
 Network Working Group J. Case
 Request for Comments: 1448 SNMP Research, Inc.
 K. McCloghrie
 Hughes LAN Systems
 M. Rose
 Dover Beach Consulting, Inc.
 S. Waldbusser
 Carnegie Mellon University
 April 1993

 Protocol Operations
 for version 2 of the
 Simple Network Management Protocol (SNMPv2)

 Status of this Memo

 This RFC specifes an IAB standards track protocol for the
 Internet community, and requests discussion and suggestions
 for improvements. Please refer to the current edition of the
 "IAB Official Protocol Standards" for the standardization
 state and status of this protocol. Distribution of this memo
 is unlimited.

 Table of Contents

 1 Introduction .. 2
 1.1 A Note on Terminology 2
 2 Overview .. 3
 2.1 Roles of Protocol Entities 3
 2.2 Management Information 3
 2.3 Access to Management Information 4
 2.4 Retransmission of Requests 4
 2.5 Message Sizes 5
 2.6 Transport Mappings 6
 3 Definitions ... 7
 4 Protocol Specification 12
 4.1 Common Constructs 12
 4.2 PDU Processing 12
 4.2.1 The GetRequest-PDU 13
 4.2.2 The GetNextRequest-PDU 15
 4.2.2.1 Example of Table Traversal 16
 4.2.3 The GetBulkRequest-PDU 18
 4.2.3.1 Another Example of Table Traversal 21
 4.2.4 The Response-PDU 22
 4.2.5 The SetRequest-PDU 23
 4.2.6 The SNMPv2-Trap-PDU 26
 4.2.7 The InformRequest-PDU 27

 Case, McCloghrie, Rose & Waldbusser [Page i]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 5 Acknowledgements 29
 6 References .. 33
 7 Security Considerations 35
 8 Authors’ Addresses 35

 Case, McCloghrie, Rose & Waldbusser [Page 1]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 1. Introduction

 A network management system contains: several (potentially
 many) nodes, each with a processing entity, termed an agent,
 which has access to management instrumentation; at least one
 management station; and, a management protocol, used to convey
 management information between the agents and management
 stations. Operations of the protocol are carried out under an
 administrative framework which defines both authentication and
 authorization policies.

 Network management stations execute management applications
 which monitor and control network elements. Network elements
 are devices such as hosts, routers, terminal servers, etc.,
 which are monitored and controlled through access to their
 management information.

 Management information is viewed as a collection of managed
 objects, residing in a virtual information store, termed the
 Management Information Base (MIB). Collections of related
 objects are defined in MIB modules. These modules are written
 using a subset of OSI’s Abstract Syntax Notation One (ASN.1)
 [1], termed the Structure of Management Information (SMI) [2].

 The management protocol, version 2 of the Simple Network
 Management Protocol, provides for the exchange of messages
 which convey management information between the agents and the
 management stations. The form of these messages is a message
 "wrapper" which encapsulates a Protocol Data Unit (PDU). The
 form and meaning of the "wrapper" is determined by an
 administrative framework which defines both authentication and
 authorization policies.

 It is the purpose of this document, Protocol Operations for
 SNMPv2, to define the operations of the protocol with respect
 to the sending and receiving of the PDUs.

 1.1. A Note on Terminology

 For the purpose of exposition, the original Internet-standard
 Network Management Framework, as described in RFCs 1155, 1157,
 and 1212, is termed the SNMP version 1 framework (SNMPv1).
 The current framework is termed the SNMP version 2 framework
 (SNMPv2).

 Case, McCloghrie, Rose & Waldbusser [Page 2]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 2. Overview

 2.1. Roles of Protocol Entities

 A SNMPv2 entity may operate in a manager role or an agent
 role.

 A SNMPv2 entity acts in an agent role when it performs SNMPv2
 management operations in response to received SNMPv2 protocol
 messages (other than an inform notification) or when it sends
 trap notifications.

 A SNMPv2 entity acts in a manager role when it initiates
 SNMPv2 management operations by the generation of SNMPv2
 protocol messages or when it performs SNMPv2 management
 operations in response to received trap or inform
 notifications.

 A SNMPv2 entity may support either or both roles, as dictated
 by its implementation and configuration. Further, a SNMPv2
 entity can also act in the role of a proxy agent, in which it
 appears to be acting in an agent role, but satisfies
 management requests by acting in a manager role with a remote
 entity. The use of proxy agents and the transparency
 principle that defines their behavior is described in [3].

 2.2. Management Information

 The term, variable, refers to an instance of a non-aggregate
 object type defined according to the conventions set forth in
 the SMI [2] or the textual conventions based on the SMI [4].
 The term, variable binding, normally refers to the pairing of
 the name of a variable and its associated value. However, if
 certain kinds of exceptional conditions occur during
 processing of a retrieval request, a variable binding will
 pair a name and an indication of that exception.

 A variable-binding list is a simple list of variable bindings.

 The name of a variable is an OBJECT IDENTIFIER which is the
 concatenation of the OBJECT IDENTIFIER of the corresponding
 object-type together with an OBJECT IDENTIFIER fragment
 identifying the instance. The OBJECT IDENTIFIER of the
 corresponding object-type is called the OBJECT IDENTIFIER

 Case, McCloghrie, Rose & Waldbusser [Page 3]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 prefix of the variable.

 2.3. Access to Management Information

 Three types of access to management information are provided
 by the protocol. One type is a request-response interaction,
 in which a SNMPv2 entity, acting in a manager role, sends a
 request to a SNMPv2 entity, acting in an agent role, and the
 latter SNMPv2 entity then responds to the request. This type
 is used to retrieve or modify management information
 associated with the managed device.

 A second type is also a request-response interaction, in which
 a SNMPv2 entity, acting in a manager role, sends a request to
 a SNMPv2 entity, also acting in a manager role, and the latter
 SNMPv2 entity then responds to the request. This type is used
 to notify a SNMPv2 entity, acting in a manager role, of
 management information associated with another SNMPv2 entity,
 also acting in a manager role.

 The third type of access is an unconfirmed interaction, in
 which a SNMPv2 entity, acting in an agent role, sends a
 unsolicited message, termed a trap, to a SNMPv2 entity, acting
 in a manager role, and no response is returned. This type is
 used to notify a SNMPv2 entity, acting in a manager role, of
 an exceptional situation, which has resulted in changes to
 management information associated with the managed device.

 2.4. Retransmission of Requests

 For all types of request in this protocol, the receiver is
 required under normal circumstances, to generate and transmit
 a response to the originator of the request. Whether or not a
 request should be retransmitted if no corresponding response
 is received in an appropriate time interval, is at the
 discretion of the application originating the request. This
 will normally depend on the urgency of the request. However,
 such an application needs to act responsibly in respect to the
 frequency and duration of re-transmissions.

