
Network Working Group M. Rose
Request for Comments: 1227 Performance Systems International, Inc.
 May 1991

 SNMP MUX Protocol and MIB

Status of this Memo

 This memo suggests a mechanism by which a user process may associate
 itself with the local SNMP agent on a host, in order to implement
 portions of the MIB. This mechanism would be local to the host.

 This is an Experimental Protocol for the Internet community.
 Discussion and suggestions for improvement are requested. Please
 refer to the current edition of the "IAB Official Protocol Standards"
 for the standardization state and status of this protocol.
 Distribution of this memo is unlimited.

Table of Contents

 1. Introduction .. 1
 2. Architecture .. 2
 3. Protocol .. 3
 3.1 Tricky Things .. 3
 3.1.1 Registration 4
 3.1.2 Removing Registration 4
 3.1.3 Atomic Sets .. 4
 3.1.4 Variables in Requests 5
 3.1.5 Request-ID ... 5
 3.1.6 The powerful get-next operator 5
 3.2 Protocol Data Units 6
 3.3 Mappings on Transport Service 8
 3.3.1 Mapping onto the TCP 8
 4. MIB for the SMUX 9
 5. Acknowledgements 12
 6. References .. 12
 7. Security Considerations................................ 13
 8. Author’s Address....................................... 13

1. Introduction

 On typical kernel/user systems, an agent speaking the SNMP [1] is
 often implemented as a user-process, that reads kernel variables in
 order to realize the Internet-standard MIB [2]. This approach works
 fine as long as all of the information needed by the SNMP agent
 resides in either the kernel or in stable storage (i.e., files).
 However, when other user-processes are employed to implement other

Rose [Page 1]

RFC 1227 SMUX May 1991

 network services, such as routing protocols, communication between
 the SNMP agent and other processes is problematic.

 In order to solve this problem, a new protocol, the SNMP multiplexing
 (SMUX) protocol is introduced. When a user-process, termed a SMUX
 peer, wishes to export a MIB module, it initiates a SMUX association
 to the local SNMP agent, registers itself, and (later) fields
 management operations for objects in the MIB module.

 Carrying this approach to its fullest, it is possible to generalize
 the SNMP agent so that it knows about only the SNMP group of the
 Internet-standard MIB. All other portions of the Internet-standard
 MIB can be implemented by another process. This is quite useful, for
 example, when a computer manufacturer wishes to provide SNMP access
 for its operating system in binary form.

 In addition to defining the SMUX protocol, this document defines a
 MIB for the SMUX. Obviously, this MIB module must also be
 implemented in the local SNMP agent.

2. Architecture

 There are two approaches that can be taken when trying to integrate
 arbitrary MIB modules with the SNMP agent: request-response and
 cache-ahead.

 The request-response model simply propagates the SNMP requests
 received by the SNMP agent to the user process which exported the MIB
 module. The SMUX peer then performs the operation and returns a
 response. In turn, the SNMP agent propagates this response back to
 the network management station. The request-response model is said
 to be agent-driven since, after registration, the SNMP agent
 initiates all transactions.

 The cache-ahead model requires that the SMUX peer, after
 registration, periodically updates the SNMP agent with the subtree
 for the MIB module which has been registered. The SNMP agent, upon
 receiving an SNMP request for information retrieval, locally performs
 the operation, and returns a response to the network management
 station. (SNMP set requests are given immediately to the SMUX peer.)
 The cache-ahead model is said to be peer-driven since, after
 registration, the SMUX peer initiates all transactions.

 There are advantages and disadvantages to both approaches. As such,
 the architecture envisioned supports both models in the following
 fashion: the protocol between the SNMP agent and the SMUX peer is
 based on the request-response model. However, the SMUX peer, may
 itself be a user-process which employs the cache-ahead model with

Rose [Page 2]

RFC 1227 SMUX May 1991

 other user-processes.

 Obviously, the SMUX peer which employs the cache-ahead model acts as
 a "firewall" for those user-processes which actually implement the
 managed objects in the given MIB module.

 Note that this document describes only the SMUX protocol, for the
 request-response model. Each SMUX peer is free to define a cache-
 ahead protocol specific for the application at hand.

3. Protocol

 The SMUX protocol is simple: the SNMP agent listens for incoming
 connections. Upon establishing a connection, the SMUX peer issues an
 OpenPDU to initialize the SMUX association. If the SNMP agent
 declines the association, it issues a closePDU and closes the
 connection. If the SNMP agent accepts the association, no response
 is issued by the SNMP agent.

 For each subtree defined in a MIB module that the SMUX peer wishes to
 register (or unregister), the SMUX peer issues a RReqPDU. When the
 SNMP agent receives such a PDU, it issues a corresponding RRspPDU.
 The SNMP agent returns RRspPDUs in the same order as the RReqPDUs
 were received.

