
Network Working Group K. McCloghrie
Request for Comments: 1503 Hughes LAN Systems
 M. Rose
 Dover Beach Consulting, Inc.
 August 1993

 Algorithms for Automating Administration
 in SNMPv2 Managers

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard. Distribution of this memo is
 unlimited.

Table of Contents

 1. Introduction .. 1
 2. Implementation Model 1
 3. Configuration Assumptions 3
 4. Normal Operations 4
 4.1 Getting a Context Handle 4
 4.2 Requesting an Operation 7
 5. Determining and Using Maintenance Knowledge 8
 5.1 Determination of Synchronization Knowledge 9
 5.2 Use of Clock Synchronization Knowledge 10
 5.3 Determination of Secret Update Knowledge 11
 5.4 Use of Secret Update Knowledge 13
 6. Other Kinds and Uses of Maintenance Knowledge 13
 7. Security Considerations 13
 8. Acknowledgements 13
 9. References .. 14
 10. Authors’ Addresses 14

1. Introduction

 When a user invokes an SNMPv2 [1] management application, it may be
 desirable for the user to specify the minimum amount of information
 necessary to establish and maintain SNMPv2 communications. This memo
 suggests an approach to achieve this goal.

2. Implementation Model

 In order to discuss the approach outlined in this memo, it is useful
 to have a model of how the various parts of an SNMPv2 manager fit
 together. The model assumed in this memo is depicted in Figure 2.1.
 This model is, of course, merely for expository purposes, and the

McCloghrie & Rose [Page 1]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

 approach should be readily adaptable to other models.

 (Human) User
 *
 *
 ===========User Interface (UI)===========
 *
 +--------------------------+
 ... | Management Application N |
 +---------------------------+ |
 | Management Application 2 |-----+
 +--------------------------+ | *
 | Management Application 1 |----+ *
 +--------------------------+ * *
 * * *
 ========Management API======================
 * *
 * ________ *
 +-------------+ / Local \ +---------------+
 | Context |***/ Party ***| SNMP protocol |
 | Resolver(s) | \ Database / | engine(s) |
 +-------------+ ________/ +---------------+
 *
 *
 ===========Transport APIs============
 *
 +---------------------------------+
 | Transport Stacks (e.g., UDP/IP) |
 +---------------------------------+
 *
 Network(s)

 Figure 2.1 SNMPv2 Manager Implementation Model

 Note that there might be just one SNMP protocol engine and one
 "context resolver" which are accessed by all local management
 applications, or, each management application might have its own SNMP
 protocol engine and its own "context resolver", all of which have
 shared access to the local party database [2].

 In addition to the elements shown in the figure, there would need to
 be an interface for the administrator to access the local party
 database, e.g., for configuring initial information, including
 secrets. There might also be facilities for different users to have
 different access privileges, and/or other reasons for there to be
 multiple (coordinated) subsets of the local party database.

McCloghrie & Rose [Page 2]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

3. Configuration Assumptions

 Now, let’s assume that the administrator has already configured a
 local party database for the management application, e.g.,

 partyIdentifier: initialPartyId.a.b.c.d.1
 partyIndex: 1
 partyTAddress: a.b.c.d:161
 partyLocal: false
 partyAuthProtocol: noAuth
 partyPrivProtocol: noPriv

 partyIdentifier: initialPartyId.a.b.c.d.2
 partyIndex: 2
 partyTAddress: local address
 partyLocal: true
 partyAuthProtocol: noAuth
 partyPrivProtocol: noPriv

 partyIdentifier: initialPartyId.a.b.c.d.3
 partyIndex: 3
 partyTAddress: a.b.c.d:161
 partyLocal: false
 partyAuthProtocol: md5Auth
 partyPrivProtocol: noPriv

 partyIdentifier: initialPartyId.a.b.c.d.4
 partyIndex: 4
 partyTAddress: local address
 partyLocal: true
 partyAuthProtocol: md5Auth
 partyPrivProtocol: noPriv

 contextIdentifier: initialContextId.a.b.c.d.1
 contextIndex: 1
 contextLocal: false
 textual handle: router.xyz.com-public

 contextIdentifier: initialContextId.a.b.c.d.2
 contextIndex: 2
 contextLocal: false
 textual handle: router.xyz.com-all

 aclTarget (dest. party): 1
 aclSubject (src party): 2
 aclResources (context): 1
 aclPrivileges: get, get-next, get-bulk

McCloghrie & Rose [Page 3]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

 aclTarget (dest. party): 3
 aclSubject (src party): 4
 aclResources (context): 2
 aclPrivileges: get, get-next, get-bulk, set

 Note that each context has associated with it a "textual handle".
 This is simply a string chosen by the administrator to aid in
 selecting a context.