 Case, McCloghrie, Rose & Waldbusser [Page 4]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 2.5. Message Sizes

 The maximum size of a SNMPv2 message is limited the minimum
 of:

 (1) the maximum message size which the destination SNMPv2
 entity can accept; and,

 (2) the maximum message size which the source SNMPv2 entity
 can generate.

 The former is indicated by partyMaxMessageSize[5] of the
 destination party. The latter is imposed by implementation-
 specific local constraints.

 Each transport mapping for the SNMPv2 indicates the minimum
 message size which a SNMPv2 implementation must be able to
 produce or consume. Although implementations are encouraged
 to support larger values whenever possible, a conformant
 implementation must never generate messages larger than
 allowed by the receiving SNMPv2 entity.

 One of the aims of the GetBulkRequest-PDU, specified in this
 protocol, is to minimize the number of protocol exchanges
 required to retrieve a large amount of management information.
 As such, this PDU type allows a SNMPv2 entity acting in a
 manager role to request that the response be as large as
 possible given the constraints on message sizes. These
 constraints include the limits on the size of messages which
 the SNMPv2 entity acting in an agent role can generate, and
 the SNMPv2 entity acting in a manager role can receive.

 However, it is possible that such maximum sized messages may
 be larger than the Path MTU of the path across the network
 traversed by the messages. In this situation, such messages
 are subject to fragmentation. Fragmentation is generally
 considered to be harmful [6], since among other problems, it
 leads to a decrease in the reliability of the transfer of the
 messages. Thus, a SNMPv2 entity which sends a
 GetBulkRequest-PDU must take care to set its parameters
 accordingly, so as to reduce the risk of fragmentation. In
 particular, under conditions of network stress, only small
 values should be used for max-repetitions.

 Case, McCloghrie, Rose & Waldbusser [Page 5]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 2.6. Transport Mappings

 It is important to note that the exchange of SNMPv2 messages
 requires only an unreliable datagram service, with every
 message being entirely and independently contained in a single
 transport datagram. Specific transport mappings and encoding
 rules are specified elsewhere [7]. However, the preferred
 mapping is the use of the User Datagram Protocol [8].

 Case, McCloghrie, Rose & Waldbusser [Page 6]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 3. Definitions

 SNMPv2-PDU DEFINITIONS ::= BEGIN

 IMPORTS
 ObjectName, ObjectSyntax, Integer32
 FROM SNMPv2-SMI;

 -- protocol data units

 PDUs ::=
 CHOICE {
 get-request
 GetRequest-PDU,

 get-next-request
 GetNextRequest-PDU,

 get-bulk-request
 GetBulkRequest-PDU,

 response
 Response-PDU,

 set-request
 SetRequest-PDU,

 inform-request
 InformRequest-PDU,

 snmpV2-trap
 SNMPv2-Trap-PDU
 }

 Case, McCloghrie, Rose & Waldbusser [Page 7]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 -- PDUs

 GetRequest-PDU ::=
 [0]
 IMPLICIT PDU

 GetNextRequest-PDU ::=
 [1]
 IMPLICIT PDU

 Response-PDU ::=
 [2]
 IMPLICIT PDU

 SetRequest-PDU ::=
 [3]
 IMPLICIT PDU

 -- [4] is obsolete

 GetBulkRequest-PDU ::=
 [5]
 IMPLICIT BulkPDU

 InformRequest-PDU ::=
 [6]
 IMPLICIT PDU

 SNMPv2-Trap-PDU ::=
 [7]
 IMPLICIT PDU

 Case, McCloghrie, Rose & Waldbusser [Page 8]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 max-bindings
 INTEGER ::= 2147483647

 PDU ::=
 SEQUENCE {
 request-id
 Integer32,

 error-status -- sometimes ignored
 INTEGER {
 noError(0),
 tooBig(1),
 noSuchName(2), -- for proxy compatibility
 badValue(3), -- for proxy compatibility
 readOnly(4), -- for proxy compatibility
 genErr(5),
 noAccess(6),
 wrongType(7),
 wrongLength(8),
 wrongEncoding(9),
 wrongValue(10),
 noCreation(11),
 inconsistentValue(12),
 resourceUnavailable(13),
 commitFailed(14),
 undoFailed(15),
 authorizationError(16),
 notWritable(17),
 inconsistentName(18)
 },

 error-index -- sometimes ignored
 INTEGER (0..max-bindings),

 variable-bindings -- values are sometimes ignored
 VarBindList
 }

 Case, McCloghrie, Rose & Waldbusser [Page 9]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 BulkPDU ::= -- MUST be identical in
 SEQUENCE { -- structure to PDU
 request-id
 Integer32,

 non-repeaters
 INTEGER (0..max-bindings),

 max-repetitions
 INTEGER (0..max-bindings),

 variable-bindings -- values are ignored
 VarBindList
 }

 Case, McCloghrie, Rose & Waldbusser [Page 10]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 -- variable binding

 VarBind ::=
 SEQUENCE {
 name
 ObjectName,

 CHOICE {
 value
 ObjectSyntax,

 unSpecified -- in retrieval requests
 NULL,

 -- exceptions in responses
 noSuchObject[0]
 IMPLICIT NULL,

 noSuchInstance[1]
 IMPLICIT NULL,

 endOfMibView[2]
 IMPLICIT NULL
 }
 }

 -- variable-binding list

 VarBindList ::=
 SEQUENCE (SIZE (0..max-bindings)) OF
 VarBind

 END

 Case, McCloghrie, Rose & Waldbusser [Page 11]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 4. Protocol Specification

 4.1. Common Constructs

 The value of the request-id field in a Response-PDU takes the
 value of the request-id field in the request PDU to which it
 is a response. By use of the request-id value, a SNMPv2
 application can distinguish the (potentially multiple)
 outstanding requests, and thereby correlate incoming responses
 with outstanding requests. In cases where an unreliable
 datagram service is used, the request-id also provides a
 simple means of identifying messages duplicated by the
 network. Use of the same request-id on a retransmission of a
 request allows the response to either the original
 transmission or the retransmission to satisfy the request.
 However, in order to calculate the round trip time for
 transmission and processing of a request-response transaction,
 the SNMPv2 application needs to use a different request-id
 value on a retransmitted request. The latter strategy is
 recommended for use in the majority of situations.

 A non-zero value of the error-status field in a Response-PDU
 is used to indicate that an exception occurred to prevent the
 processing of the request. In these cases, a non-zero value
 of the Response-PDU’s error-index field provides additional
 information by identifying which variable binding in the list
 caused the exception. A variable binding is identified by its
 index value. The first variable binding in a variable-binding
 list is index one, the second is index two, etc.

