP) defined in RFC-821 [SMTP:1].

 While SMTP has remained unchanged over the years, the Internet
 community has made several changes in the way SMTP is used. In
 particular, the conversion to the Domain Name System (DNS) has
 caused changes in address formats and in mail routing. In this
 section, we assume familiarity with the concepts and terminology
 of the DNS, whose requirements are given in Section 6.1.

 RFC-822 specifies the Internet standard format for electronic mail
 messages. RFC-822 supercedes an older standard, RFC-733, that may
 still be in use in a few places, although it is obsolete. The two
 formats are sometimes referred to simply by number ("822" and
 "733").

 RFC-822 is used in some non-Internet mail environments with
 different mail transfer protocols than SMTP, and SMTP has also
 been adapted for use in some non-Internet environments. Note that
 this document presents the rules for the use of SMTP and RFC-822
 for the Internet environment only; other mail environments that
 use these protocols may be expected to have their own rules.

 5.2 PROTOCOL WALK-THROUGH

 This section covers both RFC-821 and RFC-822.

 The SMTP specification in RFC-821 is clear and contains numerous
 examples, so implementors should not find it difficult to
 understand. This section simply updates or annotates portions of
 RFC-821 to conform with current usage.

 RFC-822 is a long and dense document, defining a rich syntax.
 Unfortunately, incomplete or defective implementations of RFC-822
 are common. In fact, nearly all of the many formats of RFC-822
 are actually used, so an implementation generally needs to
 recognize and correctly interpret all of the RFC-822 syntax.

 5.2.1 The SMTP Model: RFC-821 Section 2

 DISCUSSION:
 Mail is sent by a series of request/response transactions
 between a client, the "sender-SMTP," and a server, the

Internet Engineering Task Force [Page 48]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 "receiver-SMTP". These transactions pass (1) the message
 proper, which is composed of header and body, and (2) SMTP
 source and destination addresses, referred to as the
 "envelope".

 The SMTP programs are analogous to Message Transfer Agents
 (MTAs) of X.400. There will be another level of protocol
 software, closer to the end user, that is responsible for
 composing and analyzing RFC-822 message headers; this
 component is known as the "User Agent" in X.400, and we
 use that term in this document. There is a clear logical
 distinction between the User Agent and the SMTP
 implementation, since they operate on different levels of
 protocol. Note, however, that this distinction is may not
 be exactly reflected the structure of typical
 implementations of Internet mail. Often there is a
 program known as the "mailer" that implements SMTP and
 also some of the User Agent functions; the rest of the
 User Agent functions are included in a user interface used
 for entering and reading mail.

 The SMTP envelope is constructed at the originating site,
 typically by the User Agent when the message is first
 queued for the Sender-SMTP program. The envelope
 addresses may be derived from information in the message
 header, supplied by the user interface (e.g., to implement
 a bcc: request), or derived from local configuration
 information (e.g., expansion of a mailing list). The SMTP
 envelope cannot in general be re-derived from the header
 at a later stage in message delivery, so the envelope is
 transmitted separately from the message itself using the
 MAIL and RCPT commands of SMTP.

 The text of RFC-821 suggests that mail is to be delivered
 to an individual user at a host. With the advent of the
 domain system and of mail routing using mail-exchange (MX)
 resource records, implementors should now think of
 delivering mail to a user at a domain, which may or may
 not be a particular host. This DOES NOT change the fact
 that SMTP is a host-to-host mail exchange protocol.

 5.2.2 Canonicalization: RFC-821 Section 3.1

 The domain names that a Sender-SMTP sends in MAIL and RCPT
 commands MUST have been "canonicalized," i.e., they must be
 fully-qualified principal names or domain literals, not
 nicknames or domain abbreviations. A canonicalized name either
 identifies a host directly or is an MX name; it cannot be a

Internet Engineering Task Force [Page 49]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 CNAME.

 5.2.3 VRFY and EXPN Commands: RFC-821 Section 3.3

 A receiver-SMTP MUST implement VRFY and SHOULD implement EXPN
 (this requirement overrides RFC-821). However, there MAY be
 configuration information to disable VRFY and EXPN in a
 particular installation; this might even allow EXPN to be
 disabled for selected lists.

 A new reply code is defined for the VRFY command:

 252 Cannot VRFY user (e.g., info is not local), but will
 take message for this user and attempt delivery.

 DISCUSSION:
 SMTP users and administrators make regular use of these
 commands for diagnosing mail delivery problems. With the
 increasing use of multi-level mailing list expansion
 (sometimes more than two levels), EXPN has been
 increasingly important for diagnosing inadvertent mail
 loops. On the other hand, some feel that EXPN represents
 a significant privacy, and perhaps even a security,
 exposure.

 5.2.4 SEND, SOML, and SAML Commands: RFC-821 Section 3.4

 An SMTP MAY implement the commands to send a message to a
 user’s terminal: SEND, SOML, and SAML.

 DISCUSSION:
 It has been suggested that the use of mail relaying
 through an MX record is inconsistent with the intent of
 SEND to deliver a message immediately and directly to a
 user’s terminal. However, an SMTP receiver that is unable
 to write directly to the user terminal can return a "251
 User Not Local" reply to the RCPT following a SEND, to
 inform the originator of possibly deferred delivery.

 5.2.5 HELO Command: RFC-821 Section 3.5

 The sender-SMTP MUST ensure that the <domain> parameter in a
 HELO command is a valid principal host domain name for the
 client host. As a result, the receiver-SMTP will not have to
 perform MX resolution on this name in order to validate the
 HELO parameter.

 The HELO receiver MAY verify that the HELO parameter really

Internet Engineering Task Force [Page 50]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 corresponds to the IP address of the sender. However, the
 receiver MUST NOT refuse to accept a message, even if the
 sender’s HELO command fails verification.

 DISCUSSION:
 Verifying the HELO parameter requires a domain name lookup
 and may therefore take considerable time. An alternative
 tool for tracking bogus mail sources is suggested below
 (see "DATA Command").

 Note also that the HELO argument is still required to have
 valid <domain> syntax, since it will appear in a Received:
 line; otherwise, a 501 error is to be sent.

 IMPLEMENTATION:
 When HELO parameter validation fails, a suggested
 procedure is to insert a note about the unknown
 authenticity of the sender into the message header (e.g.,
 in the "Received:" line).

 5.2.6 Mail Relay: RFC-821 Section 3.6

 We distinguish three types of mail (store-and-) forwarding:

 (1) A simple forwarder or "mail exchanger" forwards a message
 using private knowledge about the recipient; see section
 3.2 of RFC-821.

 (2) An SMTP mail "relay" forwards a message within an SMTP
 mail environment as the result of an explicit source route
 (as defined in section 3.6 of RFC-821). The SMTP relay
 function uses the "@...:" form of source route from RFC-
 822 (see Section 5.2.19 below).

 (3) A mail "gateway" passes a message between different
 environments. The rules for mail gateways are discussed
 below in Section 5.3.7.

 An Internet host that is forwarding a message but is not a
 gateway to a different mail environment (i.e., it falls under
 (1) or (2)) SHOULD NOT alter any existing header fields,
 although the host will add an appropriate Received: line as
 required in Section 5.2.8.

 A Sender-SMTP SHOULD NOT send a RCPT TO: command containing an
 explicit source route using the "@...:" address form. Thus,
 the relay function defined in section 3.6 of RFC-821 should
 not be used.

Internet Engineering Task Force [Page 51]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 DISCUSSION:
 The intent is to discourage all source routing and to
 abolish explicit source routing for mail delivery within
 the Internet environment. Source-routing is unnecessary;
 the simple target address "user@domain" should always
 suffice. This is the result of an explicit architectural
 decision to use universal naming rather than source
 routing for mail. Thus, SMTP provides end-to-end
 connectivity, and the DNS provides globally-unique,
 location-independent names. MX records handle the major
 case where source routing might otherwise be needed.

 A receiver-SMTP MUST accept the explicit source route syntax in
 the envelope, but it MAY implement the relay function as
 defined in section 3.6 of RFC-821. If it does not implement
 the relay function, it SHOULD attempt to deliver the message
 directly to the host to the right of the right-most "@" sign.

 DISCUSSION:
 For example, suppose a host that does not implement the
 relay function receives a message with the SMTP command:
 "RCPT TO:<@ALPHA,@BETA:joe@GAMMA>", where ALPHA, BETA, and
 GAMMA represent domain names. Rather than immediately
 refusing the message with a 550 error reply as suggested
 on page 20 of RFC-821, the host should try to forward the
 message to GAMMA directly, using: "RCPT TO:<joe@GAMMA>".
 Since this host does not support relaying, it is not
 required to update the reverse path.

 Some have suggested that source routing may be needed
 occasionally for manually routing mail around failures;
 however, the reality and importance of this need is
 controversial. The use of explicit SMTP mail relaying for
 this purpose is discouraged, and in fact it may not be
 successful, as many host systems do not support it. Some
 have used the "%-hack" (see Section 5.2.16) for this
 purpose.

 5.2.7 RCPT Command: RFC-821 Section 4.1.1

 A host that supports a receiver-SMTP MUST support the reserved
 mailbox "Postmaster".

 The receiver-SMTP MAY verify RCPT parameters as they arrive;
 however, RCPT responses MUST NOT be delayed beyond a reasonable
 time (see Section 5.3.2).

 Therefore, a "250 OK" response to a RCPT does not necessarily

Internet Engineering Task Force [Page 52]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 imply that the delivery address(es) are valid. Errors found
 after message acceptance will be reported by mailing a
 notification message to an appropriate address (see Section
 5.3.3).

 DISCUSSION:
 The set of conditions under which a RCPT parameter can be
 validated immediately is an engineering design choice.
 Reporting destination mailbox errors to the Sender-SMTP
 before mail is transferred is generally desirable to save
 time and network bandwidth, but this advantage is lost if
 RCPT verification is lengthy.

 For example, the receiver can verify immediately any
 simple local reference, such as a single locally-
 registered mailbox. On the other hand, the "reasonable
 time" limitation generally implies deferring verification
 of a mailing list until after the message has been
 transferred and accepted, since verifying a large mailing
 list can take a very long time. An implementation might
 or might not choose to defer validation of addresses that
 are non-local and therefore require a DNS lookup. If a
 DNS lookup is performed but a soft domain system error
 (e.g., timeout) occurs, validity must be assumed.

 5.2.8 DATA Command: RFC-821 Section 4.1.1

 Every receiver-SMTP (not just one that "accepts a message for
 relaying or for final delivery" [SMTP:1]) MUST insert a
 "Received:" line at the beginning of a message. In this line,
 called a "time stamp line" in RFC-821:

 * The FROM field SHOULD contain both (1) the name of the
 source host as presented in the HELO command and (2) a
 domain literal containing the IP address of the source,
 determined from the TCP connection.

