Net wor k Wor ki ng Group A. Costanzo
Request for Comments: 1505 AKC Consul ting
hsol etes: 1154 D. Robi nson
Conput ervi si on Corporation

R Ul mann

August 1993

Encodi ng Header Field for Internet Messages
Status of this Meno

Thi s neno defines an Experinmental Protocol for the Internet
community. 1t does not specify an Internet standard. Discussion and
suggestions for inprovenment are requested. Please refer to the
current edition of the "I AB Oficial Protocol Standards" for the
standardi zation state and status of this protocol. Distribution of
this neno is unlimted.

| ESG Not e

Note that a standards-track technology already exists in this area
[11].

Abst ract

Thi s docunent expands upon the el ective experinmental Encoding header
field which permts the mailing of nmulti-part, nulti-structured
messages. It replaces RFC 1154 [1].

Tabl e of Contents

I ntroduction . . .

The Encodi ng Fi el d . . .
Format of the Encoding F| eld .
<count > Co Co
<keyword> .

1 Nest ed Keyvvords
Comment s . .

Encodi ngs
Text
Message
Hex .

EVFU
EDI - X12 and EDI FACT
FS . .

LZJU90 .

LZW

rwwNR

WwwwwwwwwhPdhNbNDE
NNNNOOOUUADNDDWWW

O~NO U WN P

Cost anzo, Robinson & U | nann [Page 1]

RFC 1505 Encodi ng Header Field August 1993

9 UUENCCODE . . e
10 PEM and PENLO ear -
11 PG38
12 Signature 120
13 TAR 10
14 PostScript 10
15 SHAR T 0
16 Unlforn1Resource Locator e K¢
17 Regi steri ng New Keywords . . . I
FS (File System iject Encodlng . I
Sections T %4
Directory 12
Entry 13
File 13
Segmrent 13
Data 14
Attributes 14
Display 14
Comment 15
Type .. 15
Created 15
Modi fied 15
Accessed 15
Ower 15
Goup 16

ACL 16

.10 Password 16
.11 Block 16
.12 Record07
.13 Application 17
Date Field 17

1 Syntax01
2 Semantics . . 4
LZJU90: Conpressed Encodlng P R
Overview 18
SpeC|f|cat|on of the LZJU90 conpreSS|on S

The Decodero 2

1 An exanpl e of an Encoder . B 4
2 Exanpl e LZJU90 Conpressed iject 33
Al phabeti cal Listing of Defined Encodlngs 34
Security Considerations 34

Ref erences . . e
Acknomﬁedgenents 1)
Authors’ Addresses 36

abhwNPEF

WHWNNNNNNNNNNNNRON R R R R
O©ooO~NOOA~WNE

HOONONNNNNN AR AR AR AR AR ARARARRARARRARONWWOWHWE

©

Cost anzo, Robinson & U | mann [Page 2]

RFC 1505 Encodi ng Header Field August 1993

1. Introduction

STD 11, RFC 822 [2] defines an electronic nail message to consist of
two parts, the nessage header and the nessage body, separated by a
bl ank 1i ne.

The Encodi ng header field pernmits the nmessage body itself to be
further broken up into parts, each part al so separated fromthe next
by a blank line. Thus, conceptually, a message has a header part,
foll owed by one or nore body parts, all separated by apparently bl ank
lines. Each body part has an encoding type. The default (no
Encoding field in the header) is a one part nessage body of type
"Text".

The purpose of Encoding is to be descriptive of the content of a mai
nmessage w t hout placing constraints on the content or requiring
additional structure to appear in the body of the nmessage that will
interfere with other processing.

A simlar nmessage format is used in the network news facility, and
posted articles are often transferred by gateways between news and

mail. The Encoding field is perhaps even nore useful in news, where
articles often are uuencoded or shar’d, and have a nunber of
di fferent nested encodi ngs of graphics imges and so forth. In news

in particular, the Encodi ng header keeps the structural information
within the (usually conceal ed) article header, w thout affecting the
vi sual presentation by sinple news-readi ng software.

2. The Encoding Field
The Encoding field consists of one or nore subfields, separated by
commas. Each subfield corresponds to a part of the nmessage, in the
order of that part’s appearance. A subfield consists of a |ine count
and a keyword or a series of nested keywords defining the encodi ng.
The Iine count is optional in the |last subfield.

2.1 Format of the Encoding Field
The format of the Encoding field is:

[<count> <keyword> [<keyword>]* ,]*
[<count>] <keyword> [<keyword>]*

wher e:
<count > = a decimal integer
<keywor d> = a single al phanuneric token starting with an al pha

Cost anzo, Robinson & U | mann [Page 3]

RFC 1505 Encodi ng Header Field August 1993

2.2 <count>

The line count is a decimal nunber specifying the number of text
lines in the part. Parts are separated by a blank line, which is not
included in the count of either the preceding or follow ng part.

Bl ank |ines consist only of CRILF. Count nay be zero, it nust be
non- negati ve.

It is always possible to determine if the count is present because a
count always begins with a digit and a keyword al ways begins with a
letter.

The count is not required on the last or only part. A nulti-part
nmessage that consists of only one part is thus identical to a
singl e-part nessage.

2.3 <keyword>

Keyword defines the encoding type. The keyword is a conmon single-
word nanme for the encoding type and is not case-sensitive.

Encodi ng: 107 Text
2.3.1 Nested Keywords

Nest ed keywords are a series of keywords defining a nulti-encoded
nmessage part. The encodi ng keywords may either be an actual series
of encoding steps the encoder used to generate the nessage part or
may nerely be used to nore precisely identify the type of encoding
(as in the use of the keyword "Signature").

Nest ed keywords are parsed and generated fromleft to right. The
order is significant. A decoding application would process the I|ist
fromleft to right, whereas, an encoder would process the Internet
message and generate the nested keywords in the reverse order of the
actual encodi ng process.

Encodi ng: 458 uuencode LZWtar (Unix binary object)
2.4 Comments

Comment s encl osed in parentheses nay be inserted anywhere in the
encoding field. Mil reading systens nay pass the coments to their
clients. Conments nust not be used by nmil reading systens for
content interpretation. Oher paraneters defining the type of
encodi ng nust be contained within the body portion of the Internet
message or be inplied by a keyword in the encoding field.

Cost anzo, Robinson & U | mann [Page 4]

RFC 1505 Encodi ng Header Field August 1993

3. Encodings

This section describes sonme of the defined encodings used. An
al phabetical listing is provided in Section 6.

As with the other keyword-defined parts of the header fornat
standard, new keywords are expected and wel comed. Several basic
principles should be followed in addi ng encodi ngs. The keyword
shoul d be the nost comon single word nanme for the encoding,

i ncluding acronynms if appropriate. The intent is that different

i npl ementors will be likely to choose the sane nane for the sane
encodi ng. Keywords should not be too general: "binary" would have
been a bad choice for the "hex" encodi ng.

