
Network Working Group K. McCloghrie
Request for Comments: 1353 Hughes LAN Systems, Inc.
 J. Davin
 MIT Laboratory for Computer Science
 J. Galvin
 Trusted Information Systems, Inc.
 July 1992

 Definitions of Managed Objects
 for Administration of SNMP Parties

Status of this Memo

 This document specifies an IAB standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "IAB
 Official Protocol Standards" for the standardization state and status
 of this protocol. Distribution of this memo is unlimited.

Abstract

 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in TCP/IP-based internets.
 In particular, it describes a representation of the SNMP parties
 defined in [8] as objects defined according to the Internet Standard
 SMI [1]. These definitions are consistent with the SNMP Security
 protocols set forth in [9].

Table of Contents

 1. The Network Management Framework 2
 2. Objects .. 2
 2.1 Format of Definitions 3
 3. Overview ... 3
 3.1 Structure ... 3
 3.2 Instance Identifiers 3
 3.3 Textual Conventions 4
 4. Definitions .. 4
 4.1 The SNMP Party Public Database Group 9
 4.2 The SNMP Party Secrets Database Group 15
 4.3 The SNMP Access Privileges Database Group 18
 4.4 The MIB View Database Group 21
 5. Acknowledgments .. 25
 6. References ... 25
 7. Security Considerations..................................... 26
 8. Authors’ Addresses.. 26

McCloghrie, Davin, & Galvin [Page 1]

RFC 1353 SNMP Party MIB July 1992

1. The Network Management Framework

 the Internet-standard Network Management Framework consists of three
 components. They are:

 RFC 1155 which defines the SMI, the mechanisms used for describing
 and naming objects for the purpose of management. RFC 1212
 defines a more concise description mechanism, which is wholly
 consistent with the SMI.

 RFC 1156 which defines MIB-I, the core set of managed objects for
 the Internet suite of protocols. RFC 1213, defines MIB-II, an
 evolution of MIB-I based on implementation experience and new
 operational requirements.

 RFC 1157 which defines the SNMP, the protocol used for network
 access to managed objects.

 The Framework permits new objects to be defined for the purpose of
 experimentation and evaluation.

2. Objects

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the subset of Abstract Syntax Notation One (ASN.1) [5]
 defined in the SMI. In particular, each object has a name, a syntax,
 and an encoding. The name is an object identifier, an
 administratively assigned name, which specifies an object type. The
 object type together with an object instance serves to uniquely
 identify a specific instantiation of the object. For human
 convenience, we often use a textual string, termed the OBJECT
 DESCRIPTOR, to also refer to the object type.

 The syntax of an object type defines the abstract data structure
 corresponding to that object type. The ASN.1 language is used for
 this purpose. However, the SMI [1] purposely restricts the ASN.1
 constructs which may be used. These restrictions are explicitly made
 for simplicity.

 The encoding of an object type is simply how that object type is
 represented using the object type’s syntax. Implicitly tied to the
 notion of an object type’s syntax and encoding is how the object type
 is represented when being transmitted on the network.

 The SMI specifies the use of the basic encoding rules of ASN.1 [6],
 subject to the additional requirements imposed by the SNMP.

McCloghrie, Davin, & Galvin [Page 2]

RFC 1353 SNMP Party MIB July 1992

2.1. Format of Definitions

 Section 4 contains the specification of all object types contained in
 this MIB module. The object types are defined using the conventions
 defined in the SMI, as amended by the extensions specified in [7].

3. Overview

3.1. Structure

 This MIB contains the definitions for four tables, a number of OBJECT
 IDENTIFIER assignments, and some conventions for initial use with
 some of the assignments. The four tables are the SNMP Party Public
 database, the SNMP Party Secrets database, the SNMP Access Control
 database, and the SNMP Views database.

 The SNMP Party Public database and the SNMP Party Secrets database
 are defined as separate tables specifically for the purpose of
 positioning them in different parts of the MIB tree namespace. In
 particular, the SNMP Party Secrets database contains secret
 information, for which security demands that access to it be limited
 to parties which use both authentication and privacy. It is
 therefore positioned in a separate branch of the MIB tree so as to
 provide for the easiest means of accommodating the required
 limitation.

 In contrast, the SNMP Party Public database contains public
 information about SNMP parties. In particular, it contains the
 parties’ clocks which need to be read-able (but not write-able) by
 unauthenticated queries, since an unauthenticated query of a party’s
 clock is the first step of the procedure to re-establish clock
 synchronization (see [9]).

 The objects in this MIB are organized into four groups. All four of
 the groups are mandatory for those SNMP implementations that realize
 the security framework and mechanisms defined in [8] and [9].

3.2. Instance Identifiers

 In all four of the tables in this MIB, the object instances are
 identified by values which have an underlying syntax of OBJECT
 IDENTIFIER. For the Party Public database and the Party Secrets
 database, the index variable is the party identifier. For the Access
 Control database and the Views database, two index variables are
 defined, both of which have a syntax of OBJECT IDENTIFIER. (See the
 INDEX clauses in the MIB definitions below for the specific
 variables.)

