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Status of this Meno

This meno defines an Experinental Protocol for the Internet
community. It does not specify an Internet standard. Discussion and
suggestions for inprovenment are requested. Please refer to the
current edition of the "Internet Oficial Protocol Standards" for the
standardi zation state and status of this protocol. Distribution of
this neno is unlimted.
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1. Introduction
1.1 What is DASS?

Aut hentication is a security service. The goal of authentication is
to reliably learn the nane of the originator of a nessage or request.
The cl assic way by which people authenticate to conputers (and by

whi ch conputers authenticate to one another) is by supplying a
password. There are a nunber of problens with existing password
based schenes which DASS attenpts to solve. The goal of DASS is to
provi de authentication services in a distributed environnent which
are both nore secure (nore difficult for a bad guy to inpersonate a
good guy) and easier to use than existing nechani sns.

In a distributed environnent, authentication is particularly

chal  enging. Users do not sinply log on to one nachi ne and use
resources there. Users start processes on one machi ne which may
request services on another. In sonme cases, the second system nust
request services froma third systemon behalf of the user. Further
given current network technology, it is fairly easy to eavesdrop on
conversations between conputers and pick up any passwords that m ght
be goi ng by.

DASS uses crypt ographi c nmechani sns to provide "strong, nutual”

aut hentication. Mitual authentication neans that the two parties
communi cating each reliably I earn the nane of the other. Strong

aut hentication neans that in the exchange neither obtains any
information that it could use to inpersonate the other to a third
party. This can’'t be done with passwords al one. Mitua

aut henti cati on can be done with passwords by having a "sign" and a
"counter-sign" which the two parties nust utter to assure one another
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of their identities. But whichever party speaks first reveals

i nformati on which can be used by the second (unauthenticated) party
to inpersonate it. Longer sequences (often seen in spy novies)
cannot solve the problemin general. Further, anyone who can
eavesdrop on the conversation can inpersonate either party in a
subsequent conversation (unless passwords are only good once).

Crypt ography provides a neans whereby one can prove know edge of a
secret without revealing it. People cannot execute cryptographic
algorithms in their heads, and thus cannot strongly authenticate to
computers directly. DASS |lays the groundwork for "smart cards”

m croconputers sealed in credit cards which when activated by a PIN
will strongly authenticate to a conputer. Until snmart cards are
available, the first link froma user to a DASS node remains

vul nerabl e to eavesdroppi ng. DASS nmechani snms are constructed so that
after the initial authentication, smart card or password based

aut henti cati on | ooks the sane.

Today, systens are constructed to think of user identities in terns
of accounts on individual conputers. |If | have accounts on ten
machi nes, there is no way a priori to see that those ten accounts al
belong to the sanme individual. |If |I want to be able to access a
resource through any of the ten machines, | nust tell the resource
about all ten accounts. | nust also tell the resource when | get an
el eventh account.

DASS supports the concept of global identity and network login. A
user is assigned a name froma gl obal nanmespace and that nane will be
recogni zed by any node in the network. (In sone cases, a resource
may be configured as accessible only by a particular user acting
through a particular node. That is an access control decision, and
it is supported by DASS, but the user is still known by his gl oba
identity). Froma practical point of view, this means that a user
can have a single password (or smart card) which can be used on all
systenms which allow himaccess and access control mechani sms can
conveniently give access to a user through any computer the user
happens to be |l ogged into. Because a single user secret is good on
all systens, it should never be necessary for a user to enter a
password other than at initial |ogin. Because cryptographic
nmechani sns are used, the password shoul d never appear on the network
beyond the initial |ogin node.

DASS was designed as a conponent of the Distributed System Security
Architecture (DSSA) (see "The Digital Distributed System Security
Architecture" by M CGasser, A Goldstein, C Kaufnman, and B. Lanpson,
1989 National Computer Security Conference). It is a goal of DSSA
that access control on all systens be based on users’ gl obal nanes
and the concept of "accounts"™ on conputers eventually be replaced

wi th unnaned rights to execute processes on those conputers. Unti
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this happens, conputers will continue to support the concept of

"l ocal accounts" and access controls on resources on those systens
will still be based on those accounts. There is today within the
Berkel ey rtools running over the Internet Protocol suite the concept
of a ".rhosts database” which gives access to |ocal accounts from
renmote accounts. W envision that those databases will be extended
to support granting access to | ocal accounts based on DASS gl oba
nanes as a bridge between the past and the future. DASS should
greatly sinplify the adninistration of those databases for the
(presumably common) case where a user should be granted access to an
account ignoring his choice of internediate systens.

1.2 Central Concepts
1.2.1 Strong Authentication with Public Keys

DASS nakes heavy use of the RSA Public Key cryptosystem The
i mportant properties of the RSA algorithns for purposes of this
di scussion are:

- It supports the creation of a public/private key pair, where
operations with one key of the pair reverse the operations of
the other, but it is conputationally infeasible to derive the
private key fromthe public key.

- It supports the "signing" of a nessage with the private key,
after which anyone knowi ng the public key can "verify" the
signature and know that it was constructed with know edge of
the private key and that the nessage was not subsequently
al tered.

- It supports the "enciphering" of a message by anyone know ng
the public key such that only sonmeone with knowl edge of the
private key can recover the nessage.

Wth access to the RSA algorithnms, it is easy to see how one could
construct a "strong" authentication nmechanism Each "principal"
(user or conputer) would construct a public/private key pair, publish
the public key, and keep secret the private key. To authenticate to

you, | would wite a nessage, sign it with ny private key, and send
it to you. You would verify the nessage using nmy public key and know
the nmessage cane fromne. |f nmutual authentication were desired, you

could create an acknow edgnent and sign it with your private key; |
could verify it with your public key and I would know you received ny
nessage

The aut hentication algorithnms used by DASS are considerably nore
conpl ex than those described in the paragraph above in order to dea
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with a |large nunber of practical concerns including subtle security
threats. Sonme of these are discussed bel ow

1.2.2 Timestanps vs. Chal |l enge/ Response

Cryptosystens give you the ability to sign nessages so that the

recei ver has assurance that the signer of the nessage knew sone
cryptographi c secret. Free-standing public key based authentication
is sufficiently expensive that it is unlikely that anyone woul d want
to sign every nessage of an interactive comruni cation, and even if
they did they would still face the threat of someone rearranging the
messages or playing themnultiple tinmes. Authentication generally
takes place in the context of establishing sone sort of "connection,"
where a conversation will ensue under the auspices of the single
peer-entity authentication. This connection might be
cryptographically protected agai nst nodification or reordering of the
messages, but any such protection would be |argely independent of the
aut hentication which occurred at the start of the connection. DASS
provides as a side effect of authentication the provision of a shared
key which may be used for this purpose.

If in our sinple mnded authentication above, | signed the nmessage
"It’s really nme!" with nmy private key and sent it to you, you could
verify the signature and know t he nessage cane fromnme and give the
connection in which this nessage arrived access to ny resources.
Anyone wat ching this nessage over the network, however, could replay

it to any server (just like a password!) and inpersonate ne. It is
i nportant that the nessage | send you only be accepted by you and
only once. | can prevent the nessage from being useful at any other

server by including your nane in the nessage. You will only accept
the nmessage if you see your nane in it. Keeping you from accepting
the nmessage twice is harder

There are two "standard" ways of providing this replay protection.
One is called challenge/response and the other is called tinmestanp-
based. 1In a challenge response type schene, | tell you |l want to
aut henticate, you generate a "challenge" (generally a nunber), and
include the challenge in the message | sign. You will only accept a
message if it contains the recently generated chall enge and you will
make sure you never issue the sanme challenge to me twice (either by
usi ng a sequence nunber, a timestanp, or a random nunber big enough
that the probability of a duplicate is negligible). 1In the

ti mest anp- based schene, | include the current tine in ny nessage.
You have a rule that you will not accept nmessages nore than - say -
five minutes old and you keep track of all nessages you’ve seen in
the last five mnutes. |If soneone replays the nessage within five
m nutes, you will reject it because you will renmenber you' ve seen it
before; if sonmeone replays it after five mnutes, you will reject it
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as tined out.

