
Network Working Group S.E. Hardcastle-Kille
Requests for Comments 1276 University College London
 November 1991

 Replication and Distributed Operations extensions
 to provide an Internet Directory using X.500

Status of this Memo
 This RFC specifies an IAB standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the ‘‘IAB
 Official Protocol Standards’’ for the standardization state and
 status of this protocol. Distribution of this memo is unlimited.

Abstract
 Some requirements on extensions to X.500 are described in the
 RFC[HK91b], in order to build an Internet Directory using
 X.500(1988). This document specifies a set of solutions to the
 problems raised. These solutions are based on some work done for
 the QUIPU implementation, and demonstrated to be effective in a
 number of directory pilots. By documenting a de facto standard,
 rapid progress can be made towards a full-scale pilot. These
 procedures are an INTERIM approach. There are known
 deficiencies, both in terms of manageability and scalability.
 Transition to standard approaches are planned when appropriate
 standards are available. This RFCwill be obsoleted at this
 point.

RFC 1276 Internet Directory Replication November 1991

Contents

1 Approach 2

2 Extensions to Distributed Operations 3

3 Alternative DSAs 4

4 Data Model 5

5 DSA Naming 6

6 Knowledge Representation 6

7 Replication Protocol 9

8 New Application Context 12

9 Policy on Replication Procedures 12

10 Use of the Directory by Applications 12

11 Migration and Scaling 12

12 Security Considerations 13

13 Author’s Address 13

A ASN.1 Summary and Object Identifier Allocation 14

List of Figures

 1 Knowledge Attributes 8

 2 Replication Protocol 10
 3 Summary of the ASN.1 17

Hardcastle-Kille Page 1

RFC 1276 Internet Directory Replication November 1991

1 Approach

There are a number of non-negotiable requirements which must be met
before a directory can be deployed on the Internet [HK91b]. These
problems are being tackled in the standards arena, but there is
currently no stable solution. One approach would be to attempt to
intercept the standard. Difficulties with this would be:

 o Defining a coherent intercept would be awkward, and the effort
 would probably be better devoted to working on the standard. It
 is not even clear that such an intercept could be defined.

 o The target is moving, and it is always tempting to track it, thus
 causing more delay.

 o There would be a delay involved with this approach. It would be
 too late to be useful for a rapid start, and sufficiently close to
 the timing of the final standard that many would choose not to
 implement it.

Therefore, we choose to take a simple approach. This is a good deal
simpler than the full X.500 approach, and is based on operational
experience. The advantages of this approach are:

 o It is proven in operation. This RFCis simply documenting what is
 being done already.

 o There will be a minimum of delay in starting to use the approach.

 o The approach is simpler, and so the cost of implementation is much
 less. It will therefore be much more attractive to add into an
 implementation, as it is less effort, and can be further ahead of
 the standard.

These procedures are an INTERIM approach. There are known
deficiencies, both in terms of manageability and scalability.
Transition to standard approaches are planned when appropriate
standards are available. This RFCwill be obsoleted at this point.

Hardcastle-Kille Page 2

RFC 1276 Internet Directory Replication November 1991

2 Extensions to Distributed Operations

The distributed operations of X.500 assume that all DUAs and DSAs are
fully interconnected with a global network service. For the Internet
Pilot, this assumption is invalid. DSAs may be operated over TCP/IP,
TP4/CLNS, or TP0/CONS.
The extension to distributed operations to support this situation is
straightforward. We define the term community as an environment where
direct (network) communication is possible. Communities may be
separated because they operate different protocols, or because of lack
of physical connectivity. Example communities are the DARPA/NSF
Internet, and the Janet private X.25 network. A network entity in a
community is addressed by its Network Address. If two network
entities are in the same community, they can by definition
communicate. A community is identified by a set of network address
prefixes. For the approach to be useful, this set should be small
(typically 1). For TCP/IP Networks, and X.25 Networks not providing
CONS, the approach is described in [HK91a] allows for communities to
be defined for the networks of operational interest.

This model can be used to determine whether a pair of application
entities can communicate. For each entity, determine the presentation
address (typically by directory lookup). Each network address in the
presentation address will have a single associated community. The set
of communities to which each application entity belongs can thus be
determined. If the two application entities have a common community,
then they can communicate directly.
Two extensions to the standard distributed operations are needed.