McCloghrie, Davin, & Galvin [Page 3]

RFC 1353 SNMP Party MIB July 1992

 According to RFC 1212 [7], section 4.1.6, the syntax of the object(s)
 specified in an INDEX clause indicates how to form the instance-
 identifier. In particular, for each index object which is object
 identifier-valued, its contribution to the instance identifier is:

 ‘n+1’ sub-identifiers, where ‘n’ is the number of sub-identifiers
 in the value (the first sub-identifier is ‘n’ itself, following
 this, each sub-identifier in the value is copied).

3.3. Textual Conventions

 The datatypes, Party, Clock, and TAddress, are used as textual
 conventions in this document. These textual conventions have NO
 effect on either the syntax nor the semantics of any managed object.
 Objects defined using these conventions are always encoded by means
 of the rules that define their primitive type. Hence, no changes to
 the SMI or the SNMP are necessary to accommodate these textual
 conventions which are adopted merely for the convenience of readers.

4. Definitions

 RFC1353-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 system, mib, private, internet FROM RFC1155-SMI
 OBJECT-TYPE FROM RFC-1212;

 snmpParties OBJECT IDENTIFIER ::= { mib-2 20 }
 partyAdmin OBJECT IDENTIFIER ::= { snmpParties 1 }
 partyPublic OBJECT IDENTIFIER ::= { snmpParties 2 }

 snmpSecrets OBJECT IDENTIFIER ::= { mib-2 21 }
 partyPrivate OBJECT IDENTIFIER ::= { snmpSecrets 1 }
 partyAccess OBJECT IDENTIFIER ::= { snmpSecrets 2 }
 partyViews OBJECT IDENTIFIER ::= { snmpSecrets 3 }

 -- Textual Conventions

 -- A textual convention denoting a SNMP party identifier:

 Party ::= OBJECT IDENTIFIER

 -- A party’s authentication clock - a non-negative integer
 -- which is incremented as specified/allowed by the party’s
 -- Authentication Protocol.
 -- For noAuth, a party’s authentication clock is unused and

McCloghrie, Davin, & Galvin [Page 4]

RFC 1353 SNMP Party MIB July 1992

 -- its value is undefined.
 -- For md5AuthProtocol, a party’s authentication clock is a
 -- relative clock with 1-second granularity.

 Clock ::= INTEGER (0..2147483647)

 -- A textual convention denoting a transport service
 -- address.
 -- For rfc1351Domain, a TAddress is 6 octets long,
 -- the initial 4 octets containing the IP-address in
 -- network-byte order and the last 2 containing the
 -- UDP port in network-byte order.

 TAddress ::= OCTET STRING

 --- Definitions of Security Protocols

 partyProtocols
 OBJECT IDENTIFIER ::= { partyAdmin 1 }

 noAuth -- The protocol without authentication
 OBJECT IDENTIFIER ::= { partyProtocols 1 }

 noPriv -- The protocol without privacy
 OBJECT IDENTIFIER ::= { partyProtocols 3 }

 desPrivProtocol -- The DES Privacy Protocol
 OBJECT IDENTIFIER ::= { partyProtocols 4 }

 md5AuthProtocol -- The MD5 Authentication Protocol
 OBJECT IDENTIFIER ::= { partyProtocols 5 }

 --- definitions of Transport Domains

 transportDomains
 OBJECT IDENTIFIER ::= { partyAdmin 2 }

 rfc1351Domain --- RFC-1351 (SNMP over UDP, using SNMP Parties)
 OBJECT IDENTIFIER ::= { transportDomains 1 }

McCloghrie, Davin, & Galvin [Page 5]

RFC 1353 SNMP Party MIB July 1992

 --- definitions of Proxy Domains

 proxyDomains
 OBJECT IDENTIFIER ::= { partyAdmin 3 }

 noProxy --- Local operation
 OBJECT IDENTIFIER ::= { proxyDomains 1 }

 --- Definition of Initial Party Identifiers

 -- When devices are installed, they need to be configured
 -- with an initial set of SNMP parties. The configuration
 -- of SNMP parties requires (among other things) the
 -- assignment of several OBJECT IDENTIFIERs. Any local
 -- network administration can obtain the delegated
 -- authority necessary to assign its own OBJECT
 -- IDENTIFIERs. However, to provide for those
 -- administrations who have not obtained the necessary
 -- authority, this document allocates a branch of the
 -- naming tree for use with the following conventions.

 initialPartyId
 OBJECT IDENTIFIER ::= { partyAdmin 4 }

 -- Note these are identified as "initial" party identifiers
 -- since these allow secure SNMP communication to proceed,
 -- thereby allowing further SNMP parties to be configured
 -- through use of the SNMP itself.

 -- The following definitions identify a party identifier,
 -- and specify the initial values of various object
 -- instances indexed by that identifier. In addition,
 -- the initial MIB view and access control parameters
 -- assigned, by convention, to these parties are identified.