 SNMPv2 limits OBJECT IDENTIFIER values to a maximum of 128
 sub-identifiers, where each sub-identifier has a maximum value
 of 2**32-1.

 4.2. PDU Processing

 It is mandatory that all SNMPv2 entities acting in an agent
 role be able to generate the following PDU types: Response-PDU
 and SNMPv2-Trap-PDU; further, all such implementations must be
 able to receive the following PDU types: GetRequest-PDU,
 GetNextRequest-PDU, GetBulkRequest-PDU, and SetRequest-PDU.

 Case, McCloghrie, Rose & Waldbusser [Page 12]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 It is mandatory that all SNMPv2 entities acting in a manager
 role be able to generate the following PDU types: GetRequest-
 PDU, GetNextRequest-PDU, GetBulkRequest-PDU, SetRequest-PDU,
 InformRequest-PDU, and Response-PDU; further, all such
 implementations must be able to receive the following PDU
 types: Response-PDU, SNMPv2-Trap-PDU, InformRequest-PDU;

 In the elements of procedure below, any field of a PDU which
 is not referenced by the relevant procedure is ignored by the
 receiving SNMPv2 entity. However, all components of a PDU,
 including those whose values are ignored by the receiving
 SNMPv2 entity, must have valid ASN.1 syntax and encoding. For
 example, some PDUs (e.g., the GetRequest-PDU) are concerned
 only with the name of a variable and not its value. In this
 case, the value portion of the variable binding is ignored by
 the receiving SNMPv2 entity. The unSpecified value is defined
 for use as the value portion of such bindings.

 For all generated PDUs, the message "wrapper" to encapsulate
 the PDU is generated and transmitted as specified in [3]. The
 size of a message is limited only by constraints on the
 maximum message size, either a local limitation or the limit
 associated with the message’s destination party, i.e., it is
 not limited by the number of variable bindings.

 On receiving a management communication, the procedures
 defined in Section 3.2 of [3] are followed. If these
 procedures indicate that the PDU contained within the message
 "wrapper" is to be processed, then the SNMPv2 context
 associated with the PDU defines the object resources which are
 visible to the operation.

 4.2.1. The GetRequest-PDU

 A GetRequest-PDU is generated and transmitted at the request
 of a SNMPv2 application.

 Upon receipt of a GetRequest-PDU, the receiving SNMPv2 entity
 processes each variable binding in the variable-binding list
 to produce a Response-PDU. All fields of the Response-PDU
 have the same values as the corresponding fields of the
 received request except as indicated below. Each variable
 binding is processed as follows:

 Case, McCloghrie, Rose & Waldbusser [Page 13]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 (1) If the variable binding’s name does not have an OBJECT
 IDENTIFIER prefix which exactly matches the OBJECT
 IDENTIFIER prefix of any variable accessible by this
 request, then its value field is set to ‘noSuchObject’.

 (2) Otherwise, if the variable binding’s name does not
 exactly match the name of a variable accessible by this
 request, then its value field is set to ‘noSuchInstance’.

 (3) Otherwise, the variable binding’s value field is set to
 the value of the named variable.

 If the processing of any variable binding fails for a reason
 other than listed above, then the Response-PDU is re-formatted
 with the same values in its request-id and variable-bindings
 fields as the received GetRequest-PDU, with the value of its
 error-status field set to ‘genErr’, and the value of its
 error-index field is set to the index of the failed variable
 binding.

 Otherwise, the value of the Response-PDU’s error-status field
 is set to ‘noError’, and the value of its error-index field is
 zero.

 The generated Response-PDU is then encapsulated into a
 message. If the size of the resultant message is less than or
 equal to both a local constraint and the maximum message size
 of the request’s source party, it is transmitted to the
 originator of the GetRequest-PDU.

 Otherwise, an alternate Response-PDU is generated. This
 alternate Response-PDU is formatted with the same value in its
 request-id field as the received GetRequest-PDU, with the
 value of its error-status field set to ‘tooBig’, the value of
 its error-index field set to zero, and an empty variable-
 bindings field. This alternate Response-PDU is then
 encapsulated into a message. If the size of the resultant
 message is less than or equal to both a local constraint and
 the maximum message size of the request’s source party, it is
 transmitted to the originator of the GetRequest-PDU.
 Otherwise, the resultant message is discarded.

 Case, McCloghrie, Rose & Waldbusser [Page 14]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 4.2.2. The GetNextRequest-PDU

 A GetNextRequest-PDU is generated and transmitted at the
 request of a SNMPv2 application.

 Upon receipt of a GetNextRequest-PDU, the receiving SNMPv2
 entity processes each variable binding in the variable-binding
 list to produce a Response-PDU. All fields of the Response-
 PDU have the same values as the corresponding fields of the
 received request except as indicated below. Each variable
 binding is processed as follows:

 (1) The variable is located which is in the lexicographically
 ordered list of the names of all variables which are
 accessible by this request and whose name is the first
 lexicographic successor of the variable binding’s name in
 the incoming GetNextRequest-PDU. The corresponding
 variable binding’s name and value fields in the
 Response-PDU are set to the name and value of the located
 variable.

 (2) If the requested variable binding’s name does not
 lexicographically precede the name of any variable
 accessible by this request, i.e., there is no
 lexicographic successor, then the corresponding variable
 binding produced in the Response-PDU has its value field
 set to ’endOfMibView’, and its name field set to the
 variable binding’s name in the request.

 If the processing of any variable binding fails for a reason
 other than listed above, then the Response-PDU is re-formatted
 with the same values in its request-id and variable-bindings
 fields as the received GetNextRequest-PDU, with the value of
 its error-status field set to ‘genErr’, and the value of its
 error-index field is set to the index of the failed variable
 binding.

 Otherwise, the value of the Response-PDU’s error-status field
 is set to ‘noError’, and the value of its error-index field is
 zero.

 The generated Response-PDU is then encapsulated into a
 message. If the size of the resultant message is less than or
 equal to both a local constraint and the maximum message size
 of the request’s source party, it is transmitted to the

 Case, McCloghrie, Rose & Waldbusser [Page 15]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 originator of the GetNextRequest-PDU.

 Otherwise, an alternate Response-PDU is generated. This
 alternate Response-PDU is formatted with the same values in
 its request-id field as the received GetNextRequest-PDU, with
 the value of its error-status field set to ‘tooBig’, the value
 of its error-index field set to zero, and an empty variable-
 bindings field. This alternate Response-PDU is then
 encapsulated into a message. If the size of the resultant
 message is less than or equal to both a local constraint and
 the maximum message size of the request’s source party, it is
 transmitted to the originator of the GetNextRequest-PDU.
 Otherwise, the resultant message is discarded.