The di sadvant age of the chal |l enge/ response based schene is that it
requires extra nessages. Wile one-way authentication could
otherwi se be done with a single message and mutual authentication
with one nessage in each direction, the chall enge/response schene
al ways requires at |east three nessages.

The di sadvantage of the timestanp-based schene is that it requires
secure synchronized tine. |If our clocks drift apart by nore than
five mnutes, you will reject all of ny attenpts to authenticate. |If
a network tine service spoofer can convince you to turn back your
clock and then subsequently replays an expired nessage, you wll
accept it again. The nulticast nature of existing distributed tinme
services and the likelihood of detection make this an unlikely
threat, but it rmust be considered in any anal ysis of the security of
the schene. The tinestanp schene al so requires the server to keep
state about all nmessages seen in the clock skewinterval. To be
secure, this nust be kept on stable storage (unless rebooting takes
| onger than the pernmitted clock skew interval).

DASS uses the tinestanp-based schene. The primary notivations behind
this decision were so that authentication nessages could be

"pi ggybacked" on existing connection establishnent nessages and so
that DASS would fit within the same "formfactor" (nunber and
direction of nessages) as Kerberos.

1. 2.3 Del egation

In a distributed environnment, authentication alone is not enough
When | log onto a conputer, not only do | want to prove ny identity
to that conmputer, | want to use that conputer to access network
resources (e.g., file systens, database systens) on ny behal f. M
files should (normally) be protected so that | can access them
through any node | log in through. DASS allows themto be so
protected without allowing all of the systens that | mght ever use
to access those files in my absence. 1In the process of logging in,
my password gives ny login node access to ny RSA secret. |t can use
that secret to "inpersonate" ne on any requests it makes on ny
behal f. It should forget all secrets associated with ne when | | og
off. This limts the trust placed in conputer systenms. |f soneone
takes control of a conputer, they can inpersonate all people who use
that conputer after it is taken over but no others.

Normal |y when | access a network service, | want to strongly
authenticate to it. That is, | want to prove ny identity to that
service, but | don't want to allow that service to | earn anything
that would allow it to inpersonate ne. This allows nme to use a
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service without trusting it for nore than the service it is
delivering. Wen using sone services, for exanple renote login
services, | may want that service to act on ny behalf in calling
addi tional services. DASS provides a nechani smwhereby | can pass
secrets to such services that allow themto inpersonate ne.

Future versions of this architecture may allow "linited del egati on”
so that a user may delegate to a server only those rights the server
needs to carry out the user’s wishes. This version can limt

del egation only in terns of tine. The information a user gives a
server (other than the initial |ogin node) can be used to inpersonate
the user but only for alimted period of tine. Smart cards will
pernmit that time linmtation to apply to the initial |ogin node as
wel | .

1.2.4 Certification Authorities

A flaw in the strong authentication nechani sm descri bed above is that
it assunes that every "principal" (user and node) knows the public
key of every other principal it wants to authenticate. |If | can fool
a server into thinking ny public key is actually your public key, |
can i npersonate you by signing a nessage, saying it is fromyou, and
havi ng the server verify the nmessage with what it thinks is your
public key.

To avoid the need to securely install the public key of every
principal in the database of every other principal, the concept of a
"Certification Authority" was invented. A certification authority is
a principal trusted to act as an introduction service. Each
principal goes to the certification authority, presents its public
key, and proves it has a particular nane (the exact nechanisns for
this vary with the type of principal and the |evel of security to be
provided). The CA then creates a "certificate" which is a nessage
cont ai ni ng the nane and public key of the principal, an expiration
dat e, and bookkeepi ng i nformation signed by the CA's private key.

Al'l "subscribers" to a particular CA can then be authenticated to one
anot her by presenting their certificates and provi ng know edge of the
correspondi ng secret. CAs need only act when new principals are
bei ng named and new private keys created, so that can be naintai ned
under tight physical security.

The two problens with the schene as described so far are "revocation"
and "scal eability".

1.2.4.1 Certificate Revocation

Revocation is the process of announcing that a key has (or nmay have)
fallen into the wong hands and should no | onger be accepted as proof
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of sone particular identity. Wth certificates as described above,
sonmeone who | earns your secret and your certificate can inpersonate
you indefinitely - even after you have | earned of the conpromise. It
| acks the ability corresponding to changi ng your password. DASS
supports two i ndependent nechani sns for revoking certificates. In the
future, a third nmay be added.

One nethod for revocation is using tinmeouts and renewal s of
certificates. Part of the signed nessage which is a certificate may
be a tine after which the certificate should not be believed.
Periodically, the CA would renew certificates by signing one with a
later timeout. |If a key were conpronised, a new key woul d be
generated and a new certificate signed. The old certificate would
only be valid until its tineout. Tinmeouts are not perfect revocation
nmechani snms because they provide only slow revocation (tinmeouts are
typically nmeasured in nonths for the load on the CA and conmuni cati on
with users to be kept manageabl e) and they depend on servers having
an accurate source of the current tinme. Sonmeone who can trick a
server into turning back its clock can use expired certificates

The second nethod is by listing all non-revoked certificates in the
nam ng service and believing only certificates found there. The
advantage of this method is that it is alnpost imediate (the only
delay is for name service "skul king" and caching delays). The

di sadvantages are: (1) the availability of authentication is only as
good as the availability of the naming service and (2) the security
of revocation is only as good as the security of the naming service.

A third nethod for revocation - not currently supported by DASS - is
for certification authorities to periodically issue "revocation
lists" which list certificates which should no | onger be accepted.

1.2.4.2 Certification Authority Hierarchy

VWhile using a certification authority as an introduction service
scal es nuch better than having every principal |learn the public key
of every other principal by sone out of band neans, it has the
problemthat it creates a central point of trust. The certification
authority can inpersonate any principal by inventing a new key and
creating a certificate stating that the new key represents the
principal. In a large organization, there may be no individual who
is sufficiently trusted to operate the CA. Even if there were, in a
| arge organi zation it would be inpractical to have every individua
authenticate to that single person. Replicating the CA solves the
avail ability problem but makes the trust problemworse. Wen

aut hentication is to be used in a global context - between conpanies
- the concept of a single CA is untenable.
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DASS addresses this problemby creating a hierarchy of CAs. The CA
hierarchy is tied to the nam ng hierarchy. For each directory in the
namespace, there is a single CA responsible for certifying the public
keys of its nenbers. That CAwll also certify the public keys of
the CAs of all child directories and of the CA of the parent
directory. Wth this cross-certification, it is possible know ng the
public key of any CAto verify the public keys of a series of
internmediate CAs and finally to verify the public key of any
princi pal .

Because the CA hierarchy is tied to the nami ng hierarchy, the trust
placed in any individual CAis Ilimted. If a CAis conpronised, it
can inpersonate any of the principals listed inits directory, but it
cannot inpersonate arbitrary principals.

DASS provi des mechani sns for every principal to know the public key
of its "parent” CA - the CA controlling the directory in which it is
naned. The result is the following rules for the inplications of a
conprom sed CA

a) A CA can inpersonate any principal naned in its directory.

b) A CA can inpersonate any principal to a server naned in its
directory.

c) A CA can inpersonate any principal naned in a subdirectory to
any server not named in the sane subdirectory.

d) A CA can inpersonate to any server in a subdirectory any
principal not naned in the sane subdirectory.