 -- Party Identifiers for use as initial SNMP parties
 -- at IP address a.b.c.d

 -- partyIdentity = { initialPartyId a b c d 1 }
 -- partyTDomain = { rfc1351Domain }
 -- partyTAddress = a.b.c.d, 161
 -- partyProxyFor = { noProxy }
 -- partyAuthProtocol = { noAuth }
 -- partyAuthClock = 0
 -- partySecretsAuthPrivate = ’’h (the empty string)
 -- partyAuthPublic = ’’h (the empty string)
 -- partyAuthLifetime = 0

McCloghrie, Davin, & Galvin [Page 6]

RFC 1353 SNMP Party MIB July 1992

 -- partyPrivProtocol = { noPriv }
 -- partySecretsPrivPrivate = ’’h (the empty string)
 -- partyPrivPublic = ’’h (the empty string)

 -- partyIdentity = { initialPartyId a b c d 2 }
 -- partyTDomain = { rfc1351Domain }
 -- partyTAddress = assigned by local administration
 -- partyProxyFor = { noProxy }
 -- partyAuthProtocol = { noAuth }
 -- partyAuthClock = 0
 -- partySecretsAuthPrivate = ’’h (the empty string)
 -- partyAuthPublic = ’’h (the empty string)
 -- partyAuthLifetime = 0
 -- partyPrivProtocol = { noPriv }
 -- partySecretsPrivPrivate = ’’h (the empty string)
 -- partyPrivPublic = ’’h (the empty string)

 -- partyIdentity = { initialPartyId a b c d 3 }
 -- partyTDomain = { rfc1351Domain }
 -- partyTAddress = a.b.c.d, 161
 -- partyProxyFor = { noProxy }
 -- partyAuthProtocol = { md5AuthProtocol }
 -- partyAuthClock = 0
 -- partySecretsAuthPrivate = assigned by local administration
 -- partyAuthPublic = ’’h (the empty string)
 -- partyAuthLifetime = 300
 -- partyPrivProtocol = { noPriv }
 -- partySecretsPrivPrivate = ’’h (the empty string)
 -- partyPrivPublic = ’’h (the empty string)

 -- partyIdentity = { initialPartyId a b c d 4 }
 -- partyTDomain = { rfc1351Domain }
 -- partyTAddress = assigned by local administration
 -- partyProxyFor = { noProxy }
 -- partyAuthProtocol = { md5AuthProtocol }
 -- partyAuthClock = 0
 -- partySecretsAuthPrivate = assigned by local administration
 -- partyAuthPublic = ’’h (the empty string)
 -- partyAuthLifetime = 300
 -- partyPrivProtocol = { noPriv }
 -- partySecretsPrivPrivate = ’’h (the empty string)
 -- partyPrivPublic = ’’h (the empty string)

 -- partyIdentity = { initialPartyId a b c d 5 }
 -- partyTDomain = { rfc1351Domain }
 -- partyTAddress = a.b.c.d, 161
 -- partyProxyFor = { noProxy }
 -- partyAuthProtocol = { md5AuthProtocol }

McCloghrie, Davin, & Galvin [Page 7]

RFC 1353 SNMP Party MIB July 1992

 -- partyAuthClock = 0
 -- partySecretsAuthPrivate = assigned by local administration
 -- partyAuthPublic = ’’h (the empty string)
 -- partyAuthLifetime = 300
 -- partyPrivProtocol = { desPrivProtocol }
 -- partySecretsPrivPrivate = assigned by local administration
 -- partyPrivPublic = ’’h (the empty string)

 -- partyIdentity = { initialPartyId a b c d 6 }
 -- partyTDomain = { rfc1351Domain }
 -- partyTAddress = assigned by local administration
 -- partyProxyFor = { noProxy }
 -- partyAuthProtocol = { md5AuthProtocol }
 -- partyAuthClock = 0
 -- partySecretsAuthPrivate = assigned by local administration
 -- partyAuthPublic = ’’h (the empty string)
 -- partyAuthLifetime = 300
 -- partyPrivProtocol = { desPrivProtocol }
 -- partySecretsPrivPrivate = assigned by local administration
 -- partyPrivPublic = ’’h (the empty string)

 -- The initial access control parameters assigned, by
 -- convention, to these parties are:

 -- aclTarget = { initialPartyId a b c d 1 }
 -- aclSubject = { initialPartyId a b c d 2 }
 -- aclPrivileges = 3 (Get & Get-Next)

 -- aclTarget = { initialPartyId a b c d 2 }
 -- aclSubject = { initialPartyId a b c d 1 }
 -- aclPrivileges = 20 (GetResponse & Trap)

 -- aclTarget = { initialPartyId a b c d 3 }
 -- aclSubject = { initialPartyId a b c d 4 }
 -- aclPrivileges = 11 (Get, Get-Next & Set)

 -- aclTarget = { initialPartyId a b c d 4 }
 -- aclSubject = { initialPartyId a b c d 3 }
 -- aclPrivileges = 20 (GetResponse & Trap)

 -- aclTarget = { initialPartyId a b c d 5 }
 -- aclSubject = { initialPartyId a b c d 6 }
 -- aclPrivileges = 11 (Get, Get-Next & Set)

 -- aclTarget = { initialPartyId a b c d 6 }
 -- aclSubject = { initialPartyId a b c d 5 }
 -- aclPrivileges = 20 (GetResponse & Trap)

McCloghrie, Davin, & Galvin [Page 8]