The encodi ng shoul d be as free from unnecessary idiosyncracies as
possi bl e, except when confornming to an existing standard, in which
case there is nothing that can be done.

The encodi ng should, if possible, use only the 7 bit ASCI| printing
characters if it is a conplete transformati on of a source docunent
(e.g., "hex" or "uuencode"). |If it is essentially a text format, the
full range may be used. |If there is an external standard, the
character set may already be defined. Keywords beginning with "X-"
are pernmanently reserved to inplenentation-specific use. No standard
regi stered encodi ng keyword will ever begin with "X-"

New encodi ng keywords which are not reserved for inplenmentation-
specific use nmust be registered with the Internet Assigned Nunbers
Authority (I ANA). Refer to section 3.17 for additional information

3.1 Text

This indicates that the nessage is in no particular encoded format,
but is to be presented to the user as-is.

The text is 1SO 10646-UTF-1 [3]. As specified in STD 10, RFC 821
[10], the nessage is expected to consist of |ines of reasonable
length (less than or equal to 1000 characters).

On some ol der inplenentations of mail and news, only the 7 bit subset
of 1SO 10646-UTF-1 can be used. This is identical to the ASCII 7 bit
code. On sone mail transports that are not conpliant with STD 10,
RFC 821 [10], line length nay be restricted by the service.

Text may be followed by a nested keyword to define the encoded part
further, e.g., "signature"

Encodi ng: 496 Text, 8 Text Signature

Cost anzo, Robinson & U | mann [Page 5]

RFC 1505 Encodi ng Header Field August 1993

An automated file sending service may find this useful, for exanple,
to differentiate between and ignore the signature area when parsing
the body of a nessage for file requests.

3.2 Message

This encoding indicates that the body part is itself in the fornmat of
an Internet message, with its own header part and body part(s). A
"message" body part’s nessage header may be a full Internet nmessage
header or it may consist only of an Encoding field.

Usi ng the nessage encoding on returned mail makes it practical for a
mai | reading systemto inplenent a reliable automatic resending
function, if the nmailer generates it when returning contents. It is
al so useful in a "copy append" MJA (mail user agent) operation

MIAs (mail transfer agents) returning nmail should generate an
Encodi ng header. Note that this does not require any parsing or
transformation of the returned nessage; the nessage is sinply
appended un-nodified; MIAs are prohibited from nodi fying the content
of messages.

Encodi ng: 7 Text (Return Reason), Message (Returned Mil)

3.3 Hex
The encoding indicates that the body part contains binary data,
encoded as 2 hexadecinmal digits per byte, highest significant nibble
first.
Li nes consi st of an even nunber of hexadecinmal digits. Blank lines
are not permtted. The decode process nust accept lines with between
2 and 1000 characters, inclusive.

The Hex encoding is provided as a sinple way of providing a nethod of
encodi ng smal |l binary objects.

3.4 EVFU
EVFU (el ectronic vertical format unit) specifies that each line

begins with a one-character "channel selector”. The original purpose
was to select a channel on a paper tape |l oop controlling the printer

This encoding is sonetinmes called "FORTRAN' format. It is the
default output format of FORTRAN prograns on a numnber of conputer
syst ens.

Cost anzo, Robinson & U | mann [Page 6]

RFC 1505 Encodi ng Header Field August 1993

The | egal characters are "0’ to '9", '+, '-', and space. These
correspond to the 12 rows (and absence of a punch) on a printer
control tape (used when the control unit was el ectromechanical).

The channel s that have generally agreed definitions are:

1 advances to the first print Iine on the next page
0 skip aline, i.e., double-space

+ over-print the preceeding line

- skip 2 lines, i.e., triple-space

(space) print on the next |ine, single-space

3.5 EDI-X12 and EDI FACT

The EDI - X12 and EDI FACT keywords indicate that the nmessage or part is
a EDI (El ectronic Docunent Interchange) business docunent, formatted
according to ANSI X12 or the EDI FACT standard.

A nessage containing a note and 2 X12 purchase orders ni ght have an
encodi ng of:

Encodi ng: 17 TEXT, 146 EDI -X12, 69 EDI - X12
3.6 FS

The FS (File System) keyword specifies a section consisting of
encoded file systemobjects. This encoding nmethod (defined in
section 4) allows the noving of a structured set of files from one
environnment to another while preserving all common el ements.

3.7 LzJw0
The LZJU90 keyword specifies a section consisting of an encoded
bi nary or text object. The encoding (defined in section 5) provides
bot h conpression and representation in a text format.

3.8 LzZW

The LZW keyword specifies a section consisting of the data produced
by the Uni x conpress program

3.9 UUENCODE

The uuencode keyword specifies a section consisting of the output of
t he uuencode program supplied as part of uucp

Cost anzo, Robinson & U | mann [Page 7]

RFC 1505 Encodi ng Header Field August 1993

3.10 PEM and PEM d ear

The PEM and PEM O ear keywords indicate that the section is encrypted
with the nmethods specified in RFCs 1421-1424 [4,5,6,7] or uses the
M C- O ear encapsul ation specified therein.

A sinple text object encrypted with PEM has the header:
Encodi ng: PEM Text

Note that while this indicates that the text resulting fromthe PEM
decryption is | SO 10646-UTF-1 text, the present version of PEM
further restricts this to only the 7 bit subset. A future version of
PEMmay |ift this restriction.

If the object resulting fromthe decryption starts with |Internet
message header(s), the encoding is:

Encodi ng: PEM Message

This is useful to conceal both the encoding within and the headers
not needed to deliver the nmessage (such as Subject:).

PEM does not provi de detached signatures, but rather provides the
M C- O ear node to send nessages with integrity checks that are not
encrypted. In this node, the keyword PEM O ear is used:

Encodi ng: PEM Cl ear EDI FACT

The exanpl e being a non-encrypted EDI FACT transaction with a digital
signature. Wth the proper selection of PEM paraneters and

envi ronnent, this can also provide non-repudi ation, but it does not
provide confidentiality.

Decoders that are capable of decrypting PEMtreat the two keywords in
the sane way, using the contained PEM headers to distinguish the
node. Decoders that do not understand PEM can use the PEM Cl ear
keyword as a hint that it may be useful to treat the section as text,
or even continue the decode sequence after renoving the PEM headers.

When Encoding is used for PEM the RFC934 [9] encapsul ati on specified
in RFC1421 is not used.