The inplication is that a conpronmise lowin the namng tree will
conpromi se all principals belowthat directory while a conprom se
high in the naming tree will conprom se only the authentication of
principals far apart in the nam ng hierarchy. |In particular, when
nmul ti pl e organi zati ons share a nanespace (as they do in the case of
X.500), the conpronise of a CAin one organization can not result in
fal se authentication w thin another organization

DASS uses the X. 500 directory hierarchy for principal namng. At the
top of the hierarchy are nanes of countries. National authorities
are not expected to establish certification authorities (at |east
initially), so an alternative nechanismnust be used to authenticate
entities "distant” in the nam ng hierarchy. The mechanismfor this
in DASS is the "cross-certificate" where a CA certifies the public
key for some CA or principal not its parent or child. By limting
the chains of certificates they will use to parent certificates
followed by a single "cross certificate" followed by child
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certificates, a DASS inplenentation can avoid the need to have CAs
near the root of the tree or can avoid the requirenment to trust them
even if they do exist. A special case can al so be supported whereby
a gl obal authority whose nane is not the root can certify the |oca
roots of independent "islands"

1.2.5 User vs. Node Authentication

In concept, DASS nechani snms support the mutual authentication of two
principals regardl ess of whether those principals are people,
computers, or applications. Those nechani sns have been extended,
however, to deal with a common case of a pair of principals acting
together (a user and a node) authenticating to a single principal (a
remote server). This is done by having optionally in each
credentials structure two sets of secrets - one for the user and one
for the node. Wen authentication is done using such credential s,
both secrets sign the request so the receiving party can verify that
both principals are present.

This setup has a nunber of advantages. It permits access controls to
be enforced based on both the identity of the user and the identity
of the originating node. It also nmakes it possible to define users

of systens who have no network w de identities who can access network
resources on the basis of node credentials alone. The security of
such a setup is | ess because a node can inpersonate all of its users
even when they are not logged in, but it offers an easier transition
fromexisting global identities for all users.

1.2.6 Protection of User Keys

DASS nechani sns generally deal with authentication between principals
each knowi ng a private key. For principals who are people, special
mechani sns are provided for maintaining that private key. In
particular, it nany cases it will be npbst convenient to keep
passwords as secrets rather than private keys. This architecture
specifies a neans of storing private keys encrypted under passwords.
This woul d provide security as good as hiding a private key were it
not that people tend to choose passwords froma snall space (like
words in a dictionary) such that a password can be nore easily
guessed than a private key. To address this potential weakness, DASS
specifies a protocol between a |ogin node and a | ogin agent whereby
the login agent can audit and Iinit the rate of password guesses.

Use of these features is optional. A user with a smart card could
store a private key directly and bypass all of these nechanisns. |If
users can be forced to choose "good" passwords, the login agent could
be elimnated and encrypted credentials could be stored directly in

t he nanmi ng service
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Anot her way in which user keys are protected is that the architecture
does not require that they be available except briefly at |ogin.

This reduces the threat of a user wal king away froma | ogged on

wor kst ati on and havi ng sonmeone take over the workstation and extract
his key. 1t also makes the use of RSA based smart cards practical
the card could keep the user’s private key and execute one signature
operation at login tinme to authenticate an entire session

1.3 What This Docunent Wwn't Tell You

Architecture docunments are by their nature difficult to read. This
one is no exception. The reason is that an architecture docunent
contains the details sufficient to build interoperable

i mpl enentations, but it is not a design specification. It goes out of
its way to | eave out any details which an inplenentation could choose
wi thout affecting interoperability. It also does not specify all the
uses of the services provided because these services are properly
regarded as general purpose tools.

The remai nder of this section includes information which is not
properly part of the authentication architecture, but which may be
useful in understanding why the architecture is the way it is.

1.3.1 How DASS is Enbedded in an Operating System

Whil e architecturally DASS does not require any operating system
support in order to be used by an application (other than the
services listed in Section 2), it is expected that actua

i npl enment ati ons of DASS will be closely tied to the operating systens
of host conputers. This is done both for security and for

conveni ence.

In particular, it is expected that when a user logs into a node, a
set of credentials will be created for that user and then associ ated
by the operating systemwth all processes initiated by or on behalf
of the user. When a user delegates to a service, the renote
operating systemis expected to accept the delegation and start up
the renote process with the del egated credentials. Mst nodes are
expected to have credentials of their own and support the concept of
user accounts. Wen user credentials are created, the node is
expected to verify themin its own context, determ ne the appropriate
user account, and add node credentials to the created credentials
set.

1.3.2 Forns of Credentials

In the DASS architecture, there is a single data structure called
"Credentials" with a large nunber of optional parts. 1In an
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i npl enentation, it is possible that not all of the architecturally
al | owed subsets will be supported and credentials structures with
di fferent subsets of the data nay be inplenmented quite differently.

The major categories of credentials likely to be supported in an
i npl enentation are:

- Caimant credentials - these are the credentials which would
normal ly be associated with a user process in order that it be
able to create authentication tokens. It would contain the
user’s nanme, login ticket, session private key, and (at |east
I ogically) local node credentials and cached outgoi ng
cont ext s.

- Verifier credentials - these are the credentials which would
normal |y be associated with a server which nmust verify tokens
and produce nutual authentication response tokens. Since
servers nmay be started by a node on denmand, sone
representation of verifier credentials nust exist independent
of a process. |If an operating systemw shes to authenticate a
request before starting a server process, the credentials nust
exist in usable form An inplenmentation may choose to have
all services on a "node" share a verifier credentials
structure, or it nay choose to have each service have its own.

- Conbined credentials - architecturally, a server may have a
structure which is both claimant credentials and verifier
credentials conbined so that the server nmay act in either role
using a single structure. There is sone overlap in the
contents. There is no requirenent, however, that an
i mpl enent ati on support such a structure.

- Stub credentials - In the architecture, a credentials
structure is created whenever a token is accepted. |f delegation
took place, these are claimant credentials usable by their
possessor to create additional tokens. |f no del egation took
pl ace, this structure exists as an architectural place hol der
agai nst which an inplenentation my attenpt to authenticate
user and node nanmes. An inplenentation mght choose to
i npl ement stub credentials wth a different nechani smthan
claimant or verifier credentials. |In particular, it mght do
what ever user and node authentication is useful itself and not
support this structure at all
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1. 3.3 Support for Alternative Certification Authority
| mpl ement ati ons

A notivating factor in nmuch of the design of DASS is the need to
protect certification authorities from conprom se. CAs are only used
to create certificates for new principals and to renew them on
expiration (expiration intervals are likely to be neasured in

nont hs). They therefore do not need to be highly avail able. For

maxi mum security, CAs could be inplenented on standal one PCs where
the hardware, software, and keys can be locked in a safe when the CA
is not in use. The certificates the CA generates nust be delivered to
the naning service to be registered, and a possi ble nechanism for
this is for the CAto have an RS232 line to an on-line conmponent

whi ch can pass certificates and related infornmation but not |ogin
sessions. The intent would be to nake it inplausible to nount a
network attack against the CA. Alternatively, certificates could be
carried to the network on a floppy disk

For CAs to be secure, a whole host of design details nust be done
right. The nost inportant of these is the design of user and system
manager interfaces that make it difficult to "trick" a user or system
manager into doing the wong thing and certifying an inpostor or
revealing a key. Mechanisns for generating keys nust al so be
carefully protected to assure that the generated key cannot be
guessed (because of lack of randommess) and is not recorded where a
penetrator can get it. Because a certificate contains relatively
little human intelligible information (its nmost inportant conponents
are UDs and public keys), it will be a challenge to design a user
interface that assures the human operator only authorizes the signing
of intented certificates. Such considerations are beyond the scope of
the architecture (since they do not affect interoperability), but
they did affect the design in subtle ways. |In particular, it does
not assume uniformsecurity throughout the CA hierarchy and is
designed to assure that the conpromise of a CAin one part of the

hi erarchy does not have gl obal inplications.

The architecture does not require that CAs be off-line. The CA could
be software that can run on any node when the proper secret is
installed. Administrative conveni ence can be gained by integrating
the CA with account registration utilities and naning service

mai nt enance. As such, the CA would have to be on-line when in use in
order to register certificates in the nam ng service. The CA key
could be unlocked with a password and the password coul d be entered
on each use both to authenticate the CA operator and to assure that
conprom se of the host node while the CAis not in use will not
conprom se the CA. This design would be subject to attacks based on
pl anting Trojan horses in the CA software, but is entirely
interoperable with a nore secure inplenentation. Realistic tradeoffs
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nmust be nmade between security, cost, and adm nistrative convenience
bearing in nmind that a systemis only as secure as its weakest |ink
and that there is no benefit in making the CA substantially nore
secure than the other conmponents of the system

1.3.4 Services Provided vs. Application ProgramInterface

Section 3 of this docunent specifies "abstract interfaces" to the
services provided by DASS. This neans it tells what services are
provi ded, what paraneters are supplied by the caller, and what data
is returned. It does not specify the calling interfaces. Calling
interfaces nmay be platform operating system and | anguage dependent.
They do not affect interoperability; different inplenentations which
i mpl ement conpletely different calling interfaces can stil

i nteroperate over a network. They do, however, affect portability. A
program whi ch runs on one platformcan only run on another which

i npl ements an identical API.