RFC 1353 SNMP Party MIB July 1992

 -- The initial MIB views assigned, by convention, to
 -- these parties are:

 -- viewParty = { initialPartyId a b c d 1 }
 -- viewSubtree = { system }
 -- viewStatus = { included }
 -- viewMask = { ’’h }

 -- viewParty = { initialPartyId a b c d 1 }
 -- viewSubtree = { snmpParties }
 -- viewStatus = { included }
 -- viewMask = { ’’h }

 -- viewParty = { initialPartyId a b c d 3 }
 -- viewSubtree = { internet }
 -- viewStatus = { included }
 -- viewMask = { ’’h }

 -- viewParty = { initialPartyId a b c d 3 }
 -- viewSubtree = { partyPrivate }
 -- viewStatus = { excluded }
 -- viewMask = { ’’h }

 -- viewParty = { initialPartyId a b c d 5 }
 -- viewSubtree = { internet }
 -- viewStatus = { included }
 -- viewMask = { ’’h }

 -- The SNMP Party Public Database Group
 --
 -- The non-secret party information.
 --
 -- Implementation of the objects in this group is mandatory.

 partyTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PartyEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The SNMP Party Public database.

 An agent must ensure that there is, at all times,
 a one-to-one correspondence between entries in
 this table and entries in the partySecretsTable.

 The creation/deletion of instances in this table
 via SNMP Set-Requests is not allowed. Instead,

McCloghrie, Davin, & Galvin [Page 9]

RFC 1353 SNMP Party MIB July 1992

 entries in this table are created/deleted as a
 side-effect of the creation/deletion of
 corresponding entries in the partySecretsTable.

 Thus, a SNMP Set-Request whose varbinds contain a
 reference to a non-existent instance of a
 partyTable object, but no reference to the
 corresponding instance of a partySecretsTable
 object, will be rejected."
 ::= { partyPublic 1 }

 partyEntry OBJECT-TYPE
 SYNTAX PartyEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "Locally held non-secret information about a
 particular SNMP party, which is available for
 access by network management. Note that this does
 not include all locally held information about a
 party. In particular, it does not include the
 ’last-timestamp’ (i.e., the timestamp of the last
 authentic message received) or the ’nonce’
 values."
 INDEX { partyIdentity }
 ::= { partyTable 1 }

 PartyEntry ::=
 SEQUENCE {
 partyIdentity
 Party,
 partyTDomain
 OBJECT IDENTIFIER,
 partyTAddress
 TAddress,
 partyProxyFor
 Party,
 partyAuthProtocol
 OBJECT IDENTIFIER,
 partyAuthClock
 Clock,
 partyAuthPublic
 OCTET STRING,
 partyAuthLifetime
 INTEGER,
 partyPrivProtocol
 OBJECT IDENTIFIER,
 partyPrivPublic

McCloghrie, Davin, & Galvin [Page 10]

RFC 1353 SNMP Party MIB July 1992

 OCTET STRING,
 partyMaxMessageSize
 INTEGER,
 partyStatus
 INTEGER
 }

 partyIdentity OBJECT-TYPE
 SYNTAX Party
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "A party identifier uniquely identifying a
 particular SNMP party."
 ::= { partyEntry 1 }

 partyTDomain OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Indicates the kind of transport service by which
 the party receives network management traffic. An
 example of a transport domain is ’rfc1351Domain’
 (SNMP over UDP)."
 DEFVAL { rfc1351Domain }
 ::= { partyEntry 2 }

 partyTAddress OBJECT-TYPE
 SYNTAX TAddress
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The transport service address by which the party
 receives network management traffic, formatted
 according to the corresponding value of
 partyTDomain. For rfc1351Domain, partyTAddress is
 formatted as a 4-octet IP Address concatenated
 with a 2-octet UDP port number."
 DEFVAL { ’000000000000’h }
 ::= { partyEntry 3 }

 partyProxyFor OBJECT-TYPE
 SYNTAX Party
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The identity of a second SNMP party or other

McCloghrie, Davin, & Galvin [Page 11]

RFC 1353 SNMP Party MIB July 1992

 management entity with which interaction may be
 necessary to satisfy received management requests.
 In this context, the distinguished value { noProxy
 } signifies that the party responds to received
 management requests by entirely local mechanisms."
 DEFVAL { noProxy }
 ::= { partyEntry 4 }

 partyAuthProtocol OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The authentication protocol by which all messages
 generated by the party are authenticated as to
 origin and integrity. In this context, the value
 { noAuth } signifies that messages generated by
 the party are not authenticated."
 DEFVAL { md5AuthProtocol }
 ::= { partyEntry 5 }

 partyAuthClock OBJECT-TYPE
 SYNTAX Clock
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The authentication clock which represents the
 local notion of the current time specific to the
 party. This value must not be decremented unless
 the party’s secret information is changed
 simultaneously, at which time the party’s nonce
 and last-timestamp values must also be reset to
 zero, and the new value of the clock,
 respectively."
 DEFVAL { 0 }
 ::= { partyEntry 6 }

 partyAuthPublic OBJECT-TYPE
 SYNTAX OCTET STRING -- for md5AuthProtocol: (SIZE (0..16))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "A publically-readable value for the party.

