
Network Working Group S. Armstrong
Request for Comments: 1301 Xerox
 A. Freier
 Apple
 K. Marzullo
 Cornell
 February 1992

 Multicast Transport Protocol

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard. Distribution of this memo is
 unlimited.

Summary

 This memo describes a protocol for reliable transport that utilizes
 the multicast capability of applicable lower layer networking
 architectures. The transport definition permits an arbitrary number
 of transport providers to perform realtime collaborations without
 requiring networking clients (aka, applications) to possess detailed
 knowledge of the population or geographical dispersion of the
 participating members. It is not network architectural specific, but
 does implicitly require some form of multicasting (or broadcasting)
 at the data link level, as well as some means of communicating that
 capability up through the layers to the transport.

 Keywords: reliable transport, multicast, broadcast, collaboration,
 networking.

Table of Contents

 1. Introduction 2
 2. Protocol description 3
 2.1 Definition of terms 3
 2.2 Packet format 6
 2.2.1. Protocol version 7
 2.2.2. Packet type and modifier 7
 2.2.3. Subchannel 9
 2.2.4. Source connection identifier 9
 2.2.5. Destination connection identifier 10
 2.2.6. Message acceptance 10
 2.2.7. Heartbeat 12
 2.2.8. Window 12
 2.2.9. Retention 12

Armstrong, Freier & Marzullo [Page 1]

RFC 1301 Multicast Transport Protocol February 1992

 2.3 Transport addresses 12
 2.3.1. Unknown transport address 12
 2.3.2. Web’s multicast address 13
 2.3.3. Member addresses 13
 3. Protocol behavior 13
 3.1. Establishing a transport 13
 3.1.1. Join request 14
 3.1.2. Join confirm/deny 16
 3.2 Maintaining data consistency 17
 3.2.1. Transmit tokens 17
 3.2.2. Data transmission 20
 3.2.3. Empty packets 23
 3.2.4. Missed data 26
 3.2.5. Retrying operations 26
 3.2.6. Retransmission 27
 3.2.7. Duplicate suppression 29
 3.2.8. Banishment 29
 3.3 Terminating the transport 29
 3.3.1. Voluntary quits 30
 3.3.2. Master quit 30
 3.3.3. Banishment 30
 3.4 Transport parameters 30
 3.4.1. Quality of service 30
 3.4.2. Selecting parameter values 31
 3.4.3. Caching member information 33
 A. Appendix: MTP as an Internet Protocol transport 34
 A.1 Internet Protocol multicast addressing 34
 A.2 Encapsulation 35
 A.3 Fields of the bridge protocol 35
 A.4 Relationship to other Internet Transports 36
 References 36
 Footnotes 37
 Security Considerations 37
 Authors’ Addresses 38

1. Introduction

 This document describes a flow controlled, atomic multicasting
 transport protocol (MTP). The purpose of this document is to present
 sufficient information to implement the protocol.

 The MTP design has been influenced by the large body of the
 networking and distributed systems literature and technology that has
 been introduced during the last decade and a half. Representative
 sources include [Xer81], [BSTM79] and [Pos81] for transport design,
 and [Bog83] and [DIX82] for general concepts of broadcast and
 multicast. [CLZ87] influenced MTP’s retransmission mechanisms, and
 [Fre84] influenced the transport timings. MTP over IP uses mechanisms

Armstrong, Freier & Marzullo [Page 2]

RFC 1301 Multicast Transport Protocol February 1992

 described in [Dee89]. MTP’s ordering and agreement protocols were
 influenced by work done in [CM87], [JB89] and [Cri88]. Finally, a
 description of MTP’s philosophy and its motivation can be found in
 [AFM91].

2. Protocol description

 MTP is a transport in that it is a client of the network layer (as
 defined by the OSI networking model) [1]. MTP provides reliable
 delivery of client data between one or more communicating processes,
 as well as a predefined principal process. The collection of
 processes is called a web.

 In addition to transporting data reliably and efficiently, MTP
 provides the synchronization necessary for web members to agree on
 the order of receipt of all messages and can agree on the delivery of
 the message even in the face of partitions. This ordering and
 agreement protocol uses serialized tokens granted by the master to
 producers.

 The processes may have any one of three levels of capability. One
 member must be the master. The master instantiates and controls the
 behavior of the web, including its membership and performance. Non
 master members may be either producer/consumers or pure consumers.
 The former class of member is permitted to transmit user data to the
 entire membership (and expected to logically hear itself), while the
 latter is prohibited from transmitting user data.

 MTP is a negative acknowledgement protocol, exploiting the highly
 reliable delivery of the local area and wide area network
 technologies of today. Successful delivery of data is accepted by
 consuming stations silently rather than having the successful
 delivery noted to the producing process, thus reducing the amount of
 reverse traffic required to maintain synchronization.

2.1 Definition of terms

 The following terms are used throughout this document. They are
 defined here to eliminate ambiguity.

 consumer A consumer is a transport that is capable only of
 receiving user data. It may transmit control packets,
 such as negative acknowledgements, but may never transmit
 any requests for the transmit token or any form of data
 or empty messages.

 heartbeat A heartbeat is an interval of time, nominally measured in
 milliseconds. It is a key parameter in the transport’s

Armstrong, Freier & Marzullo [Page 3]

RFC 1301 Multicast Transport Protocol February 1992

 state and can be adapted to the requirements of the
 transport’s client to provide the desired quality of
 service.

 master The master is the principal member of the web. The master
 capability is a superset of a producer member. The
 master is mainly responsible for giving out transmit
 tokens to members who wish to send data, and overseeing
 the web’s membership and operational parameters.

 member A web member is any process that has been permitted to
 join the web (by the master) as well as the master
 itself.

 membership Every member is classified as to its intentions for
 class joining the web. Membership classes are defined to be
 consumer, producer and master. Each successive class is a
 formal superset of the previous.

 message An MTP message is a concatenation of the user data
 portions of a series of data packets with the last packet
 in the series carrying an end of message indication. A
 message may contain any number of bytes of user data,
 including zero.

 NSAP The network service access point. This is the network
 address, or the node address of the machine, where a
 service is available.

 producer Producer is a class of membership that is a formal
 superset of a consumer. A producer is permitted (and
 expected) to transmit client data as well as consume data
 transmitted by other producers.

 retention Retention is one of the three fundamental parameters that
 make up the transport’s state (along with heartbeat and
 window). Retention is a number of heartbeats, and though
 applied in several different circumstances, is primarily
 used as the number of heartbeats a producing client must
 maintain buffered data should it need to be
 retransmitted.

 token In order to transmit, a producer must first be in
 possesion of a token. Tokens are granted only by the
 master and include the message sequence number.
 Consequently, they are fundamental in the operation of
 the ordering and agreement protocol used by MTP.

Armstrong, Freier & Marzullo [Page 4]

RFC 1301 Multicast Transport Protocol February 1992

 TSAP The transport service access point. This is the address
 that uniquely defines particular instantiation of a
 service. TSAPs are formed by logically concatenating the
 node’s NSAP with a transport identifier (and perhaps a
 packet/protocol type).

 user data User data is the client information carried in MTP data
 packets and treated as uninterpreted octets by the
 transport. The end of message and subchannel indicators
 are also be treated as user data.

 web A collection of processes collaborating on the solution
 of a single problem.

 window The window is one of the fundamental elements of the
 transport’s state that can be controlled to affect the
 quality of service being provided to the client. It
 represents the number of user data carrying packets that
 may be multicast into the web during a heartbeat by a
 single member.