 4.2.2.1. Example of Table Traversal

 An important use of the GetNextRequest-PDU is the traversal of
 conceptual tables of information within a MIB. The semantics
 of this type of request, together with the method of
 identifying individual instances of objects in the MIB,
 provides access to related objects in the MIB as if they
 enjoyed a tabular organization.

 In the protocol exchange sketched below, a SNMPv2 application
 retrieves the media-dependent physical address and the
 address-mapping type for each entry in the IP net-to-media
 Address Translation Table [9] of a particular network element.
 It also retrieves the value of sysUpTime [9], at which the
 mappings existed. Suppose that the agent’s IP net-to-media
 table has three entries:

 Interface-Number Network-Address Physical-Address Type

 1 10.0.0.51 00:00:10:01:23:45 static
 1 9.2.3.4 00:00:10:54:32:10 dynamic
 2 10.0.0.15 00:00:10:98:76:54 dynamic

 The SNMPv2 entity acting in a manager role begins by sending a
 GetNextRequest-PDU containing the indicated OBJECT IDENTIFIER
 values as the requested variable names:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress,
 ipNetToMediaType)

 Case, McCloghrie, Rose & Waldbusser [Page 16]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 The SNMPv2 entity acting in an agent role responds with a
 Response-PDU:

 Response ((sysUpTime.0 = "123456"),
 (ipNetToMediaPhysAddress.1.9.2.3.4 =
 "000010543210"),
 (ipNetToMediaType.1.9.2.3.4 = "dynamic"))

 The SNMPv2 entity acting in a manager role continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.1.9.2.3.4,
 ipNetToMediaType.1.9.2.3.4)

 The SNMPv2 entity acting in an agent role responds with:

 Response ((sysUpTime.0 = "123461"),
 (ipNetToMediaPhysAddress.1.10.0.0.51 =
 "000010012345"),
 (ipNetToMediaType.1.10.0.0.51 = "static"))

 The SNMPv2 entity acting in a manager role continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.1.10.0.0.51,
 ipNetToMediaType.1.10.0.0.51)

 The SNMPv2 entity acting in an agent role responds with:

 Response ((sysUpTime.0 = "123466"),
 (ipNetToMediaPhysAddress.2.10.0.0.15 =
 "000010987654"),
 (ipNetToMediaType.2.10.0.0.15 = "dynamic"))

 The SNMPv2 entity acting in a manager role continues with:

 GetNextRequest (sysUpTime,
 ipNetToMediaPhysAddress.2.10.0.0.15,
 ipNetToMediaType.2.10.0.0.15)

 As there are no further entries in the table, the SNMPv2
 entity acting in an agent role responds with the variables
 that are next in the lexicographical ordering of the
 accessible object names, for example:

 Case, McCloghrie, Rose & Waldbusser [Page 17]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 Response ((sysUpTime.0 = "123471"),
 (ipNetToMediaNetAddress.1.9.2.3.4 =
 "9.2.3.4"),
 (ipRoutingDiscards.0 = "2"))

 This response signals the end of the table to the SNMPv2
 entity acting in a manager role.

 4.2.3. The GetBulkRequest-PDU

 A GetBulkRequest-PDU is generated and transmitted at the
 request of a SNMPv2 application. The purpose of the
 GetBulkRequest-PDU is to request the transfer of a potentially
 large amount of data, including, but not limited to, the
 efficient and rapid retrieval of large tables.

 Upon receipt of a GetBulkRequest-PDU, the receiving SNMPv2
 entity processes each variable binding in the variable-binding
 list to produce a Response-PDU with its request-id field
 having the same value as in the request. Processing begins by
 examining the values in the non-repeaters and max-repetitions
 fields. If the value in the non-repeaters field is less than
 zero, then the value of the field is set to zero. Similarly,
 if the value in the max-repetitions field is less than zero,
 then the value of the field is set to zero.

 For the GetBulkRequest-PDU type, the successful processing of
 each variable binding in the request generates zero or more
 variable bindings in the Response-PDU. That is, the one-to-
 one mapping between the variable bindings of the GetRequest-
 PDU, GetNextRequest-PDU, and SetRequest-PDU types and the
 resultant Response-PDUs does not apply for the mapping between
 the variable bindings of a GetBulkRequest-PDU and the
 resultant Response-PDU.

 The values of the non-repeaters and max-repetitions fields in
 the request specify the processing requested. One variable
 binding in the Response-PDU is requested for the first N
 variable bindings in the request and M variable bindings are
 requested for each of the R remaining variable bindings in the
 request. Consequently, the total number of requested variable
 bindings communicated by the request is given by N + (M * R),
 where N is the minimum of: a) the value of the non-repeaters
 field in the request, and b) the number of variable bindings

 Case, McCloghrie, Rose & Waldbusser [Page 18]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 in the request; M is the value of the max-repetitions field in
 the request; and R is the maximum of: a) number of variable
 bindings in the request - N, and b) zero.

 The receiving SNMPv2 entity produces a Response-PDU with up to
 the total number of requested variable bindings communicated
 by the request. The request-id shall have the same value as
 the received GetBulkRequest-PDU.

 If N is greater than zero, the first through the (N)-th
 variable bindings of the Response-PDU are each produced as
 follows:

 (1) The variable is located which is in the lexicographically
 ordered list of the names of all variables which are
 accessible by this request and whose name is the first
 lexicographic successor of the variable binding’s name in
 the incoming GetBulkRequest-PDU. The corresponding
 variable binding’s name and value fields in the
 Response-PDU are set to the name and value of the located
 variable.

 (2) If the requested variable binding’s name does not
 lexicographically precede the name of any variable
 accessible by this request, i.e., there is no
 lexicographic successor, then the corresponding variable
 binding produced in the Response-PDU has its value field
 set to ‘endOfMibView’, and its name field set to the
 variable binding’s name in the request.

 If M and R are non-zero, the (N + 1)-th and subsequent
 variable bindings of the Response-PDU are each produced in a
 similar manner. For each iteration i, such that i is greater
 than zero and less than or equal to M, and for each repeated
 variable, r, such that r is greater than zero and less than or
 equal to R, the (N + ((i-1) * R) + r)-th variable binding of
 the Response-PDU is produced as follows:

 (1) The variable which is in the lexicographically ordered
 list of the names of all variables which are accessible
 by this request and whose name is the (i)-th
 lexicographic successor of the (N + r)-th variable
 binding’s name in the incoming GetBulkRequest-PDU is
 located and the variable binding’s name and value fields
 are set to the name and value of the located variable.