 * The ID field MAY contain an "@" as suggested in RFC-822,
 but this is not required.

 * The FOR field MAY contain a list of <path> entries when
 multiple RCPT commands have been given.

 An Internet mail program MUST NOT change a Received: line that
 was previously added to the message header.

Internet Engineering Task Force [Page 53]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 DISCUSSION:
 Including both the source host and the IP source address
 in the Received: line may provide enough information for
 tracking illicit mail sources and eliminate a need to
 explicitly verify the HELO parameter.

 Received: lines are primarily intended for humans tracing
 mail routes, primarily of diagnosis of faults. See also
 the discussion under 5.3.7.

 When the receiver-SMTP makes "final delivery" of a message,
 then it MUST pass the MAIL FROM: address from the SMTP envelope
 with the message, for use if an error notification message must
 be sent later (see Section 5.3.3). There is an analogous
 requirement when gatewaying from the Internet into a different
 mail environment; see Section 5.3.7.

 DISCUSSION:
 Note that the final reply to the DATA command depends only
 upon the successful transfer and storage of the message.
 Any problem with the destination address(es) must either
 (1) have been reported in an SMTP error reply to the RCPT
 command(s), or (2) be reported in a later error message
 mailed to the originator.

 IMPLEMENTATION:
 The MAIL FROM: information may be passed as a parameter or
 in a Return-Path: line inserted at the beginning of the
 message.

 5.2.9 Command Syntax: RFC-821 Section 4.1.2

 The syntax shown in RFC-821 for the MAIL FROM: command omits
 the case of an empty path: "MAIL FROM: <>" (see RFC-821 Page
 15). An empty reverse path MUST be supported.

 5.2.10 SMTP Replies: RFC-821 Section 4.2

 A receiver-SMTP SHOULD send only the reply codes listed in
 section 4.2.2 of RFC-821 or in this document. A receiver-SMTP
 SHOULD use the text shown in examples in RFC-821 whenever
 appropriate.

 A sender-SMTP MUST determine its actions only by the reply
 code, not by the text (except for 251 and 551 replies); any
 text, including no text at all, must be acceptable. The space
 (blank) following the reply code is considered part of the
 text. Whenever possible, a sender-SMTP SHOULD test only the

Internet Engineering Task Force [Page 54]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 first digit of the reply code, as specified in Appendix E of
 RFC-821.

 DISCUSSION:
 Interoperability problems have arisen with SMTP systems
 using reply codes that are not listed explicitly in RFC-
 821 Section 4.3 but are legal according to the theory of
 reply codes explained in Appendix E.

 5.2.11 Transparency: RFC-821 Section 4.5.2

 Implementors MUST be sure that their mail systems always add
 and delete periods to ensure message transparency.

 5.2.12 WKS Use in MX Processing: RFC-974, p. 5

 RFC-974 [SMTP:3] recommended that the domain system be queried
 for WKS ("Well-Known Service") records, to verify that each
 proposed mail target does support SMTP. Later experience has
 shown that WKS is not widely supported, so the WKS step in MX
 processing SHOULD NOT be used.

 The following are notes on RFC-822, organized by section of that
 document.

 5.2.13 RFC-822 Message Specification: RFC-822 Section 4

 The syntax shown for the Return-path line omits the possibility
 of a null return path, which is used to prevent looping of
 error notifications (see Section 5.3.3). The complete syntax
 is:

 return = "Return-path" ":" route-addr
 / "Return-path" ":" "<" ">"

 The set of optional header fields is hereby expanded to include
 the Content-Type field defined in RFC-1049 [SMTP:7]. This
 field "allows mail reading systems to automatically identify
 the type of a structured message body and to process it for
 display accordingly". [SMTP:7] A User Agent MAY support this
 field.

 5.2.14 RFC-822 Date and Time Specification: RFC-822 Section 5

 The syntax for the date is hereby changed to:

 date = 1*2DIGIT month 2*4DIGIT

Internet Engineering Task Force [Page 55]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 All mail software SHOULD use 4-digit years in dates, to ease
 the transition to the next century.

 There is a strong trend towards the use of numeric timezone
 indicators, and implementations SHOULD use numeric timezones
 instead of timezone names. However, all implementations MUST
 accept either notation. If timezone names are used, they MUST
 be exactly as defined in RFC-822.

 The military time zones are specified incorrectly in RFC-822:
 they count the wrong way from UT (the signs are reversed). As
 a result, military time zones in RFC-822 headers carry no
 information.

 Finally, note that there is a typo in the definition of "zone"
 in the syntax summary of appendix D; the correct definition
 occurs in Section 3 of RFC-822.

 5.2.15 RFC-822 Syntax Change: RFC-822 Section 6.1

 The syntactic definition of "mailbox" in RFC-822 is hereby
 changed to:

 mailbox = addr-spec ; simple address
 / [phrase] route-addr ; name & addr-spec

 That is, the phrase preceding a route address is now OPTIONAL.
 This change makes the following header field legal, for
 example:

 From: <craig@nnsc.nsf.net>

 5.2.16 RFC-822 Local-part: RFC-822 Section 6.2

 The basic mailbox address specification has the form: "local-
 part@domain". Here "local-part", sometimes called the "left-
 hand side" of the address, is domain-dependent.

 A host that is forwarding the message but is not the
 destination host implied by the right-hand side "domain" MUST
 NOT interpret or modify the "local-part" of the address.

 When mail is to be gatewayed from the Internet mail environment
 into a foreign mail environment (see Section 5.3.7), routing
 information for that foreign environment MAY be embedded within
 the "local-part" of the address. The gateway will then
 interpret this local part appropriately for the foreign mail
 environment.

Internet Engineering Task Force [Page 56]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 DISCUSSION:
 Although source routes are discouraged within the Internet
 (see Section 5.2.6), there are non-Internet mail
 environments whose delivery mechanisms do depend upon
 source routes. Source routes for extra-Internet
 environments can generally be buried in the "local-part"
 of the address (see Section 5.2.16) while mail traverses
 the Internet. When the mail reaches the appropriate
 Internet mail gateway, the gateway will interpret the
 local-part and build the necessary address or route for
 the target mail environment.

 For example, an Internet host might send mail to:
 "a!b!c!user@gateway-domain". The complex local part
 "a!b!c!user" would be uninterpreted within the Internet
 domain, but could be parsed and understood by the
 specified mail gateway.

 An embedded source route is sometimes encoded in the
 "local-part" using "%" as a right-binding routing
 operator. For example, in:

 user%domain%relay3%relay2@relay1

 the "%" convention implies that the mail is to be routed
 from "relay1" through "relay2", "relay3", and finally to
 "user" at "domain". This is commonly known as the "%-
 hack". It is suggested that "%" have lower precedence
 than any other routing operator (e.g., "!") hidden in the
 local-part; for example, "a!b%c" would be interpreted as
 "(a!b)%c".

 Only the target host (in this case, "relay1") is permitted
 to analyze the local-part "user%domain%relay3%relay2".

 5.2.17 Domain Literals: RFC-822 Section 6.2.3

 A mailer MUST be able to accept and parse an Internet domain
 literal whose content ("dtext"; see RFC-822) is a dotted-
 decimal host address. This satisfies the requirement of
 Section 2.1 for the case of mail.

 An SMTP MUST accept and recognize a domain literal for any of
 its own IP addresses.

Internet Engineering Task Force [Page 57]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 5.2.18 Common Address Formatting Errors: RFC-822 Section 6.1

 Errors in formatting or parsing 822 addresses are unfortunately
 common. This section mentions only the most common errors. A
 User Agent MUST accept all valid RFC-822 address formats, and
 MUST NOT generate illegal address syntax.

 o A common error is to leave out the semicolon after a group
 identifier.

 o Some systems fail to fully-qualify domain names in
 messages they generate. The right-hand side of an "@"
 sign in a header address field MUST be a fully-qualified
 domain name.

 For example, some systems fail to fully-qualify the From:
 address; this prevents a "reply" command in the user
 interface from automatically constructing a return
 address.

 DISCUSSION:
 Although RFC-822 allows the local use of abbreviated
 domain names within a domain, the application of
 RFC-822 in Internet mail does not allow this. The
 intent is that an Internet host must not send an SMTP
 message header containing an abbreviated domain name
 in an address field. This allows the address fields
 of the header to be passed without alteration across
 the Internet, as required in Section 5.2.6.

 o Some systems mis-parse multiple-hop explicit source routes
 such as:

 @relay1,@relay2,@relay3:user@domain.

 o Some systems over-qualify domain names by adding a
 trailing dot to some or all domain names in addresses or
 message-ids. This violates RFC-822 syntax.

 5.2.19 Explicit Source Routes: RFC-822 Section 6.2.7

 Internet host software SHOULD NOT create an RFC-822 header
 containing an address with an explicit source route, but MUST
 accept such headers for compatibility with earlier systems.

 DISCUSSION:

Internet Engineering Task Force [Page 58]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 In an understatement, RFC-822 says "The use of explicit
 source routing is discouraged". Many hosts implemented
 RFC-822 source routes incorrectly, so the syntax cannot be
 used unambiguously in practice. Many users feel the
 syntax is ugly. Explicit source routes are not needed in
 the mail envelope for delivery; see Section 5.2.6. For
 all these reasons, explicit source routes using the RFC-
 822 notations are not to be used in Internet mail headers.

 As stated in Section 5.2.16, it is necessary to allow an
 explicit source route to be buried in the local-part of an
 address, e.g., using the "%-hack", in order to allow mail
 to be gatewayed into another environment in which explicit
 source routing is necessary. The vigilant will observe
 that there is no way for a User Agent to detect and
 prevent the use of such implicit source routing when the
 destination is within the Internet. We can only
 discourage source routing of any kind within the Internet,
 as unnecessary and undesirable.

 5.3 SPECIFIC ISSUES

 5.3.1 SMTP Queueing Strategies

 The common structure of a host SMTP implementation includes
 user mailboxes, one or more areas for queueing messages in
 transit, and one or more daemon processes for sending and
 receiving mail. The exact structure will vary depending on the
 needs of the users on the host and the number and size of
 mailing lists supported by the host. We describe several
 optimizations that have proved helpful, particularly for
 mailers supporting high traffic levels.

 Any queueing strategy MUST include:

 o Timeouts on all activities. See Section 5.3.2.

 o Never sending error messages in response to error
 messages.

 5.3.1.1 Sending Strategy

 The general model of a sender-SMTP is one or more processes
 that periodically attempt to transmit outgoing mail. In a
 typical system, the program that composes a message has some
 method for requesting immediate attention for a new piece of
 outgoing mail, while mail that cannot be transmitted

Internet Engineering Task Force [Page 59]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 immediately MUST be queued and periodically retried by the
 sender. A mail queue entry will include not only the
 message itself but also the envelope information.