Armstrong, Freier & Marzullo [Page 5]

RFC 1301 Multicast Transport Protocol February 1992

2.2 Packet format

 An MTP packet consists of a transport protocol header followed by a
 variable amount of data. The protocol header, shown in Figure 1, is
 part of every packet. The remainder of the packet is either user data
 (packet type = data) or additional transport specific information.
 The fields in the header are statically defined as n-bit wide
 quantities. There are no undefined fields or fields that may at any
 time have undefined values. Reserved fields, if they exist, must
 always have a value of zero.

 0 7 8 15 16 23 24 31
 -- -----
 | protocol | packet | type | client | |
 | version | type | modifier | channel | |
 -- |
 | | |
 | source connection identifier | |
 -- |
 | | |
 | destination connection identifier |
 -- transport
 | | header
message acceptance criteria
heartbeat

window
 -- -----
(data content and format	
dependent on packet type	data
and modifier)	fields
 -- -----

 Figure 1. MTP packet format

Armstrong, Freier & Marzullo [Page 6]

RFC 1301 Multicast Transport Protocol February 1992

2.2.1. Protocol version

 The first 8 bits of the packet are the protocol version number. This
 document describes version 1 of the Multicast Transport Protocol and
 thus the version field has a value of 0x01.

2.2.2. Packet type and modifier

 The second byte of the header is the packet type and the following
 byte contains the packet type modifier. Typical control message
 exchanges are in a request/response pair. The modifier field
 simplifies the construction of responses by permitting reuse of the
 incoming message with minimal modification. The following table gives
 the packet type field values along with their modifiers. The
 modifiers are valid only in the context of the type. In the prose of
 the definitions and later in the document, the syntax for referring
 to one of the entries described in the following table will be
 type[modifier]. For example, a reference to data[eow] would be a
 packet of type data with an end of window modifier.

 type modifier description

 data(0) data(0) The packet is one that contains user
 information. Only the process possessing a
 transmit token is permitted to send data
 unless specifically requested to retransmit
 previously transmitted data. All packets of
 type data are multicast to the entire web.

 eow(1) A data packet with the eow (end of window)
 modifier set indicates that the transmitter
 intends to send no more packets in this
 heartbeat either because it has sent as many
 as permitted given the window parameter or
 simply has no more data to send during the
 current heartbeat. This is not client
 information but rather a hint to be used by
 transport providers to synchronize the
 computation and transmission of naks.

 eom(2) Data[eom] marks the end of the message to the
 consumers, and the surrendering of the
 transmit token to the master. And like a
 data[eow] a data[eom] packet implies the end
 of window.

 nak(1) request(0) A nak[request] packet is a consumer
 requesting a retransmission of one or more

Armstrong, Freier & Marzullo [Page 7]

RFC 1301 Multicast Transport Protocol February 1992

 data packets. The data field contains an
 ordered list of packet sequence numbers that
 are being requested. Naks of any form are
 always unicast.

 deny(1) A nak[deny] message indicates that the
 producer source of the nak[deny]) cannot
 retransmit one or more of the packets
 requested. The process receiving the
 nak[deny] must report the failure to its
 client.

 empty(2) dally(0) An empty[dally] packet is multicast to
 maintain synchronization when no client data
 is available.

 cancel(1) If a producer finds itself in possession of a
 transmit token and has no data to send, it
 may cancel the token[request] by multicasting
 an empty[cancel] message.

 hibernate(2) If the master possesses all of the web’s
 transmit tokens and all outstanding messages
 have been accepted or rejected, the master
 may transmit empty[hibernate] packets at a
 rate significantly slower than indicated by
 the web’s value of heartbeat.

 join(3) request(0) A join[request] packet is sent by a process
 wishing to join a web to the web’s unknown
 TSAP (see section 2.2.5).

 confirm(1) The join[confirm] packet is the master’s
 confirmation of the destination’s request to
 join the web. It will be unicast by the
 master (and only the master) to the station
 that sent the join[request].

 deny(2) A join[deny] packet indicates permission to
 join the web was denied. It may only be
 transmitted by the master and will be unicast
 to the member that sent the join[request].

 quit(4) request(0) A quit[request] may be unicast to the master
 by any member of the web at any time to
 indicate the sending process wishes to
 withdraw from the web. Any member may unicast
 a quit to another member requesting that the

Armstrong, Freier & Marzullo [Page 8]

RFC 1301 Multicast Transport Protocol February 1992

 destination member quit the web due to
 intolerable behavior. The master may
 multicast a quit[request] requiring that the
 entire web disband. The request will be
 multicast at regular heartbeat intervals
 until there are no responses to retention
 requests.

 confirm(1) The quit[confirm] packet is the indication
 that a quit[request] has been observed and
 appropriate local action has been taken.
 Quit[confirm] are always unicast.

 token(5) request(0) A token[request] is a producing member
 requesting a transmit token from the master.
 Such packets are unicast to the master.

 confirm(1) The token[confirm] packet is sent by the
 master to assign the transmit token to a
 member that has requested it. token[confirm]
 will be unicast to the member being granted
 the token.

 isMember(6) request(0) An isMember[request] is soliciting
 verification that the target member is a
 recognized member of the web. All forms of
 the isMember packet are unicast to a specific
 member.

 confirm(1) IsMember[confirm] packets are positive
 responses to isMember[requests].

 deny(2) If the member receiving the isMember[request]
 cannot confirm the target’s membership in the
 web, it responds with a isMember[deny].

2.2.3. Subchannel

 The fourth byte of the transport header contains the client’s
 subchannel value. The default value of the subchannel field is zero.
 Semantics of the subchannel value are defined by the transport client
 and therefore are only applicable to packets of type data. All other
 packet types must have a subchannel value of zero.

2.2.4. Source connection identifier

 The source connection identifier field is a 32 bit field containing a
 transmitting system unique value assigned at the time the transport

Armstrong, Freier & Marzullo [Page 9]

RFC 1301 Multicast Transport Protocol February 1992

 is created. The field is used in identifying the particular transport
 instantiation and is a component of the TSAP. Every packet
 transmitted by the transport must have this field set.

2.2.5. Destination connection identifier

 The destination connection identifier is the 32 bit identifier of the
 target transport. From the point of view of a process sending a
 packet, there are three types of destination connection identifiers.
 First, there is the unknown connection identifier (0x00000000). The
 unknown value is used only as the destination connection identifier
 in the join[request] packet.

 Second, there is the multicast connection identifier gleaned from the
 join[confirm] message sent by the master. The multicast connection
 identifier is used in conjunction with the multicast NSAP to form the
 destination TSAP of all packets multicast to the entire web [2].

 The last class of connection identifier is a unicast identifier and
 is used to form the destination TSAP when unicasting packets to
 individual members. Every member of the web has associated with it a
 unicast connection identifier that is used to form its own unicast
 TSAP.

2.2.6. Message acceptance

 MTP ensures that all processes agree on which messages are accepted
 and in what order they are accepted. The master controls this aspect
 of the protocol by controlling allocation of transmit tokens and
 setting the status of messages. Once a token for a message has been
 assigned (see section 3.2.1) the master sets the status of that
 message according to the following rules [AFM91]:

 If the master has seen the entire message (i.e., has seen the
 data[eom] and all intervening data packets), the status is accepted.

