Ri chard Bl. Kalin Net wor k Wor ki ng Group
M T Lincoln Laboratory Request for Comments #150
5 May 1971 NI C 6754

THE USE OF | PC FACI LI TI ES
*** A WORKI NG PAPER* * *

This material has not been reviewed for public release and is intended
only for use within the ARPA network. It should not be quoted or cited
in any publication not related to the ARPA networKk.

I NTRODUCT! ON

It is our hypothesis that the goals of interprocess comunication
are nore conplex than comonly realized, and that until this conplexity
is nore fully understood, there will be no satisfactory inplenentations.
The objective of an | PC design nust be nore than that of providing a
facility for moving bits between ot herw se i ndependent user prograns, a
variety of other constraints nust also be satisfied.

These constraints are dictated by the eventual usage of the
facility. Any design that will sustain this usage pattern can be a
satisfactory one. If it does so efficiently, it will be said to be well
designed. Furthernore, it is uninmaginable that a | arge design effort,
undertaken w t hout a conpl ete understanding of the usage it nust serve,
will ever be well designed or even satisfactorily designed.

Thi s paper undertakes the exposition of the types of usage to
which an IPC facility would be subjected, in hopes that such a
di scussion will clarify the goals being pursued and will provide a
benchmark for gaugi ng various inplenentation strategies. The difficulty
of this task should not be underesti mated. The only experience avail abl e
for us to draw upon is fromvery primtive and overly constrained |IPC
i mpl ement ations. Extrapolation fromthis linmted usage environment to
nore general notions has as yet no basis in real experience. Such
specul ation is therefore subject to enornous oversight and ni sgui ded
per specti ve.

In conpiling this paper, it was necessary to inmagi ne what services

a process mght want froman |PC facility. The areas recogni zed incl ude:

1) the exchange of bit encoded information via channels.

2) the establishment, deletion, and reassi gnment of these channels.

3) the ability to debug errors and suspected errors.

4) the potential to inprove running efficiency.

5) the capacity to avoid storage allocation deadl ocks.

6) the aided recovery fromtransm ssion errors.

[Page 1]

RFC #150 Use of IPC Facilities 5 May 1971

This list is known to be inconplete. Sone areas, such as understood to
be intelligently discussed. In other cases, om ssions should be blaned
on sinple oversight.

Because of these obvious problens, one should not consider any
docunment of this kind as either authoritative or final. For this reason
this paper is being kept as a conputer based textfile, and so wll
remai n subject to editting and rerel ease whenever new i nsi ghts becone
understood. W hope that it can remain an accurate and up to date
statement of the goals to which any group of IPC inplenenters can aspire
and, as such, can be a gui debook to the problens that nmust be faced.

For several reasons no attenpt shall be nade here to design
suitabl e solutions to the problens raised. To be useful, such sol utions
nmust be machi ne dependent. A so called 'general solution” would actually
be too clunsy and inefficient to be of any value. Secondly, we take the
poi nt of view of the user, who need not be aware of the manner in which
his denmands are carried out, so long as they can be acconpli shed.
Finally, we are trying to stay al oof fromthe eccentricities of present
day machi ne organi zation

In our attenpt to be inplenentation i ndependent, we are admttedly
treading a fuzzy line. Qur characterization of usage patterns presunes
both a system process software organi zation and a conputing nmlieu
capabl e of supporting it. Al though this does not appear to significantly
af fect the generality of the docunent, sonme care must be exercised in

t he sel ection of host machines.

*kkk*k

In the rest of this paper, we attenpt to characterize the types of
usage that should be anticipated by an IPC facility. The organization is
into titled sections, each section discussing some aspect of the
expect ed usage.

ABI LI TY TO USE VARl QUS SOURCES OF WAKEUP | NFORVATI ON

Most processes exhibit preferences toward certain quantities of
input data. This preference is reflected in the anount of conputing tine
that can be expended for a given amount of input. For exanple, a
character translation routine mght prefer eight bit quantities of
input. Wth seven or less bits no processing is possible, but once a
conpl ete character is available an entire translation cycle can
comrence. This preference is independent of the function of the routine.
O herwi se equivalent routines could be witten that woul d accept one bit
at atinme. In other exanples, a command interpreter mght require a
complete line of input, a linking | oader a conplete file.

[Page 2]

RFC #150 Use of IPC Facilities 5 May 1971

Every executive system nust face the problem of deciding at what
times enough input is available for a given routine for it to run
efficiently. This decision can not be taken lightly. Issuing a wakeup to
a dormant process carries with it considerable overhead -- roomin core
storage nust be nmade avail able, the program nmust be swapped into nmenory,
tabl es nust be updated, active registers exchanged, and the entire
procedure done in reverse once the process has finished. To issue a
wakeup when there is insufficient input for the programis inefficient
and wasteful. The anmount of conputing that can be done does not justify
the overhead that nust be expended.