3.11 PGP
The PGP keyword indicates that the section is encrypted using the

Pretty Good Privacy specification, or is a public key block, keyring,
or detached signature neaningful to the PG program (These objects

Cost anzo, Robinson & U | mann [Page 8]

RFC 1505 Encodi ng Header Field August 1993

are distinguished by internal information.)

The keyword actually inplies 3 different transforns: a conpression
step, the encryption, and an ASCI| encoding. These transfornms are
internal to the PGP encoder/decoder. A sinple text nessage encrypted
with PGP is specified by:

Encodi ng: PGP Text
An EDI transaction using ANSI X12 m ght be:
Encodi ng: 176 PGP EDI - X12

Si nce an evesdropper can still "see" the nested type (Text or ED in
t hese exanpl es), thus making information available to traffic

anal ysis which is undesirable in sone applications, the sender may
prefer to use:

Encodi ng: PGP Message

As discussed in the description of the Message keyword, the encl osed
obj ect may have a conpl ete header or consist only of an Encodi ng:
header describing its content.

When PGP is used to transmt an encoded key or keyring, with no
object significant to the nmail user agent as a result of the decoding
(e.g., text to display), the keyword is used by itself.

Anot her case of the PGP keyword occurs in "clear-signing" a nmessage
That is, sending an un-encrypted nessage with a digital signature
provi di ng authentication and (in some environnents) non-deniability.

Encodi ng: 201 Text, 8 PGP Signature, 4 Text Signature

This exanple indicates a 201 |ine nmessage, followed by an 8 line (in
its encoded forn) PGP detached signature. The processing of the PGP
section is expected (in this exanple) to result in a text object that
is to be treated by the receiver as a signature, possibly sonething
I'ike:

[PGP signed Ariel @rocess. COM Robert L Ul mann VALI D TRUSTED]

Note that the PGP signature algorithmis applied to the encoded form
of the clear-text section, not the object(s) before encoding. (Wich
woul d be quite difficult for encodings like tar or FS). Continuing
the exanple, the PGP signature is then followed by a 4 line
"ordinary" signature section

Cost anzo, Robinson & U | mann [Page 9]

RFC 1505 Encodi ng Header Field August 1993

3.12 Signature

The signature keyword indicates that the section contains an Internet
nmessage signature. An Internet nessage signature is an area of an
Internet nmessage (usually located at the end) which contains a single
line or multiple lines of characters. The signature nmay conprise the
sender’s nanme or a saying the sender is fond of. It is nornally
inserted automatically in all outgoing nessage bodies. The encoding
keyword " Signature" nust always be nested and foll ow anot her keyword.

Encodi ng: 14 Text, 3 Text Signature

A usenet news posting program shoul d generate an encodi ng show ng
which is the text and which is the signature area of the posted
nessage

3.13 TAR

The tar keyword specifies a section consisting of the output of the
tar program supplied as part of Unix.

3.14 PostScript

The Post Script keyword specifies a section formatted according to the
Post Scri pt [8] conputer program | anguage definition. PostScript is a
regi stered trademark of Adobe Systens Inc.

3.15 SHAR

The SHAR keyword specifies a section encoded in shell archive format.
Use of shar, although supported, is not recomrended.

WARNI NG Because the shell archive may contain conmands you may nhot
want executed, the decoder should not automatically execute decoded
shel | archived statenents. This warning also applies to any future
types that include commands to be executed by the receiver

3.16 Uni form Resource Locat or

The URL keyword indicates that the section consists of zero or nore
references to resources of some type. URL provides a facility to

i nclude by reference arbitrary external resources from various
sources in the Internet. The specification of URL is a work in
progress in the URl working group of the | ETF.

Cost anzo, Robinson & U | mann [Page 10]

RFC 1505 Encodi ng Header Field August 1993

3.17 Registering New Keywords

New encodi ng keywords which are not reserved for inplenmentation-
specific use nmust be registered with the Internet Assigned Nunbers
Authority (I ANA). | ANA acts as a central registry for these val ues.

| ANA may reject or nodify the keyword registration request if it does
not neet the criteria as specified in section 3. Keywords beginning
with "X-" are permanently reserved to inplenmentation-specific use.
IANA will not register an encodi ng keyword that begins with "X-"

Regi stration requests should be sent via electronic mail to | ANA as
fol | ows:

To: | ANA@si . edu
Subj ect: Registration of a new EHF MAI L Keywor d

The mai | nmessage must specify the keyword for the encoding and
acronyns if appropriate. Docunentation defining the keyword and its
proposed purpose nust be included. The docunentation nust either

ref erence an external non-Internet standards docunent or an existing
or soon to be RFC. If applicable, the docunentation should contain a
draft version of the future RFC. The draft nust be subnitted as a
RFC according to the normal procedure within a reasonabl e anount of
time after the keyword' s registrati on has been approved.

4. FS (File System) Object Encoding

The file system encodi ng provides a standard, transportable encoding
of file systemobjects frommany different operating systems. The
intent is to allow the noving of a structured set of files fromone
envi ronnent to another while preserving comon el enents. At the sanme
time, files can be noved within a single environnment while preserving
all attributes

The representations consist of a series of nested sections, with
attributes defined at the appropriate levels. Each section begins
with an open bracket "[" followed by a directive keywrd and ends
with a close bracket "]". Attributes are lines, beginning with a
keyword. Lines which begin with a LWSP (linear white space)
character are continuation |ines.

Any string-type directive or attribute may be a sinple string not
starting with a quotation mark (") and not containing specia
characters (e.g. newine) or LWSP (space and tab). The string nane
begins with the first non-LWSP character on the Iine follow ng the
attribute or directive keyword and ends with the |ast non-LWSP
character.

Cost anzo, Robinson & U | mann [Page 11]

RFC 1505 Encodi ng Header Field August 1993

O herwi se, the character string nane is enclosed in quotes. The
string itself contains characters in | SO 10646-UTF-1 but is quoted
and escaped at octet |evel (as elsewhere in RFC822 [2]). The strings
begin and end with a quotation mark ("). OCctets equal to quote in
the string are escaped, as are octets equal to the escape characters
(\" and \\). The escaped octets nmay be part of a UTF nulti-octet
character. Cctets that are not printable are escaped with \nnn octa
representation. Wen an escape (\) occurs at the end of a line, the
escape, the end of the line, and the first character of the next
line, which nust be one of the LWSP characters, are renoved
(ignored).

[file Sinple-File.Name

[file ™ Long file nane starting with spaces and having a coupl e\
[sic] of nasties init like this newine\0Ol2near the end."

Note that in the above exanple, there is one space (not two) between

"couple" and "[sic]". The encoder nay choose to use the nnn sequence
for any character that might cause trouble. Refer to section 5.1 for
line length reconmendati ons.