 Depending on the party’s authentication protocol,
 this value may be needed to support the party’s
 authentication protocol. Alternatively, it may be
 used by a manager during the procedure for

McCloghrie, Davin, & Galvin [Page 12]

RFC 1353 SNMP Party MIB July 1992

 altering secret information about a party. (For
 example, by altering the value of an instance of
 this object in the same SNMP Set-Request used to
 update an instance of partyAuthPrivate, a
 subsequent Get-Request can determine if the Set-
 Request was successful in the event that no
 response to the Set-Request is received, see RFC
 1352.)

 The length of the value is dependent on the
 party’s authentication protocol. If not used by
 the authentication protocol, it is recommended
 that agents support values of any length up to and
 including the length of the corresponding
 partyAuthPrivate object."
 DEFVAL { ’’h } -- the empty string
 ::= { partyEntry 7 }

 partyAuthLifetime OBJECT-TYPE
 SYNTAX INTEGER (0..2147483647)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The lifetime (in units of seconds) which
 represents an administrative upper bound on
 acceptable delivery delay for protocol messages
 generated by the party."
 DEFVAL { 300 }
 ::= { partyEntry 8 }

 partyPrivProtocol OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The privacy protocol by which all protocol
 messages received by the party are protected from
 disclosure. In this context, the value { noPriv }
 signifies that messages received by the party are
 not protected."
 DEFVAL { noPriv }
 ::= { partyEntry 9 }

 partyPrivPublic OBJECT-TYPE
 SYNTAX OCTET STRING -- for desPrivProtocol: (SIZE (0..16))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION

McCloghrie, Davin, & Galvin [Page 13]

RFC 1353 SNMP Party MIB July 1992

 "A publically-readable value for the party.

 Depending on the party’s privacy protocol, this
 value may be needed to support the party’s privacy
 protocol. Alternatively, it may be used by a
 manager as a part of its procedure for altering
 secret information about a party. (For example,
 by altering the value of an instance of this
 object in the same SNMP Set-Request used to update
 an instance of partyPrivPrivate, a subsequent
 Get-Request can determine if the Set-Request was
 successful in the event that no response to the
 Set-Request is received, see RFC 1352.)

 The length of the value is dependent on the
 party’s privacy protocol. If not used by the
 privacy protocol, it is recommended that agents
 support values of any length up to and including
 the length of the corresponding partyPrivPrivate
 object."
 DEFVAL { ’’h } -- the empty string
 ::= { partyEntry 10 }

 partyMaxMessageSize OBJECT-TYPE
 SYNTAX INTEGER (484..65507)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The maximum length in octets of a SNMP message
 which this party will accept. For parties which
 execute at an agent, the agent initializes this
 object to the maximum length supported by the
 agent, and does not let the object be set to any
 larger value. For parties which do not execute at
 the agent, the agent must allow the manager to set
 this object to any legal value, even if it is
 larger than the agent can generate."
 DEFVAL { 484 }
 ::= { partyEntry 11 }

 partyStatus OBJECT-TYPE
 SYNTAX INTEGER { valid(1), invalid(2) }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The status of the locally-held information on a
 particular SNMP party.

McCloghrie, Davin, & Galvin [Page 14]

RFC 1353 SNMP Party MIB July 1992

 The instance of this object for a particular party
 and the instance of partySecretsStatus for the
 same party always have the same value.

 This object will typically provide unrestricted
 read-only access to the status of parties. In
 contrast, partySecretsStatus will typically
 provide restricted read-write access to the status
 of parties."
 ::= { partyEntry 12 }

 -- The SNMP Party Secrets Database Group

 -- The secret party information
 --
 -- Implementation of the objects in this group is mandatory.

 partySecretsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF PartySecretsEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The SNMP Party Secrets database."
 ::= { partyPrivate 1 }

 partySecretsEntry OBJECT-TYPE
 SYNTAX PartySecretsEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "Locally held secret information about a
 particular SNMP party, which is available for
 access by network management.

 When a SNMP Set-Request is used to update the
 values of instances of objects in this table, it
 is recommended that the same SNMP Set-Request also
 alter the value of a non-secret object instance
 (e.g., an instance of partyAuthPublic or
 partyPrivPublic). This allows a Get-Request of
 that non-secret object instance to determine if
 the Set-Request was successful in the event that
 no response which matches the Set-Request is
 received, see RFC 1352."
 INDEX { partySecretsIdentity }
 ::= { partySecretsTable 1 }

McCloghrie, Davin, & Galvin [Page 15]

RFC 1353 SNMP Party MIB July 1992

 PartySecretsEntry ::=
 SEQUENCE {
 partySecretsIdentity
 Party,
 partySecretsAuthPrivate
 OCTET STRING,
 partySecretsPrivPrivate
 OCTET STRING,
 partySecretsStatus
 INTEGER
 }

 partySecretsIdentity OBJECT-TYPE
 SYNTAX Party
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "A party identifier uniquely identifying a
 particular SNMP party."
 ::= { partySecretsEntry 1 }

 partySecretsAuthPrivate OBJECT-TYPE
 SYNTAX OCTET STRING -- for md5AuthProtocol: (SIZE (16))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "An encoding of the party’s private authentication
 key which may be needed to support the
 authentication protocol. Although the value of
 this variable may be altered by a management
 operation (e.g., a SNMP Set-Request), its value
 can never be retrieved by a management operation:
 when read, the value of this variable is the zero
 length OCTET STRING.

