
Richard Bl. Kalin Network Working Group
MIT Lincoln Laboratory Request for Comments #150
5 May 1971 NIC 6754

THE USE OF IPC FACILITIES

A WORKING PAPER

This material has not been reviewed for public release and is intended
only for use within the ARPA network. It should not be quoted or cited
in any publication not related to the ARPA network.

INTRODUCTION

 It is our hypothesis that the goals of interprocess communication
are more complex than commonly realized, and that until this complexity
is more fully understood, there will be no satisfactory implementations.
The objective of an IPC design must be more than that of providing a
facility for moving bits between otherwise independent user programs, a
variety of other constraints must also be satisfied.

 These constraints are dictated by the eventual usage of the
facility. Any design that will sustain this usage pattern can be a
satisfactory one. If it does so efficiently, it will be said to be well
designed. Furthermore, it is unimaginable that a large design effort,
undertaken without a complete understanding of the usage it must serve,
will ever be well designed or even satisfactorily designed.

 This paper undertakes the exposition of the types of usage to
which an IPC facility would be subjected, in hopes that such a
discussion will clarify the goals being pursued and will provide a
benchmark for gauging various implementation strategies. The difficulty
of this task should not be underestimated. The only experience available
for us to draw upon is from very primitive and overly constrained IPC
implementations. Extrapolation from this limited usage environment to
more general notions has as yet no basis in real experience. Such
speculation is therefore subject to enormous oversight and misguided
perspective.

 In compiling this paper, it was necessary to imagine what services
a process might want from an IPC facility. The areas recognized include:
 1) the exchange of bit encoded information via channels.
 2) the establishment, deletion, and reassignment of these channels.
 3) the ability to debug errors and suspected errors.
 4) the potential to improve running efficiency.
 5) the capacity to avoid storage allocation deadlocks.
 6) the aided recovery from transmission errors.

 [Page 1]

RFC #150 Use of IPC Facilities 5 May 1971

This list is known to be incomplete. Some areas, such as understood to
be intelligently discussed. In other cases, omissions should be blamed
on simple oversight.

 Because of these obvious problems, one should not consider any
document of this kind as either authoritative or final. For this reason,
this paper is being kept as a computer based textfile, and so will
remain subject to editting and rerelease whenever new insights become
understood. We hope that it can remain an accurate and up to date
statement of the goals to which any group of IPC implementers can aspire
and, as such, can be a guidebook to the problems that must be faced.

 For several reasons no attempt shall be made here to design
suitable solutions to the problems raised. To be useful, such solutions
must be machine dependent. A so called ’general solution’ would actually
be too clumsy and inefficient to be of any value. Secondly, we take the
point of view of the user, who need not be aware of the manner in which
his demands are carried out, so long as they can be accomplished.
Finally, we are trying to stay aloof from the eccentricities of present
day machine organization.

In our attempt to be implementation independent, we are admittedly
treading a fuzzy line. Our characterization of usage patterns presumes
both a system/process software organization and a computing milieu
capable of supporting it. Although this does not appear to significantly
affect the generality of the document, some care must be exercised in
the selection of host machines.

 In the rest of this paper, we attempt to characterize the types of
usage that should be anticipated by an IPC facility. The organization is
into titled sections, each section discussing some aspect of the
expected usage.

ABILITY TO USE VARIOUS SOURCES OF WAKEUP INFORMATION

 Most processes exhibit preferences toward certain quantities of
input data. This preference is reflected in the amount of computing time
that can be expended for a given amount of input. For example, a
character translation routine might prefer eight bit quantities of
input. With seven or less bits no processing is possible, but once a
complete character is available an entire translation cycle can
commence. This preference is independent of the function of the routine.
Otherwise equivalent routines could be written that would accept one bit
at a time. In other examples, a command interpreter might require a
complete line of input, a linking loader a complete file.

 [Page 2]

RFC #150 Use of IPC Facilities 5 May 1971

 Every executive system must face the problem of deciding at what
times enough input is available for a given routine for it to run
efficiently. This decision can not be taken lightly. Issuing a wakeup to
a dormant process carries with it considerable overhead -- room in core
storage must be made available, the program must be swapped into memory,
tables must be updated, active registers exchanged, and the entire
procedure done in reverse once the process has finished. To issue a
wakeup when there is insufficient input for the program is inefficient
and wasteful. The amount of computing that can be done does not justify
the overhead that must be expended.