In order to support portability of applications - not just between

i mpl enent ati ons of DASS but between i npl enentations of DASS and

i mpl erent ati ons of Kerberos - a "Generic Security Service API" has
been designed and is outlined in Annex B. This APl could be the only
"published” interface to DASS services. This interface does not,
however, give access to all the functions provided by DASS and it
provi des sone non- DASS services. It does not give access to the

"l ogin" service, for exanple, so the login function cannot be

i mpl emented in a portable way. Clearly an inplenmentation nust provide
some inplementation of the |ogin function, though perhaps only to one
system program and the inpl enentati on need not be portable.

Simlarly, the Generic APl provides no access to node authentication
i nformati on, so applications which use these services may not be
portabl e.

The Generic APl provides services for encryption of user data for
integrity and possibly privacy. These services are not specified as a
part of the DASS architecture. This is because we envisioned that
such services woul d be provided by the conmuni cati ons network and not
in applications. These services are provided by the Generic API
because these services are provided by Kerberos, there exist
applications which use these services, and they are desired in the
context of the |IETF- CAT work. The DASS architecture includes a Key
Distribution service so that the encryption functions of the Generic
APl can be supported and integrated. Annex B specifies how those
servi ces can be inplemented using DASS services.

The Services Provided also differ fromthe GSSAPlI because there are

i mportant extensions envisioned to the APl for future applications
and it was inportant to assure that architecturally those services
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were available. In particular, DASS provides the ability for a
principal to have multiple aliases and for the receiver of an

aut hentication token to verify any one of them W want DASS to
support the case where a server only learns the nane it is trying to
validate in the course of evaluating an ACL. This may be long after
a connection is accepted. The Services Provided section therefore
separates the Accept _token function fromthe Verify Principal Nane.
The other notivation behind a different interface is that DASS

provi des node authentication - the ability to authenticate the node
fromwhich a request originates as well as the user. Because

Ker beros provides no such nechanism the capability is missing from
the GSSAPI, but we expect sone applications will want to make use of
it.

1.3.5 Use of a Naming Service

Wth the exception of the syntactical representation of nanes, which
is tied to X.500, the DASS architecture is designed to be i ndependent
of the particular underlying nanming service. Wile the intention is
that certificates be stored in an X 500 nanming service in the fields
architecturally reserved for this purpose in the standard, this
specification allows for the possibility of different forms of
certificate stores. The SPX inplenentation of DASS inplenents its
own certificate distribution service because we did not want to

i ntroduce a dependency on an X. 500 nani ng service.

1.3.6 Key Hiding - Credentials

The abstract interfaces described in section 3 specify that
"credential s" and "keys" are the inputs and outputs of various
routines. Credentials structures in particular contain secret

i nformati on which should not be nade available to the calling
application. In nost cases, keeping this information from
applications is sinmply a matter of prudence - a m sbehaving
application can do nearly as nmuch damage using the credentials as it
can by using the secrets directly. Having access to the keys

t hensel ves may all ow an application to bypass auditing or |eak a key
to an acconplice who can use it on another node where a | arge anount
of activity is less likely to be noticed. In some cases, nost
dramatically where a "node key" is present in user credentials, it is
vital that the contents of the credentials be kept out of the hands
of applications.

To acconplish this, a concrete interface is expected to create
"credentials handl es" that are passed in and out of DASS routines.
The credential s thensel ves woul d be kept in some portion of menory
where unprivileged code can’'t get at them
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There is another aspect of the way credentials are used which is
important to the design of real inplenmentations. In normal use, a
user will create a set of credentials in the process of logging on to
a system and then use them from many processes or jobs. Wen many
processes share a set of credentials, it is inportant for the sake of
performance that they share one set of credentials rather than having
a copy of the credentials nade for each. This is because information
is cached in credentials as a side effect of sone requests and for
good performance those caches shoul d be shared.

As an exanpl e, consider a system executing a series of copy comuands
nmoving files fromone systemto another. The credentials of the user
wi Il have been established when the user |ogged on. The first tinme a
copy is requested, a new process will start up, open a connection to
the destination system and create a token to authenticate itself.
Creating that token will be an expensive operation, but information
wi || be conputed and "cached” in the credentials structure which will
al | ow any subsequent tokens on behalf of that user to that server to
be conputed cheaply. After the copy conpletes, the connection is
closed and the process ternminates. 1In response to a second copy
request, another new process will be created and a new t oken
computed. For this operation to get a performance benefit fromthe
caching, the information conputed by the first process nust sonmehow
make it to the second.

A nodel for how this caching m ght work can be seen in the way

Ker beros caches credentials. Kerberos keeps credentials in a file
whose nane can be conmputed fromthe nanme of the local user. This
fileis initialized as part of the login process and its protection
is set so that only processes running under the U D of the user may
read and wite the file. Processes cache information there; al
processes running on behal f of the user share the file.

There are two problenms with this schene: first, on a diskless node
putting information in a file exposes it to eavesdroppers on the
network; second, it does not acconplish the "key hiding" function
described earlier in this section. 1In a nore secure inplenentation,
the kernel or a privileged process woul d nmanage sone "pool" of
credentials for all processes on a node and woul d grant access to
themonly through the DASS calls. Credentials structures are conpl ex
and varying length; DASS may organi ze themas a set of pools rather
than as contiguous bl ocks of data. All such design issues are
"beyond the scope of the architecture". Inplenentations nust decide
how to control access to credentials. They could copy the Kerberos
schene of having credentials available to processes with the U D of
the I ogin session which created themand to privil eged processes or
there may be a nore el aborate nmechani smfor "passing" credentials
handl es from process to process. This design should probably foll ow
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the operating system nechanisns for passing around | ocal privil eges.
1.3.7 Key Hiding - Contexts

The "GSSAPI" has a concept of a security context which has sone of
the sane key hiding problens as a credentials structure. Security
contexts are used in calls to cryptographically protect user data
(fromnodification or fromdisclosure and nodification) using keys
est abl i shed during authentication. The "services provided"

speci fication says that create_ and accept_token return a "shared
key" and "instance identifier". The GSSAPI says that a context
handle is returned which is an integer. A secure inplenentation
woul d keep the key and instance identifier in protected nenory and
only allow access to themthrough provided interfaces.

Unli ke credentials, there is probably no need to provide nechanisns
for contexts to be shared between processes. Contexts will normally
be associated with sonme notion of a comunications "connection" and
ends of a connection are not nornmally shared. |f an inplenentation
chooses to provide additional services to applications |ike nessage
sequencing or duplicate detection, contexts will have to contain
additional fields. These can be created and nmaintai ned w thout any
addi ti onal authentication services.

1.4 The Rel ationshi p between DASS and | SO St andards

This section provides an introduction to DASS authentication in terns
of the 1SO Aut hentication Framework (DP10181-2). The purpose of
this introduction is to give the reader an intuitive understanding of
the way DASS works and how its mechani snms and terninology relate to
standards. Inportant details have been omtted here but are spelled
out in section 3.

1.4.1 Concepts

The prinmary goal of authentication is to prevent inpersonation, that
is, the pretense to a false identity. Authentication always involves
identification in sone form Wthout authentication, anyone could
claimto be whonever they wi shed and get away with it.