 The private authentication key is NOT directly
 represented by the value of this variable, but
 rather it is represented according to an encoding.
 This encoding is the bitwise exclusive-OR of the
 old key with the new key, i.e., of the old private
 authentication key (prior to the alteration) with
 the new private authentication key (after the
 alteration). Thus, when processing a received
 protocol Set operation, the new private
 authentication key is obtained from the value of
 this variable as the result of a bitwise
 exclusive-OR of the variable’s value and the old
 private authentication key. In calculating the

McCloghrie, Davin, & Galvin [Page 16]

RFC 1353 SNMP Party MIB July 1992

 exclusive-OR, if the old key is shorter than the
 new key, zero-valued padding is appended to the
 old key. If no value for the old key exists, a
 zero-length OCTET STRING is used in the
 calculation."
 DEFVAL { ’’h } -- the empty string
 ::= { partySecretsEntry 2 }

 partySecretsPrivPrivate OBJECT-TYPE
 SYNTAX OCTET STRING -- for desPrivProtocol: (SIZE (16))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "An encoding of the party’s private encryption key
 which may be needed to support the privacy
 protocol. Although the value of this variable may
 be altered by a management operation (e.g., a SNMP
 Set-Request), its value can never be retrieved by
 a management operation: when read, the value of
 this variable is the zero length OCTET STRING.

 The private encryption key is NOT directly
 represented by the value of this variable, but
 rather it is represented according to an encoding.
 This encoding is the bitwise exclusive-OR of the
 old key with the new key, i.e., of the old private
 encryption key (prior to the alteration) with the
 new private encryption key (after the alteration).
 Thus, when processing a received protocol Set
 operation, the new private encryption key is
 obtained from the value of this variable as the
 result of a bitwise exclusive-OR of the variable’s
 value and the old private encryption key. In
 calculating the exclusive-OR, if the old key is
 shorter than the new key, zero-valued padding is
 appended to the old key. If no value for the old
 key exists, a zero-length OCTET STRING is used in
 the calculation."
 DEFVAL { ’’h } -- the empty string
 ::= { partySecretsEntry 3 }

 partySecretsStatus OBJECT-TYPE
 SYNTAX INTEGER { valid(1), invalid(2) }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The status of the locally-held information on a
 particular SNMP party.

McCloghrie, Davin, & Galvin [Page 17]

RFC 1353 SNMP Party MIB July 1992

 Setting an instance of this object to the value
 ’valid(1)’ has the effect of ensuring that valid
 local knowledge exists for the corresponding
 party. For valid local knowledge to exist, there
 must be corresponding instances of each object in
 this table and in the partyTable. Thus, the
 creation of instances in the partyTable (but not
 in the aclTable or viewTable) occurs as a direct
 result of the creation of instances in this table.

 Setting an instance of this object to the value
 ’invalid(2)’ has the effect of invalidating all
 local knowledge of the corresponding party,
 including the invalidating of any/all entries in
 the partyTable, the partySecretsTable, the
 aclTable, and the viewTable which reference said
 party.

 It is an implementation-specific matter as to
 whether the agent removes an invalidated entry
 from the table. Accordingly, management stations
 must be prepared to receive from agents tabular
 information corresponding to entries not currently
 in use. Proper interpretation of such entries
 requires examination of the relevant
 partySecretsStatus object."
 DEFVAL { valid }
 ::= { partySecretsEntry 4 }

 -- The SNMP Access Privileges Database Group

 -- This group of objects allows the SNMP itself to be used to
 -- configure new SNMP parties, or to manipulate the access
 -- privileges of existing parties.
 --
 -- Implementation of the objects in this group is mandatory.

 aclTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AclEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The access privileges database."
 ::= { partyAccess 1 }

McCloghrie, Davin, & Galvin [Page 18]

RFC 1353 SNMP Party MIB July 1992

 aclEntry OBJECT-TYPE
 SYNTAX AclEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The access privileges for a particular requesting
 SNMP party in accessing a particular target SNMP
 party."
 INDEX { aclTarget, aclSubject }
 ::= { aclTable 1 }

 AclEntry ::=
 SEQUENCE {
 aclTarget
 Party,
 aclSubject
 Party,
 aclPrivileges
 INTEGER,
 aclStatus
 INTEGER
 }

 aclTarget OBJECT-TYPE
 SYNTAX Party
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The target SNMP party whose performance of
 management operations is constrained by this set
 of access privileges."
 ::= { aclEntry 1 }

 aclSubject OBJECT-TYPE
 SYNTAX Party
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The subject SNMP party whose requests for
 management operations to be performed is
 constrained by this set of access privileges."
 ::= { aclEntry 2 }

 aclPrivileges OBJECT-TYPE
 SYNTAX INTEGER (0..31)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION

McCloghrie, Davin, & Galvin [Page 19]