The problemof deternmining a priori the best tine to issue a
wakeup has no general solution. It depends critically upon the
rel ati onship between waiting costs and running costs. Attenpts to neke
reasonabl e predictions nust contend with the tradeoff between accuracy
and overhead. The nore system code that nust be run, the nore overhead
incurred and the less the final prediction nmeans.

Al t hough there is no general solution, help is available to the
schedul er in specific cases. A commonly found instance is that of using
the receiving process to specify the nunber of bits that it is
expecting. Thus, a process may informthe supervisor/scheduler that it
requires fifty bits of input fromsone source before it is able to
continue. The process can then go into the shade and it will be awakened
when the required input is avail able.

In cases where input lengths are predeterm ned, this technique is
quite satisfactory. El sewhere, problens arise. In the case of unknown
i nput sizes, too short a prediction will give rise to the inefficiencies
of premature scheduling, and too long a prediction nay produce input
deadl ocks.

Under these circunstances it is comon to have the process tel
the scheduler a sinple criterion that can be applied to determne if
there is sufficient input -- the appearance of a carriage return in the
tel etype input stream for exanple. The criterion is tested either by
systemroutines or by a | ow overhead user supplied routine (which in
turn must have a criterion of its own for being awakened). Once the
criterion is nmet, the main routine is awakened and processi ng conti nues.

Sometinmes the systemand user criteria work in conjunction wth
one anot her. A user nmay specify an maxi num character count,
corresponding to avail able buffer size, and the systemnmay look for line
term nators. \Wakeups to the user process nay appear from either source.
At other tines the system may preenpt the user’s criterion. For exanple,
if a process while trying to put a single character into a full buffer
is forced into shade, it will typically not be awakened again unti
buf fer has been al nost enptied. Even though the user programonly w shed

[Page 3]

RFC #150 Use of IPC Facilities 5 May 1971

roomfor a single character, the systeminposed a nuch stronger
criterion, namely room for N characters, on the assunption other calls
to output characters will follow. Thus the programis forced into
outputting in bursts and, rather than going into the shade and being
awakened N tinmes, each tine when there is only roomto output one
character, the programis awakened once and sends N characters. Program
efficiency is appropriately inproved.

A third source of criteria for deciding when to awaken the user
process is the device or routine that is producing the input data. This
source is frequently utilized in hardware design. Many conputer
peri pherals have the ability to send an end of record indication. For
variable I ength uninterpreted records this is an absol ute necessity. For
fixed length records it is a convenient double check. In the world of
i nterprocess conmuni cati on an anal ogous feature should be available. |f
the routine that is generating the data knows how nuch the receiving
routine will require, then this information should be nade avail able for
schedul i ng purposes. Inplenenting this requires a standardi zed way of
denoting | ogical boundaries on the streamof data flow ng, through a
communi cati on channel. The markers nust be recogni zable by the
schedul er/ supervisor in the receiving host conmputer so that wakeups can
be issued as desired. To sinplify the task of input interpretation
mar ker pacenment should al so be visible to the receiving process.

The data between boundaries we shall call a |ogical nessage, since
it is a natural unit of information exchange and since the narkers
travel with the data through the channel. The additional information the
mar kers provi de about data flow yield many useful consequences.

Consi der, for exanple, two processes that always exchange 100 bit |ong

| ogi cal nmessages. If the receiving process is able to determ ne the

| ength of each |ogical nessage that arrives, there is available a sinple
facility for error detection. If a 99 bit message arrives, it is obvious
that a bit has been dropped sonewhere.

It should be noted that it is not always possible for the
recei ving process to conpute the positions of boundary markers in the
i nput stream there is no reason that the information inplicit is marker
position nmust also be found as part of the coded input data. Even in
cases in which there is coding redundancy, it may be nore difficult to
extract boundary information fromthe rest of the input than it is to
use the markers explicitly.

ABILITY TO SEND PARTS OF LOQd CAL MESSAGES
Any IPC facility, in which user storage is at all constrained, can
not require a process to send an entire |ogical nessage at one tine. The

concept is only introduced to facilitate the issuing of wakeups to a
recei ving process. Wiat are conveni ent input quanta for the receiving

[Page 4]

RFC #150 Use of IPC Facilities 5 May 1971

process may nhot be conveni ent output quanta for the sending one.

consi der the case of a process running on a snmall machi ne and sendi ng
nmessages to a process on a large task-nultiplexed nmachi ne. For
efficiency, the receiving process requires large quantities of input
data at a tine. Buffer space in the address space of the sending process
can not hold nuch data. The only answer is to allow the sending process
to dunp its logical nessage in parts and with the last part to indicate
that it is the end of a nessage.