1. Consider a DSA (the local DSA) which is contacted by either a DUA
 or DSA (the calling entity) to resolve a query. The local DSA
 determines that the query must be progressed by another DSA (the
 referred-to DSA). The DSA will make a chain/referral choice. If
 chaining is prohibited by service control, a referral will be
 passed back. Otherwise, if the local DSA prefers to chain (e.g.,
 for policy reasons) it will then chain. The remaining situation
 is that the local DSA prefers to give a referral. It shall only
 do so if it believes that the calling entity can directly connect
 to the referred-to DSA. If the calling entity is a DUA, it should
 be assumed to belong only to the community of the called network
 address. If the calling entity is a DSA, its communities should
 be determined by lookup of the DSA’s presentation address in the
 directory. The communities of the referred-to DSA can be

Hardcastle-Kille Page 3

RFC 1276 Internet Directory Replication November 1991

 determined from its presentation address, which will either be
 present in the reference or can be looked up in the directory. If
 the calling entity and the referred-to DSA do not have a common
 community, then chaining shall be used. Otherwise, a referral may
 be passed back to the calling entity.

2. Consider that a DSA (or DUA), termed here the local entity is
 following a referral (to a referred-to DSA). In some cases, the
 local entity and referred-to DSA will not be able to communicate
 directly (i.e., not have a common community). There are two
 approaches to solve this:

 (a) Pass the query to a DSA it would use to resolve a query for
 the entry one level higher in the DIT. This will work,
 provided that this DSA follows this specification. This
 default mechanism will work without additional configuration.

 (b) Use a ‘‘relay DSA’’ to access the community. A relay DSA is
 one which can chain the query on to the remote community. The
 relay DSA must belong to both the remote community and to at
 least one community to which the local entity belongs. The
 choice of relay DSA for a given community will be manually
 configured by a DSA manager to enable access to a community to
 which there is not direct connectivity. Typically this will
 be used where the default DSA is a poor choice (e.g., because
 relaying is not authorised through this DSA).

 A DSA conforming to this specification shall follow these
 procedures. A DUA may also follow these procedures, and this will
 give improvements in some circumstances (i.e., the ability to
 resolve certain queries without use of chaining). However, this
 specification does not place requirements on DUAs.

3 Alternative DSAs

There is a need to give information on slave copies of data. This can
be done using the standard protocol, but modifying the semantics.
This relies on the fact that there may only be a single subordinate
reference or cross reference.

If there is a need to include references to master and slave data (EDB
copies) in a referral, then this should be done in a referral by
specifying a subordinate reference with multiple values. This cannot

Hardcastle-Kille Page 4

RFC 1276 Internet Directory Replication November 1991

be a standard subordinate reference, which would only have a single
value. Therefore, this usage does not conflict with standard
references. The first reference is the master copy, and subsequent
references are slave copies.

4 Data Model

The X.500 data model takes the unit of mastering data as the entry. A
DSA may hold an arbitrary collection of entries. We restrict this
model so that for the replication protocol defined in this
specification the base unit of replication (shadowing) is the complete
set of immediate subordinate entries of a given entry, termed an Entry
Data Block (EDB). An EDB is named by its parent entry. It contains
the relative distinguished names of all of the children of the entry,
and each of the child entries. For each entry, this comprises all
attributes of the entry, the relative distinguished name, and
knowledge information associated with the entry. If a DSA holds
(non-cached) information on an entry, it will hold information on all
of its siblings. One DSA will hold a master EDB. This will contain
two types of entry:

1. Entries for which this DSA is the master.

2. Slave copies of entries which are mastered in another DSA,
 indicated by a subordinate reference. This copy must be
 maintained automatically by the DSA holding the master EDB.

Thus the master EDB contains a mixture of master entries, and entries
which are mastered elsewhere and shadowed by the DSA holding the
master EDB on an entry by entry basis. Other DSAs may hold slave
copies of this EDB (slave EDBs), which are replicated in their
entirity directly or indirectly from the master EDB. This approach has
the following advantages.

 o Name resolution is simplified, and performance improved.

 o Single level searching and listing have good performance, and are
 straightforward to implement. In a more general case of applying
 the standard, without sophisticated replication, these operations
 might require to access very many DSAs and be prohibitively
 expensive.

Hardcastle-Kille Page 5

RFC 1276 Internet Directory Replication November 1991

5 DSA Naming

All DSAs must be named in the DIT, and the master definition of the
presentation address stored in this entry. X.500 (including some of
the extension work) implies that the presentation address information
is extensively replicated (manually). The management overhead implied
by this is not acceptable.
Care must be taken to prevent deadlock in determining a DSAs address.
This is solved by:

1. Use of a well known DSA with ‘‘root knowledge’’

2. Naming DSAs in a manner which prevents deadlocks. Currently this
 is done by giving DSAs names high in the DIT.

The Internet Pilot will need to define detailed policies for naming
DSAs, in conjunction with the replication policy. This will be
defined in a future RFC.