4.1 Sections

A section starts with an open bracket, followed by a keyword that
defines the type of section

The section keywords are:

directory
entry
file
segnent
data

The encoding may start with either a file, directory or entry. A
directory section nmay contain zero or nore file, entry, and directory
sections. A file section contains a data section or zero or nore
segment sections. A segment section contains a data section or zero
or nore segment sections.

4.1.1 Directory

This indicates the start of a directory. There is one paraneter, the
entry name of the directory:

Cost anzo, Robinson & U | mann [Page 12]

RFC 1505 Encodi ng Header Field August 1993

[directory foo

]
4.1.2 Entry

The entry keyword represents an entry in a directory that is not a
file or a sub-directory. Exanples of entries are soft links in Unix,
or access categories in Prinmbs. A Prinps access category m ght | ook
like this:

[entry SYS. ACAT

type ACAT

created 27 Jan 1987 15:31:04. 00
acl SYADM N: * ARl EL: DALURWK $REST:

]
4.1.3 File

The file keyword is followed by the entry name of the file. The
section then continues with attributes, possibly segnents, and then
dat a.

[file MY.FILE

created 27 Feb 1987 12:10:20.07
nodi fied 27 Mar 1987 16:17: 03. 02
type DAM

[data LzZJW90

* LZJW90

1]
4.1.4 Segnent
This is used to define segnents of a file. It should only be used
when encoding files that are actually segnented. The optiona

paraneter is the nunber or nane of the segnent.

Wien encodi ng Macintosh files, the two forks of the file are treated
as segnents:

Cost anzo, Robinson & U | mann [Page 13]

RFC 1505 Encodi ng Header
[file A MAC. FILE
display "A Mac File"
type MAC

comrent "I created this nyself"

[segnent resource

[data ...

1]
[segnent data
[data ...

111
4.1.5 Data

Field August 1993

The data section contains the encoded data of the file. The encoding

net hod is defined in section 5.

t he containing section

4.2 Attributes

Attributes may occur within file,

The data section nust be last within

directory, and segment

sections. Attributes nust occur before sub-sections.

The attribute directives are:

di spl ay
type
creat ed
nodi fi ed
accessed
owner
group
acl
password
bl ock
record
application

4.2.1 Display

This indicates the display nane of the object. Sone systens, such as
t he Macintosh, use a different formof the nane for matching or

uni queness.

Cost anzo, Robinson & U | mann

[Page 14]

RFC 1505 Encodi ng Header Field August 1993

4.2.2 Coment

This contains an arbitrary coment on the object. The Mcintosh
stores this attribute with the file.

4.2.3 Type

The type of an object is usually of interest only to the operating
systemthat the object was created on

Types are:
ACAT access category (Prinos)
CAM conti guous access nethod (Prinos)
DAM di rect access nethod (Prinos)
Fl XED fixed length records (VM)
FLAT ‘flat file', sequence of bytes (Unix, DGCS, default)
| SAM i ndexed-sequential access net hod (VM)
LI NK soft link (Unix)
MAC Maci ntosh file
SAM sequential access nethod (Prinos)
SEGSAM segnment ed direct access nethod (Prinos)
SEGDAM segnment ed sequential access nethod (Prinos)
TEXT lines of |SO 10646-UTF-1 text ending with CR/LF
VAR vari able I ength records (VM)

4.2.4 Created

Indicates the creation date of the file. Dates are in the format
defined in section 4. 3.

4.2.5 Modified

Indicates the date and tine the file was |last nodified or closed
after being open for wite.

4.2.6 Accessed

Indicates the date and tinme the file was | ast accessed on the
original file system

4,2.7 Omner

The owner directive gives the nane or nunerical |ID of the owner or
creator of the file.

Cost anzo, Robinson & U | mann [Page 15]

RFC 1505 Encodi ng Header Field August 1993

4.2.8 Goup

The group directive gives the nane(s) or nunerical |1Ds of the group
or groups to which the file bel ongs.

4.2.9 ACL

This directive specifies the access control list attribute of an
object (the ACL attribute nmay occur nmore than once within an object).
The list consist of a series of pairs of I1Ds and access codes in the

format:

user-1D: access-1i st

There are four reserved | Ds:

$OMNNER the owner or creator

$CGROUP a nenber of the group or groups
$SYSTEM a syst em adni ni strator

$REST everyone el se

The access list is zero or nore single letters:

add (create file)

del ete

list (read directory)
change protection
read

use

wite

execute

all possible access

*XSCHDTroP

4.2.10 Password

The password attribute gives the access password for this object.
Since the content of the object follows (being the raison d etre of
t he encoding), the appearance of the password in plain text is not
considered a security problem |If the password is actually set by
the decoder on a created object, the security (or lack) is the
responsibility of the application donain controlling the decoder as
is true of ACL and other protections.

4.2.11 Block

The bl ock attribute gives the block size of the file as a decinm
nunber of bytes.

Cost anzo, Robinson & U | mann [Page 16]

RFC 1505 Encodi ng Header Field August 1993

4.2.12 Record

The record attribute gives the record size of the file as a decima
nunber of bytes.

4.2.13 Application

This specifies the application that the file was created with or
belongs to. This is of particular interest for Macintosh files.

4.3 Date Field

Various attributes have a date and tine subsequent to and associ ated
with them

4.3.1 Syntax

The syntax of the date field is a conbination of date, tinme, and
ti mezone:

DD Mon YYYY HH MM SS. FFFFFF [+-] HHWBS

Date := DD Mon YYYY 1 or 2Dgits " " 3 Apha™"" 4Digits
DD = Day e.g. "o8", " 8", "8"
Mon = Month "Jan" | "Feb" | "Mar" | "Apr" |
“May" | "Jun" | "Jul" | "Aug"
"Sep" | "Cct" | "Nov" | "Dec"
YYYY = Year
Time := HH MM SS FFFFFF 2 Digits ":" 2 Digits [":" 2 Digits
["." 1 to 6 Digits]]
e.g. 00:00: 00, 23:59:59.999999
HH = Hours 00 to 23
VM = Mnutes 00 to 59
SS := Seconds 00 to 60 (60 only during a | eap second)
FFFFF: = Fraction
Zone := [+-] HHWEBS "+' | "-" 2 Digits [2 Digits
[2 Digits]]
HH = Local Hour Ofset
WM = Local Mnutes Ofset
SS = Local Seconds O fset

4,3.2 Senmantics

The date information is that which the file systemhas stored in
regard to the file systemobject. Date information is stored
differently and with varying degrees of precision by different
computer file systems. An encoder nust include as nuch date
information as it has available concerning the file systemobject. A

Cost anzo, Robinson & U | mann [Page 17]

RFC 1505 Encodi ng Header Field August 1993

decoder which receives an object encoded with a date field containing
greater precision than its own nust disregard the excessive
information. Zone is Co-ordinated Universal Tine "UTC' (formerly
called "Greenwich Mean Tine"). The field specifies the tine zone of
the file system object as an offset from Universal Tine. It is
expressed as a signed [+-] two, four or six digit nunber.