 The problem of determining a priori the best time to issue a
wakeup has no general solution. It depends critically upon the
relationship between waiting costs and running costs. Attempts to make
reasonable predictions must contend with the tradeoff between accuracy
and overhead. The more system code that must be run, the more overhead
incurred and the less the final prediction means.

 Although there is no general solution, help is available to the
scheduler in specific cases. A commonly found instance is that of using
the receiving process to specify the number of bits that it is
expecting. Thus, a process may inform the supervisor/scheduler that it
requires fifty bits of input from some source before it is able to
continue. The process can then go into the shade and it will be awakened
when the required input is available.

 In cases where input lengths are predetermined, this technique is
quite satisfactory. Elsewhere, problems arise. In the case of unknown
input sizes, too short a prediction will give rise to the inefficiencies
of premature scheduling, and too long a prediction may produce input
deadlocks.

 Under these circumstances it is common to have the process tell
the scheduler a simple criterion that can be applied to determine if
there is sufficient input -- the appearance of a carriage return in the
teletype input stream, for example. The criterion is tested either by
system routines or by a low overhead user supplied routine (which in
turn must have a criterion of its own for being awakened). Once the
criterion is met, the main routine is awakened and processing continues.

 Sometimes the system and user criteria work in conjunction with
one another. A user may specify an maximum character count,
corresponding to available buffer size, and the system may look for line
terminators. Wakeups to the user process may appear from either source.
At other times the system may preempt the user’s criterion. For example,
if a process while trying to put a single character into a full buffer
is forced into shade, it will typically not be awakened again until
buffer has been almost emptied. Even though the user program only wished

 [Page 3]

RFC #150 Use of IPC Facilities 5 May 1971

room for a single character, the system imposed a much stronger
criterion, namely room for N characters, on the assumption other calls
to output characters will follow. Thus the program is forced into
outputting in bursts and, rather than going into the shade and being
awakened N times, each time when there is only room to output one
character, the program is awakened once and sends N characters. Program
efficiency is appropriately improved.

 A third source of criteria for deciding when to awaken the user
process is the device or routine that is producing the input data. This
source is frequently utilized in hardware design. Many computer
peripherals have the ability to send an end of record indication. For
variable length uninterpreted records this is an absolute necessity. For
fixed length records it is a convenient double check. In the world of
interprocess communication an analogous feature should be available. If
the routine that is generating the data knows how much the receiving
routine will require, then this information should be made available for
scheduling purposes. Implementing this requires a standardized way of
denoting logical boundaries on the stream of data flowing, through a
communication channel. The markers must be recognizable by the
scheduler/supervisor in the receiving host computer so that wakeups can
be issued as desired. To simplify the task of input interpretation,
marker pacement should also be visible to the receiving process.

 The data between boundaries we shall call a logical message, since
it is a natural unit of information exchange and since the markers
travel with the data through the channel. The additional information the
markers provide about data flow yield many useful consequences.
Consider, for example, two processes that always exchange 100 bit long
logical messages. If the receiving process is able to determine the
length of each logical message that arrives, there is available a simple
facility for error detection. If a 99 bit message arrives, it is obvious
that a bit has been dropped somewhere.

 It should be noted that it is not always possible for the
receiving process to compute the positions of boundary markers in the
input stream. there is no reason that the information implicit is marker
position must also be found as part of the coded input data. Even in
cases in which there is coding redundancy, it may be more difficult to
extract boundary information from the rest of the input than it is to
use the markers explicitly.

ABILITY TO SEND PARTS OF LOGICAL MESSAGES

 Any IPC facility, in which user storage is at all constrained, can
not require a process to send an entire logical message at one time. The
concept is only introduced to facilitate the issuing of wakeups to a
receiving process. What are convenient input quanta for the receiving

 [Page 4]

RFC #150 Use of IPC Facilities 5 May 1971

process may not be convenient output quanta for the sending one.
consider the case of a process running on a small machine and sending
messages to a process on a large task-multiplexed machine. For
efficiency, the receiving process requires large quantities of input
data at a time. Buffer space in the address space of the sending process
can not hold much data. The only answer is to allow the sending process
to dump its logical message in parts and with the last part to indicate
that it is the end of a message.

