Net wor k Wor ki ng Group P. Tsuchiya
Request for Comments: 1326 Bel I core
May 1992

Mut ual Encapsul ati on Consi dered Danger ous

Status of this Meno

This meno provides information for the Internet conmunity. It does
not specify an Internet standard. Distribution of this nmeno is
unlimted.

Abstract

This meno describes a packet explosion problemthat can occur with
mut ual encapsul ati on of protocols (A encapsulates B and B
encapsul ates A).

The Current Environnment

In spite of international standardization efforts to the contrary, we
are these days seeing a plethora of different protocols, both
standard and proprietary, each designed to fill a technical or
marketing niche. The end result is that they eventually butt up

agai nst each other and are expected to interwork in sonme fashion

One approach to this interworking is to encapsul ate one protoco
within another. This has resulted in cases of nmutual encapsul ation,
where protocol A runs over protocol B in sone cases, and protocol B
runs over protocol A in other cases. For exanple, there exists cases
of both I P over AppleTal k and Appl eTal k over IP. (The term nutua
encapsul ati on conmes fromthe paper by Shoch, Cohen, and Taft, called
Mut ual Encapsul ati on of Internetwork Protocols", Conputer Networks 5,
Nort h- Hol I and, 1981, 287-300. The problemidentified in this RFCis
not nmentioned in the Shoch et. al. paper.)

If there are not already other instances of nutual encapsul ation
there will likely be nore in the future. This is particularly true
with respect to the various internet protocols, such as IP, CLNP
Appl eTal k, | PX, DECNET, and so on

The Probl em
The problemw th nmutual encapsulation is the followi ng. Consider the
topol ogy shown in Figure 1. W see tw backbones and four stubs.

Backbone B(X) uses a native protocol of X (that is, it expects to
recei ve packets with a header for protocol X). B(Y) uses a native

Tsuchi ya [Page 1]

RFC 1326 Encapsul ati on Danger ous May 1992

protocol of Y. Likewise, the right and left S(Y) stubs use protocol
Y, and the right and left S(X) stubs use protocol X

S AR ' 2 S XY Y beeoo-- 2 +
| i | oo | | o0
AN T T R
heeeee + | | | | heeeee +
| B(X) | | B(Y) |
| | | |
| | i | oo
R + X | X XY | XY G +
| | | S | i |
B R e T
LERREEE + | | -----Re------ | | LERREEE +
Ho- oo + Ho- oo +
LEGEND:

X:Y: A packet with protocol X encapsulated in protocol
c::ir Y, noving left to right

Rx Router x
S(Y) A stub network whose native protocol is protocol Y

B(X) A backbone network whose native protocol is protocol X

FI GURE 1: MJTUAL ENCAPSULATI ON

Fi gure 1 shows how packets would travel fromleft S(X) to right S(X),
and fromright S(Y) to left S(Y). Consider a packet fromleft S(X)
to right S(X). The packet fromleft S(X) has just a header of X up
to the point where it reaches router Rc. Since B(Y) cannot forward
header X, Rc encapsul ates the packet into a Y header with a
destination address of Rd. Wen Rd receives the packet fromB(Y), it
strips off the Y header and forwards the X header packet to right
S(X). The reverse situation exists for packets fromright S(Y) to
left S(Y).

In this exanple Rc and Rd treat B(Y) as a lower-1level subnetwork in

exactly the sane way that an I P router currently treats an Ethernet
as a lower-level subnetwork. Note that Rc considers Rd to be the

Tsuchi ya [Page 2]

RFC 1326 Encapsul ati on Danger ous May 1992

appropriate "exit router" for packets destined for right S(X), and Rb
considers Ra to be the appropriate "exit router" for packets destined
for left S(Y).

Now, assume that somehow a routing |loop fornms such that routers in
B(Y) think that Rd is reachable via Rb, Ro thinks that Rd is
reachable via Re, and routers in B(X) think that Re is reachable via
Rc. (This could result as a transient condition in the routing
algorithmif Rd and Re crashed at the sane tine.) Wen the initia
packet fromleft S(X) reaches Rc, it is encapsulated with Y and sent
to B(Y), which forwards it onto Rb. (The notation for this packet is
Y<X>, neaning that X in encapsulated in Y.)