Afile that was created April 15, 1993 at 8:05 p.m in Roselle Park,
New Jersey, U.S. A might have a date field which [ooks like:

15 Apr 1993 20:05:22.12 -0500
5. LZJU90: Conpressed Encodi ng

LZJU90 is an encoding for a binary or text object to be sent in an
Internet mail message. The encodi ng provi des both conpression and
representation in a text format that will successfully survive
transm ssion through the many different nailers and gateways that
conprise the Internet and connected mail networks.

5.1 Overview

The encoding first conpresses the binary object, using a nodified
LZ77 algorithm called LZJU90. It then encodes each 6 bits of the
out put of the conpression as a text character, using a character set
chosen to survive any translations between codes, such as ASCI| to
EBCDI C. The 64 six-bit strings 000000 through 111111 are represented
by the characters "+", "-", "0" to "9", "A" to "Z", and "a" to "z".
The out put text begins with a line identifying the encoding. This is
for visual reference only, the "Encoding:" field in the header
identifies the section to the user program It also nanmes the object
that was encoded, usually by a file nane.

The format of this line is:

* LZJWA0 <nane>

where <name> is optional. For exanple:
* LZJU90 vmuni x

This is followed by the conpressed and encoded data, broken into

I ines where convenient. It is recommended that |ines be broken every
78 characters to survive mailers than incorrectly restrict line

I ength. The decoder must accept lines with 1 to 1000 characters on
each line. After this, there is one final line that gives the nunber
of bytes in the original data and a CRC of the original data. This

Cost anzo, Robinson & U | mann [Page 18]

RFC 1505 Encodi ng Header Field August 1993

shoul d match the byte count and CRC found during deconpression.
This line has the format:

* <count > <CRC>

where <count> is a decimal nunber, and CRC is 8 hexadecimal digits.
For exanpl e:

* 4128076 5AC2D50E

The count used in the Encoding: field in the nessage header is the
total number of lines, including the start and end lines that begin
with *. A conplete exanple is given in section 5.3.2

5.2 Specification of the LZIJU90 conpression

The Lenpel -Zi v-Storer-Szymanski nodel of mixing pointers and litera
characters is used in the conpression algorithm Repeat occurrences
of strings of octets are replaced by pointers to the earlier
occurrence.

The data conpression is defined by the decoding algorithm Any
encoder that emts synbols which cause the decoder to produce the
original input is defined to be valid.

There are many possible strategies for the maxi mal-string nmatching
that the encoder does, section 5.3.1 gives the code for one such
algorithm Regardl ess of which algorithmis used, and what tradeoffs
are nade between conpression ratio and execution speed or space, the
result can al ways be decoded by the sinple decoder

The conpressed data consists of a m xture of unencoded litera
characters and copy pointers which point to an earlier occurrence of
the string to be encoded.
Conpressed data contains two types of codewords
LI TERAL pass the literal directly to the unconpressed out put.
CorPY | engt h, offset
go back offset characters in the output and copy | ength
characters forward to the current position
To di stinguish between codewords, the copy length is used. A copy

I ength of zero indicates that the following codeword is a litera
codeword. A copy length greater than zero indicates that the

Cost anzo, Robinson & U | mann [Page 19]

RFC 1505 Encodi ng Header Field August 1993

foll owi ng codeword is a copy codeword

To inprove copy length encoding, a threshold value of 2 has been
subtracted fromthe original copy length for copy codewords, because
the m ninmum copy length is 3 in this conpression schene.

The maxi num of fset value is set at 32255. Larger offsets offer
extrenmely | ow inprovenents in conpression (less than 1 percent,
typically).

No special encoding is done on the LITERAL characters. However,
unary encoding is used for the copy length and copy offset values to
i mprove conpression. A start-step-stop unary code is used.

A (start, step, stop) unary code of the integers is defined as
follows: The Nth codeword has N ones followed by a zero foll owed by
a field of size START + (N* STEP). |If the field width is equal to
STOP then the preceding zero can be onmtted. The integers are laid
out sequentially through these codewords. For exanple, (0, 1, 4)
woul d | ook 1ike:

Codeword Range
0 0

10x 1-2
110xx 3-6
1110xXX 7-14
1111IXXXX 15- 30

Fol I owi ng are the actual val ues used for copy length and copy offset:

The copy length is encoded with a (0, 1, 7) code leading to a maxi num
copy length of 256 by including the THRESHOLD val ue of 2.

Codeword Range
0 0

10x 3-4
110xx 5-8
1110xXxX 9-16
11110XXXX 17-32

111110XXXXX 33-64
1111110xxXXXxXx 65-128
1111111IXXXXXXX 129-256

The copy offset is encoded with a (9, 1, 14) code leading to a

maxi mum copy of fset of 32255. O fset 0 is reserved as an end of
conpressed data flag.

Cost anzo, Robinson & U | mann [Page 20]

RFC 1505 Encodi ng Header Field August 1993

Codeword Range

OXXXXXXXXX 0-511
JOXXXXXXXXXX 512- 1535
11OXXXXXXXXXXX 1536- 3583
111OXXXXXXXXXXXX 3485- 7679
111IO0XXXXXXXXXXXXX 7680- 15871

T11TIXXXXXXXXXXXXXX 15872- 32255

The 0 has been chosen to signal the start of the field for ease of
encoding. (The bit generator can sinply encode one nore bit than is
significant in the binary representation of the excess.)

The stop values are useful in the encoding to prevent out of range
values for the lengths and offsets, as well as shortening sone codes
by one bit.

The worst case conpression using this schene is a 1/8 increase in
size of the encoded data. (One zero bit followed by 8 character
bits). After the character encoding, the worst case ratio is 3/2 to
the original data.

The m ni num copy | ength of 3 has been chosen because the worst case
copy length and offset is 3 bits (3) and 19 bits (32255) for a tota
of 22 bits to encode a 3 character string (24 bits).

5.3 The Decoder
As nentioned previously, the conpression is defined by the decoder
Any encoder that produced output that is correctly decoded is by
definition correct.
The following is an inplenentation of the decoder, witten nore for
clarity and as much portability as possible, rather than for naxinmm
speed.

When optinized for a specific environnent, it will run significantly
faster.