4. Normal Operations

 When the user tells the management application to do something, the
 user shouldn’t have to specify party or context information.

 One approach to achieve this is as follows: the user provides a
 textual string indicating the managed objects to be manipulated, and
 the management application invokes the "context resolver" to map this
 into a "context handle", and later, when an SNMPv2 operation is
 performed, the "context handle" and a minimal set of security
 requirements are provided to the management API.

4.1. Getting a Context Handle

 A "context handle" is created when the management application
 supplies a textual string, that was probably given to it by the user.
 The "context resolver" performs these steps based on the
 application’s input:

 (1) In the local party database, each context has associated
 with it a unique string, termed its "textual handle". If
 a context in the local database has a textual handle
 which exactly matches the textual string, then the
 "context resolver" returns a handle identifying that
 context.

 So, if the application supplies "router.xyz.com-public",
 then the "context resolver" returns a handle to the first
 context; instead, if the application supplies
 "router.xyz.com-all", then the "context resolver" returns
 a handle to the second context.

 (2) Otherwise, if any contexts are present whose textual
 handle is longer than the textual string, and whose
 initial characters exactly match the entire textual
 string, then the "context resolver" returns a handle
 identifying all of those contexts.

 So, if the application supplies "router.xyz.com", then

McCloghrie & Rose [Page 4]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

 the "context resolver" returns a handle to both contexts.

 (3) Otherwise, if the textual string specifies an IP address
 or a domain name which resolves to a single IP address,
 then the "context resolver" adds to the local party
 database, a volatile noAuth/noPriv party pair, a volatile
 context, and a volatile access control entry allowing
 interrogation operations, using the "initialPartyId" and
 "initialContextId" conventions. The "context resolver"
 returns a handle identifying the newly created context.

 So, if the application supplies "89.0.0.1", then the
 "context resolver" adds the following information to the
 local party database:

 partyIdentifier: initialPartyId.89.0.0.1.1
 partyIndex: 101
 partyTAddress: 89.0.0.1:161
 partyLocal: false
 partyAuthProtocol: noAuth
 partyPrivProtocol: noPriv
 partyStorageType: volatile

 partyIdentifier: initialPartyId.89.0.0.1.2
 partyIndex: 102
 partyTAddress: local address
 partyLocal: true
 partyAuthProtocol: noAuth
 partyPrivProtocol: noPriv
 partyStorageType: volatile

 contextIdentifier: initialContextId.89.0.0.1.1
 contextIndex: 101
 contextLocal: false
 contextStorageType: volatile
 textual handle: 89.0.0.1

 aclTarget (dest. party): 101
 aclSubject (src party): 102
 aclResources (context): 101
 aclPrivileges: get, get-next, get-bulk
 aclStorageType: volatile

 and the "context resolver" returns a handle to the newly
 created context.

 (4) Otherwise, if the textual string specifies a domain name
 which resolves to multiple IP addresses, then for each

McCloghrie & Rose [Page 5]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

 such IP address, the "context resolver" adds to the local
 party database, a volatile noAuth/noPriv party pair, a
 volatile context, and a volatile access control entry
 allowing interrogation operations, using the
 "initialPartyId" and "initialContextId" conventions.
 Then, the "context resolver" returns a handle identifying
 all of those newly created contexts.

 (5) Otherwise, if the textual string contains a ’/’-
 character, and everything to the left of the first
 occurrence of this character specifies an IP address or a
 domain name which resolves to a single IP address, then
 the "context resolver" adds to the local party database,
 a volatile SNMPv1 party, a volatile context, and a
 volatile access control entry allowing interrogation
 operations. (The SNMPv1 community string consists of any
 characters following the first occurrence of the ’/’-
 character in the textual string.) Then, the "context
 resolver" returns a handle identifying the newly created
 context.

 So, if the application supplied "89.0.0.2/public", then
 the "context resolver" adds the following information to
 the local party database:

 partyIdentifier: initialPartyId.89.0.0.2.1
 partyIndex: 201
 partyTDomain: rfc1157Domain
 partyTAddress: 89.0.0.2:161
 partyLocal: false
 partyAuthProtocol: rfc1157noAuth
 partyAuthPrivate: public
 partyPrivProtocol: noPriv
 partyStorageType: volatile

 contextIdentifier: initialContextId.89.0.0.2.1
 contextIndex: 201
 contextLocal: false
 contextStorageType: volatile
 textual handle: 89.0.0.2

 aclTarget (dest. party): 201
 aclSubject (src party): 201
 aclResources (context): 201
 aclPrivileges: get, get-next, get-bulk
 aclStorageType: volatile

 and the "context resolver" returns a handle to the the

McCloghrie & Rose [Page 6]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

 newly created context.