ABI LI TY TO RECElI VE A LOG CAL MESSAGE | N PARTS

In the reverse of the above situation, a receiving process may not
have sufficient buffer space available to accept an entire nessage at
once. It should be possible under these circunmstances to elect to accept
the message in parts. This is also necessary in the case of nessages
that are too long to be buffered by the system Unless part of the
message i s accepted by the receiving process, the transm ssion can never
be conpl eted. This device al so serves for the renoval of very long
messages that appear by error in the input stream

ABILITY TO FIND OQUT | F A MESSAGE CAN BE SENT

If left unchecked, a routine can easily generate nmessages faster
than they can be consuned. Since any given anount of buffer capacity can
be qui ckly exhausted, there nust be a way for the systemto linit the
rate at which a process produces nessages. This inplies that at tinmes a
process trying to send a nessage may be prevented from doi ng so because
of buffer inavailability. If the process is forced into the shade, the
pause should not conme without warning. There should be a way for the
process to learn in advance if the nmessage can be sent. A program nay
have better things to do than wait for a buffer to becone avail abl e.

ABILITY TO GET A GUARANTEE OF QUTPUT BUFFER SPACE

A process should be able to get guarantee fromthe systemthat a
message of a certain size can be sent. This allows the process to know
before a conputation is nade that the results can be successfully
output. This allocation should remain either until it is depleted or
until it is changed by another allocation request.

This particular user option is sure to raise the wath of |egions
of system programmers. Fromtheir point of view, the enpty buffer space
that is being preallocated is necessarily being wasted. For although it
contains no nessages, it is not available for other uses. The user, on
the ot her hand, does not correlate "enpty’ with "wasteful’ nor 'full
with "efficient’. A process needs enpty output buffers as nmuch as it
needs full input ones. Both are resources necessary to sustain
processi ng.

[Page 5]

RFC #150 Use of IPC Facilities 5 May 1971

ABILITY TO FIND OUT ABOUT OQUTSTANDI NG MESSAGES

A process that is sending nessages over a channel should be able
to find out how many of those messages have not yet been accepted by the
user process at the far end and whether or not this nunber can decrease.
Ideally, it should also be able to deternmine the nunber of bits left in
any partially accepted nessage, but the overhead necessary to inpl enent
this on conventional systens nay be too great to be tolerated.

The count returned can be useful both dynam cally and for post
nmortens. Used in debugging a renote process, it allows inputs on
normal Iy concurrent channels to be presented one at a tinme and in any
given order. In this way one could, for exanple, verify that the same
results are produced regardl ess of the order in which the inputs arrive.

If there is a failure of a receiving process, this mechani sm
all ows a sending process to determne the last input accepted before the
process di ed. Even between operational processes it provides a user
managed way for the transmitting process to slow down and let the
receiver catch up with it. By pinpointing bottlenecks, it can be used to
det ect design m snatches

Unl ess the channel has no outstanding nessages or it is dead,
there is the possibility that concurrently with the request the
recei ving process will accept another nessage. This being the case, the
count returned can not be assuned to be exact but nust be considered as
only an upper bound.

ABI LI TY TO GET WAKEUPS VWHEN MESSAGES ARE ACCEPTED

In conjunction with the above it should be possible for a user
process to be alerted when the nunber of nessages that have been sent
over a particular channel and not accepted at the far end falls below a
specified threshold. Thus a process, upon discovering that twenty
messages are still outstanding, can elect to enter the shade until this
nunber has fallen to less than five. By doing so the process can run in
"burst nopde’. Rather than being swapped in and out of core fifteen tines
and each tinme being allowed to send one nessage, it is |oaded once and
sends fifteen nessages. There is no penalty for doing this since the
bottl eneck on throughput is at the receiving process. If swapping costs
for the local process are significant, there may be consi derable
econoni ¢ advantage to this node of operation

If the renote process dies or issues a channel ’'close’, the count
of undelivered nmessages becones frozen. If the receiving process is
expecting this type of wakeup, it should get one at this tine even
t hough the count has not reached the desired threshold. The process is
thus alerted to do a postnortem on the channel

[Page 6]

RFC #150 Use of IPC Facilities 5 May 1971

ABI LI TY TO LEARN ABOUT MESSAGES QUEUED FCR | NPUT

A process should be able to learn of the status of the Nth |ogica
message queued on a given input channel. It should a |least be able to
determine if it is available, whether or not it is conplete, howlong it
is and what it contains.