 The sender MUST delay retrying a particular destination
 after one attempt has failed. In general, the retry
 interval SHOULD be at least 30 minutes; however, more
 sophisticated and variable strategies will be beneficial
 when the sender-SMTP can determine the reason for non-
 delivery.

 Retries continue until the message is transmitted or the
 sender gives up; the give-up time generally needs to be at
 least 4-5 days. The parameters to the retry algorithm MUST
 be configurable.

 A sender SHOULD keep a list of hosts it cannot reach and
 corresponding timeouts, rather than just retrying queued
 mail items.

 DISCUSSION:
 Experience suggests that failures are typically
 transient (the target system has crashed), favoring a
 policy of two connection attempts in the first hour the
 message is in the queue, and then backing off to once
 every two or three hours.

 The sender-SMTP can shorten the queueing delay by
 cooperation with the receiver-SMTP. In particular, if
 mail is received from a particular address, it is good
 evidence that any mail queued for that host can now be
 sent.

 The strategy may be further modified as a result of
 multiple addresses per host (see Section 5.3.4), to
 optimize delivery time vs. resource usage.

 A sender-SMTP may have a large queue of messages for
 each unavailable destination host, and if it retried
 all these messages in every retry cycle, there would be
 excessive Internet overhead and the daemon would be
 blocked for a long period. Note that an SMTP can
 generally determine that a delivery attempt has failed
 only after a timeout of a minute or more; a one minute
 timeout per connection will result in a very large
 delay if it is repeated for dozens or even hundreds of
 queued messages.

Internet Engineering Task Force [Page 60]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 When the same message is to be delivered to several users on
 the same host, only one copy of the message SHOULD be
 transmitted. That is, the sender-SMTP should use the
 command sequence: RCPT, RCPT,... RCPT, DATA instead of the
 sequence: RCPT, DATA, RCPT, DATA,... RCPT, DATA.
 Implementation of this efficiency feature is strongly urged.

 Similarly, the sender-SMTP MAY support multiple concurrent
 outgoing mail transactions to achieve timely delivery.
 However, some limit SHOULD be imposed to protect the host
 from devoting all its resources to mail.

 The use of the different addresses of a multihomed host is
 discussed below.

 5.3.1.2 Receiving strategy

 The receiver-SMTP SHOULD attempt to keep a pending listen on
 the SMTP port at all times. This will require the support
 of multiple incoming TCP connections for SMTP. Some limit
 MAY be imposed.

 IMPLEMENTATION:
 When the receiver-SMTP receives mail from a particular
 host address, it could notify the sender-SMTP to retry
 any mail pending for that host address.

 5.3.2 Timeouts in SMTP

 There are two approaches to timeouts in the sender-SMTP: (a)
 limit the time for each SMTP command separately, or (b) limit
 the time for the entire SMTP dialogue for a single mail
 message. A sender-SMTP SHOULD use option (a), per-command
 timeouts. Timeouts SHOULD be easily reconfigurable, preferably
 without recompiling the SMTP code.

 DISCUSSION:
 Timeouts are an essential feature of an SMTP
 implementation. If the timeouts are too long (or worse,
 there are no timeouts), Internet communication failures or
 software bugs in receiver-SMTP programs can tie up SMTP
 processes indefinitely. If the timeouts are too short,
 resources will be wasted with attempts that time out part
 way through message delivery.

 If option (b) is used, the timeout has to be very large,
 e.g., an hour, to allow time to expand very large mailing
 lists. The timeout may also need to increase linearly

Internet Engineering Task Force [Page 61]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 with the size of the message, to account for the time to
 transmit a very large message. A large fixed timeout
 leads to two problems: a failure can still tie up the
 sender for a very long time, and very large messages may
 still spuriously time out (which is a wasteful failure!).

 Using the recommended option (a), a timer is set for each
 SMTP command and for each buffer of the data transfer.
 The latter means that the overall timeout is inherently
 proportional to the size of the message.

 Based on extensive experience with busy mail-relay hosts, the
 minimum per-command timeout values SHOULD be as follows:

 o Initial 220 Message: 5 minutes

 A Sender-SMTP process needs to distinguish between a
 failed TCP connection and a delay in receiving the initial
 220 greeting message. Many receiver-SMTPs will accept a
 TCP connection but delay delivery of the 220 message until
 their system load will permit more mail to be processed.

 o MAIL Command: 5 minutes

 o RCPT Command: 5 minutes

 A longer timeout would be required if processing of
 mailing lists and aliases were not deferred until after
 the message was accepted.

 o DATA Initiation: 2 minutes

 This is while awaiting the "354 Start Input" reply to a
 DATA command.

 o Data Block: 3 minutes

 This is while awaiting the completion of each TCP SEND
 call transmitting a chunk of data.

 o DATA Termination: 10 minutes.

 This is while awaiting the "250 OK" reply. When the
 receiver gets the final period terminating the message
 data, it typically performs processing to deliver the
 message to a user mailbox. A spurious timeout at this
 point would be very wasteful, since the message has been

Internet Engineering Task Force [Page 62]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 successfully sent.

 A receiver-SMTP SHOULD have a timeout of at least 5 minutes
 while it is awaiting the next command from the sender.

 5.3.3 Reliable Mail Receipt

 When the receiver-SMTP accepts a piece of mail (by sending a
 "250 OK" message in response to DATA), it is accepting
 responsibility for delivering or relaying the message. It must
 take this responsibility seriously, i.e., it MUST NOT lose the
 message for frivolous reasons, e.g., because the host later
 crashes or because of a predictable resource shortage.

 If there is a delivery failure after acceptance of a message,
 the receiver-SMTP MUST formulate and mail a notification
 message. This notification MUST be sent using a null ("<>")
 reverse path in the envelope; see Section 3.6 of RFC-821. The
 recipient of this notification SHOULD be the address from the
 envelope return path (or the Return-Path: line). However, if
 this address is null ("<>"), the receiver-SMTP MUST NOT send a
 notification. If the address is an explicit source route, it
 SHOULD be stripped down to its final hop.

 DISCUSSION:
 For example, suppose that an error notification must be
 sent for a message that arrived with:
 "MAIL FROM:<@a,@b:user@d>". The notification message
 should be sent to: "RCPT TO:<user@d>".

 Some delivery failures after the message is accepted by
 SMTP will be unavoidable. For example, it may be
 impossible for the receiver-SMTP to validate all the
 delivery addresses in RCPT command(s) due to a "soft"
 domain system error or because the target is a mailing
 list (see earlier discussion of RCPT).

 To avoid receiving duplicate messages as the result of
 timeouts, a receiver-SMTP MUST seek to minimize the time
 required to respond to the final "." that ends a message
 transfer. See RFC-1047 [SMTP:4] for a discussion of this
 problem.

 5.3.4 Reliable Mail Transmission

 To transmit a message, a sender-SMTP determines the IP address
 of the target host from the destination address in the
 envelope. Specifically, it maps the string to the right of the

Internet Engineering Task Force [Page 63]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 "@" sign into an IP address. This mapping or the transfer
 itself may fail with a soft error, in which case the sender-
 SMTP will requeue the outgoing mail for a later retry, as
 required in Section 5.3.1.1.

 When it succeeds, the mapping can result in a list of
 alternative delivery addresses rather than a single address,
 because of (a) multiple MX records, (b) multihoming, or both.
 To provide reliable mail transmission, the sender-SMTP MUST be
 able to try (and retry) each of the addresses in this list in
 order, until a delivery attempt succeeds. However, there MAY
 also be a configurable limit on the number of alternate
 addresses that can be tried. In any case, a host SHOULD try at
 least two addresses.

 The following information is to be used to rank the host
 addresses:

 (1) Multiple MX Records -- these contain a preference
 indication that should be used in sorting. If there are
 multiple destinations with the same preference and there
 is no clear reason to favor one (e.g., by address
 preference), then the sender-SMTP SHOULD pick one at
 random to spread the load across multiple mail exchanges
 for a specific organization; note that this is a
 refinement of the procedure in [DNS:3].

 (2) Multihomed host -- The destination host (perhaps taken
 from the preferred MX record) may be multihomed, in which
 case the domain name resolver will return a list of
 alternative IP addresses. It is the responsibility of the
 domain name resolver interface (see Section 6.1.3.4 below)
 to have ordered this list by decreasing preference, and
 SMTP MUST try them in the order presented.

 DISCUSSION:
 Although the capability to try multiple alternative
 addresses is required, there may be circumstances where
 specific installations want to limit or disable the use of
 alternative addresses. The question of whether a sender
 should attempt retries using the different addresses of a
 multihomed host has been controversial. The main argument
 for using the multiple addresses is that it maximizes the
 probability of timely delivery, and indeed sometimes the
 probability of any delivery; the counter argument is that
 it may result in unnecessary resource use.

 Note that resource use is also strongly determined by the

Internet Engineering Task Force [Page 64]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 sending strategy discussed in Section 5.3.1.

 5.3.5 Domain Name Support

 SMTP implementations MUST use the mechanism defined in Section
 6.1 for mapping between domain names and IP addresses. This
 means that every Internet SMTP MUST include support for the
 Internet DNS.

 In particular, a sender-SMTP MUST support the MX record scheme
 [SMTP:3]. See also Section 7.4 of [DNS:2] for information on
 domain name support for SMTP.

 5.3.6 Mailing Lists and Aliases

 An SMTP-capable host SHOULD support both the alias and the list
 form of address expansion for multiple delivery. When a
 message is delivered or forwarded to each address of an
 expanded list form, the return address in the envelope
 ("MAIL FROM:") MUST be changed to be the address of a person
 who administers the list, but the message header MUST be left
 unchanged; in particular, the "From" field of the message is
 unaffected.

 DISCUSSION:
 An important mail facility is a mechanism for multi-
 destination delivery of a single message, by transforming
 or "expanding" a pseudo-mailbox address into a list of
 destination mailbox addresses. When a message is sent to
 such a pseudo-mailbox (sometimes called an "exploder"),
 copies are forwarded or redistributed to each mailbox in
 the expanded list. We classify such a pseudo-mailbox as
 an "alias" or a "list", depending upon the expansion
 rules:

 (a) Alias

 To expand an alias, the recipient mailer simply
 replaces the pseudo-mailbox address in the envelope
 with each of the expanded addresses in turn; the rest
 of the envelope and the message body are left
 unchanged. The message is then delivered or
 forwarded to each expanded address.