If it didn’t matter with whom one was communi cati ng, el aborate
procedures for authentication would be unnecessary. However, in nost
systens, and in tinmesharing and distributed processing environnments
in particular, the rights of individuals are often circunscribed by
security policy. In particular, authorization (identity based access
control) and accountability (audit) provisions could be circunvented
i f masquerading attenpts were inpossible to prevent or detect.
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Al nost all practical authentication nechanisns suitable for use in

di stributed environnents rely on know edge of sone secret

i nformati on. Most differences lie in how one presents evidence that
they know the secret. Sone schenes, in particular the faniliar sinple
use of passwords, are quite susceptible to attack. Cenerally, the
threats to authentication may be classified as:

- forgery, attenpting to guess or otherw se fabricate evidence

- replay, where one can eavesdrop upon another’s authentication
exchange and | earn enough to inpersonate them and

- interception, where one slips between the conmunicants and is
able to nodify the comunications channel unnoti ced.

Most such attacks can be countered by using what is known as strong
aut hentication. Strong authentication refers to techni ques that
pernmit one to provide evidence that they know a particul ar secret

wi t hout revealing even a hint about the secret. Thus neither the
entity to whomone is authenticating, nor an eavesdropper on the
conversation can further their ability to inpersonate the

aut henticating principal at sone future tinme as the result of an
aut henti cati on exchange.

Strong aut henticati on nechanisns, in particular those used here, rely
on cryptographic techniques. In particular, DASS uses public key
cryptography. Note that interception attacks cannot be countered by
strong authentication al one, but generally need additional security
nmechani sns to secure the conmuni cation channel, such as data
encryption.

1.4.2 Principals and Their Roles

Al'l authentication is on behalf of principals. In DASS the foll ow ng
types of principals are recognized:

- user principals, nornally people with accounts who are
responsi ble for performng particular tasks. CGenerally it is
users that are authorized to do things by virtue of having
been granted access rights, or who are to be held accountabl e
for specific actions subject to being audited.

- server principals, which are accessed by users.
- node principals, corresponding to |ocations where users and

servers, or nore accurately, processes acting on behal f of
principals can reside.

Kauf man [ Page 18]



RFC 1507 DASS Sept ember 1993

1. 4.

Kau

Principals can act in one of two capacities:

- the claimant is the active entity seeking to authenticate
itself, and

- the verifier is the passive entity to whomthe claimant is
aut henti cati ng.

Users normal ly are claimants, whereas servers are usually verifiers,
al t hough soneti mes servers can al so be clai nants

There is another kind of principal:

- certification authorities (CA s) issue certificates which
attest to another principal’s public key.

3 Representation, Delegation and Representation Transfer

O course, although it is users that are responsible for what the
conmput er does, hunman beings are physically unable to directly do
anything within a conputer system In point of fact, it is a
process executing on behalf of a user that actually perforns
useful work. Fromthe point of view of perform ng security
controlled functions, the process is the agent, or

representative, of the user, and is authorized by that user to do
things on his behalf. In the terms used in the | SO Aut henti cation
Framework, the user is said to have a representation in the
process.

The representation has to cone into existence sonehow. Del egation
refers to the act of creating a representation. A user is said to
create a representation for thenselves by delegating to a process. If
the user creates another process, say by doing an rlogin on a
different conputer, a representation may be needed there as well. This
may be acconplished automatically by a process known as representation
transfer. DASS uses the termdelegation to also nean the act of
creating additional representations on a renpte systens.

A representation is instantiated in DASS as credentials. Credentials
include the identity of the principal as well as the cryptographic
"state" needed to engage in strong authentication procedures. C ai mant
information in credentials enable principals to authenticate

t hemsel ves to others, whereas verifier information in credentials
permit principals to verify the clainms of others. Credentials
intended primarily for use by a claimant will be referred to as
claimant credentials in the text which follows. Credentials intended
primarily for use in verification will be referred to as verifier
credentials. A particular set of credentials nmay or may not contain
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all of the data necessary to be used in both roles. That will depend

on the mechani snms by which the credentials were created.

In sone contexts, but not here, the concept of representation
and/ or del egation is sonmetines referred to as proxy. This termis
used in ECVA TR/ 46. W avoid use of the term because of possible
confusion with an unrelated use of the termin the context of
DECnet .

1.4.4 Key Distribution, Replay, Mitual Authentication and Trust

Strong authentication uses cryptographic techni ques. The
particul ar nmechani sns used in DASS result in the distribution of
cryptographi c keys as a side effect. These keys are suitable for
use for providing a data origin authentication service and/or a
data confidentiality service between a pair of authenticated
princi pal s.

Repl ay detection is provided using tinmestanps on rel evant

aut henti cati on nessages, conbined with remenbering previously
accepted nessages until they becone "stale". This is in contrast
to other techniques, such as chall enge and response exchanges.

Aut henti cation can be one-way or nutual. One-way authentication is

when only one party, in DASS the clainmant, authenticates to the other

Mut ual aut hentication provides, in addition, authentication of the
verifier back to the claimant. In certain comunications schenes,
exanpl e connectionl ess transfer, only one-way authentication is

meani ngf ul . DASS supports nutual authentication as a sinple extension

of one-way authentication for use in environnments where it nakes
sense.

DASS potentially can allow many different "trust relationships"”
to exist. Al principals trust one or nore CA's to safeguard the
certification process. Principals use certificates as the basis
for authenticating identities, and trust that CA's which issue
certificates act responsibly. Users expect CA's to nake sure that
certificates (and related secrets) are only made for principals
that the CA knows or has properly authenticated on its own.

1.5 An Aut henticati on Wal kt hr ough
The OSI Authentication Framewor k characterizes authentication as

occurring in six phases. This section attenpts to descri be DASS
in these terns.
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1.5.1 Installation

In this phase, principal certificates are created, as is the
additional information needed to create claimant and verifier
credentials. OSI defines three sub-phases:

- Enrollnment. In DASS, this is the definition of a principal in
terns of a key, name and Ul D

- Validation, confirmation of identity to the satisfaction of
the CA, after which the CA generates a certificate.

- Confirmation. |In DASS, this is the act of providing the user
with the certificate and with the CA's own nane, key and U D
followed up by the user creating a trusted authority for that
CA. Atrusted authority is a certificate for the CA signed by
t he user.

Included in this step in DASS is the posting of the certificate so as
to be available to principals wishing to verify the principal’s
identity. In addition, the user principal saves the trusted authority
so as to be available when it creates credential s.

1.5.2 Distribution
DASS distributes certificates by placing themin the nane service.
1.5.3 Acquisition
Whenever principals wish to authenticate to one another, they access
the Nane Service to obtain whatever public key certificates they need
and create the necessary credentials. In DASS, acquisition neans
obt ai ni ng credenti al s.
G aimant credentials inplement the representation of a principal in a
process, or, nore accurately, provide a representation of the
principal for use by a process. In nmaking this representation, the
principal delegates to a tenporary delegation key. In this fashion
the claimant’s long term principal key need not remain in the system
G aimant credentials are nmade by invoking the get credentials
primtive. Cainmant credentials are a DASS specific data structure
cont ai ni ng:
- a nane

- aticket, a data structure containing
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a validity interval
U D, and
(temporary) del egation public key, along with a

digital signature on the above nade with the principa
private key

- the delegation private key

Optionally in addition, there nay be credential information relating
to the node on which the user is logged in and the account on that
node. A detailed description of all the information found in
credentials can be found in section 3. Verifier credentials are made
with initialize server. Verifier credentials consist of a principa
(long term private key. The rationale is that these credentials are
usual |y needed by servers that nust be able to run indefinitely

wi thout re-entry of any |ong term key.

In addition, claimnts and verifiers have a trusted authority, which
consists of information about a trusted CA. That information is its:

- nane (this will appear in the "issuer" field in principa
certificates),

- public key (to use in verifying certificates issued by that
CA), and

- UD.

Trusted authorities are used by principals to verify certificates for
other principals’ public keys. CAs are arranged in a hierarchy
corresponding to the nam ng hierarchy, where each directory in the
nam ng hierarchy is controlled by a single CA. Each CA certifies the
CA of its parent directory, the CAs of each of its child directories,
and optionally CAs el sewhere in the naning hierarchy (nmainly to dea
with the case where the directories up to a common ancestor |ack
CAs). Even though a principal has only a single CA as a trusted
authority, it can securely obtain the public key of any principal in
t he nanespace by "wal king the CA hierarchy”.