ABILITY TO RECEIVE A LOGICAL MESSAGE IN PARTS

 In the reverse of the above situation, a receiving process may not
have sufficient buffer space available to accept an entire message at
once. It should be possible under these circumstances to elect to accept
the message in parts. This is also necessary in the case of messages
that are too long to be buffered by the system. Unless part of the
message is accepted by the receiving process, the transmission can never
be completed. This device also serves for the removal of very long
messages that appear by error in the input stream.

ABILITY TO FIND OUT IF A MESSAGE CAN BE SENT

 If left unchecked, a routine can easily generate messages faster
than they can be consumed. Since any given amount of buffer capacity can
be quickly exhausted, there must be a way for the system to limit the
rate at which a process produces messages. This implies that at times a
process trying to send a message may be prevented from doing so because
of buffer inavailability. If the process is forced into the shade, the
pause should not come without warning. There should be a way for the
process to learn in advance if the message can be sent. A program may
have better things to do than wait for a buffer to become available.

ABILITY TO GET A GUARANTEE OF OUTPUT BUFFER SPACE

 A process should be able to get guarantee from the system that a
message of a certain size can be sent. This allows the process to know
before a computation is made that the results can be successfully
output. This allocation should remain either until it is depleted or
until it is changed by another allocation request.

 This particular user option is sure to raise the wrath of legions
of system programmers. From their point of view, the empty buffer space
that is being preallocated is necessarily being wasted. For although it
contains no messages, it is not available for other uses. The user, on
the other hand, does not correlate ’empty’ with ’wasteful’ nor ’full’
with ’efficient’. A process needs empty output buffers as much as it
needs full input ones. Both are resources necessary to sustain
processing.

 [Page 5]

RFC #150 Use of IPC Facilities 5 May 1971

ABILITY TO FIND OUT ABOUT OUTSTANDING MESSAGES

 A process that is sending messages over a channel should be able
to find out how many of those messages have not yet been accepted by the
user process at the far end and whether or not this number can decrease.
Ideally, it should also be able to determine the number of bits left in
any partially accepted message, but the overhead necessary to implement
this on conventional systems may be too great to be tolerated.

 The count returned can be useful both dynamically and for post
mortems. Used in debugging a remote process, it allows inputs on
normally concurrent channels to be presented one at a time and in any
given order. In this way one could, for example, verify that the same
results are produced regardless of the order in which the inputs arrive.

 If there is a failure of a receiving process, this mechanism
allows a sending process to determine the last input accepted before the
process died. Even between operational processes it provides a user
managed way for the transmitting process to slow down and let the
receiver catch up with it. By pinpointing bottlenecks, it can be used to
detect design mismatches.

 Unless the channel has no outstanding messages or it is dead,
there is the possibility that concurrently with the request the
receiving process will accept another message. This being the case, the
count returned can not be assumed to be exact but must be considered as
only an upper bound.

ABILITY TO GET WAKEUPS WHEN MESSAGES ARE ACCEPTED

 In conjunction with the above it should be possible for a user
process to be alerted when the number of messages that have been sent
over a particular channel and not accepted at the far end falls below a
specified threshold. Thus a process, upon discovering that twenty
messages are still outstanding, can elect to enter the shade until this
number has fallen to less than five. By doing so the process can run in
’burst mode’. Rather than being swapped in and out of core fifteen times
and each time being allowed to send one message, it is loaded once and
sends fifteen messages. There is no penalty for doing this since the
bottleneck on throughput is at the receiving process. If swapping costs
for the local process are significant, there may be considerable
economic advantage to this mode of operation.

 If the remote process dies or issues a channel ’close’, the count
of undelivered messages becomes frozen. If the receiving process is
expecting this type of wakeup, it should get one at this time even
though the count has not reached the desired threshold. The process is
thus alerted to do a postmortem on the channel.