RFC 1353 SNMP Party MIB July 1992

 "The access privileges which govern what
 management operations a particular target party
 may perform when requested by a particular subject
 party. These privileges are specified as a sum of
 values, where each value specifies a SNMP PDU type
 by which the subject party may request a permitted
 operation. The value for a particular PDU type is
 computed as 2 raised to the value of the ASN.1
 context-specific tag for the appropriate SNMP PDU
 type. The values (for the tags defined in RFC
 1157) are defined in RFC 1351 as:

 Get : 1
 GetNext : 2
 GetResponse : 4
 Set : 8
 Trap : 16

 The null set is represented by the value zero."
 DEFVAL { 3 } -- Get & Get-Next
 ::= { aclEntry 3 }

 aclStatus OBJECT-TYPE
 SYNTAX INTEGER { valid(1), invalid(2) }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The status of the access privileges for a
 particular requesting SNMP party in accessing a
 particular target SNMP party. Setting an instance
 of this object to the value ’invalid(2)’ has the
 effect of invalidating the corresponding access
 privileges.

 It is an implementation-specific matter as to
 whether the agent removes an invalidated entry
 from the table. Accordingly, management stations
 must be prepared to receive from agents tabular
 information corresponding to entries not currently
 in use. Proper interpretation of such entries
 requires examination of the relevant aclStatus
 object."
 DEFVAL { valid }
 ::= { aclEntry 4 }

McCloghrie, Davin, & Galvin [Page 20]

RFC 1353 SNMP Party MIB July 1992

 -- The MIB View Database Group

 -- This group of objects allows the SNMP itself to be used to
 -- configure new SNMP parties, or to manipulate the MIB
 -- MIB views of existing parties.
 --
 -- Implementation of the objects in this group is mandatory.

 viewTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ViewEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The table contained in the local database which
 defines local MIB views. Each SNMP party has a
 single MIB view which is defined by two
 collections of view subtrees: the included view
 subtrees, and the excluded view subtrees. Every
 such subtree, both included and excluded, is
 defined in this table.

 To determine if a particular object instance is in
 a particular SNMP party’s MIB view, compare the
 object instance’s Object Identifier with each
 entry (for this party) in this table. If none
 match, then the object instance is not in the MIB
 view. If one or more match, then the object
 instance is included in, or excluded from, the MIB
 view according to the value of viewStatus in the
 entry whose value of viewSubtree has the most
 sub-identifiers. If multiple entries match and
 have the same number of sub-identifiers, then the
 lexicographically greatest instance of viewStatus
 determines the inclusion or exclusion.

 An object instance’s Object Identifier X matches
 an entry in this table when the number of sub-
 identifiers in X is at least as many as in the
 value of viewSubtree for the entry, and each sub-
 identifier in the value of viewSubtree matches its
 corresponding sub-identifier in X. Two sub-
 identifiers match either if the corresponding bit
 of viewMask is zero (the ’wild card’ value), or if
 they are equal.

 Due to this ’wild card’ capability, we introduce
 the term, a ’family’ of view subtrees, to refer to

McCloghrie, Davin, & Galvin [Page 21]

RFC 1353 SNMP Party MIB July 1992

 the set of subtrees defined by a particular
 combination of values of viewSubtree and viewMask.
 In the case where no ’wild card’ is defined in
 viewMask, the family of view subtrees reduces to a
 single view subtree."
 ::= { partyViews 1 }

 viewEntry OBJECT-TYPE
 SYNTAX ViewEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "Information on a particular family of view
 subtrees included in or excluded from a particular
 SNMP party’s MIB view."
 INDEX { viewParty, viewSubtree }
 ::= { viewTable 1 }

 ViewEntry ::=
 SEQUENCE {
 viewParty
 Party,
 viewSubtree
 OBJECT IDENTIFIER,
 viewStatus
 INTEGER,
 viewMask
 OCTET STRING
 }

 viewParty OBJECT-TYPE
 SYNTAX Party
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The SNMP party whose single MIB view includes or
 excludes a particular family of view subtrees."
 ::= { viewEntry 1 }

 viewSubtree OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The view subtree which, in combination with the
 corresponding instance of viewMask, defines a
 family of view subtrees. This family is included
 in, or excluded from the particular SNMP party’s

McCloghrie, Davin, & Galvin [Page 22]

RFC 1353 SNMP Party MIB July 1992

 MIB view, according to the value of the
 corresponding instance of viewStatus."
 ::= { viewEntry 2 }

 viewStatus OBJECT-TYPE
 SYNTAX INTEGER {
 included(1),
 excluded(2),
 invalid(3)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The status of a particular family of view
 subtrees within the particular SNMP party’s MIB
 view. The value ’included(1)’ indicates that the
 corresponding instances of viewSubtree and
 viewMask define a family of view subtrees included
 in the MIB view. The value ’excluded(2)’
 indicates that the corresponding instances of
 viewSubtree and viewMask define a family of view
 subtrees excluded from the MIB view.

 Setting an instance of this object to the value
 ’invalid(3)’ has the effect of invalidating the
 presence or absence of the corresponding family of
 view subtrees in the corresponding SNMP party’s
 MIB view.