 (b) List

 A mailing list may be said to operate by
 "redistribution" rather than by "forwarding". To

Internet Engineering Task Force [Page 65]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 expand a list, the recipient mailer replaces the
 pseudo-mailbox address in the envelope with each of
 the expanded addresses in turn. The return address in
 the envelope is changed so that all error messages
 generated by the final deliveries will be returned to
 a list administrator, not to the message originator,
 who generally has no control over the contents of the
 list and will typically find error messages annoying.

 5.3.7 Mail Gatewaying

 Gatewaying mail between different mail environments, i.e.,
 different mail formats and protocols, is complex and does not
 easily yield to standardization. See for example [SMTP:5a],
 [SMTP:5b]. However, some general requirements may be given for
 a gateway between the Internet and another mail environment.

 (A) Header fields MAY be rewritten when necessary as messages
 are gatewayed across mail environment boundaries.

 DISCUSSION:
 This may involve interpreting the local-part of the
 destination address, as suggested in Section 5.2.16.

 The other mail systems gatewayed to the Internet
 generally use a subset of RFC-822 headers, but some
 of them do not have an equivalent to the SMTP
 envelope. Therefore, when a message leaves the
 Internet environment, it may be necessary to fold the
 SMTP envelope information into the message header. A
 possible solution would be to create new header
 fields to carry the envelope information (e.g., "X-
 SMTP-MAIL:" and "X-SMTP-RCPT:"); however, this would
 require changes in mail programs in the foreign
 environment.

 (B) When forwarding a message into or out of the Internet
 environment, a gateway MUST prepend a Received: line, but
 it MUST NOT alter in any way a Received: line that is
 already in the header.

 DISCUSSION:
 This requirement is a subset of the general
 "Received:" line requirement of Section 5.2.8; it is
 restated here for emphasis.

 Received: fields of messages originating from other

Internet Engineering Task Force [Page 66]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 environments may not conform exactly to RFC822.
 However, the most important use of Received: lines is
 for debugging mail faults, and this debugging can be
 severely hampered by well-meaning gateways that try
 to "fix" a Received: line.

 The gateway is strongly encouraged to indicate the
 environment and protocol in the "via" clauses of
 Received field(s) that it supplies.

 (C) From the Internet side, the gateway SHOULD accept all
 valid address formats in SMTP commands and in RFC-822
 headers, and all valid RFC-822 messages. Although a
 gateway must accept an RFC-822 explicit source route
 ("@...:" format) in either the RFC-822 header or in the
 envelope, it MAY or may not act on the source route; see
 Sections 5.2.6 and 5.2.19.

 DISCUSSION:
 It is often tempting to restrict the range of
 addresses accepted at the mail gateway to simplify
 the translation into addresses for the remote
 environment. This practice is based on the
 assumption that mail users have control over the
 addresses their mailers send to the mail gateway. In
 practice, however, users have little control over the
 addresses that are finally sent; their mailers are
 free to change addresses into any legal RFC-822
 format.

 (D) The gateway MUST ensure that all header fields of a
 message that it forwards into the Internet meet the
 requirements for Internet mail. In particular, all
 addresses in "From:", "To:", "Cc:", etc., fields must be
 transformed (if necessary) to satisfy RFC-822 syntax, and
 they must be effective and useful for sending replies.

 (E) The translation algorithm used to convert mail from the
 Internet protocols to another environment’s protocol
 SHOULD try to ensure that error messages from the foreign
 mail environment are delivered to the return path from the
 SMTP envelope, not to the sender listed in the "From:"
 field of the RFC-822 message.

 DISCUSSION:
 Internet mail lists usually place the address of the
 mail list maintainer in the envelope but leave the

Internet Engineering Task Force [Page 67]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 original message header intact (with the "From:"
 field containing the original sender). This yields
 the behavior the average recipient expects: a reply
 to the header gets sent to the original sender, not
 to a mail list maintainer; however, errors get sent
 to the maintainer (who can fix the problem) and not
 the sender (who probably cannot).

 (F) Similarly, when forwarding a message from another
 environment into the Internet, the gateway SHOULD set the
 envelope return path in accordance with an error message
 return address, if any, supplied by the foreign
 environment.

 5.3.8 Maximum Message Size

 Mailer software MUST be able to send and receive messages of at
 least 64K bytes in length (including header), and a much larger
 maximum size is highly desirable.

 DISCUSSION:
 Although SMTP does not define the maximum size of a
 message, many systems impose implementation limits.

 The current de facto minimum limit in the Internet is 64K
 bytes. However, electronic mail is used for a variety of
 purposes that create much larger messages. For example,
 mail is often used instead of FTP for transmitting ASCII
 files, and in particular to transmit entire documents. As
 a result, messages can be 1 megabyte or even larger. We
 note that the present document together with its lower-
 layer companion contains 0.5 megabytes.

Internet Engineering Task Force [Page 68]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 5.4 SMTP REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
 | | | | | | |
RECEIVER-SMTP: | | | | | | |
 Implement VRFY |5.2.3 |x| | | | |
 Implement EXPN |5.2.3 | |x| | | |
 EXPN, VRFY configurable |5.2.3 | | |x| | |
 Implement SEND, SOML, SAML |5.2.4 | | |x| | |
 Verify HELO parameter |5.2.5 | | |x| | |
 Refuse message with bad HELO |5.2.5 | | | | |x|
 Accept explicit src-route syntax in env. |5.2.6 |x| | | | |
 Support "postmaster" |5.2.7 |x| | | | |
 Process RCPT when received (except lists) |5.2.7 | | |x| | |
 Long delay of RCPT responses |5.2.7 | | | | |x|
 | | | | | | |
 Add Received: line |5.2.8 |x| | | | |
 Received: line include domain literal |5.2.8 | |x| | | |
 Change previous Received: line |5.2.8 | | | | |x|
 Pass Return-Path info (final deliv/gwy) |5.2.8 |x| | | | |
 Support empty reverse path |5.2.9 |x| | | | |
 Send only official reply codes |5.2.10 | |x| | | |
 Send text from RFC-821 when appropriate |5.2.10 | |x| | | |
 Delete "." for transparency |5.2.11 |x| | | | |
 Accept and recognize self domain literal(s) |5.2.17 |x| | | | |
 | | | | | | |
 Error message about error message |5.3.1 | | | | |x|
 Keep pending listen on SMTP port |5.3.1.2 | |x| | | |
 Provide limit on recv concurrency |5.3.1.2 | | |x| | |
 Wait at least 5 mins for next sender cmd |5.3.2 | |x| | | |
 Avoidable delivery failure after "250 OK" |5.3.3 | | | | |x|
 Send error notification msg after accept |5.3.3 |x| | | | |
 Send using null return path |5.3.3 |x| | | | |
 Send to envelope return path |5.3.3 | |x| | | |
 Send to null address |5.3.3 | | | | |x|
 Strip off explicit src route |5.3.3 | |x| | | |
 Minimize acceptance delay (RFC-1047) |5.3.3 |x| | | | |
---|----------|-|-|-|-|-|--

Internet Engineering Task Force [Page 69]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 | | | | | | |
SENDER-SMTP: | | | | | | |
 Canonicalized domain names in MAIL, RCPT |5.2.2 |x| | | | |
 Implement SEND, SOML, SAML |5.2.4 | | |x| | |
 Send valid principal host name in HELO |5.2.5 |x| | | | |
 Send explicit source route in RCPT TO: |5.2.6 | | | |x| |
 Use only reply code to determine action |5.2.10 |x| | | | |
 Use only high digit of reply code when poss. |5.2.10 | |x| | | |
 Add "." for transparency |5.2.11 |x| | | | |
 | | | | | | |
 Retry messages after soft failure |5.3.1.1 |x| | | | |
 Delay before retry |5.3.1.1 |x| | | | |
 Configurable retry parameters |5.3.1.1 |x| | | | |
 Retry once per each queued dest host |5.3.1.1 | |x| | | |
 Multiple RCPT’s for same DATA |5.3.1.1 | |x| | | |
 Support multiple concurrent transactions |5.3.1.1 | | |x| | |
 Provide limit on concurrency |5.3.1.1 | |x| | | |
 | | | | | | |
 Timeouts on all activities |5.3.1 |x| | | | |
 Per-command timeouts |5.3.2 | |x| | | |
 Timeouts easily reconfigurable |5.3.2 | |x| | | |
 Recommended times |5.3.2 | |x| | | |
 Try alternate addr’s in order |5.3.4 |x| | | | |
 Configurable limit on alternate tries |5.3.4 | | |x| | |
 Try at least two alternates |5.3.4 | |x| | | |
 Load-split across equal MX alternates |5.3.4 | |x| | | |
 Use the Domain Name System |5.3.5 |x| | | | |
 Support MX records |5.3.5 |x| | | | |
 Use WKS records in MX processing |5.2.12 | | | |x| |
---|----------|-|-|-|-|-|--
 | | | | | | |
MAIL FORWARDING: | | | | | | |
 Alter existing header field(s) |5.2.6 | | | |x| |
 Implement relay function: 821/section 3.6 |5.2.6 | | |x| | |
 If not, deliver to RHS domain |5.2.6 | |x| | | |
 Interpret ’local-part’ of addr |5.2.16 | | | | |x|
 | | | | | | |
MAILING LISTS AND ALIASES | | | | | | |
 Support both |5.3.6 | |x| | | |
 Report mail list error to local admin. |5.3.6 |x| | | | |
 | | | | | | |
MAIL GATEWAYS: | | | | | | |
 Embed foreign mail route in local-part |5.2.16 | | |x| | |
 Rewrite header fields when necessary |5.3.7 | | |x| | |
 Prepend Received: line |5.3.7 |x| | | | |
 Change existing Received: line |5.3.7 | | | | |x|
 Accept full RFC-822 on Internet side |5.3.7 | |x| | | |
 Act on RFC-822 explicit source route |5.3.7 | | |x| | |

Internet Engineering Task Force [Page 70]

RFC1123 MAIL -- SMTP & RFC-822 October 1989

 Send only valid RFC-822 on Internet side |5.3.7 |x| | | | |
 Deliver error msgs to envelope addr |5.3.7 | |x| | | |
 Set env return path from err return addr |5.3.7 | |x| | | |
 | | | | | | |
USER AGENT -- RFC-822 | | | | | | |
 Allow user to enter <route> address |5.2.6 | | | |x| |
 Support RFC-1049 Content Type field |5.2.13 | | |x| | |
 Use 4-digit years |5.2.14 | |x| | | |
 Generate numeric timezones |5.2.14 | |x| | | |
 Accept all timezones |5.2.14 |x| | | | |
 Use non-num timezones from RFC-822 |5.2.14 |x| | | | |
 Omit phrase before route-addr |5.2.15 | | |x| | |
 Accept and parse dot.dec. domain literals |5.2.17 |x| | | | |
 Accept all RFC-822 address formats |5.2.18 |x| | | | |
 Generate invalid RFC-822 address format |5.2.18 | | | | |x|
 Fully-qualified domain names in header |5.2.18 |x| | | | |
 Create explicit src route in header |5.2.19 | | | |x| |
 Accept explicit src route in header |5.2.19 |x| | | | |
 | | | | | | |
Send/recv at least 64KB messages |5.3.8 |x| | | | |

Internet Engineering Task Force [Page 71]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

6. SUPPORT SERVICES

 6.1 DOMAIN NAME TRANSLATION

 6.1.1 INTRODUCTION

 Every host MUST implement a resolver for the Domain Name System
 (DNS), and it MUST implement a mechanism using this DNS
 resolver to convert host names to IP addresses and vice-versa
 [DNS:1, DNS:2].