 Case, McCloghrie, Rose & Waldbusser [Page 19]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 (2) If there is no (i)-th lexicographic successor, then the
 corresponding variable binding produced in the Response-
 PDU has its value field set to ‘endOfMibView’, and its
 name field set to either the last lexicographic
 successor, or if there are no lexicographic successors,
 to the (N + r)-th variable binding’s name in the request.

 While the maximum number of variable bindings in the
 Response-PDU is bounded by N + (M * R), the response may be
 generated with a lesser number of variable bindings (possibly
 zero) for either of two reasons.

 (1) If the size of the message encapsulating the Response-PDU
 containing the requested number of variable bindings
 would be greater than either a local constraint or the
 maximum message size of the request’s source party, then
 the response is generated with a lesser number of
 variable bindings. This lesser number is the ordered set
 of variable bindings with some of the variable bindings
 at the end of the set removed, such that the size of the
 message encapsulating the Response-PDU is approximately
 equal to but no greater than the minimum of the local
 constraint and the maximum message size of the request’s
 source party. Note that the number of variable bindings
 removed has no relationship to the values of N, M, or R.

 (2) The response may also be generated with a lesser number
 of variable bindings if for some value of iteration i,
 such that i is greater than zero and less than or equal
 to M, that all of the generated variable bindings have
 the value field set to the ‘endOfMibView’. In this case,
 the variable bindings may be truncated after the (N + (i
 * R))-th variable binding.

 If the processing of any variable binding fails for a reason
 other than listed above, then the Response-PDU is re-formatted
 with the same values in its request-id and variable-bindings
 fields as the received GetBulkRequest-PDU, with the value of
 its error-status field set to ‘genErr’, and the value of its
 error-index field is set to the index of the failed variable
 binding.

 Otherwise, the value of the Response-PDU’s error-status field
 is set to ‘noError’, and the value of its error-index field to
 zero.

 Case, McCloghrie, Rose & Waldbusser [Page 20]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 The generated Response-PDU (possibly with an empty variable-
 bindings field) is then encapsulated into a message. If the
 size of the resultant message is less than or equal to both a
 local constraint and the maximum message size of the request’s
 source party, it is transmitted to the originator of the
 GetBulkRequest-PDU. Otherwise, the resultant message is
 discarded.

 4.2.3.1. Another Example of Table Traversal

 This example demonstrates how the GetBulkRequest-PDU can be
 used as an alternative to the GetNextRequest-PDU. The same
 traversal of the IP net-to-media table as shown in Section
 4.2.2.1 is achieved with fewer exchanges.

 The SNMPv2 entity acting in a manager role begins by sending a
 GetBulkRequest-PDU with the modest max-repetitions value of 2,
 and containing the indicated OBJECT IDENTIFIER values as the
 requested variable names:

 GetBulkRequest [non-repeaters = 1, max-repetitions = 2]
 (sysUpTime,
 ipNetToMediaPhysAddress,
 ipNetToMediaType)

 The SNMPv2 entity acting in an agent role responds with a
 Response-PDU:

 Response ((sysUpTime.0 = "123456"),
 (ipNetToMediaPhysAddress.1.9.2.3.4 =
 "000010543210"),
 (ipNetToMediaType.1.9.2.3.4 = "dynamic"),
 (ipNetToMediaPhysAddress.1.10.0.0.51 =
 "000010012345"),
 (ipNetToMediaType.1.10.0.0.51 = "static"))

 The SNMPv2 entity acting in a manager role continues with:

 GetBulkRequest [non-repeaters = 1, max-repetitions = 2]
 (sysUpTime,
 ipNetToMediaPhysAddress.1.10.0.0.51,
 ipNetToMediaType.1.10.0.0.51)

 Case, McCloghrie, Rose & Waldbusser [Page 21]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 The SNMPv2 entity acting in an agent role responds with:

 Response ((sysUpTime.0 = "123466"),
 (ipNetToMediaPhysAddress.2.10.0.0.15 =
 "000010987654"),
 (ipNetToMediaType.2.10.0.0.15 =
 "dynamic"),
 (ipNetToMediaNetAddress.1.9.2.3.4 =
 "9.2.3.4"),
 (ipRoutingDiscards.0 = "2"))

 This response signals the end of the table to the SNMPv2
 entity acting in a manager role.

 4.2.4. The Response-PDU

 The Response-PDU is generated by a SNMPv2 entity only upon
 receipt of a GetRequest-PDU, GetNextRequest-PDU,
 GetBulkRequest-PDU, SetRequest-PDU, or InformRequest-PDU, as
 described elsewhere in this document.

 If the error-status field of the Response-PDU is non-zero, the
 value fields of the variable bindings in the variable binding
 list are ignored.

 If both the error-status field and the error-index field of
 the Response-PDU are non-zero, then the value of the error-
 index field is the index of the variable binding (in the
 variable-binding list of the corresponding request) for which
 the request failed. The first variable binding in a request’s
 variable-binding list is index one, the second is index two,
 etc.

 A compliant SNMPv2 entity acting in a manager role must be
 able to properly receive and handle a Response-PDU with an
 error-status field equal to ‘noSuchName’, ‘badValue’, or
 ‘readOnly’. (See Section 3.1.2 of [10].)

 Upon receipt of a Response-PDU, the receiving SNMPv2 entity
 presents its contents to the SNMPv2 application which
 generated the request with the same request-id value.

 Case, McCloghrie, Rose & Waldbusser [Page 22]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 4.2.5. The SetRequest-PDU

 A SetRequest-PDU is generated and transmitted at the request
 of a SNMPv2 application.

 Upon receipt of a SetRequest-PDU, the receiving SNMPv2 entity
 determines the size of a message encapsulating a Response-PDU
 with the same values in its request-id, error-status, error-
 index and variable-bindings fields as the received
 SetRequest-PDU. If the determined message size is greater
 than either a local constraint or the maximum message size of
 the request’s source party, then an alternate Response-PDU is
 generated, transmitted to the originator of the SetRequest-
 PDU, and processing of the SetRequest-PDU terminates
 immediately thereafter. This alternate Response-PDU is
 formatted with the same values in its request-id field as the
 received SetRequest-PDU, with the value of its error-status
 field set to ‘tooBig’, the value of its error-index field set
 to zero, and an empty variable-bindings field. This alternate
 Response-PDU is then encapsulated into a message. If the size
 of the resultant message is less than or equal to both a local
 constraint and the maximum message size of the request’s
 source party, it is transmitted to the originator of the
 SetRequest-PDU. Otherwise, the resultant message is
 discarded. Regardless, processing of the SetRequest-PDU
 terminates.