 If the master has not seen the entire message but believes the
 message sender is still operational and connected to the master (as
 determined by the master), the status is pending.

 If the master has not seen the entire message and believes the
 sender to have failed or partitioned away, the status is rejected.

 Message status is carried in the message acceptance record (see
 Figure 2) of every packet, and processes learn the status of earlier
 messages by processing this information.

 The acceptance criteria is a multiple part record that carries the

Armstrong, Freier & Marzullo [Page 10]

RFC 1301 Multicast Transport Protocol February 1992

 rules of agreement to determine the message acceptance. The most
 significant 8 bits is a flag that, if not zero, indicates
 synchronization is required. The field may vary on a per message
 basis as directed by producing transport’s client. The default is
 that no synchronization is required.

 The second part of the record is a 12 element vector that represents
 the status of the last 12 messages transmitted into the web.

 0 7 8 15 16 23 24 31

 | | |
 | synchro | tri-state bitmask[12] |

 | message | packet sequence |
 | sequence number | number |

 Figure 2. Message acceptance record

 Each element of the array is two bits in length and may have one of
 three values: accepted(0), pending(1) or rejected(2). Initially, the
 bit mask is set to all zeros. When the token for message m is
 transmitted, the first (left-most) element of the vector represents
 the the state of message m - 1, the second element of the vector is
 the status of message m - 2, and so forth. Therefore the status of
 the last 12 messages are visible, the status of older messages are
 lost, logically by shifting the elements out of the vector. Only the
 master is permitted to set the status of messages. The master is not
 permitted to shift a status of pending beyond the end of the vector.
 If that situation arises, the master must instead not confirm any
 token[request] until the oldest message can be marked as either
 rejected or accepted.

 Message sequence numbers are 16 bit unsigned values. The field is
 initialized to zero by the master when the transport is initialized,
 and incremented by one after each token is granted. Only the master
 is permitted to change the value of the message sequence number. Once
 granted, that message sequence number is consumed and the state of
 the message must eventually become either accepted or rejected. No
 transmit tokens may be granted if the assignment of a message
 sequence number that would cause a value of pending to be shifted
 beyond the end of the status vector.

 Packet sequence numbers are unsigned 16 bit numbers assigned by the
 producing process on a per message basis. Packet sequence numbers
 start at a value of zero for each new message and are incremented by
 one (consumed) for each data packet making up the message. Consumers

Armstrong, Freier & Marzullo [Page 11]

RFC 1301 Multicast Transport Protocol February 1992

 detecting missing packet sequence numbers must send a nak[request] to
 the appropriate producer to recover the missed data.

 Control packets always contain the message acceptance criteria with a
 synchronization flag set to zero (0x00), the highest message sequence
 number observed and a packet sequence number one greater than
 previously observed. Control packets do not consume any sequence
 numbers. Since control messages are not reliably delivered, the
 acceptance criteria should only be checked to see if they fall within
 the proper range of message numbers, relative to the current message
 number of the receiving station. The range of acceptable sequence
 numbers should be m-11 to m-13, inclusive, where m is the current
 message number.

2.2.7. Heartbeat

 Heartbeat is an unsigned 32 bit field that has the units of
 milliseconds. The value of heartbeat is shared by all members of the
 web. By definition at least one packet (either data, empty or quit
 from the master) will be multicast into the web within every
 heartbeat period.

2.2.8. Window

 The allocation window (or simply window) is a 16 bit unsigned field
 that indicates the maximum number of data packets that can be
 multicasted by a member in a single heartbeat. It is the sum of the
 retransmitted and new data packets.

2.2.9. Retention

 The retention field is a 16 bit unsigned value that is the number of
 heartbeats for which a producer must retain transmitted client data
 and state for the purpose of retransmission.

2.3 Transport addresses

 Associated with each transport are logically three transport service
 access points (TSAP), logically formed by the concatenation of a
 network service access point (NSAP) and a transport connection
 identifier. These TSAPs are the unknown TSAP, the web’s multicast
 TSAP and each individual member’s TSAP.

2.3.1. Unknown transport address

 Stations that are just joining must use the multicast NSAP associated
 with the transport, but are not yet aware of either the web’s
 multicast TSAP the master process’ TSAP. Therefore, joining stations

Armstrong, Freier & Marzullo [Page 12]

RFC 1301 Multicast Transport Protocol February 1992

 fabricate a temporary TSAP (referred to as a unknown TSAP) by using a
 connection identifier reserved to mean unknown (0x00000000). The
 join[confirm] message will be sourced from the master’s TSAP and will
 include the multicast transport connection identifier in the data
 field. Those values must be extracted from the join[confirm] and
 remembered by the joining process.

2.3.2. Web’s multicast address

 The multicast TSAP is formed by logically concatenating the multicast
 NSAP associated with the transport creation and the transport
 connection identifier returned in the data field of the join[confirm]
 packet. If more than one network is involved in the web, then the
 multicast transport address becomes a list, one for each network
 represented. This list is supplied in the data field of
 token[confirm] packets.

 The multicast TSAP is used as the target for all messages that are
 destined to the entire web, such as data and empty. The master’s
 decision to abandon the transport (quit) is also sent to the
 multicast transport address.

2.3.3. Member addresses

 The member TSAP is formed by using the process’ unicast NSAP
 concatenated with a locally generated unique connection identifier.
 That TSAP must be the source of every packet transmitted by the
 process, regardless of its destination, for the lifetime of the
 transport.

 Packets unicast to specific members must contain the appropriate
 TSAP. For producers and consumers this is not difficult. The only
 TSAPs of interest are the master and the station(s) currently
 transmitting data.

3. Protocol behavior

 This section defines the expectations of the protocol implementation.
 These expectations should not be considered guidelines or hints, but
 rather part the protocol.

3.1 Establishing a transport

 Before any rendezvous can be affected, a process must first acquire
 an NSAP that will be the service access point for the instantiation
 [3]. The process that first establishes at that NSAP is referred to
 as the master of the web. The decision as to what process acts as the
 master must be made a priori in order to guarantee unambiguous

Armstrong, Freier & Marzullo [Page 13]

RFC 1301 Multicast Transport Protocol February 1992

 creation in the face of network partitions. The process should make a
 robust effort to verify that the NSAP being used is not already in
 service. It may do so by repeatedly sending join[requests] to the
 web’s unknown TSAP. If there is no response to repeated transmissions
 the process may be relatively confident that the NSAP is not in use
 and proceed with the creation of the web. If not, the creation must
 be aborted and the situation reported to its client.