6 Knowledge Representation

Knowledge information is represented in the DIT. It seems unreasonable
to manage this by any other means. Knowledge information is
represented in an entry by use of knowledge attributes. These
attributes are considered separately from all the other attributes in
the entry which are termed ‘‘user attributes’’. Each entry in a
master EDB will be in one of four categories.

1. The entry is a leaf entry mastered in this EDB, and so only
 contains user attributes

2. The level below has an associated EDB (i.e., the DIT continues
 downwards to use the data model of this specification). All
 attributes of this entry will be mastered in this entry. The
 entry will contain an attribute with the name of the DSA which
 holds the master of the associated EDB. Optionally, it will
 contain an attribute holding the names of DSAs which hold slave
 EDBs. The entry may not hold a subordinate reference attribute.
 The DIT is followed by use of the master and slave attributes.

Hardcastle-Kille Page 6

RFC 1276 Internet Directory Replication November 1991

3. The entry is mastered in a DSA which does not follow this
 specification. The entry in the EDB will contain a master
 attribute, which holds a subordinate reference (or cross
 reference) to the DSA which holds the master entry. The user
 attributes of the entry will be mastered in the DSA pointed to by
 the reference. The DSA holding the master EDB, which actually
 acts as an intermediate shadow for this entry, will read these
 attributes from the DSA indicated by the reference, so that it
 will have a full copy of the entry, using a standared DSP Read
 operation. This technique is called ‘‘spot shadowing’’. Any
 access control on the entry being spot shadowed must be configured
 so that all attributes can be copied by the DSA holding the master
 EDB. DSAs taking slave copies of the EDB will not do spot
 shadowing. However, the knowledge attributes will be copied, and
 may be used by this DSA (e.g., for modify operations).

4. The entries at the level below are held in DSAs which do not
 follow this specification, and all of these are indicated by a set
 of NSSRs (Non Specific Subordinate Reference). The NSSRs are
 stored as an attribute of the entry. The user attributes are
 either mastered in the EDB.
 It is important to note that NSSRs are stored at the level above
 subordinate references. At a given point in the DIT, if there are
 subordinate references, these are stored in shadow entries below
 that point, and named by the RDN. If there are NSSRs, they are
 stored in the entry itself, as there is no RDN associated with an
 NSSR. This approach is cleanest where there are either NSSRs or
 subordinate references, but not both. For example, consider an
 Organisation HP, whose many OUs are stored in a set of DSAs
 indicated by by NSSRs. Here, the NSSR attributes will be used to
 identify these DSAs.
 This model of replication is not tightly integrated with NSSRs.
 Where there is a mixture of NSSRs and Subordinate references at a
 given point in the DIT, this is handled by giving a single
 subordinate reference to a DSA which follows standard X.500
 distributed operations and can cleanly handle this mixture. In
 practice, this is equivalent to not allowing a mixture of
 subordinate references and NSSRs.

The information framework needed to support this is defined in
Figure_1.__

Hardcastle-Kille Page 7

RFC 1276 Internet Directory Replication November 1991

InternetDSNonLeafObject ::= OBJECT-CLASS
 SUBCLASS OF top
 MUST CONTAIN {masterDSA}
 MAY CONTAIN {slaveDSA}

ExternalDSObject ::= OBJECT-CLASS
 SUBCLASS OF top
 MAY CONTAIN {SubordinateReference, CrossReference, 10
 NonSpecificSubordinateReference}
 -- will contain exactly one of these references

MasterDSA ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX distinguishedNameSyntax
 SINGLE VALUE

SlaveDSA ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX distinguishedNameSyntax
 20
SubordinateReference ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX AccessPoint
 SINGLE VALUE

CrossReference ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX AccessPoint
 SINGLE VALUE

NonSpecificSubordinateReference ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX AccessPoint 30

AccessPoint ::= SET {
 ae-title [0] Name,
 address [2] PresentationAddress OPTIONAL }

 -- Same definition as X.500 AccessPoint,
 -- but presentation address is optional

___________________Figure_1:__Knowledge_Attributes_____________________

Two object classes are defined to support this approach:

Hardcastle-Kille Page 8

RFC 1276 Internet Directory Replication November 1991

InternetDSNonLeafObject This is for where the level below follows the
 model defined here, and there is an Entry Data Block (EDB)
 containing the sibling entries. The Entry itself contains master
 data. The associated attributes are:

 MasterDSA The name of the DSA where the master EDB is held.