 Otherwise, the receiving SNMPv2 entity processes each variable
 binding in the variable-binding list to produce a Response-
 PDU. All fields of the Response-PDU have the same values as
 the corresponding fields of the received request except as
 indicated below.

 The variable bindings are conceptually processed as a two
 phase operation. In the first phase, each variable binding is
 validated; if all validations are successful, then each
 variable is altered in the second phase. Of course,
 implementors are at liberty to implement either the first, or
 second, or both, of the these conceptual phases as multiple
 implementation phases. Indeed, such multiple implementation
 phases may be necessary in some cases to ensure consistency.

 The following validations are performed in the first phase on
 each variable binding until they are all successful, or until
 one fails:

 Case, McCloghrie, Rose & Waldbusser [Page 23]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 (1) If the variable binding’s name specifies a variable which
 is not accessible by this request, then the value of the
 Response-PDU’s error-status field is set to ‘noAccess’,
 and the value of its error-index field is set to the
 index of the failed variable binding.

 (2) Otherwise, if the variable binding’s name specifies a
 variable which does not exist and could not ever be
 created, then the value of the Response-PDU’s error-
 status field is set to ‘noCreation’, and the value of its
 error-index field is set to the index of the failed
 variable binding.

 (3) Otherwise, if the variable binding’s name specifies a
 variable which exists but can not be modified no matter
 what new value is specified, then the value of the
 Response-PDU’s error-status field is set to
 ‘notWritable’, and the value of its error-index field is
 set to the index of the failed variable binding.

 (4) Otherwise, if the variable binding’s value field
 specifies, according to the ASN.1 language, a type which
 is inconsistent with that required for the variable, then
 the value of the Response-PDU’s error-status field is set
 to ‘wrongType’, and the value of its error-index field is
 set to the index of the failed variable binding.

 (5) Otherwise, if the variable binding’s value field
 specifies, according to the ASN.1 language, a length
 which is inconsistent with that required for the
 variable, then the value of the Response-PDU’s error-
 status field is set to ‘wrongLength’, and the value of
 its error-index field is set to the index of the failed
 variable binding.

 (6) Otherwise, if the variable binding’s value field contains
 an ASN.1 encoding which is inconsistent with that field’s
 ASN.1 tag, then: the value of the Response-PDU’s error-
 status field is set to ‘wrongEncoding’, and the value of
 its error-index field is set to the index of the failed
 variable binding.

 (7) Otherwise, if the variable binding’s value field
 specifies a value which could under no circumstances be
 assigned to the variable, then: the value of the

 Case, McCloghrie, Rose & Waldbusser [Page 24]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 Response-PDU’s error-status field is set to ‘wrongValue’,
 and the value of its error-index field is set to the
 index of the failed variable binding.

 (8) Otherwise, if the variable binding’s name specifies a
 variable which does not exist but can not be created not
 under the present circumstances (even though it could be
 created under other circumstances), then the value of the
 Response-PDU’s error-status field is set to
 ‘inconsistentName’, and the value of its error-index
 field is set to the index of the failed variable binding.

 (9) Otherwise, if the variable binding’s value field
 specifies a value that could under other circumstances be
 assigned to the variable, but is presently inconsistent,
 then the value of the Response-PDU’s error-status field
 is set to ‘inconsistentValue’, and the value of its
 error-index field is set to the index of the failed
 variable binding.

 (10) Otherwise, if the assignment of the value specified by
 the variable binding’s value field to the specified
 variable requires the allocation of a resource which is
 presently unavailable, then: the value of the Response-
 PDU’s error-status field is set to ‘resourceUnavailable’,
 and the value of its error-index field is set to the
 index of the failed variable binding.

 (11) If the processing of the variable binding fails for a
 reason other than listed above, then the value of the
 Response-PDU’s error-status field is set to ‘genErr’, and
 the value of its error-index field is set to the index of
 the failed variable binding.

 (12) Otherwise, the validation of the variable binding
 succeeds.

 At the end of the first phase, if the validation of all
 variable bindings succeeded, then:

 The value of the Response-PDU’s error-status field is set to
 ‘noError’ and the value of its error-index field is zero.

 For each variable binding in the request, the named variable
 is created if necessary, and the specified value is assigned

 Case, McCloghrie, Rose & Waldbusser [Page 25]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 to it. Each of these variable assignments occurs as if
 simultaneously with respect to all other assignments specified
 in the same request. However, if the same variable is named
 more than once in a single request, with different associated
 values, then the actual assignment made to that variable is
 implementation-specific.

 If any of these assignments fail (even after all the previous
 validations), then all other assignments are undone, and the
 Response-PDU is modified to have the value of its error-status
 field set to ‘commitFailed’, and the value of its error-index
 field set to the index of the failed variable binding.

 If and only if it is not possible to undo all the assignments,
 then the Response-PDU is modified to have the value of its
 error-status field set to ‘undoFailed’, and the value of its
 error-index field is set to zero. Note that implementations
 are strongly encouraged to take all possible measures to avoid
 use of either ‘commitFailed’ or ‘undoFailed’ - these two
 error-status codes are not to be taken as license to take the
 easy way out in an implementation.

 Finally, the generated Response-PDU is encapsulated into a
 message, and transmitted to the originator of the SetRequest-
 PDU.

 4.2.6. The SNMPv2-Trap-PDU

 A SNMPv2-Trap-PDU is generated and transmitted by a SNMPv2
 entity acting in an agent role when an exceptional situation
 occurs.

 The destination(s) to which a SNMPv2-Trap-PDU is sent is
 determined by consulting the aclTable [5] to find all entries
 satisfying the following conditions:

 (1) The value of aclSubject refers to the SNMPv2 entity.

 (2) The value of aclPrivileges allows for the SNMPv2-Trap-
 PDU.

 (3) aclResources refers to a SNMPv2 context denoting local
 object resources, and the notification’s administratively
 assigned name is present in the corresponding MIB view.

 Case, McCloghrie, Rose & Waldbusser [Page 26]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 (That is, the set of entries in the viewTable [5] for
 which the instance of viewIndex has the same value as the
 aclResources’s contextViewIndex, define a MIB view which
 contains the notification’s administratively assigned
 name.)

 (4) If the OBJECTS clause is present in the invocation of the
 corresponding NOTIFICATION-TYPE macro, then the
 correspondent variables are all present in the MIB view
 corresponding to aclResource.

 Then, for each entry satisfying these conditions, a SNMPv2-
 Trap-PDU is sent from aclSubject with context aclResources to
 aclTarget. The instance of snmpTrapNumbers [11] corresponding
 to aclTarget is incremented, and is used as the request-id
 field of the SNMPv2-Trap-PDU. Then, the variable-bindings
 field are constructed as:

 (1) The first variable is sysUpTime.0 [9].