 In addition to the DNS, a host MAY also implement a host name
 translation mechanism that searches a local Internet host
 table. See Section 6.1.3.8 for more information on this
 option.

 DISCUSSION:
 Internet host name translation was originally performed by
 searching local copies of a table of all hosts. This
 table became too large to update and distribute in a
 timely manner and too large to fit into many hosts, so the
 DNS was invented.

 The DNS creates a distributed database used primarily for
 the translation between host names and host addresses.
 Implementation of DNS software is required. The DNS
 consists of two logically distinct parts: name servers and
 resolvers (although implementations often combine these
 two logical parts in the interest of efficiency) [DNS:2].

 Domain name servers store authoritative data about certain
 sections of the database and answer queries about the
 data. Domain resolvers query domain name servers for data
 on behalf of user processes. Every host therefore needs a
 DNS resolver; some host machines will also need to run
 domain name servers. Since no name server has complete
 information, in general it is necessary to obtain
 information from more than one name server to resolve a
 query.

 6.1.2 PROTOCOL WALK-THROUGH

 An implementor must study references [DNS:1] and [DNS:2]
 carefully. They provide a thorough description of the theory,
 protocol, and implementation of the domain name system, and
 reflect several years of experience.

Internet Engineering Task Force [Page 72]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 6.1.2.1 Resource Records with Zero TTL: RFC-1035 Section 3.2.1

 All DNS name servers and resolvers MUST properly handle RRs
 with a zero TTL: return the RR to the client but do not
 cache it.

 DISCUSSION:
 Zero TTL values are interpreted to mean that the RR can
 only be used for the transaction in progress, and
 should not be cached; they are useful for extremely
 volatile data.

 6.1.2.2 QCLASS Values: RFC-1035 Section 3.2.5

 A query with "QCLASS=*" SHOULD NOT be used unless the
 requestor is seeking data from more than one class. In
 particular, if the requestor is only interested in Internet
 data types, QCLASS=IN MUST be used.

 6.1.2.3 Unused Fields: RFC-1035 Section 4.1.1

 Unused fields in a query or response message MUST be zero.

 6.1.2.4 Compression: RFC-1035 Section 4.1.4

 Name servers MUST use compression in responses.

 DISCUSSION:
 Compression is essential to avoid overflowing UDP
 datagrams; see Section 6.1.3.2.

 6.1.2.5 Misusing Configuration Info: RFC-1035 Section 6.1.2

 Recursive name servers and full-service resolvers generally
 have some configuration information containing hints about
 the location of root or local name servers. An
 implementation MUST NOT include any of these hints in a
 response.

 DISCUSSION:
 Many implementors have found it convenient to store
 these hints as if they were cached data, but some
 neglected to ensure that this "cached data" was not
 included in responses. This has caused serious
 problems in the Internet when the hints were obsolete
 or incorrect.

Internet Engineering Task Force [Page 73]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 6.1.3 SPECIFIC ISSUES

 6.1.3.1 Resolver Implementation

 A name resolver SHOULD be able to multiplex concurrent
 requests if the host supports concurrent processes.

 In implementing a DNS resolver, one of two different models
 MAY optionally be chosen: a full-service resolver, or a stub
 resolver.

 (A) Full-Service Resolver

 A full-service resolver is a complete implementation of
 the resolver service, and is capable of dealing with
 communication failures, failure of individual name
 servers, location of the proper name server for a given
 name, etc. It must satisfy the following requirements:

 o The resolver MUST implement a local caching
 function to avoid repeated remote access for
 identical requests, and MUST time out information
 in the cache.

 o The resolver SHOULD be configurable with start-up
 information pointing to multiple root name servers
 and multiple name servers for the local domain.
 This insures that the resolver will be able to
 access the whole name space in normal cases, and
 will be able to access local domain information
 should the local network become disconnected from
 the rest of the Internet.

 (B) Stub Resolver

 A "stub resolver" relies on the services of a recursive
 name server on the connected network or a "nearby"
 network. This scheme allows the host to pass on the
 burden of the resolver function to a name server on
 another host. This model is often essential for less
 capable hosts, such as PCs, and is also recommended
 when the host is one of several workstations on a local
 network, because it allows all of the workstations to
 share the cache of the recursive name server and hence
 reduce the number of domain requests exported by the
 local network.

Internet Engineering Task Force [Page 74]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 At a minimum, the stub resolver MUST be capable of
 directing its requests to redundant recursive name
 servers. Note that recursive name servers are allowed
 to restrict the sources of requests that they will
 honor, so the host administrator must verify that the
 service will be provided. Stub resolvers MAY implement
 caching if they choose, but if so, MUST timeout cached
 information.

 6.1.3.2 Transport Protocols

 DNS resolvers and recursive servers MUST support UDP, and
 SHOULD support TCP, for sending (non-zone-transfer) queries.
 Specifically, a DNS resolver or server that is sending a
 non-zone-transfer query MUST send a UDP query first. If the
 Answer section of the response is truncated and if the
 requester supports TCP, it SHOULD try the query again using
 TCP.

 DNS servers MUST be able to service UDP queries and SHOULD
 be able to service TCP queries. A name server MAY limit the
 resources it devotes to TCP queries, but it SHOULD NOT
 refuse to service a TCP query just because it would have
 succeeded with UDP.

 Truncated responses MUST NOT be saved (cached) and later
 used in such a way that the fact that they are truncated is
 lost.

 DISCUSSION:
 UDP is preferred over TCP for queries because UDP
 queries have much lower overhead, both in packet count
 and in connection state. The use of UDP is essential
 for heavily-loaded servers, especially the root
 servers. UDP also offers additional robustness, since
 a resolver can attempt several UDP queries to different
 servers for the cost of a single TCP query.

 It is possible for a DNS response to be truncated,
 although this is a very rare occurrence in the present
 Internet DNS. Practically speaking, truncation cannot
 be predicted, since it is data-dependent. The
 dependencies include the number of RRs in the answer,
 the size of each RR, and the savings in space realized
 by the name compression algorithm. As a rule of thumb,
 truncation in NS and MX lists should not occur for
 answers containing 15 or fewer RRs.

Internet Engineering Task Force [Page 75]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 Whether it is possible to use a truncated answer
 depends on the application. A mailer must not use a
 truncated MX response, since this could lead to mail
 loops.

 Responsible practices can make UDP suffice in the vast
 majority of cases. Name servers must use compression
 in responses. Resolvers must differentiate truncation
 of the Additional section of a response (which only
 loses extra information) from truncation of the Answer
 section (which for MX records renders the response
 unusable by mailers). Database administrators should
 list only a reasonable number of primary names in lists
 of name servers, MX alternatives, etc.

 However, it is also clear that some new DNS record
 types defined in the future will contain information
 exceeding the 512 byte limit that applies to UDP, and
 hence will require TCP. Thus, resolvers and name
 servers should implement TCP services as a backup to
 UDP today, with the knowledge that they will require
 the TCP service in the future.

 By private agreement, name servers and resolvers MAY arrange
 to use TCP for all traffic between themselves. TCP MUST be
 used for zone transfers.

 A DNS server MUST have sufficient internal concurrency that
 it can continue to process UDP queries while awaiting a
 response or performing a zone transfer on an open TCP
 connection [DNS:2].

 A server MAY support a UDP query that is delivered using an
 IP broadcast or multicast address. However, the Recursion
 Desired bit MUST NOT be set in a query that is multicast,
 and MUST be ignored by name servers receiving queries via a
 broadcast or multicast address. A host that sends broadcast
 or multicast DNS queries SHOULD send them only as occasional
 probes, caching the IP address(es) it obtains from the
 response(s) so it can normally send unicast queries.

 DISCUSSION:
 Broadcast or (especially) IP multicast can provide a
 way to locate nearby name servers without knowing their
 IP addresses in advance. However, general broadcasting
 of recursive queries can result in excessive and
 unnecessary load on both network and servers.

Internet Engineering Task Force [Page 76]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 6.1.3.3 Efficient Resource Usage

 The following requirements on servers and resolvers are very
 important to the health of the Internet as a whole,
 particularly when DNS services are invoked repeatedly by
 higher level automatic servers, such as mailers.

 (1) The resolver MUST implement retransmission controls to
 insure that it does not waste communication bandwidth,
 and MUST impose finite bounds on the resources consumed
 to respond to a single request. See [DNS:2] pages 43-
 44 for specific recommendations.

 (2) After a query has been retransmitted several times
 without a response, an implementation MUST give up and
 return a soft error to the application.

 (3) All DNS name servers and resolvers SHOULD cache
 temporary failures, with a timeout period of the order
 of minutes.

 DISCUSSION:
 This will prevent applications that immediately
 retry soft failures (in violation of Section 2.2
 of this document) from generating excessive DNS
 traffic.

 (4) All DNS name servers and resolvers SHOULD cache
 negative responses that indicate the specified name, or
 data of the specified type, does not exist, as
 described in [DNS:2].

 (5) When a DNS server or resolver retries a UDP query, the
 retry interval SHOULD be constrained by an exponential
 backoff algorithm, and SHOULD also have upper and lower
 bounds.

 IMPLEMENTATION:
 A measured RTT and variance (if available) should
 be used to calculate an initial retransmission
 interval. If this information is not available, a
 default of no less than 5 seconds should be used.
 Implementations may limit the retransmission
 interval, but this limit must exceed twice the
 Internet maximum segment lifetime plus service
 delay at the name server.

 (6) When a resolver or server receives a Source Quench for

Internet Engineering Task Force [Page 77]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 a query it has issued, it SHOULD take steps to reduce
 the rate of querying that server in the near future. A
 server MAY ignore a Source Quench that it receives as
 the result of sending a response datagram.

 IMPLEMENTATION:
 One recommended action to reduce the rate is to
 send the next query attempt to an alternate
 server, if there is one available. Another is to
 backoff the retry interval for the same server.