/* LZJU 90 Decodi ng program */
/* Witten By Robert Jung and Robert U Il nmann, 1990 and 1991. */

/* This code is NOT COPYRI GHT, not protected. It is in the true
Publ i c Dorain. */

#i ncl ude <stdio. h>
#i ncl ude <string. h>

Cost anzo, Robinson & U | mann [Page 21]

RFC 1505

Encodi ng Header Field

t ypedef unsi gned char uchar;
typedef unsigned int uint;

#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i

stati
stati

stati
stati
stati
stati
stati
stati
stati

ne
ne

ne
ne
ne
ne
ne
ne

(@]

O0O0OO0O0O00O0

C

N
THRES

STRTP
STEPP
STOPP
STRTL
STEPL
STOPL

FILE *
FILE *

i nt
i nt
| ong
| ong
| ong
| ong

32255

HOLD 3
9
1
14
0
1
-

in;

out;

get buf ;

getlen;

i n_count;

out _count;

crc;

crctabl e[256] ;

uchar xxcodes[] =

" +-0123456789ABCDEFGH JKLMNOPQRSTUWWKYZ\
abcdef ghi j kl mopqr st uvwxyz";

static uchar ddcodes[256];

static uchar text[N;

#def i
#def i
#def i

#def i

voi d MakeCrct abl e() /* Initialize CRC-32 table */

{
ui nt
| ong

ne
ne
ne

ne

i!
r

CRCPOLY OXEDB88320
CRC_MASK OXFFFFFFFF

UPDAT
crc =

E CRC(crc, c) \

August 1993

crctabl e[((uchar)(crc) ~ (uchar)(c)) & OxFF] \

N (crc >> 8)

START_RECD "* LZJWao"

i

for (i =
r =i;
for (j =8] >0; j--) {

Cost anzo,

e

0; i <= 255; i++) {

f (r &1)
r = (r > 1) A~ CRCPALY;
| se

Robi nson & U | mann

[Page 22]

RFC 1505 Encodi ng Header Field August 1993

r >>= 1,

crctable[i] =r;

}
int Get XX() /* Get xxcode and translate */
{
int c;
do {
if ((c = fgetc(in)) == EOF)
c = 0;
} while (c =="'\n");
i n_count ++;
return ddcodes[c];
}
int GetBit() /* Get one bit frominput buffer */
{
int c;
while (getlen <= 0) {
c = Get XX();
getbuf |= ¢ << (10-getlen);
getlen += 6;
}
¢ = (getbuf & 0x8000) != 0;
get buf <<= 1;
get buf &= OxFFFF;
getlen--;
return(c);
}
int GetBits(int |en) /* Get len bits */
{
int c;
while (getlen <= 10) {
c = Get XX();

getbuf |= ¢ << (10-getlen);
getlen += 6;

if (getlen < len)
¢ = (uint)getbuf >> (16-1en);

Cost anzo, Robinson & U | mann [Page 23]

RFC 1505 Encodi ng Header Field August 1993

get buf = Get XX();
c | = getbuf >> (6+getlen-Ilen);
get buf <<= (10+l en-getlen);
get buf &= OxFFFF;
getlen -=len - 6;
}

el se {
¢ = (uint)getbuf >> (16-1en);
get buf <<= len;
get buf &= OxFFFF;

getlen -= len;
return(c);
}
i nt DecodePosition() /* Decode offset position pointer */
{
int c;
int wdth;
i nt plus;
int pw;
plus = 0;
pw = 1 << STRTP;
for (width = STRTP; width < STOPP; w dth += STEPP) {
c = GetBit();
if (c == 0)
br eak;
pl us += pw;
pr <<= 1;
}
if (wwdth !'=0)
c = GetBits(w dth);
c += plus;
return(c);
}
i nt DecodelLengt h() /* Decode code |ength */
{
int c;
int wdth;
i nt plus;
int pw;
plus = 0;

pw = 1 << STRTL;

Cost anzo, Robinson & U | mann [Page 24]

RFC 1505

retu

voi d
{

i nt

retu

}
mai n
{

i nt

Encodi ng Header Field

for (wwidth = STRTL; width < STOPL; width += STEPL) {
c = GetBit();
if (c ==0)
br eak;
pl us += pw;
pw <<= 1;

}
if (wwdth !'=0)

Cc = GetBits(w dth);
c += plus;
rn(c);

I ni t Codes() /* Initialize decode table */

i
for (i
for (i
rn;

0; I < 256; i++) ddcodes[i] = O;
0; i < 64; i++) ddcodes[xxcodes[i]] =i

(int ac, char **av) /* main program */

r

int j, k;

i nt
i nt
char
char
| ong

Cost anzo

C,

pos;
buf [80] ;
nane[3] ;
num bytes;

if (ac < 3) {
fprintf(stderr, "usage: judecode in out\n");
return(l);

in = fopen(av[1], "r");

if (lin){
fprintf(stderr, "Can't open %\n", av[1]);
return(l);

out = fopen(av[2], "wb");

if (lout) {
fprintf(stderr, "Can't open %\n", av[2]);
fclose(in);

, Robinson & U | mann

August 1993

[Page 25]

RFC 1505 Encodi ng Header Field August 1993
return(l);

while (1) {
if (fgets(buf, sizeof(buf), in) == NULL) {
fprintf(stderr, "Unexpected EOF\n");
return(l);

if (strncnp(buf, START_RECD, strlen(START_RECD)) == 0)
br eak;
}

in_count = 0;
out _count = O;
get buf 0;
getlen 0;

I ni t Codes();
MakeCr ct abl e();

crc CRC_MASK;
r = 0;

ol

while (feof(in) == 0) {
¢ = DecodelLength();
if (c ==0) {
c = GetBits(8)
UPDATE_CRC(crc, c);
out _count ++;
text[r] = c;
fputc(c, out);
if (++r >= N)
r = 0;
}

el se {

pos = DecodePosition();

if (pos == 0)
br eak;

pos- -;

j = c¢ + THRESHOLD - 1;

pos =r - pos - 1

if (pos < 0)
pos += N

for (k =0; k <j; k++t) {
c = text[pos];
text[r] = c;
UPDATE_CRC(crc, c);

Cost anzo, Robinson & U | mann [Page 26]

RFC 1505 Encodi ng Header Field August 1993

out _count ++;
fputc(c, out);
if (++r >= N)
r = 0;
if (++pos >= N)
pos = 0O;
}

}
fgetc(in); /* skip newine */

if (fscanf(in, "* %Bd % X', &ytes, &unm !'= 2) {
fprintf(stderr, "CRC record not found\n");
return(l);

else if (crc !'= num {
fprintf(stderr,
"CRC error, expected % X, found % X\n"
crc, nun;
return(l);

else if (bytes != out_count) {
fprintf(stderr,
"File size error, expected %u, found % u\n",
byt es, out_count);
return(l);

el se
fprintf(stderr,
"File decoded to % u bytes correctly\n",
out _count);

fclose(in);
fclose(out);
return(0);

5.3.1 An exanple of an Encoder

Many al gorithns are possible for the encoder, with different
tradeof fs between speed, size, and conplexity. The following is a
simpl e exanmpl e programwhich is fairly efficient; nore sophisticated
i mpl ementations will run nuch faster, and in sonme cases produce

Cost anzo, Robinson & U | mann [Page 27]

RFC 1505 Encodi ng Header Field August 1993

somewhat better conpression.