1.5.4 Transfer
The DASS exchange of authentication information is illustrated in
Figure 1-1. During the transfer phase, the DASS cl ai nant sends an

authentication token to the verifier. Authentication tokens are nade
by invoking the create token prinmtive. The authentication token is
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cryptographically protected and specified as a DASS data structure in
ASN. 1. The aut hentication token includes:

- a ticket,

- a DES authenticating key encrypted using the intended
verifier’'s public key

- one of the follow ng:

if delegation is not being perforned, a digital signature on
the encrypted DES key using the del egation private key, or

if delegation is being performed, sending the del egation
private key, DES encrypted using the DES authenticating key

- an authenticator, which is a cryptographi c checksum made usi ng
the DES authenticating key over a buffer containing

a tinestanp

any application supplied "channel bindings". For exanple,
addresses or other context information. The purpose of this
field is to thwart substitution and replay attacks.

- additional optional information concerning node authentication
and cont ext.

As a side effect, after init_authentication_context, the caller
receives a local authentication context, a data structure contai ning:

- the DES key, and

- if mutual authentication is being requested, the expected
response.

In order to construct an authentication token, the claimant needs to
access the verifier’'s public key certificate fromthe Nane Service
(label ed CDC, for Certificate Distribution Center, in the figure).

Note that while an authenticator can only be used once, it is

perm ssible to re-establish the sane | ocal authentication context
multiple tines. That is, the ticket and DES key establishnent
conponents of the authentication token may have a relatively |ong
lifetime. This permits a perfornmance inprovenment in that repeated
applications of public key operations can be alleviated if one caches
aut henti cation contexts, along with other conponents froma
successful ly used authentication token and the associated verified

Kauf man [ Page 23]



RFC 1507 DASS
principal public key value. It is a relat
to create (and verify) "fresh"

aut henti cati on context.
Cl ai mant Actions

verifier nane

Conmuni cati ons

+---+
----------- >
| |
| o | CDC]
| certificate| |
------------ o

+---+

Sept ember 1993

i vely i nexpensive operation

aut henti cators based on cached

Verifier Actions

Verifier
Credential s

Y
Aut henti cati on e +
Token | Check | Repl ay
-------------------- >| Token | <-->Cache
| | +----------- +
| [ \----- >DES
| | /dC ai mant key
| | / Public Key
| / | trusted
| Cl ai mant /| Y authorities
| +---+ Name [ | +----------- + |
[ | <------- /| | Verify | <----/
| |certificate| |Certificate
|[jcoc)------------ >| | - ->accept/
| | | +----------- + reject
I | | \
| +---+ | aut henti cati on\
| nmut ual | cont ext \%
| authentication | | cl ai mant
| response | +---------- +credential s
———————————————————— | Make | (del egati on)
| | | Response
| | e +

Figure 1 - Authenticati on Exchange Overvi ew

| W,
trusted
authorities
| e +
| | Verify | <
\--->|Certificate
S +
Cl ai nant
credential s Verifier
| Publ i c Key
| |
| \Y
| [ S +
| | Make |
\--->| Token |
S +
DES <---/ |
key |
|
|
|
|
aut henti cati on
cont ext
|
|
|
|
\Y
R +
/--1 Accept |
\Y |  Mitual | <
accept/ +----------- +
reject
Kauf man

[ Page 24]



RFC 1507 DASS Sept ember 1993

1.5.5 Verification

Upon recei pt of an authentication token, the verifier extracts the
DES key using its verifier credentials, accesses the Nane Service
(labeled CDC for Certificate Distribution Center) to obtain the
certificates needed to performcryptographi c checks on the incom ng
information, and verifies all of the signatures on the received
certificates and the authentication token. Verification can result
in creation of new clainmant credentials if delegation is perforned.

As part of this process, verified authenticators are retained for a
sui tabl e tinmeout period.

1.5.6 Unenrol nent

This is the renoval of information fromthe Name Service. The only
other form of revocation supported by DASS is certificate timeout.
Every certificate contains an expiration tine (expected in ordinary
use to be about a year fromits signing date). DASS does not
currently support the revocation lists in X 5009.

2. Services Used

Asi de from operating systemservices needed to maintain its interna
state, DASS relies on a global distributed database in which to store
its certificates, a reliable source of tine, and a source of random
nunbers for creating cryptographic keys.

2.1 Tinme Service

DASS requires access to the current tinme in several of its
algorithms. Sonme of its uses of time are security critical. In

ot hers, network synchronization of clocks is required. DASS does
not, however, depend on having a single source of time which is both
secure and tightly synchronized.

The requirenents on system provided tinme are:

- For purposes of validating certificates and tickets, the
system needs access to know the date and tine accurate to
within a few hours with no particul ar synchronization
requirenents. If this tine is inaccurate, then valid requests
may be rejected and expired nessages nay be accepted.
Certificate expiration is a backup revocati on nechani sm so
this can only cause a security conpronm se in the event of
multiple failures. In theory, this could be provided by
having a local clock on every node accurate to within a few
hours over the life of the product to provide this function
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If an insecure network tine service is used to provide this
time, there are theoretical security threats, but they are
expected to be logistically inpractical to exploit.

- For purposes of detecting replay of authentication tokens, the
system needs access to a strictly nonotonic tine source which
i s reasonably synchroni zed across the network (within a few
m nutes) for the systemto work, but inaccuracy does not
present a security threat except as noted below It may
constitute an availability threat because valid requests may
be rejected. In order to get strict nonotonicity in the
presence of a rapid series of requests, tinme nust be returned
with high precision. There is no requirenent for a high
degree of accuracy. |Inaccurate tinme could present a security
threat in the followi ng scenario: if a client’s clock is nade
sufficiently fast that its tokens are rejected, someone
harvesting those tokens fromthe wire could replay themlater
and i npersonate the client. |In sone environnents, this night
be an easier threat than harvesting tokens and preventing
their delivery.

- For purposes of aging stale entries from caches, DASS requires
reasonably accurate timng of intervals. To the extent that
intervals are reported as shorter than the actually were,
revocation of certificates fromthe nam ng service may not be
as tinmely as it should be.

2.2 Random Nunbers

In order to generate keys, DASS needs a source of "cryptographic
qual ity" random nunbers. Cryptographic quality neans that
knowi ng any of the "random nunbers" returned froma series and
knowi ng all state information which is not protected, an attacker
cannot predict any of the other nunbers in the series. Hardware
sources are ideal, but there are alternative techni ques which my
al so be acceptable. A 56 bit "truly randont seed (say froma
series of coin tosses) could be used as a DES key to encrypt an
infinite length known text block in CBC node to produce a pseudo-rand
sequence provided the key and current point in the sequence were
adequately protected. There is considerable controversy
surroundi ng what constitutes cryptographic quality random
nunbers, and it is not a goal of this docunent to resolve it.

2.3 Nami ng Service
DASS stores creates and uses "certificates" associated with every

principal in the system and encrypted credentials associ ated
with nost. This information is stored in an on-line service
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associated with the principal being certified. The long term
vision is for DASS to use an X 500 nam ng service, and DASS will
fromits inception authenticate X 500 nanes. To avoid a
dependence on having an X. 500 nami ng service available (and to
gain the benefits of a "login agent” that controls password
guessing), an alternative certificate distribution center
protocol is also described.

The specific requirements DASS places on the nam ng service are:

- It nmust be highly available. A user’s nanming service entry
nmust be available to any node where the user is to obtain
services (or service will be denied). A server’s naning
service entry nust be available fromany node from which the
service is to be invoked (or service will be denied).

- It nmust be tinmely. The presence of "stale" information in the
nam ng service nay cause sone problens. Wen a password
changes, the old password may remain valid (and the new
password invalid) to the extent the nam ng service provides
stale information. Wen a user or server is added to the

network, it will not be able to participate in authentication
until the information added to the nam ng service is available
at the node doing the authentication. |In the unusua

circunstance that a key changes, the entity whose key has
changed will not be able to use the new key until the new
certificate is uniformy avail able.