 6.1.3.4 Multihomed Hosts

 When the host name-to-address function encounters a host
 with multiple addresses, it SHOULD rank or sort the
 addresses using knowledge of the immediately connected
 network number(s) and any other applicable performance or
 history information.

 DISCUSSION:
 The different addresses of a multihomed host generally
 imply different Internet paths, and some paths may be
 preferable to others in performance, reliability, or
 administrative restrictions. There is no general way
 for the domain system to determine the best path. A
 recommended approach is to base this decision on local
 configuration information set by the system
 administrator.

 IMPLEMENTATION:
 The following scheme has been used successfully:

 (a) Incorporate into the host configuration data a
 Network-Preference List, that is simply a list of
 networks in preferred order. This list may be
 empty if there is no preference.

 (b) When a host name is mapped into a list of IP
 addresses, these addresses should be sorted by
 network number, into the same order as the
 corresponding networks in the Network-Preference
 List. IP addresses whose networks do not appear
 in the Network-Preference List should be placed at
 the end of the list.

Internet Engineering Task Force [Page 78]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 6.1.3.5 Extensibility

 DNS software MUST support all well-known, class-independent
 formats [DNS:2], and SHOULD be written to minimize the
 trauma associated with the introduction of new well-known
 types and local experimentation with non-standard types.

 DISCUSSION:
 The data types and classes used by the DNS are
 extensible, and thus new types will be added and old
 types deleted or redefined. Introduction of new data
 types ought to be dependent only upon the rules for
 compression of domain names inside DNS messages, and
 the translation between printable (i.e., master file)
 and internal formats for Resource Records (RRs).

 Compression relies on knowledge of the format of data
 inside a particular RR. Hence compression must only be
 used for the contents of well-known, class-independent
 RRs, and must never be used for class-specific RRs or
 RR types that are not well-known. The owner name of an
 RR is always eligible for compression.

 A name server may acquire, via zone transfer, RRs that
 the server doesn’t know how to convert to printable
 format. A resolver can receive similar information as
 the result of queries. For proper operation, this data
 must be preserved, and hence the implication is that
 DNS software cannot use textual formats for internal
 storage.

 The DNS defines domain name syntax very generally -- a
 string of labels each containing up to 63 8-bit octets,
 separated by dots, and with a maximum total of 255
 octets. Particular applications of the DNS are
 permitted to further constrain the syntax of the domain
 names they use, although the DNS deployment has led to
 some applications allowing more general names. In
 particular, Section 2.1 of this document liberalizes
 slightly the syntax of a legal Internet host name that
 was defined in RFC-952 [DNS:4].

 6.1.3.6 Status of RR Types

 Name servers MUST be able to load all RR types except MD and
 MF from configuration files. The MD and MF types are
 obsolete and MUST NOT be implemented; in particular, name
 servers MUST NOT load these types from configuration files.

Internet Engineering Task Force [Page 79]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 DISCUSSION:
 The RR types MB, MG, MR, NULL, MINFO and RP are
 considered experimental, and applications that use the
 DNS cannot expect these RR types to be supported by
 most domains. Furthermore these types are subject to
 redefinition.

 The TXT and WKS RR types have not been widely used by
 Internet sites; as a result, an application cannot rely
 on the the existence of a TXT or WKS RR in most
 domains.

 6.1.3.7 Robustness

 DNS software may need to operate in environments where the
 root servers or other servers are unavailable due to network
 connectivity or other problems. In this situation, DNS name
 servers and resolvers MUST continue to provide service for
 the reachable part of the name space, while giving temporary
 failures for the rest.

 DISCUSSION:
 Although the DNS is meant to be used primarily in the
 connected Internet, it should be possible to use the
 system in networks which are unconnected to the
 Internet. Hence implementations must not depend on
 access to root servers before providing service for
 local names.

 6.1.3.8 Local Host Table

 DISCUSSION:
 A host may use a local host table as a backup or
 supplement to the DNS. This raises the question of
 which takes precedence, the DNS or the host table; the
 most flexible approach would make this a configuration
 option.

 Typically, the contents of such a supplementary host
 table will be determined locally by the site. However,
 a publically-available table of Internet hosts is
 maintained by the DDN Network Information Center (DDN
 NIC), with a format documented in [DNS:4]. This table
 can be retrieved from the DDN NIC using a protocol
 described in [DNS:5]. It must be noted that this table
 contains only a small fraction of all Internet hosts.
 Hosts using this protocol to retrieve the DDN NIC host
 table should use the VERSION command to check if the

Internet Engineering Task Force [Page 80]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 table has changed before requesting the entire table
 with the ALL command. The VERSION identifier should be
 treated as an arbitrary string and tested only for
 equality; no numerical sequence may be assumed.

 The DDN NIC host table includes administrative
 information that is not needed for host operation and
 is therefore not currently included in the DNS
 database; examples include network and gateway entries.
 However, much of this additional information will be
 added to the DNS in the future. Conversely, the DNS
 provides essential services (in particular, MX records)
 that are not available from the DDN NIC host table.

 6.1.4 DNS USER INTERFACE

 6.1.4.1 DNS Administration

 This document is concerned with design and implementation
 issues in host software, not with administrative or
 operational issues. However, administrative issues are of
 particular importance in the DNS, since errors in particular
 segments of this large distributed database can cause poor
 or erroneous performance for many sites. These issues are
 discussed in [DNS:6] and [DNS:7].

 6.1.4.2 DNS User Interface

 Hosts MUST provide an interface to the DNS for all
 application programs running on the host. This interface
 will typically direct requests to a system process to
 perform the resolver function [DNS:1, 6.1:2].

 At a minimum, the basic interface MUST support a request for
 all information of a specific type and class associated with
 a specific name, and it MUST return either all of the
 requested information, a hard error code, or a soft error
 indication. When there is no error, the basic interface
 returns the complete response information without
 modification, deletion, or ordering, so that the basic
 interface will not need to be changed to accommodate new
 data types.

 DISCUSSION:
 The soft error indication is an essential part of the
 interface, since it may not always be possible to
 access particular information from the DNS; see Section
 6.1.3.3.

Internet Engineering Task Force [Page 81]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 A host MAY provide other DNS interfaces tailored to
 particular functions, transforming the raw domain data into
 formats more suited to these functions. In particular, a
 host MUST provide a DNS interface to facilitate translation
 between host addresses and host names.

 6.1.4.3 Interface Abbreviation Facilities

 User interfaces MAY provide a method for users to enter
 abbreviations for commonly-used names. Although the
 definition of such methods is outside of the scope of the
 DNS specification, certain rules are necessary to insure
 that these methods allow access to the entire DNS name space
 and to prevent excessive use of Internet resources.

 If an abbreviation method is provided, then:

 (a) There MUST be some convention for denoting that a name
 is already complete, so that the abbreviation method(s)
 are suppressed. A trailing dot is the usual method.

 (b) Abbreviation expansion MUST be done exactly once, and
 MUST be done in the context in which the name was
 entered.

 DISCUSSION:
 For example, if an abbreviation is used in a mail
 program for a destination, the abbreviation should be
 expanded into a full domain name and stored in the
 queued message with an indication that it is already
 complete. Otherwise, the abbreviation might be
 expanded with a mail system search list, not the
 user’s, or a name could grow due to repeated
 canonicalizations attempts interacting with wildcards.

 The two most common abbreviation methods are:

 (1) Interface-level aliases

 Interface-level aliases are conceptually implemented as
 a list of alias/domain name pairs. The list can be
 per-user or per-host, and separate lists can be
 associated with different functions, e.g. one list for
 host name-to-address translation, and a different list
 for mail domains. When the user enters a name, the
 interface attempts to match the name to the alias
 component of a list entry, and if a matching entry can

Internet Engineering Task Force [Page 82]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 be found, the name is replaced by the domain name found
 in the pair.

 Note that interface-level aliases and CNAMEs are
 completely separate mechanisms; interface-level aliases
 are a local matter while CNAMEs are an Internet-wide
 aliasing mechanism which is a required part of any DNS
 implementation.

 (2) Search Lists

 A search list is conceptually implemented as an ordered
 list of domain names. When the user enters a name, the
 domain names in the search list are used as suffixes to
 the user-supplied name, one by one, until a domain name
 with the desired associated data is found, or the
 search list is exhausted. Search lists often contain
 the name of the local host’s parent domain or other
 ancestor domains. Search lists are often per-user or
 per-process.

 It SHOULD be possible for an administrator to disable a
 DNS search-list facility. Administrative denial may be
 warranted in some cases, to prevent abuse of the DNS.

 There is danger that a search-list mechanism will
 generate excessive queries to the root servers while
 testing whether user input is a complete domain name,
 lacking a final period to mark it as complete. A
 search-list mechanism MUST have one of, and SHOULD have
 both of, the following two provisions to prevent this:

 (a) The local resolver/name server can implement
 caching of negative responses (see Section
 6.1.3.3).

 (b) The search list expander can require two or more
 interior dots in a generated domain name before it
 tries using the name in a query to non-local
 domain servers, such as the root.

 DISCUSSION:
 The intent of this requirement is to avoid
 excessive delay for the user as the search list is
 tested, and more importantly to prevent excessive
 traffic to the root and other high-level servers.
 For example, if the user supplied a name "X" and
 the search list contained the root as a component,

Internet Engineering Task Force [Page 83]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 a query would have to consult a root server before
 the next search list alternative could be tried.
 The resulting load seen by the root servers and
 gateways near the root would be multiplied by the
 number of hosts in the Internet.

 The negative caching alternative limits the effect
 to the first time a name is used. The interior
 dot rule is simpler to implement but can prevent
 easy use of some top-level names.