 (6) Otherwise, if the textual string contains a ’/’-
 character, and everything to the left of the first
 occurrence of this character specifies a domain name
 which resolves to multiple IP addresses, then for each
 such IP address, the "context resolver" adds to the local
 party database, a volatile SNMPv1 party, a volatile
 context, and a volatile access control entry allowing
 interrogation operations. (The SNMPv1 community string
 consists of any characters following the first occurrence
 of the ’/’-character in the textual string.) Then, the
 "context resolver" returns a handle identifying all of
 those newly created contexts.

 (7) Otherwise, an error is raised.

4.2. Requesting an Operation

 Later, when an SNMPv2 operation is to be performed, the management
 application supplies a "context handle" and a minimal set of security
 requirements to the management API:

 (1) If the "context handle" refers to a single context, then
 all access control entries having that context as its
 aclResources, allowing the specified operation, having a
 non-local SNMPv2 party as its aclTarget, which satisfies
 the privacy requirements, and having a local party as its
 aclSubject, which satisfies the authentication
 requirements, are identified.

 So, if the application wanted to issue a get-next
 operation, with no security requirements, and supplied a
 "context handle" identifying context #1, then acl #1
 would be identified.

 (2) For each such access control entry, the one which
 minimally meets the security requirements is selected for
 use. If no such entry is identified, and authentication
 requirements are present, then the operation will be not
 performed.

 So, if the application requests a get-next operation,
 with no security requirements, and supplies a "context
 handle" identifying context #1, and step 1 above
 identified acl #1, then because acl #1 satisfies the no-
 security requirements, the operation would be generated
 using acl #1, i.e., using party #1, party #2, and context

McCloghrie & Rose [Page 7]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

 #1.

 (3) Otherwise, all access control entries having the (single)
 context as its aclResources, allowing the specified
 operation, and having a non-local SNMPv1 party as its
 aclTarget, are identified. If no such entry is
 identified, then the operation will not performed.
 Otherwise, any of the identified access control entries
 may be selected for use.

 The effect of separating out step 3 is to prefer SNMPv2
 communications over SNMPv1 communications.

 (4) If the "context handle" refers to more than one context,
 then all access control entries whose aclResources refers
 any one of the contexts, are identified. For each such
 context, step 2 is performed, and any (e.g., the first)
 access control entry identified is selected for use. If
 no access control entry is identified, then step 3 is
 performed for each such context, and any (e.g., the
 first) access control entry identified is selected for
 use.

 So, if the application wanted to issue a get-bulk
 operation, with no security requirements, and supplied a
 "context handle" identifying contexts #1 and #2, then
 acls #1 and #2 would be identified in step 1; and, in
 step 2, party #1, party #2, and context #1 would be
 selected.

 However, if the application wanted to issue an
 authenticated get-bulk operation, and supplied a "context
 handle" identifying contexts #1 and #2, then acls #1 and
 #2 would still be identified in step 1; but, in step 2,
 only acl #2 satisfies the security requirement, and so,
 party #3, party #4, and context #2 would be selected.

 (5) If no access control entry is identified, then an error
 is raised.

 Note that for steps 1 and 3, an implementation might choose to pre-
 compute (i.e., cache) for each context those access control entries
 having that context as its aclResources.

5. Determining and Using Maintenance Knowledge

 When using authentication services, two "maintenance" tasks may have
 to be performed: clock synchronization and secret update. These

McCloghrie & Rose [Page 8]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

 tasks should be performed transparently, independent of the
 management applications, and without user/administrator intervention.
 In order to operate transparently, the SNMP protocol engine must
 maintain "maintenance knowledge" (knowledge of which parties and
 contexts to use). It is useful for this maintenance knowledge to be
 determined at run-time, rather than being directly configured by an
 administrator.

 One approach to achieve this is as follows: the first time that the
 SNMP protocol engine determines that it will be communicating with
 another SNMPv2 entity, the SNMP protocol engine first consults its
 local party database and then interrogates its peer, before engaging
 in the actual communications.

 Note that with such an approach, both the clock synchronization
 knowledge, and the secret update knowledge, associated with a party,
 can each be represented as (a pointer to) an access control entry.
 Further note that once an implementation has computed this knowledge,
 it might choose to retain this knowledge across restarts.