Wien Rb receives Y<X> fromB(Y), it encapsul ates the packet in an X
header to get it to Re through B(X). Now the packet has headers
X<Y<X>>. In other words, the packet has two X encapsul ates. Wen Rc
recei ves X<Y<X>>, it again encapsul ates the packet, resulting in
Y<X<Y<X>>> The packet is growing with each encapsul ation

Now, if we assume that each successive encapsul ati on does not
preserve the hop count information in the previous header, then the
packet will never expire. Wrse, the packet will eventually reach
the Maxi mum Transmi ssion Unit (MIU) size, and will fragnent. Each
fragment will continue around the |oop, getting successively |arger
until those fragnents also fragnent. The result is an exponenti al
expl osion in the nunber of |ooping packets!

The explosion will persist until the links are saturated, and the
links will remain saturated until the loop is broken. |If the |ooping
packets doninate the link to the point where other packets, such as
routi ng update packets or nmanagenent packets, are thrown away, then
the | oop may not automatically break itself, thus requiring manual
intervention. Once the loop is broken, the packets will quickly be
flushed fromthe network.

Potenti al Fi xes

The first potential fix that comes to mind is to always preserve the
hop count information in the new header. Since hop count infornmation
is preserved in fragnents, the explosion will not occur even if sone
fragmentation occurs before the hop count expires. Not all headers,
however, have hop count information in them (for instance, X 25 and
SMDS) .

And the hop counts ranges for different protocols are different,
maki ng direct translation not always possible. For instance,

Appl eTal k has a maxi mum hop count of 16, whereas |IP has up to 256.
One coul d define a mappi ng whereby the hop count is lowered to fit

Tsuchi ya [Page 3]

RFC 1326 Encapsul ati on Danger ous May 1992

into the snaller range when necessary. This, however, night often
result in unnecessary bl ack hol es because of overly snmall hop counts.
There are for instance many |P paths that are |onger than 16 hops.

It is worth noting that the current | P over AppleTalk Internet Draft
does not preserve hop counts ("A Standard for the Transni ssion of
I nternet Packets Over AppleTal k Networks").

Anot her potential fix is to have routers peek into network |ayer
headers to see if the planned encapsul ati on already exists. For
instance, in the exanple of Figure 1, when Rb receives Y<X>, it would
see what Y had encapsul ated (for instance by |ooking at the protoco
id field of X's header), notice that X has al ready been encapsul at ed,
and throw away the packet. |f the encapsulation |oop involves nore
than two protocols, then the router nmay have to peek into successive
network | ayer headers. It would quit when it finally got to a
transport |ayer header

There are several pitfalls with this approach. First, it is always
possi ble that a network |ayer protocol is being encapsulated within a
transport layer protocol, thus | suppose requiring that the router
continue to peek even above the transport |ayer.

Second, the router may not recognize one of the network | ayer
headers, thus preventing it from peeking any further. For instance,
consider a loop involving three routers Rxy, Ryz, and Rzx, and three
protocols X, Y, and Z (the subscripts on the routers R denote which
protocol s the router recognizes). After the first |oop, Rxy receives
X<Z<Y<X>>>. Since Rxy does not recognize Z, it cannot peek beyond Z
to di scover the enbedded Y header

Third, a router may be encrypting the packet that it sends to its
peer, such as is done with Blacker routers. For instance, Rc might
be encrypting packets that it encapsul ates for Rd, expecting Rd to
decrypt it. Wien Rb receives this packet (because of the |loop), it
cannot peek beyond the Y header.

Finally, there may be situations where it is appropriate to have
nmul ti ple instances of the same header. For instance, in the nested
mut ual encapsul ation of Figure 2, Ra will encapsulate Y in X to get
it to Rd, but Ro will encapsulate X<Y> in Y to get it to Rc. In this
case, it is appropriate for Ro to transnmit a packet with two Y
headers.

A third (somewhat hybrid) solution is to outlaw nested nutua
encapsul ati on, enploy both hop count preservation and header peeking
where appropriate, and generally discourage the use of nutua
encapsul ation (or at |least adopt the attitude that those who engage

Tsuchi ya [Page 4]

RFC 1326 Encapsul ati on Danger ous May 1992

in nmutual encapsul ation deserve what they get).

FI GURE 2: NESTED MJTUAL ENCAPSULATI ON

Security Considerations

Security issues are not discussed in this neno.
Aut hor’ s Addr ess

Paul Tsuchiya

Bel | core

435 South St

MRE 2L-281

Morristown, NJ 07960

Phone: (908) 829-4484
EMai | : tsuchiya@ hunper. bel |l core. com

Tsuchi ya [Page 5]