3.1.1. Join request

 Additional members may join the web at any time after the
 establishment of the master by the joining process sending a
 join[request] to the unknown TSAP. The joining process should have
 already assigned a unique connection identifier to its transport
 instantiation that will be used in the source TSAP of the
 join[request]. The join[request] must contain zeros in all of the
 acceptance fields. The heartbeat, window and retention parameters are
 filled in as requested by the transport provider’s client. The data
 of the message must contain the type, class and quality of service
 parameters that the client has requested.

 field class definition

 membership class master(0) There can be only a single web
 master, and that member has all
 privileges of a producer class member
 plus those acquitted only to the
 master.

 producer(1) A process that has producer class
 membership wishes to transmit data
 into the web as well as consume.

 consumer(2) A consumer process is a read only
 process. It will send naks in order
 to reliably receive data but will
 never ask for or be permitted to take
 possession of a transmit token.

 transport class reliable(0) Specifies a reliable transport, i.e.,
 one that will generate and process
 naks. The implication is that the
 data will be reliably delivered or
 the failure will be detected and
 reported to the client.

 unreliable(1) The transport supports best

Armstrong, Freier & Marzullo [Page 14]

RFC 1301 Multicast Transport Protocol February 1992

 effort delivery. Such a transport may
 still fail if the error rates are too
 high, but tolerable loss or
 corruption of data will be permitted
 [4].

 transport type NxN(0) The transport will accept multiple
 processes with producing capability.

 1xN(1) A 1xN transport permits only a single
 producer whose identity was
 established a priori.

 The client’s desire for minimum throughput (expressed in kilobytes
 per second) is the lowest value that will be accepted. That
 throughput is calculated using the heartbeat and window parameters of
 the transport, and the maximum data unit size, not by measuring
 actual traffic. Any member that suggests a combination of those
 parameters that result in an unacceptable throughput will be ignored
 or asked to withdraw from the web.

 A joining client may also suggest a maximum data unit size. This
 field is expressed as a number of bytes that can be included in a
 data packet as client data.

 If no response is received in a single heartbeat, the join[request]
 should be retransmitted using the same source TSAP so the master can
 detect the difference between a new process and a retransmission of a
 join[request].

Armstrong, Freier & Marzullo [Page 15]

RFC 1301 Multicast Transport Protocol February 1992

3.1.2. Join confirm/deny

 Only the master of the web will respond to join[request]. The
 response may either permit the entry of the new process or deny it.
 The request to join may be denied because the new member is
 specifying service parameters that are in conflict with those
 established by the master. If the join is confirmed the
 join[confirm] will be unicast by the master with a data field that
 contains the web’s current operating parameters. If those parameters
 are unacceptable to the joining process it may decide to withdraw
 from the web. Otherwise the parameters must be accepted as the
 current operating values.

 0 7 8 15 16 23 24 31
 -- -----
 | protocol | packet | type | client | |
 | version | type | modifier | channel | |
 -- |
 | | |
 | source connection identifier | |
 -- |
 | | |
 | destination connection identifier |
 -- transport
 | | header
message acceptance criteria
heartbeat

window
 -- -----
 | member | transport | transport | | |
 | class | class | type | reserved | |
 --
 | minimum | maximum data | data
 | throughput | unit size |
 -- |
 | multicast connection | |
 | identifier | |
 -- -----

 Figure 3. join packet

 The join[confirm] will also contain the multicast connection
 identifier. This must be used to form the TSAP that will be the
 destination for all multicast messages for the transport. The source

Armstrong, Freier & Marzullo [Page 16]

RFC 1301 Multicast Transport Protocol February 1992

 of the join[confirm] message will be the master’s TSAP and must be
 recorded by the member for later use.

 The master must be in possession of all the transmit tokens when it
 sends a join[confirm]. Requiring the master to have the transmit
 tokens insures that the joining member will enter the web and observe
 only complete messages. It also permits a notification of the
 master’s client of the join so that application state may be
 automatically sent to the newly joining member. The newly joined
 member may be on a network not previously represented in the web’s
 membership, thus requiring a new multicast TSAP be added to the
 existing list. The entire list will be conveyed in the data field of
 all subsequent token[confirm] messages (described later).

3.2 Maintaining data consistency

 The transport is responsible for maintaining the consistency of the
 data submitted for delivery by producing clients. The actual client
 data, while representing the bulk of the information that flows
 through the web, is accompanied by significant amounts of protocol
 state information. In addition to the state information piggybacked
 with the client data, there is a minimum amount of protocol packets
 that are purely for use by the transport, invisible to the transport
 client.

3.2.1. Transmit tokens

 Before any process may transmit client data or state it must first
 possess a transmit token. It may acquire the token by transmitting a
 token[request] to the master. Requests should be unicast to the
 master’s TSAP and should be retransmitted at intervals approximately
 equal to the heartbeat. Since it is the central source for a transmit
 token, the master may apply some fairness algorithms to the passing
 of permission to transmit. At a minimum the requests should be queued
 in a first in, first out order. Duplicate requests from a single
 member should be ignored, keeping instead the first unhonored
 request. When appropriate, the master will send a member with a
 request pending a token[confirm]. The data field of the response
 contains all the multicast TSAPs that are represented in the current
 web at that point in time.

 If the master detects no data or heartbeat messages being transmitted
 into the web it will assume the token is lost, presumably because the
 member holding the token has failed or has become partitioned away
 from the master. In such cases, the master may attempt to confirm the
 state of the process (perhaps by sending isMember[request]). If the
 member does not respond it is removed from the active members of the
 web, the message is marked as rejected, the token is assumed by the

Armstrong, Freier & Marzullo [Page 17]

RFC 1301 Multicast Transport Protocol February 1992

 master.

 Figure 4 shows a timing diagram of a token pass. Increasing time is
 towards the bottom of the figure. In this figure, process A has a
 token, and process B requests a token when there are no free tokens.

 A master B
 "A" multicasts data | | "B" requests
 |\ | | transmit token
 | \ | /|
 | \ | / |
 | \ | / |
 "A" multicasts data | \ | / | "B" retransmits
 w/eom set |\ \| / | token request
 | \ \V /|
 | \ |\ / |
 | \ | V / |
 | \ | / |
 | \| / |
 | \V |
 | |\ |
 | | V |
 | |\ | Master assigns
 | | \ | token to "B"
 | | \ |
 | | \ |
 | | \ |
 | | V|
 | | |
 | | /| "B" multicasts
 | | / | data
 | | / |
 | | / |
 | | / |
 | |/ |
 | / |
 | /| |
 | V | |
 | | |

 Figure 4. Acquiring the token

 Token packets, like other control packets, do not consume sequence
 numbers. Hence, the master must be able to use another mechanism to
 determine whether multiple token[request] from a single member are
 actually requests for a separate token, or are a retransmission of a
 token[request]. To carry out this obligation, the master and the
 members must have an implicit understanding of each other’s state.

Armstrong, Freier & Marzullo [Page 18]

RFC 1301 Multicast Transport Protocol February 1992

 0 7 8 15 16 23 24 31
 -- -----
 | protocol | packet | type | client | |
 | version | type | modifier | channel | |
 -- |
 | | |
 | source connection identifier | |
 -- |
 | | |
 | destination connection identifier |
 -- transport
 | | header
message acceptance criteria
heartbeat

window
 -- -----
 | | |
 | | |
 | TSAPs of all networks |
 | represented in the web | data
 | membership |
 | | |
 | | |
 -- -----

 Figure 5. token packet

 Assume that the token, as viewed by the master, has three states:

 idle The token is not currently assigned. Specifically the
 message number that it defines is not represented in the
 current message acceptance vector.

 pending The token has been assigned by the master via a
 token[confirm] packet, but the master has not yet seen
 any data packets to indicate that the from the producing
 member received the notification.

 busy The token has been assigned and the master has seen data
 packets carrying the assigned message number. The message
 comprised by those packets is still represented in the
 message acceptance vector.