Thi s exanpl e al so shows that the encoder need not use the entire
wi ndow avail able. Not using the full w ndow costs a small anount of
conpression, but can greatly increase the speed of sone al gorithns.
/* LZJU 90 Encodi ng program */

/* Witten By Robert Jung and Robert U Il mann, 1990 and 1991. */

/* This code is NOT COPYRI GHT, not protected. It is in the true
Publ i c Domain. */

#i ncl ude <stdi o. h>

t ypedef unsi gned char uchar;
typedef unsigned int uint;

#define N 24000 /* Size of wi ndow buffer */
#define F 256 /* Size of |ook-ahead buffer */
#defi ne THRESHOLD 3

#define K 16384 /* Size of hash table */
#defi ne STRTP 9

#defi ne STEPP 1

#defi ne STOPP 14

#defi ne STRTL 0

#def i ne STEPL 1

#defi ne STOPL 7

#def i ne CHARSLI NE 78

static FILE *in;
static FILE *out

static int put | en;

static int put buf ;

static int char _ct;
static long in_count;
static long out_count;
static long crc;

static long crctable[256];

static uchar xxcodes[] =
"+-0123456789ABCDEFCHI J KLMNOPQRSTUVWKYZ\
abcdef ghi j kl mopqr st uvwxyz";

uchar wi ndow text[N + F + 1];

Cost anzo, Robinson & U | mann [Page 28]

RFC 1505 Encodi ng Header Field August 1993

/* text contains window, plus 1st F of w ndow again
(for conparisons) */

ui nt hash_tabl e[K];
/* table of pointers into the text */

#def i ne CRCPOLY 0xEDB88320

#defi ne CRC_MASK OXFFFFFFFF

#defi ne UPDATE _CRC(crc, c) \
crc = crctabl e[((uchar)(crc) ™ (uchar)(c)) & OxFF] \
N (crc >> 8)

voi d MakeCrct abl e() /* Initialize CRC-32 table */
{

uint i, j;

long r;

for (i =0 i <= 255; i++) {

i
for (j
i

j =8] >0, j--) {
f (r &1)

r = (r >> 1) ~ CRCPQOLY;
el se

r>>:1;

crctable[i] =r;

}
}
voi d Put XX(int c) /* Transl ate and put xxcode */
{
c = xxcodes[c & Ox3F];
if (++char_ct > CHARSLINE) {
char_ct = 1;
fputc(’\n, out);
fputc(c, out);
out _count ++;
}

void PutBits(int ¢, int len) /* Put rightnost "len" bits of "c" */

{

C <<= 16 - len;
¢ &= OxFFFF;
putbuf |= (uint) ¢ >> putlen;

Cost anzo, Robinson & U | mann [Page 29]

RFC 1505 Enc

C <<= 16 - putlen;

¢ &= OxFFFF;

putlen += | en;

while (putlen >= 6)
Put XX(put buf >>
putlen -= 6;
put buf <<= 6;

odi ng Header Field August 1993

{
10);

put buf &= OxFFFF;

put buf | = (uint)
c =0;

}

voi d EncodePosi tion(int
{

I nt
i nt
i nt

wi dt h;

prefix;

pwr;

pwr 1 << STRTP;

for (width = STRTP;
ch -= pwr;

if ((prefix = width
Put Bi t s(Oxffff,

if (width < STOPP)
wi dt h++;

/* else if (width >

abort (); do nothing

PutBits(ch, w dth);

voi d EncodelLengt h(int ch
{

I nt
i nt
i nt

wi dt h;

prefix;

pwr;

pwr 1 << STRTL;

for (width = STRTL;
ch -= pwr;

if ((prefix = width
Put Bi t s(Oxffff,

if (width < STOPL)
wi dt h++;

/* else if (width >

abort (); do nothing

PutBits(ch, w dth);

Cost anzo, Robinson & U | mann

c >> 10;

ch) /* Encode offset position pointer */

ch >= pwr; width += STEPP, pw <<= 1)

- STRTP) !
prefix);

0)

STOPP)
x|

)

/* Encode code length */

ch >= pwr; width += STEPL, pw <<= 1)

- STRTL) !
prefix);

0)

STOPL)
x|

[Page 30]

RFC 1505 Encodi ng Header Field August 1993

mai n(i nt ac, char **av) /* main program */
{ .
uint r, s, i, c;

uchar *p, *rp

i nt match_position;
int match_| ength;
int len;

ui nt hash, h;

if (ac < 3) {
fprintf(stderr, "usage: juencode in out\n");
return(l);

in = fopen(av[1], "rb");
if (tin) {

fprintf(stderr, "Can't open %\n", av[1]);
return(l);

out = fopen(av[2], "wW');

if (lout) {
fprintf(stderr, "Can't open %\n", av[2]);
fclose(in);

return(l);

char _ct = 0;
in_count = 0;
out _count = 0O;
put buf = 0;
putlen = 0
hash = 0;

MakeCr ct abl e();
crc = CRC_MASK;

fprintf(out, "* LZJU90 %s\n", av[1]);

/* The hash table inititialization is sonewhat arbitrary */

for (i =0; i <K i++) hash_table[i] =i %N

r = 0;

s = 0;

/* Fill |ookahead buffer */

for (len = 0; len < F & (c = fgetc(in)) !'= EOF, len++) {

Cost anzo, Robinson & U | mann [Page 31]

RFC 1505 Encodi ng Header Field August 1993

UPDATE_CRC(crc, c);
i n_count ++;
w ndow_text[s++] = c;

}

while (len > 0) {
/* look for match in wi ndow at hash position */
h = ((((window text[r] << 5) ~ window text[r+1])
<< 5) N window text[r+2]);
p = wi ndow text + hash_table[h %K];
rp = wi ndow text + r;
for (i =0, match_length = 0; i < F; i++) {
if (*p+t+ !'= *rp++) break;
mat ch_| engt h++;
}
mat ch_position = r - hash_table[h %K];
if (match_position <= 0) match_position += N,

if (match_position > N- F - 2) match _length = 0;

if (match_position > in_count - len - 2)
match_length = 0; /* ! :-) */

if (match_length > |len)
match_length = | en;

if (match_length < THRESHOLD) {
EncodelLengt h(0);
Put Bi t s(wi ndow text[r], 8);
match_l ength = 1;

el se {
EncodelLengt h(match_I ength - THRESHOLD + 1);
EncodePosi ti on(mat ch_posi tion);