 (2) The second variable is snmpTrapOID.0 [11], which contains
 the administratively assigned name of the notification.

 (3) If the OBJECTS clause is present in the invocation of the
 corresponding NOTIFICATION-TYPE macro, then each
 corresponding variable is copied, in order, to the
 variable-bindings field.

 (4) At the option of the SNMPv2 entity acting in an agent
 role, additional variables may follow in the variable-
 bindings field.

 4.2.7. The InformRequest-PDU

 An InformRequest-PDU is generated and transmitted at the
 request an application in a SNMPv2 entity acting in a manager
 role, that wishes to notify another application (in a SNMPv2
 entity also acting in a manager role) of information in the
 MIB View of a party local to the sending application.

 The destination(s) to which an InformRequest-PDU is sent is
 determined by inspecting the snmpEventNotifyTable [12], or as
 specified by the requesting application. The first two
 variable bindings in the variable binding list of an

 Case, McCloghrie, Rose & Waldbusser [Page 27]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 InformRequest-PDU are sysUpTime.0 [9] and snmpEventID.i [12]
 respectively. If the OBJECTS clause is present in the
 invocation of the corresponding NOTIFICATION-TYPE macro, then
 each corresponding variable, as instantiated by this
 notification, is copied, in order, to the variable-bindings
 field.

 Upon receipt of an InformRequest-PDU, the receiving SNMPv2
 entity determines the size of a message encapsulating a
 Response-PDU with the same values in its request-id, error-
 status, error-index and variable-bindings fields as the
 received InformRequest-PDU. If the determined message size is
 greater than either a local constraint or the maximum message
 size of the request’s source party, then an alternate
 Response-PDU is generated, transmitted to the originator of
 the InformRequest-PDU, and processing of the InformRequest-PDU
 terminates immediately thereafter. This alternate Response-
 PDU is formatted with the same values in its request-id field
 as the received InformRequest-PDU, with the value of its
 error-status field set to ‘tooBig’, the value of its error-
 index field set to zero, and an empty variable-bindings field.
 This alternate Response-PDU is then encapsulated into a
 message. If the size of the resultant message is less than or
 equal to both a local constraint and the maximum message size
 of the request’s source party, it is transmitted to the
 originator of the InformRequest-PDU. Otherwise, the resultant
 message is discarded. Regardless, processing of the
 InformRequest-PDU terminates.

 Otherwise, the receiving SNMPv2 entity:

 (1) presents its contents to the appropriate SNMPv2
 application;

 (2) generates a Response-PDU with the same values in its
 request-id and variable-bindings fields as the received
 InformRequest-PDU, with the value of its error-status
 field is set to ‘noError’ and the value of its error-
 index field is zero; and

 (3) transmits the generated Response-PDU to the originator of
 the InformRequest-PDU.

 Case, McCloghrie, Rose & Waldbusser [Page 28]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 5. Acknowledgements

 This document is based, in part, on RFC 1157. The mechanism
 for bulk retrieval is influenced by many experiments,
 including RFC1187 and also Greg Satz’s work on SNMP over TCP.

 Finally, the comments of the SNMP version 2 working group are
 gratefully acknowledged:

 Beth Adams, Network Management Forum
 Steve Alexander, INTERACTIVE Systems Corporation
 David Arneson, Cabletron Systems
 Toshiya Asaba
 Fred Baker, ACC
 Jim Barnes, Xylogics, Inc.
 Brian Bataille
 Andy Bierman, SynOptics Communications, Inc.
 Uri Blumenthal, IBM Corporation
 Fred Bohle, Interlink
 Jack Brown
 Theodore Brunner, Bellcore
 Stephen F. Bush, GE Information Services
 Jeffrey D. Case, University of Tennessee, Knoxville
 John Chang, IBM Corporation
 Szusin Chen, Sun Microsystems
 Robert Ching
 Chris Chiotasso, Ungermann-Bass
 Bobby A. Clay, NASA/Boeing
 John Cooke, Chipcom
 Tracy Cox, Bellcore
 Juan Cruz, Datability, Inc.
 David Cullerot, Cabletron Systems
 Cathy Cunningham, Microcom
 James R. (Chuck) Davin, Bellcore
 Michael Davis, Clearpoint
 Mike Davison, FiberCom
 Cynthia DellaTorre, MITRE
 Taso N. Devetzis, Bellcore
 Manual Diaz, DAVID Systems, Inc.
 Jon Dreyer, Sun Microsystems
 David Engel, Optical Data Systems
 Mike Erlinger, Lexcel
 Roger Fajman, NIH
 Daniel Fauvarque, Sun Microsystems
 Karen Frisa, CMU

 Case, McCloghrie, Rose & Waldbusser [Page 29]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 Shari Galitzer, MITRE
 Shawn Gallagher, Digital Equipment Corporation
 Richard Graveman, Bellcore
 Maria Greene, Xyplex, Inc.
 Michel Guittet, Apple
 Robert Gutierrez, NASA
 Bill Hagerty, Cabletron Systems
 Gary W. Haney, Martin Marietta Energy Systems
 Patrick Hanil, Nokia Telecommunications
 Matt Hecht, SNMP Research, Inc.
 Edward A. Heiner, Jr., Synernetics Inc.
 Susan E. Hicks, Martin Marietta Energy Systems
 Geral Holzhauer, Apple
 John Hopprich, DAVID Systems, Inc.
 Jeff Hughes, Hewlett-Packard
 Robin Iddon, Axon Networks, Inc.
 David Itusak
 Kevin M. Jackson, Concord Communications, Inc.
 Ole J. Jacobsen, Interop Company
 Ronald Jacoby, Silicon Graphics, Inc.
 Satish Joshi, SynOptics Communications, Inc.
 Frank Kastenholz, FTP Software
 Mark Kepke, Hewlett-Packard
 Ken Key, SNMP Research, Inc.
 Zbiginew Kielczewski, Eicon
 Jongyeoi Kim
 Andrew Knutsen, The Santa Cruz Operation
 Michael L. Kornegay, VisiSoft
 Deirdre C. Kostik, Bellcore
 Cheryl Krupczak, Georgia Tech
 Mark S. Lewis, Telebit
 David Lin
 David Lindemulder, AT&T/NCR
 Ben Lisowski, Sprint
 David Liu, Bell-Northern Research
 John Lunny, The Wollongong Group
 Robert C. Lushbaugh Martin, Marietta Energy Systems
 Michael Luufer, BBN
 Carl Madison, Star-Tek, Inc.
 Keith McCloghrie, Hughes LAN Systems
 Evan McGinnis, 3Com Corporation
 Bill McKenzie, IBM Corporation
 Donna McMaster, SynOptics Communications, Inc.
 John Medicke, IBM Corporation
 Doug Miller, Telebit