 When the SMUX peer wishes to issue a trap, it issues an SNMP Trap-
 PDU. When the SNMP agent receives such a PDU, it propagates this to
 the network management stations that it is configured to send traps
 to.

 When the SNMP agent receives an SNMP GetRequest-PDU, GetNextRequest-
 PDU, or SetRequest-PDU which includes one or more variable-bindings
 within a subtree registered by a SMUX peer, the SNMP agent sends an
 equivalent SNMP PDU containing only those variables within the
 subtree registered by that SMUX peer. When the SMUX peer receives
 such a PDU, it applies the indicated operation and issues a
 corresponding SNMP GetResponse-PDU. The SNMP agent then correlates
 this result and propagates the resulting GetResponse-PDU to the
 network management station.

 When either the SNMP agent or the SMUX peer wishes to release the
 SMUX association, the ClosePDU is issued, the connection is closed,
 and all subtree registrations for that association are released.

3.1. Tricky Things

 Although straight-forward, there are a few nuances.

Rose [Page 3]

RFC 1227 SMUX May 1991

3.1.1. Registration

 Associated with each registration is an integer priority, from 0 to
 (2^31)-1. The lower the value, the higher the priority.

 Multiple SMUX peers may register the same subtree. However, they
 must do so at different priorities (i.e., a subtree and a priority
 uniquely identifies a SMUX peer). As such, if a SMUX peer wishes to
 register a subtree at a priority which is already taken, the SNMP
 agent repeatedly increments the integer value until an unused
 priority is found.

 When registering a subtree, the special priority -1 may be used,
 which selects the highest available priority.

 Of course, the SNMP agent may select an arbitrarily worse priority
 for a SMUX peer, based on local (configuration) information.

 Note that when a subtree is registered, the SMUX peer with the
 highest registration priority is exclusively consulted for all
 operations on that subtree. Further note that SNMP agents must
 enforce the "subtree mounting effect", which hides the registrations
 by other SMUX peers of objects within the subtree. For example, if a
 SMUX peer registered "sysDescr", and later another SMUX peer
 registered "system" (which scopes "sysDescr"), then all requests for
 "sysDescr" would be given to the latter SMUX peer.

 An SNMP agent should disallow any attempt to register above, at, or
 below, the SNMP and SMUX subtrees of the MIB. Other subtrees may be
 disallowed as an implementation-specific option.

3.1.2. Removing Registration

 A SMUX peer may remove registrations for only those subtrees which it
 has registered. If the priority given in the RReqPDU is -1, then the
 registration of highest priority is selected for deletion.
 Otherwise, only that registration with the precise priority is
 selected.

3.1.3. Atomic Sets

 A simple two-phase commit protocol is used between the SNMP agent and
 the SMUX peers. When an SNMP SetRequest-PDU is received, the SNMP
 agent determines which SMUX peers will participate in the
 transaction. For each of these peers, at least one SNMP SetRequest-
 PDU is sent, with only those variables of interest to that peer.

 Each SMUX peer must either accept or refuse the set operation,

Rose [Page 4]

RFC 1227 SMUX May 1991

 without actually performing the operation. If the peer opts to
 accept, it sends back an SNMP GetResponse-PDU with an error-status of
 noError(0); otherwise, if the peer refuses to perform the operation,
 then an SNMP GetResponse-PDU is returned with a non-zero error-
 status.

 The SNMP agent examines all of the responses. If at least one SMUX
 peer refused the operation, then a SMUX SOutPDU is sent to each SMUX
 peer, with value rollback, telling the SMUX peer to discard any
 knowledge of the requested operation.

 Otherwise if all SMUX peers accepted the operation, then a SMUX
 SOutPDU is sent to each SMUX peer, with value commit, telling the
 SMUX peer to perform the operation.

 In either case, the SMUX peer does not generate a response to the
 SMUX SOutPDU.

3.1.4. Variables in Requests

 When constructing an SNMP GetRequest-PDU or GetNextRequest-PDU for a
 SMUX peer, the SNMP agent may send one, or more than one variable in
 a single request. In all cases, the SNMP agent should process each
 variable sequentially, and block accordingly when a SMUX peer is
 contacted.

3.1.5. Request-ID

 When the SNMP agent constructs an SNMP GetRequest-PDU,
 GetNextRequest-PDU, or SetRequest-PDU, for a SMUX peer, the
 request_id field of the SNMP takes a special meaning: if an SNMP
 agent generates multiple PDUs for a SMUX peer, upon receipt of a
 single PDU from the network management station, then the request_id
 field of the PDUs sent to the SMUX peer must take the same value
 (which need bear no relationship to the value of the request_id field
 of the PDU originally received by the SNMP agent.)