5.1. Determination of Synchronization Knowledge

 To determine maintenance knowledge for clock synchronization:

 (1) The SNMP protocol engine examines each active, non-local,
 noAuth party.

 So, this would be party #1.

 (2) For each such party, P, all access control entries having
 that party as its aclTarget, and allowing the get-bulk
 operation, are identified.

 So, for party #1, this would be acl #1.

 (3) For each such access control entry, A, at least one
 active, non-local, md5Auth party, Q, must be present
 which meets the following criteria:

 - the transport domain and address of P and Q are
 identical;

 - an access control entry, B, exists having either: Q as
 its aclTarget and a local party, R, as its aclSubject,
 or, Q as its aclSubject and a local party, R, as its
 aclTarget; and,

 - no clock synchronization knowledge is known for R.

McCloghrie & Rose [Page 9]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

 So, for acl #1, party #3 is identified as having the same
 transport domain and address as party #1, and being
 present as the aclTarget in acl #2, which has local party
 #4 as the aclSubject.

 (4) Whenever such a party, Q, is present, then all instances
 of the "partyAuthProtocol" and "partyAuthClock" objects
 are retrieved via the get-bulk operator using the parties
 and context identified by the access control entry, A.

 So, party #1, party #2, and context #1 would be used to
 sweep these two columns on the agent.

 (5) Only those instances corresponding to parties in the
 local database, which have no clock synchronization
 knowledge, and are local mdAuth parties, are examined.

 So, only instances corresponding to party #4 are
 examined.

 (6) For each instance of "partyAuthProtocol", if the
 corresponding value does not match the value in the local
 database, then a configuration error is signalled, and
 the corresponding party is marked as being unavailable
 for maintenance knowledge.

 So, we make sure that the manager and the agent agree
 that party #4 is an md5Auth party.

 (7) For each instance of "partyAuthClock", if the
 corresponding value is greater than the value in the
 local database, then the authentication clock of the
 party is warped according to the procedures defined in
 Section 5.3 of [3]. Regardless, A is recorded as the
 clock synchronization knowledge for the corresponding
 party.

 So, if the column sweep returns information for party #4,
 then party #4’s authentication clock is advanced if
 necessary, and the clock synchronization knowledge for
 party #4 is recorded as acl #1.

5.2. Use of Clock Synchronization Knowledge

 Whenever a response to an authenticated operation is not received,
 the SNMP protocol engine may suspect that a clock synchronization
 problem for the source party is the cause [3]. The SNMP protocol
 engine may use different criteria when making this determination; for

McCloghrie & Rose [Page 10]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

 example: on a retrieval operation, the operation might be retried
 using an exponential back-off algorithm; in contrast, on a
 modification operation, the operation would not be automatically
 retried.

 When clock mis-synchronization for a source party, S, is suspected,
 if clock synchronization knowledge for S is present, then this
 knowledge is used to perform steps 4-7 above, which should retrieve
 the instances of the "partyAuthProtocol" and "partyAuthClock" objects
 which correspond to S (and perhaps other parties as well). If
 information on these objects cannot be determined, then S is marked
 as no longer having clock synchronization knowledge. Otherwise, if
 the value of the corresponding instance of "partyAuthClock" is
 greater than the value in the local database, then the authentication
 clock of the party is warped according to the procedures defined in
 Section 5.3 of [3], and the original operation is retried, if
 appropriate.

 So, if traffic from party #4 times out, then a column sweep is
 automatically initiated, using acl #1 (party #1, party #2, context
 #1).

 When clock mis-synchronization for a source party, S, is suspected,
 and clock synchronization knowledge for S is not present, then the
 full algorithm above can be used. In this case, if clock
 synchronization knowledge for S can be determined, and as a result,
 "partyAuthClock" value for S in the local database is warped
 according to the procedures defined in Section 5.3 of [3], then the
 original operation is retried, if appropriate.

5.3. Determination of Secret Update Knowledge

 To determine maintenance knowledge for secret update:

 (1) The SNMP protocol engine examines each active, non-local,
 md5Auth party.

 So, this would be party #3.

 (2) For each such party, P, all access control entries having
 that party as its aclTarget, and allowing the get-bulk
 and set operations, are identified.

 So, for party #3, this would be acl #2.

 (3) For each such access control entry, A, at least one
 active, non-local, md5Auth party, Q, must be present
 which meets the following criteria:

McCloghrie & Rose [Page 11]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

 - the transport domain and address of P and Q are
 identical;

 - an access control entry, B, exists having either: Q as
 its aclTarget and a local party, R, as its aclSubject,
 or, Q as its aclSubject and a local party, R, as its
 aclTarget; and,

 - no secret update knowledge is known for R.