}

for (i =0; i < mtch_length &&
(c = fgetc(in)) '= EOF i++) {
UPDATE _CRC(crc, c);
i n_count ++;
w ndow text[s] = c;
if (s <F-1)
w ndow t ext
[s + N =g¢
if (++s > N- 1) s = 0;
hash = ((hash << 5) ~ window text[r]);
if (r > 1) hash_table[hash % K] =r - 2;
if (+4r > N- 1) r = 0;
}

Cost anzo, Robinson & U | mann [Page 32]

while (i++ < match_length) {
if (++s > N- 1) s = 0;
hash = ((hash << 5) ~ window text[r]);
if (r > 1) hash_table[hash % K] =r - 2;
if (+4r > N- 1) r = 0;
len--;

}

/* end conpression indicator */
EncodelLengt h(1);
EncodePosi ti on(0);

PutBits(0, 7);

fprintf(out, "\n* %u %8I X\n", in_count, crc);
fprintf(stderr, "Encoded % u bytes to % u synbol s\ n",
i n_count, out_count);

fclose(in);
fclose(out);

return(0);

5.3.2 Exanmple LZJU90 Conpressed Object

The following is an exanple of an LZJU30 conpressed object.

RFC 1505 Encodi ng Header Field August 1993

Usi ng

this as source for the programin section 5.3 will reveal what it is.

Encodi ng: 7 LZJWO0 Text

* LZIJW90 exanpl e

8- mBt WA7V\BVZ3dEBt nCNdU2VW E4owWWH 4kkaApWHo4l r 0k33Ao041 E4kk
bYt k1XY618NnCQ +0OHQ61d+J8FZBVWCVAC Z2- LUI Ov+| 4Er al t asHbG
WWg7c8t dk2| CBt r 3US6FZANVCdnAc UCNc AcbCMUCdi ¢cx0+u4wEETHCRM
7t Z2- 6Bt r 268- Eh3cUAl nBt h2- |1 Uo3As42] al E2A04Yq4G cHHT- wCEU
6tj Bt nAci - | ++

* 190 081E2601

Cost anzo, Robinson & U | mann

[Page 33]

RFC 1505 Encodi ng Header Field August 1993

6.

7.

Al phabetical Listing of Defined Encodings

Keywor d Description Section Reference(s)
EDI FACT EDI FACT f or mat 3.5

EDI - X12 EDI X12 format 3.5 ANSI X12

EVFU FORTRAN f or mat 3.4

FS File System format 3.6, 4

Hex Hex binary format 3.3

LZJWU90 LZJW90 f or mat 3.7, 5

Lzw LZW f or mat 3.8

Message Encapsul at ed Message 3.2 STD 11, RFC 822
PEM PEM O ear Privacy Enhanced Mil 3.10 RFC 1421-1424
PGP Pretty Good Privacy 3.11

Post scri pt Post scri pt format 3.14 [8]

Shar Shel | Archive format 3.15

Si gnature Si gnature 3.12

Tar Tar fornmat 3.13

Text Text 3.1 IS 10646
uuencode uuencode for mat 3.9

URL external URL-reference 3.16

Security Considerations

Security of content and the receiving (decoding) systemis discussed
in sections 3.10, 3.11, 3.15, and 4.2.10. The considerations
mentioned al so apply to other encodings and attributes with simlar
functions.

Ref er ences

[1] Robinson, D. and R U Il mann, "Encodi ng Header Field for Internet
Messages", RFC 1154, Prime Conputer, Inc., April 1990.

[2] Crocker, D., "Standard for the Format of ARPA Internet Text
Messages", STD 11, RFC 822, University of Del aware, August 1982.

[3] International Organization for Standardization, Information
Technol ogy -- Universal Coded Character Set (UCS). 1SQO1IEC
10646- 1: 1993, June 1993.

[4] Linn, J., "Privacy Enhancement for Internet Electronic Miil: Part
| Message Encryption and Authentication Procedures" RFC 1421,
| AB | RTF PSRG, | ETF PEM WG, February 1993.

Cost anzo, Robinson & U | mann [Page 34]

RFC 1505 Encodi ng Header Field August 1993

[5] Kent, S., "Privacy Enhancenent for Internet Electronic Mail: Part
Il1: Certificate-Based Key Managenent", RFC 1422, |AB | RTF PSRG
| ETF PEM BBN, February 1993.

[6] Balenson, D., "Privacy Enhancenment for Internet Electronic Mail:
Part I1l1: Algorithns, Mddes, and ldentifiers", RFC 1423, |AB | RTF
PSRG | ETF PEM W5 TIS, February 1993.

[7] Kaliski, B., "Privacy Enhancenment for Internet Electronic Mil:
Part IV: Key Certification and Rel ated Services", RFC 1424, RSR
Laboratories, February 1993.

[8] Adobe Systens Inc., PostScript Language Reference Manual. 2nd
Edition, 2nd Printing, January 1991.

[9] Rose, M and E. Steffererud, "Proposed Standard for Message
Encapsul ati on", RFC 934, Del aware and NMA, January 1985.

[10] Postel, J., "Sinple Mail Transfer Protocol", STD 10, RFC 821,
USC/ I nformation Sciences Institute, August 1982.

[11] Borenstein, N., and N. Freed, "M ME (Ml tipurpose Internet Mil
Ext ensi ons): Mechani sns for Specifying and Describing the Fornat
of Internet Message Bodies", RFC 1341, Bellcore, Innosoft, June
1992.

[12] Borenstein, N., and M Lininon, "Extension of MM Content-Types
to a New Mediuni, RFC 1437, 1 April 1993.

9. Acknow edgenents

The authors would like to thank Robert Jung for his contributions to
this work, in particular the public domain sanple code for LZJU90.

Cost anzo, Robinson & U | mann [Page 35]

RFC 1505 Encodi ng Header Field August 1993

10. Authors’ Addresses

Al bert K. Costanzo

AKC Consul ting I nc.

P. 0. Box 4031

Rosell e Park, NJ 07204-0531

Phone: +1 908 298 9000
Emai | : AL@AKC. COM

Davi d Robi nson

Conput ervi si on Corporation
100 Crosby Drive

Bedf ord, MA 01730

Phone: +1 617 275 1800 x2774
Enai | : DRB@Rel ay. CV. COM
Robert U | mann

Phone: +1 617 247 7959
Email: ariel @wrld.std.com

Cost anzo, Robinson & U | mann [Page 36]