3.1.6. The powerful get-next operator

 Each SMUX peer acts as though it contains the entire MIB when
 processing a SNMP GetNext-PDU from the SNMP agent. This means that
 the SNMP agent must check each variable returned in the SNMP
 GetResponse-PDU generated by the SMUX peer to ensure that each
 variable is still within the same registered subtree as caused the
 SNMP GetNext-PDU to be sent to that peer. For each variable which is
 not, the SNMP agent must include it in a SNMP GetNext-PDU to the peer
 for the succeeding registered subtree, until responses are available
 for all variables within their expected registered subtree.

Rose [Page 5]

RFC 1227 SMUX May 1991

3.2. Protocol Data Units

 The SMUX protocol data units are defined using Abstract Syntax
 Notation One (ASN.1) [3]:

 SMUX DEFINITIONS ::= BEGIN

 IMPORTS
 DisplayString, ObjectName
 FROM RFC1155-SMI

 PDUs
 FROM RFC1157-SNMP;

 -- tags for SMUX-specific PDUs are application-wide to
 -- avoid conflict with tags for current (and future)
 -- SNMP-generic PDUs

 SMUX-PDUs ::=
 CHOICE {
 open -- SMUX peer uses
 OpenPDU, -- immediately after TCP open

 close -- either uses immediately before TCP close
 ClosePDU,

 registerRequest -- SMUX peer uses
 RReqPDU,

 registerResponse -- SNMP agent uses
 RRspPDU,

 PDUs, -- note that roles are reversed:
 -- SNMP agent does get/get-next/set
 -- SMUX peer does get-response/trap

 commitOrRollback -- SNMP agent uses
 SOutPDU
 }

 -- open PDU
 -- currently only simple authentication

 OpenPDU ::=
 CHOICE {
 simple

Rose [Page 6]

RFC 1227 SMUX May 1991

 SimpleOpen
 }

 SimpleOpen ::=
 [APPLICATION 0] IMPLICIT
 SEQUENCE {
 version -- of SMUX protocol
 INTEGER {
 version-1(0)
 },

 identity -- of SMUX peer, authoritative
 OBJECT IDENTIFIER,

 description -- of SMUX peer, implementation-specific
 DisplayString,

 password -- zero length indicates no authentication
 OCTET STRING
 }

 -- close PDU

 ClosePDU ::=
 [APPLICATION 1] IMPLICIT
 INTEGER {
 goingDown(0),
 unsupportedVersion(1),
 packetFormat(2),
 protocolError(3),
 internalError(4),
 authenticationFailure(5)
 }

 -- insert PDU

 RReqPDU ::=
 [APPLICATION 2] IMPLICIT
 SEQUENCE {
 subtree
 ObjectName,

 priority -- the lower the better, "-1" means default
 INTEGER (-1..2147483647),

 operation

Rose [Page 7]

RFC 1227 SMUX May 1991

 INTEGER {
 delete(0), -- remove registration
 readOnly(1), -- add registration, objects are RO
 readWrite(2) -- .., objects are RW
 }
 }

 RRspPDU ::=
 [APPLICATION 3] IMPLICIT
 INTEGER {
 failure(-1)

 -- on success the non-negative priority is returned
 }

 SOutPDU ::=
 [APPLICATION 4] IMPLICIT
 INTEGER {
 commit(0),
 rollback(1)
 }

 END

3.3. Mappings on Transport Service

 The SMUX protocol may be mapped onto any CO-mode transport service.
 At present, only one such mapping is defined.

3.3.1. Mapping onto the TCP

 When using the TCP to provide the transport-backing for the SMUX
 protocol, the SNMP agent listens on TCP port 199.

 Each SMUX PDU is serialized using the Basic Encoding Rules [4] and
 sent on the TCP. As ASN.1 objects are self-delimiting when encoding
 using the BER, no packetization protocol is required.

Rose [Page 8]

RFC 1227 SMUX May 1991

4. MIB for the SMUX

 The MIB objects for the SMUX are implemented by the local SNMP agent:

 SMUX-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 enterprises
 FROM RFC1155-SMI
 OBJECT-TYPE
 FROM RFC1212;

 unix OBJECT IDENTIFIER ::= { enterprises 4 }

 smux OBJECT IDENTIFIER ::= { unix 4 }

 smuxPeerTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SmuxPeerEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The SMUX peer table."
 ::= { smux 1 }

 smuxPeerEntry OBJECT-TYPE
 SYNTAX SmuxPeerEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "An entry in the SMUX peer table."
 INDEX { smuxPindex }
 ::= { smuxPeerTable 1}

 SmuxPeerEntry ::=
 SEQUENCE {
 smuxPindex
 INTEGER,
 smuxPidentity
 OBJECT IDENTIFIER,
 smuxPdescription
 DisplayString,
 smuxPstatus
 INTEGER
 }

 smuxPindex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only

Rose [Page 9]