 6.1.5 DOMAIN NAME SYSTEM REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
GENERAL ISSUES | | | | | | |
 | | | | | | |
Implement DNS name-to-address conversion |6.1.1 |x| | | | |
Implement DNS address-to-name conversion |6.1.1 |x| | | | |
Support conversions using host table |6.1.1 | | |x| | |
Properly handle RR with zero TTL |6.1.2.1 |x| | | | |
Use QCLASS=* unnecessarily |6.1.2.2 | |x| | | |
 Use QCLASS=IN for Internet class |6.1.2.2 |x| | | | |
Unused fields zero |6.1.2.3 |x| | | | |
Use compression in responses |6.1.2.4 |x| | | | |
 | | | | | | |
Include config info in responses |6.1.2.5 | | | | |x|
Support all well-known, class-indep. types |6.1.3.5 |x| | | | |
Easily expand type list |6.1.3.5 | |x| | | |
Load all RR types (except MD and MF) |6.1.3.6 |x| | | | |
Load MD or MF type |6.1.3.6 | | | | |x|
Operate when root servers, etc. unavailable |6.1.3.7 |x| | | | |
---|-----------|-|-|-|-|-|--
RESOLVER ISSUES: | | | | | | |
 | | | | | | |
Resolver support multiple concurrent requests |6.1.3.1 | |x| | | |
Full-service resolver: |6.1.3.1 | | |x| | |
 Local caching |6.1.3.1 |x| | | | |

Internet Engineering Task Force [Page 84]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 Information in local cache times out |6.1.3.1 |x| | | | |
 Configurable with starting info |6.1.3.1 | |x| | | |
Stub resolver: |6.1.3.1 | | |x| | |
 Use redundant recursive name servers |6.1.3.1 |x| | | | |
 Local caching |6.1.3.1 | | |x| | |
 Information in local cache times out |6.1.3.1 |x| | | | |
Support for remote multi-homed hosts: | | | | | | |
 Sort multiple addresses by preference list |6.1.3.4 | |x| | | |
 | | | | | | |
---|-----------|-|-|-|-|-|--
TRANSPORT PROTOCOLS: | | | | | | |
 | | | | | | |
Support UDP queries |6.1.3.2 |x| | | | |
Support TCP queries |6.1.3.2 | |x| | | |
 Send query using UDP first |6.1.3.2 |x| | | | |1
 Try TCP if UDP answers are truncated |6.1.3.2 | |x| | | |
Name server limit TCP query resources |6.1.3.2 | | |x| | |
 Punish unnecessary TCP query |6.1.3.2 | | | |x| |
Use truncated data as if it were not |6.1.3.2 | | | | |x|
Private agreement to use only TCP |6.1.3.2 | | |x| | |
Use TCP for zone transfers |6.1.3.2 |x| | | | |
TCP usage not block UDP queries |6.1.3.2 |x| | | | |
Support broadcast or multicast queries |6.1.3.2 | | |x| | |
 RD bit set in query |6.1.3.2 | | | | |x|
 RD bit ignored by server is b’cast/m’cast |6.1.3.2 |x| | | | |
 Send only as occasional probe for addr’s |6.1.3.2 | |x| | | |
---|-----------|-|-|-|-|-|--
RESOURCE USAGE: | | | | | | |
 | | | | | | |
Transmission controls, per [DNS:2] |6.1.3.3 |x| | | | |
 Finite bounds per request |6.1.3.3 |x| | | | |
Failure after retries => soft error |6.1.3.3 |x| | | | |
Cache temporary failures |6.1.3.3 | |x| | | |
Cache negative responses |6.1.3.3 | |x| | | |
Retries use exponential backoff |6.1.3.3 | |x| | | |
 Upper, lower bounds |6.1.3.3 | |x| | | |
Client handle Source Quench |6.1.3.3 | |x| | | |
Server ignore Source Quench |6.1.3.3 | | |x| | |
---|-----------|-|-|-|-|-|--
USER INTERFACE: | | | | | | |
 | | | | | | |
All programs have access to DNS interface |6.1.4.2 |x| | | | |
Able to request all info for given name |6.1.4.2 |x| | | | |
Returns complete info or error |6.1.4.2 |x| | | | |
Special interfaces |6.1.4.2 | | |x| | |
 Name<->Address translation |6.1.4.2 |x| | | | |
 | | | | | | |
Abbreviation Facilities: |6.1.4.3 | | |x| | |

Internet Engineering Task Force [Page 85]

RFC1123 SUPPORT SERVICES -- DOMAINS October 1989

 Convention for complete names |6.1.4.3 |x| | | | |
 Conversion exactly once |6.1.4.3 |x| | | | |
 Conversion in proper context |6.1.4.3 |x| | | | |
 Search list: |6.1.4.3 | | |x| | |
 Administrator can disable |6.1.4.3 | |x| | | |
 Prevention of excessive root queries |6.1.4.3 |x| | | | |
 Both methods |6.1.4.3 | |x| | | |
---	-----------	-	-	-	-	-	--

1. Unless there is private agreement between particular resolver and
 particular server.

Internet Engineering Task Force [Page 86]

RFC1123 SUPPORT SERVICES -- INITIALIZATION October 1989

 6.2 HOST INITIALIZATION

 6.2.1 INTRODUCTION

 This section discusses the initialization of host software
 across a connected network, or more generally across an
 Internet path. This is necessary for a diskless host, and may
 optionally be used for a host with disk drives. For a diskless
 host, the initialization process is called "network booting"
 and is controlled by a bootstrap program located in a boot ROM.

 To initialize a diskless host across the network, there are two
 distinct phases:

 (1) Configure the IP layer.

 Diskless machines often have no permanent storage in which
 to store network configuration information, so that
 sufficient configuration information must be obtained
 dynamically to support the loading phase that follows.
 This information must include at least the IP addresses of
 the host and of the boot server. To support booting
 across a gateway, the address mask and a list of default
 gateways are also required.

 (2) Load the host system code.

 During the loading phase, an appropriate file transfer
 protocol is used to copy the system code across the
 network from the boot server.

 A host with a disk may perform the first step, dynamic
 configuration. This is important for microcomputers, whose
 floppy disks allow network configuration information to be
 mistakenly duplicated on more than one host. Also,
 installation of new hosts is much simpler if they automatically
 obtain their configuration information from a central server,
 saving administrator time and decreasing the probability of
 mistakes.

 6.2.2 REQUIREMENTS

 6.2.2.1 Dynamic Configuration

 A number of protocol provisions have been made for dynamic
 configuration.

 o ICMP Information Request/Reply messages

Internet Engineering Task Force [Page 87]

RFC1123 SUPPORT SERVICES -- INITIALIZATION October 1989

 This obsolete message pair was designed to allow a host
 to find the number of the network it is on.
 Unfortunately, it was useful only if the host already
 knew the host number part of its IP address,
 information that hosts requiring dynamic configuration
 seldom had.

 o Reverse Address Resolution Protocol (RARP) [BOOT:4]

 RARP is a link-layer protocol for a broadcast medium
 that allows a host to find its IP address given its
 link layer address. Unfortunately, RARP does not work
 across IP gateways and therefore requires a RARP server
 on every network. In addition, RARP does not provide
 any other configuration information.

 o ICMP Address Mask Request/Reply messages

 These ICMP messages allow a host to learn the address
 mask for a particular network interface.

 o BOOTP Protocol [BOOT:2]

 This protocol allows a host to determine the IP
 addresses of the local host and the boot server, the
 name of an appropriate boot file, and optionally the
 address mask and list of default gateways. To locate a
 BOOTP server, the host broadcasts a BOOTP request using
 UDP. Ad hoc gateway extensions have been used to
 transmit the BOOTP broadcast through gateways, and in
 the future the IP Multicasting facility will provide a
 standard mechanism for this purpose.

 The suggested approach to dynamic configuration is to use
 the BOOTP protocol with the extensions defined in "BOOTP
 Vendor Information Extensions" RFC-1084 [BOOT:3]. RFC-1084
 defines some important general (not vendor-specific)
 extensions. In particular, these extensions allow the
 address mask to be supplied in BOOTP; we RECOMMEND that the
 address mask be supplied in this manner.

 DISCUSSION:
 Historically, subnetting was defined long after IP, and
 so a separate mechanism (ICMP Address Mask messages)
 was designed to supply the address mask to a host.
 However, the IP address mask and the corresponding IP
 address conceptually form a pair, and for operational

Internet Engineering Task Force [Page 88]

RFC1123 SUPPORT SERVICES -- INITIALIZATION October 1989

 simplicity they ought to be defined at the same time
 and by the same mechanism, whether a configuration file
 or a dynamic mechanism like BOOTP.

 Note that BOOTP is not sufficiently general to specify
 the configurations of all interfaces of a multihomed
 host. A multihomed host must either use BOOTP
 separately for each interface, or configure one
 interface using BOOTP to perform the loading, and
 perform the complete initialization from a file later.

 Application layer configuration information is expected
 to be obtained from files after loading of the system
 code.

 6.2.2.2 Loading Phase

 A suggested approach for the loading phase is to use TFTP
 [BOOT:1] between the IP addresses established by BOOTP.

 TFTP to a broadcast address SHOULD NOT be used, for reasons
 explained in Section 4.2.3.4.

Internet Engineering Task Force [Page 89]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 6.3 REMOTE MANAGEMENT

 6.3.1 INTRODUCTION

 The Internet community has recently put considerable effort
 into the development of network management protocols. The
 result has been a two-pronged approach [MGT:1, MGT:6]: the
 Simple Network Management Protocol (SNMP) [MGT:4] and the
 Common Management Information Protocol over TCP (CMOT) [MGT:5].

 In order to be managed using SNMP or CMOT, a host will need to
 implement an appropriate management agent. An Internet host
 SHOULD include an agent for either SNMP or CMOT.

 Both SNMP and CMOT operate on a Management Information Base
 (MIB) that defines a collection of management values. By
 reading and setting these values, a remote application may
 query and change the state of the managed system.

 A standard MIB [MGT:3] has been defined for use by both
 management protocols, using data types defined by the Structure
 of Management Information (SMI) defined in [MGT:2]. Additional
 MIB variables can be introduced under the "enterprises" and
 "experimental" subtrees of the MIB naming space [MGT:2].

 Every protocol module in the host SHOULD implement the relevant
 MIB variables. A host SHOULD implement the MIB variables as
 defined in the most recent standard MIB, and MAY implement
 other MIB variables when appropriate and useful.

 6.3.2 PROTOCOL WALK-THROUGH

 The MIB is intended to cover both hosts and gateways, although
 there may be detailed differences in MIB application to the two
 cases. This section contains the appropriate interpretation of
 the MIB for hosts. It is likely that later versions of the MIB
 will include more entries for host management.

 A managed host must implement the following groups of MIB
 object definitions: System, Interfaces, Address Translation,
 IP, ICMP, TCP, and UDP.

 The following specific interpretations apply to hosts:

 o ipInHdrErrors

 Note that the error "time-to-live exceeded" can occur in a
 host only when it is forwarding a source-routed datagram.

Internet Engineering Task Force [Page 90]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 o ipOutNoRoutes

 This object counts datagrams discarded because no route
 can be found. This may happen in a host if all the
 default gateways in the host’s configuration are down.

 o ipFragOKs, ipFragFails, ipFragCreates

 A host that does not implement intentional fragmentation
 (see "Fragmentation" section of [INTRO:1]) MUST return the
 value zero for these three objects.

 o icmpOutRedirects

 For a host, this object MUST always be zero, since hosts
 do not send Redirects.

 o icmpOutAddrMaskReps

 For a host, this object MUST always be zero, unless the
 host is an authoritative source of address mask
 information.

 o ipAddrTable

 For a host, the "IP Address Table" object is effectively a
 table of logical interfaces.

 o ipRoutingTable

 For a host, the "IP Routing Table" object is effectively a
 combination of the host’s Routing Cache and the static
 route table described in "Routing Outbound Datagrams"
 section of [INTRO:1].