 Case, McCloghrie, Rose & Waldbusser [Page 30]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 Dave Minnich, FiberCom
 Mohammad Mirhakkak, MITRE
 Rohit Mital, Protools
 George Mouradian, AT&T Bell Labs
 Patrick Mullaney, Cabletron Systems
 Dan Myers, 3Com Corporation
 Rina Nathaniel, Rad Network Devices Ltd.
 Hien V. Nguyen, Sprint
 Mo Nikain
 Tom Nisbet
 William B. Norton, MERIT
 Steve Onishi, Wellfleet Communications, Inc.
 David T. Perkins, SynOptics Communications, Inc.
 Carl Powell, BBN
 Ilan Raab, SynOptics Communications, Inc.
 Richard Ramons, AT&T
 Venkat D. Rangan, Metric Network Systems, Inc.
 Louise Reingold, Sprint
 Sam Roberts, Farallon Computing, Inc.
 Kary Robertson, Concord Communications, Inc.
 Dan Romascanu, Lannet Data Communications Ltd.
 Marshall T. Rose, Dover Beach Consulting, Inc.
 Shawn A. Routhier, Epilogue Technology Corporation
 Chris Rozman
 Asaf Rubissa, Fibronics
 Jon Saperia, Digital Equipment Corporation
 Michael Sapich
 Mike Scanlon, Interlan
 Sam Schaen, MITRE
 John Seligson, Ultra Network Technologies
 Paul A. Serice, Corporation for Open Systems
 Chris Shaw, Banyan Systems
 Timon Sloane
 Robert Snyder, Cisco Systems
 Joo Young Song
 Roy Spitier, Sprint
 Einar Stefferud, Network Management Associates
 John Stephens, Cayman Systems, Inc.
 Robert L. Stewart, Xyplex, Inc. (chair)
 Kaj Tesink, Bellcore
 Dean Throop, Data General
 Ahmet Tuncay, France Telecom-CNET
 Maurice Turcotte, Racal Datacom
 Warren Vik, INTERACTIVE Systems Corporation
 Yannis Viniotis

 Case, McCloghrie, Rose & Waldbusser [Page 31]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 Steven L. Waldbusser, Carnegie Mellon Universitty
 Timothy M. Walden, ACC
 Alice Wang, Sun Microsystems
 James Watt, Newbridge
 Luanne Waul, Timeplex
 Donald E. Westlake III, Digital Equipment Corporation
 Gerry White
 Bert Wijnen, IBM Corporation
 Peter Wilson, 3Com Corporation
 Steven Wong, Digital Equipment Corporation
 Randy Worzella, IBM Corporation
 Daniel Woycke, MITRE
 Honda Wu
 Jeff Yarnell, Protools
 Chris Young, Cabletron
 Kiho Yum, 3Com Corporation

 Case, McCloghrie, Rose & Waldbusser [Page 32]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 6. References

 [1] Information processing systems - Open Systems
 Interconnection - Specification of Abstract Syntax
 Notation One (ASN.1), International Organization for
 Standardization. International Standard 8824, (December,
 1987).

 [2] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Structure of Management Information for version 2 of the
 Simple Network Management Protocol (SNMPv2)", RFC 1442,
 SNMP Research, Inc., Hughes LAN Systems, Dover Beach
 Consulting, Inc., Carnegie Mellon University, April 1993.

 [3] Galvin, J., and McCloghrie, K., "Administrative Model for
 version 2 of the Simple Network Management Protocol
 (SNMPv2)", RFC 1445, Trusted Information Systems, Hughes
 LAN Systems, April 1993.

 [4] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Textual Conventions for version 2 of the the Simple
 Network Management Protocol (SNMPv2)", RFC 1443, SNMP
 Research, Inc., Hughes LAN Systems, Dover Beach
 Consulting, Inc., Carnegie Mellon University, April 1993.

 [5] McCloghrie, K., and Galvin, J., "Party MIB for version 2
 of the Simple Network Management Protocol (SNMPv2)", RFC
 1447, Hughes LAN Systems, Trusted Information Systems,
 April 1993.

 [6] C. Kent, J. Mogul, Fragmentation Considered Harmful,
 Proceedings, ACM SIGCOMM ’87, Stowe, VT, (August 1987).

 [7] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Transport Mappings for version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1449, SNMP Research,
 Inc., Hughes LAN Systems, Dover Beach Consulting, Inc.,
 Carnegie Mellon University, April 1993.

 [8] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 USC/Information Sciences Institute, August 1980.

 [9] McCloghrie, K., and Rose, M., "Management Information
 Base for Network Management of TCP/IP-based internets:
 MIB-II", STD 17, RFC 1213, March 1991.

 Case, McCloghrie, Rose & Waldbusser [Page 33]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 [10] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Coexistence between version 1 and version 2 of the
 Internet-standard Network Management Framework", RFC
 1452, SNMP Research, Inc., Hughes LAN Systems, Dover
 Beach Consulting, Inc., Carnegie Mellon University, April
 1993.

 [11] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Management Information Base for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1450, SNMP
 Research, Inc., Hughes LAN Systems, Dover Beach
 Consulting, Inc., Carnegie Mellon University, April 1993.

 [12] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
 "Manager-to-Manager Management Information Base", RFC
 1451, SNMP Research, Inc., Hughes LAN Systems, Dover
 Beach Consulting, Inc., Carnegie Mellon University, April
 1993.

 Case, McCloghrie, Rose & Waldbusser [Page 34]

 RFC 1448 Protocol Operations for SNMPv2 April 1993

 7. Security Considerations

 Security issues are not discussed in this memo.

 8. Authors’ Addresses

 Jeffrey D. Case
 SNMP Research, Inc.
 3001 Kimberlin Heights Rd.
 Knoxville, TN 37920-9716
 US

 Phone: +1 615 573 1434
 Email: case@snmp.com

 Keith McCloghrie
 Hughes LAN Systems
 1225 Charleston Road
 Mountain View, CA 94043
 US

 Phone: +1 415 966 7934
 Email: kzm@hls.com

 Marshall T. Rose
 Dover Beach Consulting, Inc.
 420 Whisman Court
 Mountain View, CA 94043-2186
 US

 Phone: +1 415 968 1052
 Email: mrose@dbc.mtview.ca.us

 Steven Waldbusser
 Carnegie Mellon University
 4910 Forbes Ave
 Pittsburgh, PA 15213
 US

 Phone: +1 412 268 6628
 Email: waldbusser@cmu.edu

 Case, McCloghrie, Rose & Waldbusser [Page 35]