RFC 1227 SMUX May 1991

 STATUS mandatory
 DESCRIPTION
 "An index which uniquely identifies a SMUX peer."
 ::= { smuxPeerEntry 1 }

 smuxPidentity OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The authoritative designation for a SMUX peer."
 ::= { smuxPeerEntry 2 }

 smuxPdescription OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "A human-readable description of a SMUX peer."
 ::= { smuxPeerEntry 3 }

 smuxPstatus OBJECT-TYPE
 SYNTAX INTEGER { valid(1), invalid(2), connecting(3) }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The type of SMUX peer.

 Setting this object to the value invalid(2) has
 the effect of invaliding the corresponding entry
 in the smuxPeerTable. It is an implementation-
 specific matter as to whether the agent removes an
 invalidated entry from the table. Accordingly,
 management stations must be prepared to receive
 tabular information from agents that correspond to
 entries not currently in use. Proper
 interpretation of such entries requires
 examination of the relative smuxPstatus object."
 ::= { smuxPeerEntry 4 }

 smuxTreeTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SmuxTreeEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The SMUX tree table."
 ::= { smux 2 }

Rose [Page 10]

RFC 1227 SMUX May 1991

 smuxTreeEntry OBJECT-TYPE
 SYNTAX SmuxTreeEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "An entry in the SMUX tree table."
 INDEX { smuxTsubtree, smuxTpriority }
 ::= { smuxTreeTable 1}

 SmuxTreeEntry ::=
 SEQUENCE {
 smuxTsubtree
 OBJECT IDENTIFIER,
 smuxTpriority
 INTEGER,
 smuxTindex
 INTEGER,
 smuxTstatus
 INTEGER
 }

 smuxTsubtree OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The MIB subtree being exported by a SMUX peer."
 ::= { smuxTreeEntry 1 }

 smuxTpriority OBJECT-TYPE
 SYNTAX INTEGER (0..’07fffffff’h)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The SMUX peer’s priority when exporting the MIB
 subtree."
 ::= { smuxTreeEntry 2 }

 smuxTindex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The SMUX peer’s identity."
 ::= { smuxTreeEntry 3 }

 smuxTstatus OBJECT-TYPE
 SYNTAX INTEGER { valid(1), invalid(2) }

Rose [Page 11]

RFC 1227 SMUX May 1991

 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The type of SMUX tree.

 Setting this object to the value invalid(2) has
 the effect of invaliding the corresponding entry
 in the smuxTreeTable. It is an implementation-
 specific matter as to whether the agent removes an
 invalidated entry from the table. Accordingly,
 management stations must be prepared to receive
 tabular information from agents that correspond to
 entries not currently in use. Proper
 interpretation of such entries requires
 examination of the relative smuxTstatus object."
 ::= { smuxTreeEntry 4 }

 END

5. Acknowledgements

 SMUX was designed one afternoon by these people:

 Jeffrey S. Case, UTK-CS
 James R. Davin, MIT-LCS
 Mark S. Fedor, PSI
 Jeffrey C. Honig, Cornell
 Louie A. Mamakos, UMD
 Michael G. Petry, UMD
 Yakov Rekhter, IBM
 Marshall T. Rose, PSI

6. References

 [1] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
 Network Management Protocol", RFC 1157, SNMP Research,
 Performance Systems International, Performance Systems
 International, MIT Laboratory for Computer Science, May 1990.

 [2] McCloghrie K., and M. Rose, "Management Information Base for
 Network Management of TCP/IP-based Internets", RFC 1156,
 Performance Systems International and Hughes LAN Systems, May
 1990.

 [3] Information processing systems - Open Systems Interconnection -
 Specification of Abstract Syntax Notation One (ASN.1),
 International Organization for Standardization, International
 Standard 8824, December 1987.

Rose [Page 12]

RFC 1227 SMUX May 1991

 [4] Information processing systems - Open Systems Interconnection -
 Specification of Basic Encoding Rules for Abstract Notation One
 (ASN.1), International Organization for Standardization,
 International Standard 8825, December 1987.

 [5] Rose, M., and K. McCloghrie, "Structure and Identification of
 Management Information for TCP/IP-based Internets", RFC 1155,
 Performance Systems International and Hughes LAN Systems, May
 1990.

7. Security Considerations

 Security issues are not discussed in this memo.

8. Author’s Address

 Marshall T. Rose
 Performance Systems International, Inc.
 5201 Great America Parkway
 Suite 3106
 Santa Clara, CA 95054

 Phone: +1 408 562 6222

 EMail: mrose@psi.com
 X.500: rose, psi, us

Rose [Page 13]