This facility allows a programto make general preparations before
accepting a nessage. It offers sone escape frombeing put into the
awkwar d position of having accepted i nput and not being able to di spose
of it. If for exanple, it is known that processing the nessage will
result in two nore nessages being sent, then it is advantageous to get
guarantees that the output can be generated before the input is
accept ed.

Under circunstances in which one end of a channel is noved from
one process to another, for exanple, noving a tel etype connection
bet ween a user program and a debuggi ng program this ability to scan
ahead in the input streamallows a process to check whether or not
pending input is really neant for it. If it is, the input will then be
accepted nornally, otherw se, the end of the channel nmust be first noved
to anot her receiving process.

Accepting input should be viewed as a grave responsibility, not to
be undertaken unless there is reasonabl e assurance that the input can be
processed. One of the first rules of asynchronous systemdesign is to
detect errors as soon as possible. If propagated, the tangled results
may be hopel ess to unravel

ABI LI TY TO LEARN HOW MANY MESSACGES ARE WAI TI NG

A process should be able to deterni ne how nmany nessages are
left to be processed on a given input channel. Two uses are readily
t hought of. G ven pending inputs on several channels a process should be
able to exercise preference. One decision mght be to take input first
fromthe channel with the nost nessages queued. This night have the
ef fect of increasing throughput since by freeing nessage buffers the
renpte transmitting process mght be allowed to run. Another possibility
m ght be that the receiving process has some control over the sending
process and, upon observing the backlog on inputs, it could tell that
process to sl ow down.

Assumi ng that the renote process is still able to send nessages
t he nunber of inputs reported is only a | ower bound. New i nputs nay be
added concurrently. If the foreign process has died or has otherw se
cl osed the connection then the bound can be made exact. The | oca
process should be able to learn when it is exact.

[Page 7]

RFC #150 Use of IPC Facilities 5 May 1971

GUARANTEE THAT | NPUT W LL STAY AVAI LABLE

This requirement states that if a process has been told that it is
able to receive N nmessages on a given channel, that those nessages are
really available and buffered within the host nachine. If promised to a
user process, nessages should not nysteriously becone unavail able. An
exanpl e of how this nmight happen is illustrated in RFC60. There, during
a panic for buffer space, nessages are destroyed and reported as being
in error. They are later recovered from backup copies contained in the
foreign host.

ABI LI TY TO RECEI VE A WAKEUP VWHEN | NPUTS ARRI VE

A process should be able to enable a wakeup when the nunber of
nmessages queued on an input channel exceeds a specified value or has
reached its maxi mumvalue. This allows a programto process input in a
burst node fashion and to econonize on swapping costs. It also permts
inputs to be conbined in a sinple manner. If, for exanple, two inputs
are needed before anything can be done, then the appropriate interrupt
can be easily generated.

The sane interrupt should be generated if the maxi num nunber of
i nputs have been received. Two cases are distinguished. Either the
foreign process has closed the channel and is therefore not sending nore
messages, or the systemw |l not allocate nore buffers until some input
is accepted. In this way the process can be inforned that there is no
point in waiting for the condition it anticipates.

ABI LI TY TO SPECI FY SPECI AL WAKEUPS

A process, when trying to run efficiently, should be able to
specify arbitrarily conplicated wakeup conditions. This allows a user
managed way of mninizing the nunber of premature wakeups. This
generality is perhaps nost easily provided for by allow ng the main
process to designate a small | ow overhead interrupt driven routine that
will check for the desired conditions and i ssue a wakeup to the nain
process whenever they are net.

ABILITY TO MEASURE CHANNEL CAPACI TY

There has been nmuch di scussion about the nmeasure of a data stream
and in the heat of committee, nuch confusion has been generated. It is
our feeling that, within the present donain of discussion, there is no
singl e nmeasure of the capacity of a nessage channel. Two conpletely
ort hogonal concepts nust be neasured -- 1) the nunber of nessages
buffered and 2) the number of bits of encoded data represented. The
system overhead associated with each is very much inpl enentation
dependent and hence no general equation can express the neasure of one

[Page 8]

RFC #150 Use of IPC Facilities 5 May 1971

interns of the other. By naking an arbitrary assunption (eg. a nessage
boundary equals 100 bits of buffer), a systemruns the risk of excluding
new nodes that are unable to nmeet the old criterion