 Furthermore, a token that is not idle also has associated with its

Armstrong, Freier & Marzullo [Page 19]

RFC 1301 Multicast Transport Protocol February 1992

 state the TSAP of the process that owns (or owned) the token.

 Based on this state, the master will respond to any process that has
 a token in pending state with a reassignment of that token. This is
 based on the assumption that the original token[confirm] was not
 received by the requesting process. The only other possibility is
 that the process did receive the token and transmitted data packets
 using that token, but the master did not see them. But data messages
 are by design multi-packet messages, padded with empty packets if
 necessary. The possibility of the master missing all of the packets
 of a message is considered less than the possibility of the
 requesting process missing a single token[confirm] packet.

 The process requesting tokens must consider the actions of the master
 and what prompted them. In most cases the assumptions made by the
 master will be correct. However, there are two ambiguous situations.
 There is the situation that the master is most directly addressing,
 not knowing whether the requesting process has failed to observe the
 token[confirm] or the master has failed to see data packets
 transmitted by the producing process. There is also the possibility
 that the requesting process timed out too quickly and the
 retransmission of the token[request] passed the token[confirm] in the
 night. In any case the producing process may find itself in
 possession of a token for which it has no need. These can be
 dismissed by sending an empty[cancel] packet.

 Another possibility is that the requesting process has actually made
 use of the assigned token and is requesting another token. Unless the
 master has observed data using the token, the master will still
 consider the token pending. Therefore, a process that receives a
 duplicate token[confirm] should interpret it as a nak and retransmit
 any data packets previously sent using the token’s message sequence
 number.

3.2.2. Data transmission

 Data is provided by the transport client in the form of uninterpreted
 bytes. The bytes are encapsulated in packets immediately following
 the protocol’s fixed overhead fields. The packet may have any number
 of data bytes between zero and the maximum number of bytes of a
 network protocol packet minus the network overhead and the fixed
 transport overhead. Every packet that consumes a sequence number
 must contain either client data or client state transitions such as
 the end of message indicator or a subchannel transition.

 Packets are transmitted in bursts of packets called windows. The
 protocol guarantees that no more than the current value of window
 data packets will be transmitted by a single process during a

Armstrong, Freier & Marzullo [Page 20]

RFC 1301 Multicast Transport Protocol February 1992

 heartbeat. Every packet transmitted always contains the latest
 heartbeat, window and retention information. If full packets are
 unavailable [5], empty[dally] messages should be transmitted instead.
 The only packets that will be transmitted containing less than
 maximum capacity will be data[eom] or those containing client
 subchannel transitions.

Armstrong, Freier & Marzullo [Page 21]

RFC 1301 Multicast Transport Protocol February 1992

 ----- | |
 | |\ |
 | | \ |
 |\ \ |
 heartbeat | \ \ |
 |\ \ \ |
 | | \ \ V| data(n)
 | | \ \ |
 ----- | \ V| data(n+1)
 |\ \ |
 | \ V| data(n+w-1) w/eow
 |\ \ |
 | \ \ |
 |\ \ \ |
 | \ \ V| data(n+w)
 | \ \ |
 ----- | \ V| data(n+w+1)
 |\ \ |
 | \ V| data(n+2w-1) w/eow
 w = window = 3 | \ |
 r = retention = 2 | \ |
 | \ |
 | V| empty(n+2w)
 | |
 ----- | |
 |\ |
 | \ |
 | \ |
 | \ |
 | \ |
 | V| data(n+2w) w/eom
 | | Packets n..n+w-1 are released,
 ----- | | token is surrendered.
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 ----- | | Packets n+w..n+2w-1 are released.

 Figure 6. Normal data transmission

 Figure 6 shows a timing diagram of a process transmitting into a web
 (without any complicating naks). Increasing time is towards the
 bottom of the figure. The transmitting process is obligated to

Armstrong, Freier & Marzullo [Page 22]

RFC 1301 Multicast Transport Protocol February 1992

 retransmit requested packets for at least retention heartbeat
 intervals after their first transmission.

 0 7 8 15 16 23 24 31
 -- -----
 | protocol | packet | type | client | |
 | version | type | modifier | channel | |
 -- |
 | | |
 | source connection identifier | |
 -- |
 | | |
 | destination connection identifier |
 -- transport
 | | header
message acceptance criteria
heartbeat

window
 -- -----
 | | |
 | uninterpreted data |
 | | data
 | |
 | | |
 -- -----

 Figure 7. data packet

3.2.3. Empty packets

 An empty packet is a control packet multicast into the web at regular
 intervals by a producer possessing a transmit token when no client
 data is available. Empty packets are sent to maintain synchronization
 and to advertise the maximum sequence number of the producer. It
 provides the opportunity for consuming processes to detect and
 request retransmission of missed data as well as identifying the
 owner of a transmit token.

Armstrong, Freier & Marzullo [Page 23]

RFC 1301 Multicast Transport Protocol February 1992

 0 7 8 15 16 23 24 31
 -- -----
 | protocol | packet | type | client | |
 | version | type | modifier | channel | |
 -- |
 | | |
 | source connection identifier | |
 -- |
 | | |
 | destination connection identifier |
 -- transport
 | | header
message acceptance criteria
heartbeat

window
 -- -----

 Figure 8. empty packet

 There are two situations where the empty[dally] packet is used. The
 first is when there is insufficient data for a full packet presented
 by the client during a heartbeat. Partial packets should not be
 transmitted unless there is a client transition to be conveyed, yet
 something must be transmitted during a heartbeat or the master may
 think the process owning a transmit token has failed. Empty[dally] is
 used instead of a data packet until the client provides additional
 data to fill a packet or indicates a state transition such as an end
 of message or subchannel transition.

 The second situation where empty[dally] is used is after the
 transmission of short messages. Each message should consist of
 multiple packets in order to enhance the possibility that consumers
 will observe at least one packet of a message and therefore be able
 to identify the producer. The transport parameter retention has
 approximately the correct properties for that insurance. Therefore, a
 message must consist of at least retention packets. If the client
 data does not require that many packets, empty[dally] packets must be
 appended. A process that has no transmittable data and is in
 possession of a transmit token must send an empty[cancel].
 Transmissions of empty[cancel] packets pass the ownership of the
 transmit token back to the master. When the master observes the
 control packet, it will mark the referenced to message as rejected so
 that other consumers do not believe the message lost and attempt to
 recover.

Armstrong, Freier & Marzullo [Page 24]

RFC 1301 Multicast Transport Protocol February 1992

 During periods of no activity (i.e., after all messages have been
 either accepted or rejected and there are no outstanding transmit
 tokens) the master may enter hibernation mode by transmitting
 empty[hibernate] packets. In that mode the master will increase the
 value of the transport parameter heartbeat in order to reduce network
 traffic. Such packets are used to indicate that the packet’s
 heartbeat field should not be used for resource computation by those
 processes that observe it.

Armstrong, Freier & Marzullo [Page 25]

RFC 1301 Multicast Transport Protocol February 1992

3.2.4. Missed data

 The most common method of detecting data loss will be the reception
 of a data or a heartbeat message that has a sequence number greater
 than expected from that producer. The second most common method will
 be a message fragment (missing the end of message) and seeing no more
 data or empty packets from the producer of the fragment for more than
 a single heartbeat. In any case the consumer process directs a
 negative acknowledgment (nak) to the producer of the incomplete
 message. The data field of the nak message contains a list of
 ascending sequence number pairs the consumer needs to recover the
 missed data.