 SlaveDSA The names of DSAs which hold slave copies of the EDB for
 public access.

ExternalDSObject This is for where the entry and levels below are
 mastered according to X.500. There are attributes corresponding
 to the standard knowledge references, which are used to resolve
 queries. The presentation address is optional in these
 attributes. If not present, it should be looked up in the DSAs
 own entry. For NonSpecificSubordinateReference, the master of the
 entry will be in the master EDB, For SubordinateReference or
 CrossReference1 the DSA which masters the EDB will ‘‘spot shadow’’
 the entry, by reading it at intervals. This will ensure that the
 master EDB contains a copy of each entry. Single level searching
 can then be done efficiently where it is not required to access
 the master copy of the data. DSAs holding slave copies of the EDB
 do not perform spot shadowing, but do receive copies of the
 references.

7 Replication Protocol

GetEntryDataBlock ABSTRACT-OPERATION
 ARGUMENT GetEntryDataBlockArgument
 RESULT GetEntryDataBlockResult
 ERRORS {nameError,ServiceError,SecurityError,EDBVersionError}

EDBVersionError ABSTRACT-ERROR
 PARAMETER versionHeld EDBVersion

GetEntryDataBlockArgument ::= SET { 10

 1. These references are really the same. The function and value
are the same. The name depends on where the reference is stored. It
may be preferable to have only one attribute.

Hardcastle-Kille Page 9

RFC 1276 Internet Directory Replication November 1991

 entry [0] DistinguishedName,
 CHOICE {
 sendIfMoreRecentThan [1] EDBVersion,
 getVersionNumber [2] NULL,
 getEDB [3] NULL, -- force retrieval
 continuation [4] SEQUENCE {
 EDBVersion,
 nextEntryPosition INTEGER }
 },
 maxEntries [5] INTEGER OPTIONAL 20
 -- if omitted return whole EDB in
 -- one operation
}

GetEntryDataBlockResult ::= SEQUENCE {
 versionHeld [0] EDBVersion,
 [1] SEQUENCE OF RelativeEntry OPTIONAL,
 -- if omitted, only version is returned
 nextEntryPostion INTEGER OPTIONAL
 -- if omitted there are no more entries 30
 }

RelativeEntry ::= SEQUENCE {
 RelativeDistinguishedName,
 SET OF Attribute
 }

EDBVersion ::= UTCTime 40

___________________Figure_2:__Replication_Protocol_____________________

A ROS operation to support replication is defined in Figure 2. This
pulls an entire copy of the EDB. In normal use, the initiator
specifies the EDB Version held. If the responder has a more recent
version, then all of the entries in the EDB are returned. There are
options to rerequest only the version of EDB held, or to return the
full EDB irrespective of the version held by the initiator.
For large EDBs, transfer of an entire EDB in a single operation would
lead to very large ROS PDUs. This gives a definite scaling
limitation. To overcome this, the protocol allows an EDB to be
retrived in chunks of a size (in number of entries) specified by the

Hardcastle-Kille Page 10

RFC 1276 Internet Directory Replication November 1991

initiator. The responder specifies a number which indicates the next
entry to be transferred. The same operation can be used to retrieve
the next chunk of the EDB, with EDBVersion and the same integer as
parameters.
This approach is simple to implement. It is less efficient than an
incremental technique. When scaling dictates that an incremental
technique must be used, it is expected that a suitable standard will
be available.
An implementation issue that must be noted is how to deal with updates
whilst a multi-operation transfer is in progress. There are two
possible approaches:

1. Refuse/block updates until the EDB is transferred. This may cause
 problems where the rate of update and transfer is high, as this
 may make update very difficult (for the manager).

2. Create a new version of the EDB, whilst retaining the old EDB to
 complete the bulk transfer. A suitable retentions strategy would
 be to hold an EDB version as long as the association on which it
 is being pulled it remains active.

3. Allow the update and fail subsequent transfer requests for the
 EDB. This may cause both transfer failure and excessive waste of
 bandwidth due to retries if the rate of update and transfer is
 high.

If option 1. or 3. is chosen, for a widely replicated EDB where the
update rate is greater than a few changes per day, it is recommended
to configure the master EDB in a DSA which only replicates to one
other DSA. This second DSA can then control its update rate, and
safely perform a large fanout of replications (option 3). The first
DSA will have reasonable availability for modifications (option 1).