 Within each ipRouteEntry, ipRouteMetric1...4 normally will
 have no meaning for a host and SHOULD always be -1, while
 ipRouteType will normally have the value "remote".

 If destinations on the connected network do not appear in
 the Route Cache (see "Routing Outbound Datagrams section
 of [INTRO:1]), there will be no entries with ipRouteType
 of "direct".

 DISCUSSION:
 The current MIB does not include Type-of-Service in an
 ipRouteEntry, but a future revision is expected to make

Internet Engineering Task Force [Page 91]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 this addition.

 We also expect the MIB to be expanded to allow the remote
 management of applications (e.g., the ability to partially
 reconfigure mail systems). Network service applications
 such as mail systems should therefore be written with the
 "hooks" for remote management.

 6.3.3 MANAGEMENT REQUIREMENTS SUMMARY

 | | | | |S| |
 | | | | |H| |F
 | | | | |O|M|o
 | | |S| |U|U|o
 | | |H| |L|S|t
 | |M|O| |D|T|n
 | |U|U|M| | |o
 | |S|L|A|N|N|t
 | |T|D|Y|O|O|t
FEATURE	SECTION				T	T	e
Support SNMP or CMOT agent |6.3.1 | |x| | | |
Implement specified objects in standard MIB |6.3.1 | |x| | | |

Internet Engineering Task Force [Page 92]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

7. REFERENCES

 This section lists the primary references with which every
 implementer must be thoroughly familiar. It also lists some
 secondary references that are suggested additional reading.

 INTRODUCTORY REFERENCES:

 [INTRO:1] "Requirements for Internet Hosts -- Communication Layers,"
 IETF Host Requirements Working Group, R. Braden, Ed., RFC-1122,
 October 1989.

 [INTRO:2] "DDN Protocol Handbook," NIC-50004, NIC-50005, NIC-50006,
 (three volumes), SRI International, December 1985.

 [INTRO:3] "Official Internet Protocols," J. Reynolds and J. Postel,
 RFC-1011, May 1987.

 This document is republished periodically with new RFC numbers;
 the latest version must be used.

 [INTRO:4] "Protocol Document Order Information," O. Jacobsen and J.
 Postel, RFC-980, March 1986.

 [INTRO:5] "Assigned Numbers," J. Reynolds and J. Postel, RFC-1010,
 May 1987.

 This document is republished periodically with new RFC numbers;
 the latest version must be used.

 TELNET REFERENCES:

 [TELNET:1] "Telnet Protocol Specification," J. Postel and J.
 Reynolds, RFC-854, May 1983.

 [TELNET:2] "Telnet Option Specification," J. Postel and J. Reynolds,
 RFC-855, May 1983.

 [TELNET:3] "Telnet Binary Transmission," J. Postel and J. Reynolds,
 RFC-856, May 1983.

 [TELNET:4] "Telnet Echo Option," J. Postel and J. Reynolds, RFC-857,
 May 1983.

 [TELNET:5] "Telnet Suppress Go Ahead Option," J. Postel and J.

Internet Engineering Task Force [Page 93]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 Reynolds, RFC-858, May 1983.

 [TELNET:6] "Telnet Status Option," J. Postel and J. Reynolds, RFC-
 859, May 1983.

 [TELNET:7] "Telnet Timing Mark Option," J. Postel and J. Reynolds,
 RFC-860, May 1983.

 [TELNET:8] "Telnet Extended Options List," J. Postel and J.
 Reynolds, RFC-861, May 1983.

 [TELNET:9] "Telnet End-Of-Record Option," J. Postel, RFC-855,
 December 1983.

 [TELNET:10] "Telnet Terminal-Type Option," J. VanBokkelen, RFC-1091,
 February 1989.

 This document supercedes RFC-930.

 [TELNET:11] "Telnet Window Size Option," D. Waitzman, RFC-1073,
 October 1988.

 [TELNET:12] "Telnet Linemode Option," D. Borman, RFC-1116, August
 1989.

 [TELNET:13] "Telnet Terminal Speed Option," C. Hedrick, RFC-1079,
 December 1988.

 [TELNET:14] "Telnet Remote Flow Control Option," C. Hedrick, RFC-
 1080, November 1988.

 SECONDARY TELNET REFERENCES:

 [TELNET:15] "Telnet Protocol," MIL-STD-1782, U.S. Department of
 Defense, May 1984.

 This document is intended to describe the same protocol as RFC-
 854. In case of conflict, RFC-854 takes precedence, and the
 present document takes precedence over both.

 [TELNET:16] "SUPDUP Protocol," M. Crispin, RFC-734, October 1977.

 [TELNET:17] "Telnet SUPDUP Option," M. Crispin, RFC-736, October
 1977.

 [TELNET:18] "Data Entry Terminal Option," J. Day, RFC-732, June 1977.

Internet Engineering Task Force [Page 94]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 [TELNET:19] "TELNET Data Entry Terminal option -- DODIIS
 Implementation," A. Yasuda and T. Thompson, RFC-1043, February
 1988.

 FTP REFERENCES:

 [FTP:1] "File Transfer Protocol," J. Postel and J. Reynolds, RFC-
 959, October 1985.

 [FTP:2] "Document File Format Standards," J. Postel, RFC-678,
 December 1974.

 [FTP:3] "File Transfer Protocol," MIL-STD-1780, U.S. Department of
 Defense, May 1984.

 This document is based on an earlier version of the FTP
 specification (RFC-765) and is obsolete.

 TFTP REFERENCES:

 [TFTP:1] "The TFTP Protocol Revision 2," K. Sollins, RFC-783, June
 1981.

 MAIL REFERENCES:

 [SMTP:1] "Simple Mail Transfer Protocol," J. Postel, RFC-821, August
 1982.

 [SMTP:2] "Standard For The Format of ARPA Internet Text Messages,"
 D. Crocker, RFC-822, August 1982.

 This document obsoleted an earlier specification, RFC-733.

 [SMTP:3] "Mail Routing and the Domain System," C. Partridge, RFC-
 974, January 1986.

 This RFC describes the use of MX records, a mandatory extension
 to the mail delivery process.

 [SMTP:4] "Duplicate Messages and SMTP," C. Partridge, RFC-1047,
 February 1988.

Internet Engineering Task Force [Page 95]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 [SMTP:5a] "Mapping between X.400 and RFC 822," S. Kille, RFC-987,
 June 1986.

 [SMTP:5b] "Addendum to RFC-987," S. Kille, RFC-???, September 1987.

 The two preceding RFC’s define a proposed standard for
 gatewaying mail between the Internet and the X.400 environments.

 [SMTP:6] "Simple Mail Transfer Protocol," MIL-STD-1781, U.S.
 Department of Defense, May 1984.

 This specification is intended to describe the same protocol as
 does RFC-821. However, MIL-STD-1781 is incomplete; in
 particular, it does not include MX records [SMTP:3].

 [SMTP:7] "A Content-Type Field for Internet Messages," M. Sirbu,
 RFC-1049, March 1988.

 DOMAIN NAME SYSTEM REFERENCES:

 [DNS:1] "Domain Names - Concepts and Facilities," P. Mockapetris,
 RFC-1034, November 1987.

 This document and the following one obsolete RFC-882, RFC-883,
 and RFC-973.

 [DNS:2] "Domain Names - Implementation and Specification," RFC-1035,
 P. Mockapetris, November 1987.

 [DNS:3] "Mail Routing and the Domain System," C. Partridge, RFC-974,
 January 1986.

 [DNS:4] "DoD Internet Host Table Specification," K. Harrenstein,
 RFC-952, M. Stahl, E. Feinler, October 1985.

 SECONDARY DNS REFERENCES:

 [DNS:5] "Hostname Server," K. Harrenstein, M. Stahl, E. Feinler,
 RFC-953, October 1985.

 [DNS:6] "Domain Administrators Guide," M. Stahl, RFC-1032, November
 1987.

Internet Engineering Task Force [Page 96]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

 [DNS:7] "Domain Administrators Operations Guide," M. Lottor, RFC-
 1033, November 1987.

 [DNS:8] "The Domain Name System Handbook," Vol. 4 of Internet
 Protocol Handbook, NIC 50007, SRI Network Information Center,
 August 1989.

 SYSTEM INITIALIZATION REFERENCES:

 [BOOT:1] "Bootstrap Loading Using TFTP," R. Finlayson, RFC-906, June
 1984.

 [BOOT:2] "Bootstrap Protocol (BOOTP)," W. Croft and J. Gilmore, RFC-
 951, September 1985.

 [BOOT:3] "BOOTP Vendor Information Extensions," J. Reynolds, RFC-
 1084, December 1988.

 Note: this RFC revised and obsoleted RFC-1048.

 [BOOT:4] "A Reverse Address Resolution Protocol," R. Finlayson, T.
 Mann, J. Mogul, and M. Theimer, RFC-903, June 1984.

 MANAGEMENT REFERENCES:

 [MGT:1] "IAB Recommendations for the Development of Internet Network
 Management Standards," V. Cerf, RFC-1052, April 1988.

 [MGT:2] "Structure and Identification of Management Information for
 TCP/IP-based internets," M. Rose and K. McCloghrie, RFC-1065,
 August 1988.

 [MGT:3] "Management Information Base for Network Management of
 TCP/IP-based internets," M. Rose and K. McCloghrie, RFC-1066,
 August 1988.

 [MGT:4] "A Simple Network Management Protocol," J. Case, M. Fedor,
 M. Schoffstall, and C. Davin, RFC-1098, April 1989.

 [MGT:5] "The Common Management Information Services and Protocol
 over TCP/IP," U. Warrier and L. Besaw, RFC-1095, April 1989.

 [MGT:6] "Report of the Second Ad Hoc Network Management Review
 Group," V. Cerf, RFC-1109, August 1989.

Internet Engineering Task Force [Page 97]

RFC1123 SUPPORT SERVICES -- MANAGEMENT October 1989

Security Considerations

 There are many security issues in the application and support
 programs of host software, but a full discussion is beyond the scope
 of this RFC. Security-related issues are mentioned in sections
 concerning TFTP (Sections 4.2.1, 4.2.3.4, 4.2.3.5), the SMTP VRFY and
 EXPN commands (Section 5.2.3), the SMTP HELO command (5.2.5), and the
 SMTP DATA command (Section 5.2.8).

Author’s Address

 Robert Braden
 USC/Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292-6695

 Phone: (213) 822 1511

 EMail: Braden@ISI.EDU

Internet Engineering Task Force [Page 98]