ABILITY TO FIND QUT MAXI MUM CHANNEL CAPACI TY

There should be provided a systemcall that enables a user process
to learn of the maxi mum current capacity of any given channel. This
shoul d be reported as a pair of nunbers, nanely the maxi num bit count
and t he maxi num nmessage count.
ABI LI TY TO CONSTRAI N CHANNEL CAPACI TY

A process using a channel should be able to set new bounds on the

capacity of a given channel. |f possible the systemshould try to neet
this bound. It should be noted that the actual bounds inposed nust neet
the constraints of at l|east four different sources -- |ocal and renote

user process, local and renpote system-- by setting a arbitrarily high
bound, no guarantee is nade that it can be nmet. Sinmlarly, a | ow bound
can not always be net until buffered messages are consuned.

Thus a receiving process, by setting the current nmessage bound to
zero, effectively disables the transm ssion of new nessages. Thus,
wi t hout the cooperation of the transmitting process, nessage generation
can be tenporarily disabled, while outstanding nessage buffers are
flushed. Later the message allocation can be raised to its origina
limt and transm ssion can be resuned.

ABI LITY TO CLOSE A CHANNEL AT ANY TI ME

A process should be able to close down a channel at any tine. |f
the process has died, the systemshould be able to close all open
channels for it. For channels over which the process was receiving data,
pendi ng i nput should be thrown away and indications returned to the
transmitting system marking the channel as dead and identifying the |ast
data item accepted. This identification will be in terns of the nunber
of | ogical nmessages discarded and the nunber of bits left in the ol dest
nessage

If a process closes a channel over which it had been sendi ng,

buf f ered out put should be sent normally, and with it should be sent an
indication that this is all of the input that will ever appear

[Page 9]

RFC #150 Use of IPC Facilities 5 May 1971
ABILITY TO G VE AWAY CHANNEL PRI VI LECGES

The right to performany of the operations discussed here is
normally reserved by the process that established the channel. At tines
that process may wish to transfer sonme of its del egated power to another
process, especially in an environnent where one process nmay spawn
anot her and resources nust be passed to the newly created process.

Schemes for such reassignment can becone arbitrarily conplicated
One could, for exanple, assign each of the various aspects of usage
i ndividually and then separately assign the various rights of
reassignment. Fortunately it is not always necessary that it becone so
el aborate, it is expected that in nost cases the follow ng sinple
strategy can suffice. The ability to close a channel is retained
exclusively by the process that established the channel. |If the channe
is still open when the process dies, it is automatically closed by the
system All other uses of the channel remain outside systemcontrol. The
channel is known by nane and all processes to which the nane has been
gi ven may nmake use of the channel. It is left to user |evel coordination
to insure that only one process is actually making use of it at any one
tinme.

ABI LITY TO | NI TI ATE CHANNEL CREATI ON

For nost cases channel establishnment can be handl ed quite sinply.
A process announces to its local systemthat it listening on a
specified channel. It is connected to the first renote process that
"dials’ the right nunber. ldentification of the caller takes place
only after the channel has been established. In the event of a wong
nunber, the channel can be closed and the listening resumed. Callers
trying to reach preestablished channels will get a ’'busy signal’

To 'dial’ a renpbte process a process nust specify a channel on
which it is listening and a renote nunber. The systemwi |l then
attenpt to establish the connection. The channel wll becone ’busy
during this tine.

For processes that prefer to avoid the conplications of
identifying renote callers, an additional feature can be added. By
speci fying both the I ocal and renote channel identifiers a process can
transfer to the systemthe responsibility for screening callers for
the proper identification. The connection will only be accepted from
the caller specified.

[Page 10]

RFC #150 Use of IPC Facilities 5 May 1971

ABI LI TY TO REPORT TRANSM SSI ON ERRORS

If after prescanning an input nessage a process shoul d deci de
that it contains sone sort of transmission error, it should be able to
reject the nmessage. The system should then invoke any internal error
recovery nmechanismthat it may have i npl enented

POSTSCRI PT

The aut hor wel cones any coments, questions, or corrections to
this docunent. Even the nost informal note or telephone call will be
appreci ated. Especially of interest are opinions about the useful ness
of the discussion and wether or not there should be nore papers
directed at other of the basic questions of conputer networking. If
the consensus tends to the affirnmative, then others are encouraged to
contribute working papers on the problens of flow control, error
handl i ng, process ownershi p, accounting, resource control, and the
l'ike.

RBK/ TX2

[This RFC was put into nachine readable formfor entry]
[into the online RFC archives by M chael Baudisch 9/97]

[Page 11]