- It nmust be secure with regard to certain specific properties.
In general, the security of DASS protected applications does
not depend on the security of the naming service. It is
expected that the availability needs of the naning service
will prevent it from being as secure as sone applications need
to be. There are two aspects of DASS security which do depend
on the security of the naming service: tinely revocation of
certificates and protection of user secrets against dictionary
based password guessi ng. DASS depends on the renopval of
certificates fromthe nam ng service in order to revoke them
nmore quickly than waiting for themto tinme out. For this
mechani smto provide any actual security, it nmust not be
possi ble for a network entity to "inpersonate” the nam ng
service and the nanming service nust be able to enforce access
controls which prevent a revoked certificate from being
reinstated by an unauthorized entity. In the long run, it is
expected that DASS itself will be used to secure the naming
service, which presents certain potential recursion problens
(to be addressed in the nami ng service design). |If the nam ng
service is not authenticated (as is expected in early
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versions) attacks where a revoked certificate is "reinstated"
t hrough i npersonation of the nam ng service are possible.

The specific functions DASS requests of the nam ng service are
si mpl e:

- Gven an X. 500 nane, store a set of certificates associ ated
with that nane.

- Gven an X. 500 nane, retrieve the set of certificates
associated with that nane.

- Gven an X. 500 nane, store a set of encrypted credentials
associ ated with that nane.

- Gven and X. 500 nane, retrieve a set of encrypted credentials
associ ated with that nane.

| npl enent ati on over a particular naning service nmay inplenent nore
speci ali zed functions for reasons of efficiency. For exanple, the
certificates associated with a nane may be separated into severa
sets (child, parent, cross, self) so that only the rel evant ones may
be retrieved. In order that access to the namng service itself be
secure, the protocols should be authenticated. Certificates should
generally be readabl e wi thout authentication in order to avoid
recursion problens. Requests to read encrypted credentials should be
speci ali zed and shoul d include proof of know edge of the password in
order that the nanming service can audit and sl ow down fal se password
guesses.

The follow ng sections describe the interfaces to specific naning
services

2.3.1 Interface to X 500

Certificates associated with a particular nane are stored as
attributes of the entry as specified in X 509. X 509 defines
attributes appropriate for parent and cross certificates
(CrossCertificatePair, CACertificate) for some principals; we wll
have to define a DASSUser Princi pal object class including these
attributes in order to properly use themwth ordi nary users.
Retrieval is via normal X 500 protocols. Certificates should be
wor | d readabl e and nodifiable only by appropriate authorities.

Encrypted credentials are stored with the entry of the principa
under a yet to be defined attribute. The credentials should be
encoded as specified in section 4. 1In the absence of extensions to
the X 500 protocol to control password guessing, the encrypted
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credentials should be world readabl e and updatabl e only by the naned
principal and other appropriate authorities.

2.3.2 Interface to CDC

The CDC (Certificate Distribution Center) is a special purpose nane
server created to service DASS until an X 500 service is available in
all of the environnments where DASS needs to operate. The CDC uses a
speci al purpose protocol to conmunicate with DASS clients. The

prot ocol was designed for efficiency, sinplicity, and security. CDCs
use DASS as an aut hentication nmechani smand to protect encrypted
credentials fromunaudited password guessi ng.

Each DASS client nmaintains a list of CDCs and the portion of the
nanespace served by that CDC. Each directory has a master replica
which is the only one which will accept updates. The CDCs nmintain
consi stency with one another using protocols beyond the scope of this
docunent. When a DASS client wishes to nake a request of a CDC, it
opens a TCP or DECnet connection to the CDC and sends an ASN. 1 ( BER)
encoded request and receives a correspondi ng ASN. 1 (BER) encoded
response. Cdients are expected to learn the | P or DECnet address and
port nunber of the CDC supporting a particular nane froma | oca
configuration file. To maxim ze performance, the requests bundle
what woul d be several requests if nade in terns of requests for

i ndividual certificates. It is intended that all certificates needed
for an authentication operation be retrievable with at nost two CDC
requests/responses (one to the CDC of the client and one to the CDC
of the server).

Docunented here is the protocol a DASS client would use to retrieve
certificates and credentials froma CDC and update a user password.
This protocol does not provide for updates to the certificate and
credential databases. Such updates must be supported for a practica
system but could be done either by extensions to this protocol or by
| ocal security nechani sns inpl enented on nodes supporting the CDC
Simlarly, availability can be enhanced by replicating the CDC
Automating the replication of updates could be inplenented by
extensions to this protocol or by some other nechanism This

speci fication assunmes that updates and replication are local matters
sol ved by individual CA/CDC inpl enentations.

Requests and responses are encoded as foll ows:
2.3.2.1 ReadPrinCert Request
This request asks the CDC to return the child certificates and

sel ected incomng cross certificates for the specified object. The
format of the request is:
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ReadPri nCert Request ::= [4] IMPLICI T SEQUENCE {
flags [0] BIT STRI NG DEFAULT {},
index [1] I MPLICIT I NTEGER DEFAULT O,
resol veFrom [ 2] Nane OPTI ONAL,
princi pal Nane,
crossCertlssuers ListO I ssuers OPTI ONAL

}
Li stOf I ssuers ::= SEQUENCE OF Nane

The first 24 bits of flags, if present, contain a protocol version
nunber. dients following this spec should place the value 2.0.0 in
the three bytes. Servers following this spec should accept any val ue
of the form1l.x.x or 2.x.x. flags bits beyond the first 24 are
reserved for future use (should not be supplied by clients and shoul d
be ignored by servers).

index is only used if the response exceeds the size of a single
nmessage; in that case, the query is repeated with index set to the
val ue that was returned by ReadPrinCertResponse. resolveFrom and
principal inply a set of entities for which certificates should be
retrieved. resolveFrom (if present) nmust be an ancestor of principa

and child certificates will be retrieved for principal and all nanes
whi ch are ancestors of principal but descendants of resolveFrom The
encodi ng of nanes is per X. 500 and is specified in nore detail in

section 4. The CDC returns the certificates in order of the object
they canme from parents before children

crossCertlssuers is a list of cross certifiers that would be believed

in the context of this authentication. |If supplied, the CDC nmay
return a chain of certificates starting with one of the naned
crossCertlssuers and ending with the naned principal. One of

resol veFrom or crossCertlssuers nmust be present in any request; if
both are present, the CDC nmay return either chain.

2.3.2.2 ReadPrinCertResponse

This is the response a CDC sends to a ReadPrinCertRequest. Its
syntax is:
ReadPri nCert Response ::=[5] IMPLICI T SEQUENCE ({

status [0] IMPLICIT CDCstatus DEFAULT success,

i ndex [1] | NTEGER OPTI ONAL,

resol veTo [2] Nanme OPTI ONAL,

cert Sequence [3] IMPLICIT Cert Sequence,

i ndexl nval idator [4] OCTET STRING (SIZE(8)) OPTI ONAL,
flags [5] BIT STRI NG OPTI ONAL

}

Cert Sequence ::= SEQUENCE OF Certificate
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status indicates success or the cause of the failure.

index if present indicates that the request could not be fully
satisfied in a single request because of size limtations. The
request should be repeated with this index supplied in the request to
get nore

resolveTo will be present if index is present and should be supplied
in the request for nore certificates. certSequence contains
certificates found matching the search criteria.

i ndexl nval i dator may be present and indicates the version of the

dat abase being read. If a set of certificates is being read in

mul tiple requests (because there were too many to return in a single
nmessage), the reader should check that the value for indexlnvalidator
is the same on each request. |If it is not, the server may have

ski pped or duplicated sonme certificates. This field nust not be
present if the version nunber in the request was nissing or version
1.X.X.

The first 24 bits of flags, if present, indicate the protocol version
nunber. I nplenmenters of this version of the spec should supply 2.0.0
and shoul d accept any version number of the form 1. x.x or 2.Xx.X.