 0 7 8 15 16 23 24 31
 -- -----
 | protocol | packet | type | client | |
 | version | type | modifier | channel | |
 -- |
 | | |
 | source connection identifier | |
 -- |
 | | |
 | destination connection identifier |
 -- transport
 | | header
message acceptance criteria
heartbeat

window
 -- -----
 | | | |
 | message sequence (low) | packet sequence (low) |
 -- data
 | | |
 | message sequence (high) | packet sequence (high) | |
 -- -----

 Figure 9. nak packet

3.2.5. Retrying operations

 Operations must be retried in order to assure that a single packet
 loss does not cause transport failure. In general the right numbers
 to do that with exist in the transport. The proper interval between
 retries is the transport’s time constant or heartbeat. The proper

Armstrong, Freier & Marzullo [Page 26]

RFC 1301 Multicast Transport Protocol February 1992

 number of retries is retention.

 Operations that are retriable (and represented by their respective
 message types) are join, nak, token, isMember and quit. Another
 application for the heartbeat and retention is when transmitting
 empty messages. Empty[dally] messages are transmitted any time data
 is not available but the data[eom] has not yet been sent. Any process
 not observing data or empty for more than retention heartbeat
 intervals will assume to have failed or partitioned away and the
 transport will be abandoned.

3.2.6. Retransmission

 If the producer receives a nak[request] from a consumer process
 requesting the retransmission of a packet that is no longer
 available, the producer must send a nak[deny] to the source of the
 request. If that puts the consumer in a failed state, the consumer
 will initiate the withdrawal from the web. If a producer receives a
 nak[request] from a consumer requesting the retransmission of one or
 more packets, those packets will be multicast to the entire web [6].
 All will contain the original client information (such as subchannel
 and end of message state) and message and packet sequence number.
 However, the retransmitted packets must contain updated protocol
 parameter information (heartbeat, window and retention).
 Retransmitted packets are subject to the same constraints regarding
 heartbeat and window as original transmissions. Therefore the
 producer’s retransmissions consume a portion of the allocation window
 allowing less new data to be transmitted in a single heartbeat.
 Retransmitted packets have priority over (i.e., should be transmitted
 before) new data packets.

Armstrong, Freier & Marzullo [Page 27]

RFC 1301 Multicast Transport Protocol February 1992

 ----- | | retransmission count = rx=0
 | |\ |
 | | \ |
 | |\ \ |
 | | \ \ |
 | |\ \ \ |
 | | \ \ V| data(n)
 | | \ \ |
 | \ *| data(n+1)
 heartbeat | \ |
 | V| data(n+w-1-rx) w/eow rx=0
 | | |
 | | /| nak(n’) of n+1
 | | / |
 | | / |
 | | / |
 | | / |
 | |V |
 ----- | |
 |\ |
 | \ |
 |\ \ |
 | \ \ |
 |\ \ \ |
 w = window = 3 | \ \ *| retransmission(n+1) rx=1
 r = retention = 1 | \ \ |
 | \ V| data(n+w)
 | \ |
 | V| data(n+2w-1-rx) w/eow rx=1
 | |
 | /| nak(n’) of n+1
 | / |
 ----- | / |
 |\ / |
 | / |
 |V \ |
 |\ \ |
 | \ \ |
 |\ \ V| data(n+2w-rx) rx=1
 | \ \ | Packets n..n+w-1-0 can be released.
 | \ \ |
 | \ V| nak deny(n+1) rx=2
 | \ |
 | V| data(n+3w-1-rx) w/eom rx=2
 | |
 ----- | | Packets n+w..n+2w-1-1 are released.

 Figure 10. naks and retransmission

Armstrong, Freier & Marzullo [Page 28]

RFC 1301 Multicast Transport Protocol February 1992

3.2.7. Duplicate suppression

 The consumer must be prepared to ignore duplicate packets received.
 They will invariably be the result of the producer’s retransmission
 in response to another consumer’s nak.

3.2.8. Banishment

 If at any time a process detects another in violation of the protocol
 it may ask the offending process to withdraw from the web by
 unicasting to it a quit[request] that has the target field set to the
 value of the offender’s TSAP. Any member that exhibits a detectable
 and recoverable protocol violation and still responds willingly to
 the quit[request] will be noted as having truly correct social
 behavior.

 0 7 8 15 16 23 24 31
 -- -----
 | protocol | packet | type | client | |
 | version | type | modifier | channel | |
 -- |
 | | |
 | source connection identifier | |
 -- |
 | | |
 | destination connection identifier |
 -- transport
 | | header
message acceptance criteria
heartbeat

window
 -- -----
 | |
 | target TSAP |

 Figure 11. quit packet

3.3 Terminating the transport

 Transport termination is an advisory process that may be initiated by
 any member of the web. No process should intentionally quit the web
 while it has retransmittable data buffered. Stations should make

Armstrong, Freier & Marzullo [Page 29]

RFC 1301 Multicast Transport Protocol February 1992

 every reasonable attempt advise the master of their intentions to
 withdraw, as their departure may collapse the topology of the web and
 eliminate the need to carry multicast messages across network
 boundaries.

3.3.1. Voluntary quits

 Voluntary quit[requests] are unicast to the master’s TSAP. When the
 master receives a quit from a member of the web, it responds with a
 quit[confirm] packet. At that time the member will be formally
 removed from the web. The request should be retransmitted at
 heartbeat intervals until the confirmation is received from the
 master or as many times as the web’s value of retention.

3.3.2. Master quit

 If the master initiates the transport termination it effects all
 members of the web. The master will retain all transmit tokens and
 refuse to assign them. Once the tokens are acquired, the master will
 multicast a quit[request] to the entire web. That request should be
 acknowledged by every active member. When the master receives no
 confirmations for retention transmissions, it may assume every member
 has terminated its transport and then may follow suit.

3.3.3. Banishment

 If the master receives any message other than a join[request] from a
 member that it does not recognize, it should transmit a quit[request]
 with that process as a target. This covers cases where the consumer
 did not see the termination reply and retransmitted its original quit
 request, as well as unannounced and rejected consumers.

3.4 Transport parameters

 The following section provides guidelines and rationale for selecting
 reasonable transport quality of service parameters. It also describes
 some of the reasoning behind the ranges of values presented.

3.4.1. Quality of service

 Active members of the web may suggest changes in the transport’s
 quality of service parameters during the lifetime of the transport.
 Producers in general adjust the transport’s parameters to encourage a
 higher level of throughput. Since consumers are responsible for
 certifying reliable delivery, it is expected that they will provide
 the force encouraging more reliability and stability. Both are trying
 to optimize the quality of service. The negotiation that took place
 when members joined the web included the clients’ desires with

Armstrong, Freier & Marzullo [Page 30]

RFC 1301 Multicast Transport Protocol February 1992

 regards to the worst case behavior that will be tolerated. If a
 member cannot maintain the negotiated lower bound, it may asked to
 withdraw from the web. That process will be sent a unicast message
 (quit[request]) indicating that it should retire. There are
 essentially three parameters maintained by the transport that reflect
 the client’s quality of service requirements: heartbeat, window and
 retention. These three parameters can be adapted by the transport to
 reflect the capability of the members, the type of application being
 supported and the network topology. When members join the web, they
 suggest values for the quality of service parameters to the master.
 If the parameters are acceptable, the master will respond with the
 web’s current operating values. During the lifetime of the web, it is
 expected that the parameters be modified by its members, though they
 may never result in a quality of service less than the lower bounds
 established by the joining procedure. Producers may try to improve
 performance by reducing the heartbeat interval and increasing the
 window size. This will have the effect of increasing the resources
 committed to the transport at any time. In order to keep the
 resources under control, the producer may also reduce the retention.