This protocol will be used by DSAs to obtain copies of EDBs high in
the tree (typically root and national EDBs). DSAs which need these
copies should establish bilateral agreements to access them2.
This protocol should only transfer user attributes. In particular,
implementation specific attributes such as those needed to support

 2. QUIPU defines some attributes to register such agreements, but
these are probably not appropriate for this specification.

Hardcastle-Kille Page 11

RFC 1276 Internet Directory Replication November 1991

private access control should not be transferred. There may be
bilateral agreements on access control policy of the information
(e.g., size limits on listing), which are implemented by (different)
system specific techniques.

8 New Application Context

A DSA which follows these procedures will support a new
ApplicationContext ‘‘Internet DSP’’ defined in Appendix A. This will
be stored in the DSAs entry, so that support of the extensions defined
here can easily be determined.

9 Policy on Replication Procedures

To be effective, a directory configuration must be laid out. These
protocols will need to be used in the framework of a pilot, and
service providers making available data for replication.
There is a requirement to manage the replication process. This can be
done by a combination of local configuration (to register shadowing
agreements) and directory operations to set pointers to master and
slave copies of the data.

10 Use of the Directory by Applications

Care must be taken by users of the directory when replication is
available. This is not a change from current use of X.500, but is
noted here as it is important. Normal read requests should allow use
of copy information. If the user of the directory believes that
information may be out of date (e.g., because an association could not
be established), then the request should be repeated and use of copy
data prohibited by service controls.

11 Migration and Scaling

The major scaling limit of this approach is the non-incremental
update. This will put a limit on the maximum DIT fanout which can be
supported. Given an average entry size of around a thousand bytes,
and a maximum reasonable transfer size is tens of megabytes, then the

Hardcastle-Kille Page 12

RFC 1276 Internet Directory Replication November 1991

fanout limit of this approach is of order 10 000. Note that smaller
organisations will tend to be registered geographically (e.g., in the
US, by State), so that the limit of the number of Organisations is
somewhat larger. It should be noted that although the replication
technique described here is general, it is only intended for high
levels of the DIT. These figures assume this.
These techniques do not preclude use of other techniques for
replication. It would be quite reasonable to replicate data using
this approach, and that which will be defined in X.500(92).

References

[HK91a] S.E. Hardcastle-Kille. Encoding network addresses to support
 operation over non-osi lower layers. Request for Comments
 RFC 1277, Department of Computer Science, University College
 London, November 1991.

[HK91b] S.E. Hardcastle-Kille. Replication requirement to provide an
 internet directory using X.500. Request for Comments
 RFC 1275, Department of Computer Science, University College
 London, November 1991.

12 Security Considerations

Security considerations are not discussed in this memo.

13 Author’s Address

 Steve Hardcastle-Kille
 Department of Computer Science
 University College London
 Gower Street
 WC1E 6BT
 England

 Phone: +44-71-380-7294

 EMail: S.Kille@CS.UCL.AC.UK

Hardcastle-Kille Page 13

RFC 1276 Internet Directory Replication November 1991

A ASN.1 Summary and Object Identifier Allocation

There_are_a_few_object_identifiers_needed.__These_are_defined_here.____

InternetDSP TAGS ::=
BEGIN

IMPORTS
 APPLICATION-SERVICE-ELEMENT, PORT, APPLICATION-CONTEXT,
 aCSE, ABSTRACT OPERATION
 FROM Remote-Operations-Notation-extension {joint-iso-ccitt
 remote-operations(4) notation-extension(2)}

 10
 id-as-mrse, id-as-mase, id-as-ms
 FROM MTSAccessProtocol {joint-iso-ccitt mhs-motis(6)
 protocols(0) modules(0) object-identifiers(0)}

 chainedReadASE, chainedSearchASE, chainedModifyASE
 FROM DirectorySystemProtocol {joint-iso-ccitt ds(5)
 modules(1) dsp(12)}

 DistinguishedName, RelativeDistinguishedName, Attribute
 FROM InformationFramework {joint-iso-ccitt ds(5) 20
 modules(1) InformationFramework(1)}

 ATTRIBUTE, OBJECT-CLASS
 FROM InformationFramework {joint-iso-ccitt ds(5)
 modules(1) informationFramework(1)};

internet-dsp OBJECT IDENTIFIER ::= {ccitt data(9) pss(2342) 30
 ucl(19200300) internet-dsp(107)}