 It is an implementation-specific matter as to
 whether the agent removes an invalidated entry
 from the table. Accordingly, management stations
 must be prepared to receive from agents tabular
 information corresponding to entries not currently
 in use. Proper interpretation of such entries
 requires examination of the relevant viewStatus
 object."
 DEFVAL { included }
 ::= { viewEntry 3 }

 viewMask OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE (0..16))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The bit mask which, in combination with the
 corresponding instance of viewSubtree, defines a
 family of view subtrees.

McCloghrie, Davin, & Galvin [Page 23]

RFC 1353 SNMP Party MIB July 1992

 Each bit of this bit mask corresponds to a sub-
 identifier of viewSubtree, with the most
 significant bit of the i-th octet of this octet
 string value (extended if necessary, see below)
 corresponding to the (8*i - 7)-th sub-identifier,
 and the least significant bit of the i-th octet of
 this octet string corresponding to the (8*i)-th
 sub-identifier, where i is in the range 1 through
 16.

 Each bit of this bit mask specifies whether or not
 the corresponding sub-identifiers must match when
 determining if an Object Identifier is in this
 family of view subtrees; a ’1’ indicates that an
 exact match must occur; a ’0’ indicates ’wild
 card’, i.e., any sub-identifier value matches.

 Thus, the Object Identifier X of an object
 instance is contained in a family of view subtrees
 if the following criteria are met:

 for each sub-identifier of the value of
 viewSubtree, either:

 the i-th bit of viewMask is 0, or

 the i-th sub-identifier of X is equal to
 the i-th sub-identifier of the value of
 viewSubtree.

 If the value of this bit mask is M bits long and
 there are more than M sub-identifiers in the
 corresponding instance of viewSubtree, then the
 bit mask is extended with 1’s to be the required
 length.

 Note that when the value of this object is the
 zero-length string, this extension rule results in
 a mask of all-1’s being used (i.e., no ’wild
 card’), and the family of view subtrees is the one
 view subtree uniquely identified by the
 corresponding instance of viewSubtree."
 DEFVAL { ’’h }
 ::= { viewEntry 4 }

 END

McCloghrie, Davin, & Galvin [Page 24]

RFC 1353 SNMP Party MIB July 1992

5. Acknowledgments

 This document was produced on behalf of the SNMP Security Working
 Group of the Internet Engineering Task Force. The authors wish to
 thank the members of the working group, and others who contributed to
 this effort.

6. References

 [1] Rose, M., and K. McCloghrie, "Structure and Identification of
 Management Information for TCP/IP based internets", RFC 1155,
 Performance Systems International, Hughes LAN Systems, May 1990.

 [2] McCloghrie, K., and M. Rose, "Management Information Base for
 Network Management of TCP/IP-based Internets", RFC 1156, Hughes
 LAN Systems and Performance Systems International, May 1990.

 [3] Case, J., M. Fedor, M. Schoffstall, and J. Davin, The Simple
 Network Management Protocol", RFC 1157, University of Tennessee
 at Knoxville, Performance Systems International, Performance
 Systems International, and the MIT Laboratory for Computer
 Science, May 1990.

 [4] McCloghrie K., and M. Rose, Editors, "Management Information Base
 for Network Management of TCP/IP-based internets", RFC 1213,
 Performance Systems International, March 1991.

 [5] Information processing systems - Open Systems Interconnection -
 Specification of Abstract Syntax Notation One (ASN.1),
 International Organization for Standardization, International
 Standard 8824, December 1987.

 [6] Information processing systems - Open Systems Interconnection -
 Specification of Basic Encoding Rules for Abstract Notation One
 (ASN.1), International Organization for Standardization,
 International Standard 8825, December 1987.

 [7] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions",
 RFC 1212, Performance Systems International, Hughes LAN Systems,
 March 1991.

 [8] Davin, J., Galvin, J., and K. McCloghrie, "SNMP Administrative
 Model", RFC 1351, MIT Laboratory for Computer Science, Trusted
 Information Systems, Inc., Hughes LAN Systems, Inc., July 1992.

 [9] Galvin, J., McCloghrie, K., and J. Davin, "SNMP Security
 Protocols", RFC 1352, Trusted Information Systems, Inc., Hughes
 LAN Systems, Inc., MIT Laboratory for Computer Science, July

McCloghrie, Davin, & Galvin [Page 25]

RFC 1353 SNMP Party MIB July 1992

 1992.

Security Considerstions

 Security issues are discussed in section 3.1. and in RFCs 1351 and
 1352.

Authors’ Addresses

 Keith McCloghrie
 Hughes LAN Systems, Inc.
 Mountain View, CA 94043

 Phone: (415) 966-7934
 EMail: kzm@hls.com

 James R. Davin
 MIT Laboratory for Computer Science
 545 Technology Square
 Cambridge, MA 02139

 Phone: (617) 253-6020
 EMail: jrd@ptt.lcs.mit.edu

 James M. Galvin
 Trusted Information Systems, Inc.
 3060 Washington Road, Route 97
 Glenwood, MD 21738

 Phone: (301) 854-6889
 EMail: galvin@tis.com

McCloghrie, Davin, & Galvin [Page 26]