 Consumers must rely on their clients to consume the data occupying
 the resources of the transport. To do so the consumer transport
 implementation must monitor the level of committed resources to
 insure that it does not exceed its capabilities. Since MTP is a NAK
 based protocol, the consumer is required to tell the producer if a
 change in parameters is required. The new information must be
 delivered to the producer(s) before the consumer’s resource situation
 becomes critical in order to avoid missing data.

 For more stable operation, consumers would try to extend the
 heartbeat interval and reduce the window. To a certain degree, they
 could also attempt to reduce the value of retention in order to
 reduce the amount of resources required to support the transport.
 However, that requires a more stringent real-time capability.

3.4.2. Selecting parameter values

 The value of heartbeat is approximately the transport time constant.
 Assuming that the transport can be modelled as a closed loop system
 function, reaction to feedback into the transport should settle out
 in three time constants. In a transport that is constrained to a
 single network, the dominant cause of processing delay of the
 transport will most likely be page fault resolution time.

 For example, using a one MIP processor on a ethernet and an industry
 standard disk, the worst case page fault resolution requiring two
 seeks (one to write out a dirty page, another to swap in the new
 page) and an average seek time of 40 milliseconds, page fault

Armstrong, Freier & Marzullo [Page 31]

RFC 1301 Multicast Transport Protocol February 1992

 resolution should be less than 80 milliseconds. Allowing for some
 additional overhead and scheduling delays, two times the worst case
 page fault resolution time would appear to be the minimum suitable
 transport time constant one could expect. So,

 Heartbeat (minimum) = 160 - 200 milliseconds.

 The transmit time for a full (ethernet) packet is approximately 1.2
 milliseconds. Processing time should be less than 3 milliseconds
 (ignoring possible overlapped processing). Assuming disk access (with
 no faulting) is equivalent, and the total time per packet is the sum
 of the parts, or 8.4 milliseconds. Therefore, the theoretical maximum
 value would be approximately 17 packets per heartbeat. The transport
 should be capable of approximately 120 packets per second, or 19.2
 packets per heartbeat.

 Window (maximum) = 17 - 20 packets per heartbeat.

 The (theoretical) throughput with these parameters in effect is 180
 kilobytes per second.

 Reducing retention may introduce instability because the consumers
 will have less opportunity to react to missing data. Data can be
 missed for a variety of reasons. If constrained to the local net the
 data lost due to data link corruption should be in the neighborhood
 of one packet in every 50,000 (bit error rate of approximately 10-9).
 Telephony links (between routers, for instance) exhibit similar
 characteristics. Several orders of magnitude more packets are lost at
 receiving processes, including packet switch routers, than over the
 physical links. The losses are usually a result of congestion and
 resource starvation at lower layers due to the processing of (nearly)
 back to back packets. The incidental packet loss of this type is
 virtually unavoidable. One can only require that a receiving process
 be capable of receiving some number of back to back packets
 successfully, and that number must be at least greater then the value
 of window. And beyond that the probability of success can be made as
 close to unity as required by providing the receiver the opportunity
 to observe the data multiple times.

 The receiving process must detect packet loss. The simplest method is
 to notice gaps in the received message/packet sequence numbers. Such
 detection should be done after receiving an end of window or other
 state transition indication. As such, the naks cannot be transmitted,
 let alone received, until the following heartbeat. In order to not
 have any single packet loss cause transport failure, the naks should
 have the opportunity to be transmitted at least twice.

 When the loss is detected, the nak must be transmitted and should be

Armstrong, Freier & Marzullo [Page 32]

RFC 1301 Multicast Transport Protocol February 1992

 received at the producing process in less than two heartbeats after
 the data it references was transmitted. Again, it is the detection
 time that dominates, not the transmission of the nak.

 Retention (minimum) = 3.

 The resources committed to a producing transport using the above
 assumptions are buffers sufficient for 80 packets of 1500 bytes each.
 Each buffer will be committed for 600 - 800 milliseconds.

 Transports that span multiple networks have unique problems. One such
 problem is that if a router drops a packet, all the processes on the
 remote network may attempt to send a nak[request] at the same time.
 That is not likely to enhance the router’s quality of service.
 Furthermore, it is obvious that any one nak[request] will suffice to
 prompt the producer to retransmit the desired packet. To reduce the
 number of nak[requests] in this situation, the following scheme might
 be employed.

 First, extend the value of retention to a minimum value of N. Then
 use a randomizing function that returns a value between zero and N -
 2, choose how many heartbeat intervals to dally before sending the
 nak[request], thus spreading out the transmissions over time. In
 order for the method to be meaningful, the minimum value of retention
 must be adjusted.

 Retention (minimum) = 5 (for internet cases)

3.4.3. Caching member information

 In order to reduce transport member interaction and to enhance
 performance, a certain amount of caching should be employed by
 producing members. These caches may be filled by gleaning information
 from reliable sources such as multicast data or, when all else fails,
 from responses solicited from the web’s master by use of the
 isMember[request]. IsMember[request] requests are unicast to a member
 that is believed to have an accurate state of the web, at least to
 the degree that it can answer the question posed. The destination of
 such a message is usually the master. But in cases where a process
 (such as the master) wants to verify that a process believes itself
 to be valid, it can assign the target TSAP and the destination to be
 the same. It is assumed that every process can verify itself.

 If the member receiving the isMember[request] can confirm the
 target’s active membership status in the web, it responds with a
 unicast isMember[confirm]. The data field contains the credibility
 value of the confirmation, that is the time (in milliseconds) since
 the information was confirmed from a reliable source.

Armstrong, Freier & Marzullo [Page 33]

RFC 1301 Multicast Transport Protocol February 1992

 Caches are risky as the information stored in them can become stale.
 Consequently, with only a few exceptions, the entries should be aged,
 and when sufficiently old, discarded. Ideally they may be renewed by
 the same gleanable sources alluded to in the previous paragraph. If
 not, they are simply discarded and refilled when needed.

 Web membership may be gleaned from any packet that does not have a
 value of unknown as the destination connection identifier. A
 producing transport may extract the TSAP from such packets and either
 create or refresh local caches. Then, if in the process of
 transmitting and NAK is received from one of the members whose
 identity is cached, no explicit request will be needed to verify the
 source’s membership.

 The explicit source of membership information is the master.
 Information can be requested by using the isMember message.
 Information gathered in that manner should be treated the same as
 gleaned information with respect to aging.

 The aging is a function of the transport’s time constant, or
 heartbeat, and the retention. Information about a producing member
 must be cached at least as long as that producer has incomplete
 messages. It may be cached longer. The namespace for both sequence
 numbers and connection identifiers is intentionally long to insure
 that reuse of those namespaces will not likely collide.