-- General

at OBJECT IDENTIFIER ::= {internet-dsp at(1)}
oc OBJECT IDENTIFIER ::= {internet-dsp oc(2)}

-- Object Classes needed for association

Hardcastle-Kille Page 14

RFC 1276 Internet Directory Replication November 1991

 40
id-ac-idsp OBJECT IDENTIFIER ::= {internet-dsp ac-idsp(3))}
id-as-idsp OBJECT IDENTIFIER ::= {internet-dsp as-idsp(4))}
id-ase-replication OBJECT IDENTIFIER ::= {internet-dsp ase-replication(5))}

-- Attribute Types

master-dsa MasterDSA ::= {at 1}
slave-dsa SlaveDSA ::= {at 2}
subordinate-reference SubordinateReference ::= {at 3} 50
cross-reference CrossReference ::= {at 4}
nssr NonSpecificSubordinateReference ::= {at 5}

-- Object Classes

internet-ds-non-leaf-object InternetDSNonLeafObject ::= {oc 1}
external-ds-object ExternalDSObject ::= {oc 2}

-- Operation and Error bindings 60

getEntryDataBlock GetEntryDataBlock ::= 10

eDBVersionError EDBVersionError ::= 10

-- Protocol Definitions

replicationASE APPLICATION-SERVICE-ELEMENT
 OPERATIONS {getEntryDataBlock} 70
 ::= id-ase-replication

internet-dsp APPLICATION-CONTEXT
 APPLICATION SERVICE ELEMENTS {aCSE}
 BIND MSBind
 UNBIND MSUnbind
 REMOTE OPERATIONS {rOSE}
 OPERATIONS OF { chainedReadADSm chainedSearchASE,
 chainedModifyASE, replicationASE }
 ABSTRACT SYNTAXES { 80
 id-as-acse,
 id-as-idsp }
 ::= id-ac-idsp

Hardcastle-Kille Page 15

RFC 1276 Internet Directory Replication November 1991

 90
InternetDSNonLeafObject ::= OBJECT-CLASS
 SUBCLASS OF top
 MUST CONTAIN {masterDSA}
 MAY CONTAIN {slaveDSA}

ExternalDSObject ::= OBJECT-CLASS
 SUBCLASS OF top
 MAY CONTAIN {SubordinateReference, CrossReference,
 NonSpecificSubordinateReference}
 -- will contain exactly one of these references100

MasterDSA ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX distinguishedNameSyntax
 SINGLE VALUE

SlaveDSA ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX distinguishedNameSyntax

SubordinateReference ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX AccessPoint 110
 SINGLE VALUE

CrossReference ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX AccessPoint
 SINGLE VALUE

NonSpecificSubordinateReference ::= ATTRIBUTE
 WITH ATTRIBUTE-SYNTAX AccessPoint

AccessPoint ::= SET { 120
 ae-title [0] Name,
 address [2] PresentationAddress OPTIONAL }

 -- Same definition as X.500 AccessPoint,
 -- but presentation address is optional

GetEntryDataBlock ABSTRACT-OPERATION

Hardcastle-Kille Page 16

RFC 1276 Internet Directory Replication November 1991

 ARGUMENT GetEntryDataBlockArgument
 RESULT GetEntryDataBlockResult
 ERRORS {nameError,ServiceError,SecurityError,EDBVersionError}130

EDBVersionError ABSTRACT-ERROR
 PARAMETER versionHeld EDBVersion

GetEntryDataBlockArgument ::= SET {
 entry [0] DistinguishedName,
 CHOICE {
 sendIfMoreRecentThan [1] EDBVersion,
 getVersionNumber [2] NULL, 140
 getEDB [3] NULL, -- force retrieval
 continuation [4] SEQUENCE {
 EDBVersion,
 nextEntryPosition INTEGER }
 },
 maxEntries [5] INTEGER OPTIONAL
 -- if omitted return whole EDB in
 -- one operation
}
 150
GetEntryDataBlockResult ::= SEQUENCE {
 versionHeld [0] EDBVersion,
 [1] SEQUENCE OF RelativeEntry OPTIONAL,
 -- if omitted, only version is returned
 nextEntryPostion INTEGER OPTIONAL
 -- if omitted there are no more entries
 }

 160
RelativeEntry ::= SEQUENCE {
 RelativeDistinguishedName,
 SET OF Attribute
 }

EDBVersion ::= UTCTime
END

___________________Figure_3:__Summary_of_the_ASN.1_____________________

Hardcastle-Kille Page 17