 [Page 6]

RFC #150 Use of IPC Facilities 5 May 1971

ABILITY TO LEARN ABOUT MESSAGES QUEUED FOR INPUT

 A process should be able to learn of the status of the Nth logical
message queued on a given input channel. It should a least be able to
determine if it is available, whether or not it is complete, how long it
is and what it contains.

 This facility allows a program to make general preparations before
accepting a message. It offers some escape from being put into the
awkward position of having accepted input and not being able to dispose
of it. If for example, it is known that processing the message will
result in two more messages being sent, then it is advantageous to get
guarantees that the output can be generated before the input is
accepted.

 Under circumstances in which one end of a channel is moved from
one process to another, for example, moving a teletype connection
between a user program and a debugging program, this ability to scan
ahead in the input stream allows a process to check whether or not
pending input is really meant for it. If it is, the input will then be
accepted normally, otherwise, the end of the channel must be first moved
to another receiving process.

 Accepting input should be viewed as a grave responsibility, not to
be undertaken unless there is reasonable assurance that the input can be
processed. One of the first rules of asynchronous system design is to
detect errors as soon as possible. If propagated, the tangled results
may be hopeless to unravel.

ABILITY TO LEARN HOW MANY MESSAGES ARE WAITING

 A process should be able to determine how many messages are
left to be processed on a given input channel. Two uses are readily
thought of. Given pending inputs on several channels a process should be
able to exercise preference. One decision might be to take input first
from the channel with the most messages queued. This might have the
effect of increasing throughput since by freeing message buffers the
remote transmitting process might be allowed to run. Another possibility
might be that the receiving process has some control over the sending
process and, upon observing the backlog on inputs, it could tell that
process to slow down.

 Assuming that the remote process is still able to send messages,
the number of inputs reported is only a lower bound. New inputs may be
added concurrently. If the foreign process has died or has otherwise
closed the connection then the bound can be made exact. The local
process should be able to learn when it is exact.

 [Page 7]

RFC #150 Use of IPC Facilities 5 May 1971

GUARANTEE THAT INPUT WILL STAY AVAILABLE

 This requirement states that if a process has been told that it is
able to receive N messages on a given channel, that those messages are
really available and buffered within the host machine. If promised to a
user process, messages should not mysteriously become unavailable. An
example of how this might happen is illustrated in RFC60. There, during
a panic for buffer space, messages are destroyed and reported as being
in error. They are later recovered from backup copies contained in the
foreign host.

ABILITY TO RECEIVE A WAKEUP WHEN INPUTS ARRIVE

 A process should be able to enable a wakeup when the number of
messages queued on an input channel exceeds a specified value or has
reached its maximum value. This allows a program to process input in a
burst mode fashion and to economize on swapping costs. It also permits
inputs to be combined in a simple manner. If, for example, two inputs
are needed before anything can be done, then the appropriate interrupt
can be easily generated.

 The same interrupt should be generated if the maximum number of
inputs have been received. Two cases are distinguished. Either the
foreign process has closed the channel and is therefore not sending more
messages, or the system will not allocate more buffers until some input
is accepted. In this way the process can be informed that there is no
point in waiting for the condition it anticipates.

ABILITY TO SPECIFY SPECIAL WAKEUPS

 A process, when trying to run efficiently, should be able to
specify arbitrarily complicated wakeup conditions. This allows a user
managed way of minimizing the number of premature wakeups. This
generality is perhaps most easily provided for by allowing the main
process to designate a small low overhead interrupt driven routine that
will check for the desired conditions and issue a wakeup to the main
process whenever they are met.

ABILITY TO MEASURE CHANNEL CAPACITY

 There has been much discussion about the measure of a data stream
and in the heat of committee, much confusion has been generated. It is
our feeling that, within the present domain of discussion, there is no
single measure of the capacity of a message channel. Two completely
orthogonal concepts must be measured -- 1) the number of messages
buffered and 2) the number of bits of encoded data represented. The
system overhead associated with each is very much implementation
dependent and hence no general equation can express the measure of one

 [Page 8]

RFC #150 Use of IPC Facilities 5 May 1971

in terms of the other. By making an arbitrary assumption (eg. a message
boundary equals 100 bits of buffer), a system runs the risk of excluding
new nodes that are unable to meet the old criterion.