A. Appendix: MTP as an Internet Protocol transport

 MTP is a transport layer protocol, designed to be layered on top of a
 number of different network layer protocols. Such a protocol must
 provide certain facilities that MTP expects. In particular, the
 underlying network level protocol must provide "ports" or "sockets"
 to facilitate addressing of processes within a machine, and a
 mechanism for multicast addressing of datagrams. These two
 addressing facilities are also used to formulate the NSAP for MTP on
 IP.

A.1 Internet Protocol multicast addressing

 MTP on Internet Protocol uses the Internet Protocol multicast
 mechanisms defined in RFC 1112, "Host Extensions for IP
 Multicasting". MTP requires "Level 2" conformance described in that
 paper, for hosts which need to both send and receive multicast
 packets, both on the local net and on an internet. MTP on Internet
 Protocol uses the permanent host group address 224.0.1.9.

Armstrong, Freier & Marzullo [Page 34]

RFC 1301 Multicast Transport Protocol February 1992

A.2 Encapsulation

 The Internet Protocol does not provide a port mechanism - ports are
 defined at the transport level instead. In order to encapsulate MTP
 packet within Internet Protocol packets, a simple convergence or
 "bridge" protocol must be defined to run on top of Internet Protocol,
 which will provide MTP with the mechanism needed to deliver packets
 to the proper processes. We will call this protocol the
 "MTP/Internet Protocol Bridge Protocol", or just "Bridge". The
 protocol header is encapsulated the Internet Protocol data - the
 protocol field of the Internet Protocol packet carries the value
 indicating this packet is an MTP packet (92 decimal). The MTP packet
 itself is encapsulated in the Bridge data. Figure A.1 shows the
 positions of the fields within the MTP packet while table A.1 defines
 the contents of those fields.

A.3 Fields of the bridge protocol

 0 7 8 15 16 23 24 31
 --
 | | |
 | destination port | source port |
 --
 | | |
 | length | checksum |
 --
 | |
 | client data |
 --

 Figure A.1 MTP bridge protocol header fields

 destination port The port to which the packet is destined or sinked.

 source port The port from which the packet originates or is sourced.

 length The length in octets of the bridged packet, including
 header and all data (the MTP packet). The minimum value
 in this field is 8, the maximum is 65535. The length
 does not include any padding bytes that were used to
 compute the checksum. Note that though this field allows
 for very long packets, most networks have significantly
 shorter maximum frame sizes - the allowable and optimal
 packet size must be determined by means beyond the scope
 of this specification.

 checksum The 16 bit one’s compliment of the one’s compliment sum
 of the entire bridge protocol header and data, padded

Armstrong, Freier & Marzullo [Page 35]

RFC 1301 Multicast Transport Protocol February 1992

 with a zero octet (if necessary) to make multiple 16 bit
 quanities. A computed checksum of all zeros should be
 changed to all ones. The checksum field is optional -
 all zeros in the field indicate that checksums are not in
 use.

 data The data field is the field that carries the actual
 transport data. A single MTP packet will be carried the
 data field of each bridge packet.

A.4 Relationship to other Internet Protocol Transports

 The astute reader might note that the MTP/Bridge Protocol looks much
 like the User Datagram Protocol (UDP). UDP itself was not used
 because the protocol field in the Internet Protocol packet should
 reflect the fact that the higher level protocol of interest is MTP.

References

 AFM91 Armstrong, S., A. Freier and K. Marzullo, "MTP: An Atomic
 Multicast Transport Protocol", Xerox Webster Research Center
 technical report X9100359, March 1991.

 Bog83 Boggs, D., "Internet Broadcasting", Xerox PARC technical
 report CSL-83-3, October 1983.

 BSTM79 Boggs, D., J. Shoch, E. Taft, and R. Metcalfe, "Pup: An
 Internetwork Architecture", IEEE Transactions on
 Communications, COM-28(4), pages 612-624. April 1980.

 DIX82 Digital Equipment Corp., Intel Corp., Xerox Corp., "The
 Ethernet, a Local Area Network: Data Link and Physical Layer
 Specifications", September 1982.

 CLZ87 Clark, D., M. Lambert, and L. Zhang, "NETBLT: A high
 throughput transport protocol", In Proceedings of ACM SIGCOMM
 ’87 Workshop, pages 353-359, 1987.

 CM87 Chang J., and M. Maxemchuck. "Atomic broadcast", ACM
 Transactions on Computer Systems, 2(3):251-273, August 1987.

 Cri88 Cristian, F., "Reaching agreement on processor group
 membership in synchronous distributed systems", In
 Proceedings of the 18th International Conference on Fault-
 Tolerant Computing. IEEE TOCS, 1988.

 Dee89 Deering, S., "Host Extensions for IP Multicasting", RFC 1112,
 Stanford University, August 1989.

Armstrong, Freier & Marzullo [Page 36]

RFC 1301 Multicast Transport Protocol February 1992

 Fre84 Freier, A., "Compatability and interoperability", Open letter
 to XNS Interest Group, Xerox Systems Developement Division,
 December 13, 1984.

 JB89 Joseph T., and K. Birman, "Reliable Broadcast Protocols",
 pages 294-318, ACM Press, New York, 1989.

 Pos81 Postel, J., "Transmission Control Protocol - DARPA Internet
 Program Protocol Specification", RFC 793, DARPA, September
 1981.

 Xer81 Xerox Corp., "Internet Transport Protocols", Xerox System
 Integration Standard 028112, Stamford, Connecticut. December
 1981.

Footnotes

 [1] The network layer is not specified by MTP. One of the goals is to
 specify a transport that can be implemented with equal functionality
 on many network architectures.

 [2] There’s only one such multicast connection identifier per web. If
 there are multiple processes on the same machine participating in a
 web, the transport must descriminate between those processes by using
 the connnection identifier.

 [3] Determining the network service access point (NSAP) for a given
 instantiation of a web is not addressed by this protocol. This
 document may define some policy, but the actual means are left for
 other mechanisms.

 [4] Best effort delivery is also known as highly reliable delivery.
 It is somewhat unique that the qualifying adjective highly weakens
 the definition of reliable in this context.

 [5] The resource being flow controlled is packets carrying client
 data. Consequently, full data units provide the greatest efficiency.

 [6] There seems to be an opportunity to suppress retransmissions to
 networks that were not represented in the set of naks received.

Security Considerations

 Security issues are not discussed in this memo.

Armstrong, Freier & Marzullo [Page 37]

RFC 1301 Multicast Transport Protocol February 1992

Authors’ Addresses

 Susan M. Armstrong
 Xerox Webster Research Center
 800 Phillips Rd. MS 128-27E
 Webster, NY 14580

 Phone: (716) 422-6437
 EMail: armstrong@wrc.xerox.com

 Alan O. Freier
 Apple Computer, Inc.
 20525 Mariani Ave. MS 3-PK
 Cupertino, CA 95014

 Phone: (408) 974-9196
 EMail: freier@apple.com

 Keith A. Marzullo
 Cornell University
 Department of Computer Science
 Upson Hall
 Ithaca, NY 14853-7501

 Phone: (607) 255-9188
 EMail: marzullo@cs.cornell.edu

 Keith Marzullo is supported in part by the Defense Advanced
 Research Projects Agency (DoD) under NASA Ames grant number NAG
 2-593, Contract N00140-87-C-8904. The views, opinions and
 findings contained in this report are those of the authors and
 should not be construed as an official Department of Defense
 position, policy, or decision.

Armstrong, Freier & Marzullo [Page 38]