 So, for acl #2, party #3 is (redundantly) identified as
 having the same transport domain and address as party #3,
 and being present as the aclTarget in acl #2, which has
 local party #4 as the aclSubject.

 (4) Whenever such a party, Q, is present, then all instances
 of the "partyAuthProtocol", "partyAuthClock", and
 "partyAuthPrivate" objects are retrieved via the get-bulk
 operator using the parties and context identified by the
 access control entry, A.

 So, party #3, party #4, and context #2 would be used to
 sweep these three columns on the agent.

 (5) Only those instances corresponding to parties in the
 local database, which have no secret update knowledge,
 and are md5Auth parties, are examined.

 So, only instances corresponding to parties #3 and #4 are
 examined.

 (6) For each instance of "partyAuthProtocol", if the
 corresponding value does not match the value in the local
 database, then a configuration error is signalled, and
 this party is marked as being unavailable for maintenance
 knowledge.

 So, we make sure that the manager and the agent agree
 that both party #3 and #4 are md5Auth parties.

 (7) For each instance of "partyAuthPrivate", if a
 corresponding instance of "partyAuthClock" was also
 returned, then A is recorded as the secret update
 knowledge for this party.

 So, if the column sweep returned information on party #3,
 then the clock synchronization knowledge for party #3
 would be recorded as acl #2. Further, if the column

McCloghrie & Rose [Page 12]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

 sweep returned information on party #4, then the clock
 synchronization knowledge for party #4 would be recorded
 as acl #2.

5.4. Use of Secret Update Knowledge

 Whenever the SNMP protocol engine determines that the authentication
 clock of a party, S, is approaching an upper limit, and secret update
 knowledge for S is present, then this knowledge is used to modify the
 current secret of S and reset the authentication clock of S,
 according to the procedures defined in Section 5.4 of [3].

 So, whenever the SNMP protocol engine decides to update the secrets
 for party #4, it can automatically use acl #2 (party #3, party #4,
 context #2) for this purpose.

6. Other Kinds and Uses of Maintenance Knowledge

 Readers should note that there are other kinds of maintenance
 knowledge that an SNMPv2 manager could derive and use. In the
 interests of brevity, one example is now considered: when an SNMPv2
 manager first communicates with an agent, it may wish to synchronize
 the maximum-message size values held by itself and the agent.

 For those parties that execute at the agent, the manager retrieves
 the corresponding instances of partyMaxMessageSize (preferrably using
 authentication), and, if need be, adjusts the values held in the
 manager’s local party database. Thus, the maintenance knowledge to
 be determined must allow for retrieval of partyMaxMessageSize.

 For those parties that execute at the manager, the manager retrieves
 the corresponding instances of partyMaxMessageSize (using
 authentication), and, if need be, adjusts the values held in the
 agent’s local party database using the set operation. Thus, the
 maintenance knowledge to be determined must allow both for retrieval
 and modification of partyMaxMessageSize.

7. Security Considerations

 Security issues are not discussed in this memo.

8. Acknowledgements

 Jeffrey D. Case of SNMP Research and the University of Tennessee, and
 Robert L. Stewart of Xyplex, both provided helpful comments on the
 ideas contained in this document and the presentation of those ideas.

McCloghrie & Rose [Page 13]

RFC 1503 Automating Administration in SNMPv2 Manager August 1993

9. References

 [1] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser,
 "Introduction to version 2 of the Internet-standard Network
 Management Framework", RFC 1441, SNMP Research, Inc., Hughes LAN
 Systems, Dover Beach Consulting, Inc., Carnegie Mellon
 University, April 1993.

 [2] McCloghrie, K., and J. Galvin, "Party MIB for version 2 of the
 Simple Network Management Protocol (SNMPv2)", RFC 1447, Hughes
 LAN Systems, Trusted Information Systems, April 1993.

 [3] Galvin, J., and K. McCloghrie, "Security Protocols for version 2
 of the Simple Network Management Protocol (SNMPv2)", RFC 1446,
 Trusted Information Systems, Hughes LAN Systems, April 1993.

10. Authors’ Addresses

 Keith McCloghrie
 Hughes LAN Systems
 1225 Charleston Road
 Mountain View, CA 94043
 US

 Phone: +1 415 966 7934
 EMail: kzm@hls.com

 Marshall T. Rose
 Dover Beach Consulting, Inc.
 420 Whisman Court
 Mountain View, CA 94043-2186
 US

 Phone: +1 415 968 1052
 EMail: mrose@dbc.mtview.ca.us

McCloghrie & Rose [Page 14]