ABILITY TO FIND OUT MAXIMUM CHANNEL CAPACITY

 There should be provided a system call that enables a user process
to learn of the maximum current capacity of any given channel. This
should be reported as a pair of numbers, namely the maximum bit count
and the maximum message count.

ABILITY TO CONSTRAIN CHANNEL CAPACITY

 A process using a channel should be able to set new bounds on the
capacity of a given channel. If possible the system should try to meet
this bound. It should be noted that the actual bounds imposed must meet
the constraints of at least four different sources -- local and remote
user process, local and remote system -- by setting a arbitrarily high
bound, no guarantee is made that it can be met. Similarly, a low bound
can not always be met until buffered messages are consumed.

 Thus a receiving process, by setting the current message bound to
zero, effectively disables the transmission of new messages. Thus,
without the cooperation of the transmitting process, message generation
can be temporarily disabled, while outstanding message buffers are
flushed. Later the message allocation can be raised to its original
limit and transmission can be resumed.

ABILITY TO CLOSE A CHANNEL AT ANY TIME

 A process should be able to close down a channel at any time. If
the process has died, the system should be able to close all open
channels for it. For channels over which the process was receiving data,
pending input should be thrown away and indications returned to the
transmitting system marking the channel as dead and identifying the last
data item accepted. This identification will be in terms of the number
of logical messages discarded and the number of bits left in the oldest
message.

 If a process closes a channel over which it had been sending,
buffered output should be sent normally, and with it should be sent an
indication that this is all of the input that will ever appear.

 [Page 9]

RFC #150 Use of IPC Facilities 5 May 1971

ABILITY TO GIVE AWAY CHANNEL PRIVILEGES

 The right to perform any of the operations discussed here is
normally reserved by the process that established the channel. At times
that process may wish to transfer some of its delegated power to another
process, especially in an environment where one process may spawn
another and resources must be passed to the newly created process.

 Schemes for such reassignment can become arbitrarily complicated.
One could, for example, assign each of the various aspects of usage
individually and then separately assign the various rights of
reassignment. Fortunately it is not always necessary that it become so
elaborate, it is expected that in most cases the following simple
strategy can suffice. The ability to close a channel is retained
exclusively by the process that established the channel. If the channel
is still open when the process dies, it is automatically closed by the
system. All other uses of the channel remain outside system control. The
channel is known by name and all processes to which the name has been
given may make use of the channel. It is left to user level coordination
to insure that only one process is actually making use of it at any one
time.

ABILITY TO INITIATE CHANNEL CREATION

 For most cases channel establishment can be handled quite simply.
A process announces to its local system that it listening on a
specified channel. It is connected to the first remote process that
’dials’ the right number. Identification of the caller takes place
only after the channel has been established. In the event of a wrong
number, the channel can be closed and the listening resumed. Callers
trying to reach preestablished channels will get a ’busy signal’.

 To ’dial’ a remote process a process must specify a channel on
which it is listening and a remote number. The system will then
attempt to establish the connection. The channel will become ’busy’
during this time.

 For processes that prefer to avoid the complications of
identifying remote callers, an additional feature can be added. By
specifying both the local and remote channel identifiers a process can
transfer to the system the responsibility for screening callers for
the proper identification. The connection will only be accepted from
the caller specified.

 [Page 10]

RFC #150 Use of IPC Facilities 5 May 1971

ABILITY TO REPORT TRANSMISSION ERRORS

 If after prescanning an input message a process should decide
that it contains some sort of transmission error, it should be able to
reject the message. The system should then invoke any internal error
recovery mechanism that it may have implemented.

POSTSCRIPT

 The author welcomes any comments, questions, or corrections to
this document. Even the most informal note or telephone call will be
appreciated. Especially of interest are opinions about the usefulness
of the discussion and wether or not there should be more papers
directed at other of the basic questions of computer networking. If
the consensus tends to the affirmative, then others are encouraged to
contribute working papers on the problems of flow control, error
handling, process ownership, accounting, resource control, and the
like.

RBK/TX2

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Michael Baudisch 9/97]

 [Page 11]