2. 3. 2. 3 ReadQut goi ngCert Request

This requests fromthe CDC a list of all parent and outgoing cross
certificates for a specified object. A CDCis capable of storing
cross certificates either with the subject or the issuer of the cross
certificate. In response to this request, the CDC will return al
parent and cross certificates stored with the issuer for the naned
principal and all of its ancestors. Its syntax is:

ReadQut goi ngCert Request ::=[6] IMPLICI T SEQUENCE ({
flags [0] BIT STRI NG DEFAULT {},
index [1] I MPLICIT | NTEGER DEFAULT O,
princi pal Nane

}

The first 24 bits of flags is a protocol version nunber and shoul d
contain 2.0.0 for clients inplementing this version of the spec.
Servers inplenenting this version of the spec should accept any
versi on nunber of the form1l.x.x or 2.x.x. The remaining bits are
reserved for future use (they should not be supplied by clients and
they should be ignored by servers).

index is used for continuation (see ReadPrinCertRequest).
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principal is the nane for which certificates are requested

2. 3. 2.4 ReadQut goi ngCert Response
This is the response to a ReadQut goi ngCert Request. Its syntax is:

ReadQut goi ngCert Response::= [7] I MPLICI T SEQUENCE ({
status [0] IMPLICIT CDCStatus DEFAULT success,
i ndex [1] | NTEGER OPTI ONAL,
cert Sequence [2] IMPLICI T Cert Sequence,
i ndexl nval idator [3] OCTET STRI NG (S| ZE(8))
OPTI ONAL,
flags [4] BIT STRI NG OPTI ONAL
}

Cert Sequence ::= SEQUENCE OF Certificate
status indicates success of the cause of failure of the operation
i ndex is used for continuation; see ReadPrinCert Request.
certSequence is the Iist of parent and outgoing cross certificates.

i ndexlnvalidator is used for continuation; see ReadPri nCertResponse
(the sane rules apply with respect to version nunbers).

The first 24 bits of flags, if present, contain the protocol version
nunber. dients inplenmenting this version of the spec should supply
the value 2.0.0. Servers should accept any values of the form 1. x.X
or 2.x.X. The renmaining bits are reserved for future use (they

shoul d not be supplied by clients and should be ignored by servers).

2.3.2.5 ReadCredenti al Request

This request is nade to retrieve an principal’s encrypted
credentials. To prevent unaudited password guessing, this structure
i ncl udes an encrypted val ue that proves that the requester knows the
password that will decrypt the structure. The syntax of the request
is:

ReadCredenti al Request ::= [2] I MPLICI T SEQUENCE {
flags [0] BIT STRI NG DEFAULT {}
princi pal Nane,
| ogindata [2] BIT STRI NG DEFAULT {},
token [3] BIT STRI NG OPTI ONAL
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The first 24 bits of flags contains the version nunber of the
protocol. The value 2.0.0 should be supplied. Any value of the form
1.x.x or 2.x.x should be accepted. Any additional bits are reserved
for future use (should not be supplied by clients and shoul d be

i gnored by servers).

principal is the nane of the principal for whomencrypted credentials
are desired.

| ogindata is an encrypted value. It may only be present if the
version nunber is 2.0.0 or higher. It nust be present to read
credentials which are protected by the login agent functionality of
the CDC. It is constructed as a single RSA bl ock encrypted under the
public key of the CDC. The public key of the CDC is |earned by sone
| ocal means. Possibilities include a |ocal configuration file or by
using DASS to read and verify a chain of certificates ending with the
CDC [the CDC serving a directory should have its public key listed
under a nane consisting of the directory nanme with the RDN
"CSS=X509"; the O D for the type CSSis 1.3.24.9.1]. The contents of
the bl ock are as follows:

- The | ow order eight bytes contain a randomy generated DES key
with the last byte of the DES key placed in the | ast byte of
the RSA block. This DES key will be used by the CDC to
encrypt the response. Key parity bits are ignored.

- The next to last eight bytes contain a long Posix tinme with
the integer tine encoded as a byte string using big endian
order.

- The next eight bytes (fromthe end) contain a hash of the
password. The algorithmfor conputing this hash is listed in
section 4.4.2. The CDC never conputes this hash; it sinply
conmpares the value it receives with the value associated with
the credenti al s.

- The next sixteen bytes (fromthe end) contain zero.

- The rermai nder of the RSA bl ock (which should be the sane size
as the public nodulus of the CDC) contains a random nunber.
The first byte should be chosen to be non-zero but so the
val ue in the block does not exceed the RSA nodulus. Servers
shoul d i gnore these bits. This random nunber need not be of
cryptographic strength, but should not be the sane val ue for
all encryptions. Repeating the DES key woul d be adequat e.

- The byte string thus constructed is encrypted using the RSA
algorithmby treating the string of bytes as a "big endi an"
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integer and treating the integer result as "big endian" to
make a string of bytes.

token will not be present in the initial inplementation but a space
is reserved in case sonme future inplenentation wants to authenticate
and audit the node fromwhich a user is |ogging in.

2.3.2.6 ReadCredenti al Protect edResponse

This is the second possible response to a ReadPrinLogi nRequest. It
is returned when the encrypted credentials are protected from
password guessing by the CDC acting as a login agent. |Its syntax is:

ReadCr edenti al Prot ect edResponse: : =[16] | MPLI CI T SEQUENCE ({
status [0] IMPLICIT CDCStatus DEFAULT success,
encryptedCredential [1] BIT STRI NG
flags [2] BIT STRI NG OPTI ONAL
}

status indicates that the request succeeded or the cause of the
failure.

encrypt edCredential contains the DASSPrivateKey structure (defined in
section 4.1) encrypted under a DES key conputed fromthe user’s nane
and password as specified in section 4.4.2 and then reencrypted under
the DES key provided in the ReadPrinLogi nRequest.

The first 24 bits of flags, if present, contains the version nunber
of the protocol. Inplementers of this version of the spec should
supply 2.0.0 and shoul d accept any version nunber of the form 2. x. x.
O her bits are reserved for future use (they should not be supplied
and they should be ignored).

2.3.2.7 WiteCredenti al Request

This is a request to update the encrypted credential structure. It
is used when a user’s key or password changes. The syntax of the
request is:

WiteCredential Request ::= [17] IMPLIC T SEQUENCE ({
flags [0] BIT STRI NG DEFAULT {},
aut htoken [2] BIT STRI NG OPTI ONAL,
principal [3] Naneg,
| ogi ndata [4] BIT STRI NG DEFAULT {},
furtherSensitiveStuff [5] BIT STRI NG
}

The first 24 bits of flags is a version nunber. dients inplenenting
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this version of the spec should supply 2.0.0. Servers should accept
any value of the form2.x.x. Additional bits are reserved for future
use (clients should not supply them and servers should ignore thenj.

token, if present, authenticates the entity nmaking the request. A
request will be accepted either froma principal proving know edge of
the password (see |ogindata below) or a principal presenting a token
inthis field and satisfying the authorization policy of the CDC
This field need not be present if |ogindata includes the hash2 of the
password (anyone knowi ng the old password may set a new one).

principal is the nane of the object for which encrypted credentials
shoul d be updat ed.

| ogindata is encrypted as in ReadPrinLogi nRequest. |t proves that

the requester knows the old password of the principal to be updated
(unl ess the token supplied is fromthe user’s CA) and includes the

key which encrypts furtherSensitiveStuff.

furtherSensitiveStuff is an encrypted field constructed as foll ows:

- The first eight bytes consist of the hash2 defined in section
4.4.2 with the last byte of the hash2 value stored first. The
CDC stores this value and conpares it with the val ues supplied
in future requests of ReadCredenti al Request and
WiteCredential Request.

- The next (variable nunmber of) bytes contains a DASSPrivat eKey
structure (defined in section 4.1). This is the new
credential structure that will be returned by the CDC on
future ReadCredenti al Requests.

- The result is padded with zero bytes to a nmultiple of eight
byt es.

- The entire padded string is encrypted using the key from
| ogi ndata or token using DES in CBC node with zero IV.

t he new ei ght byte "hash2" defined in section 4.4.2 concatenated with
the DASSPrivateKey structure encrypted under the new "hashl" all
encrypted under the DES key included in | ogindata.

2.3.2.8 HerelsStatus

This is the response nessage to ill-formed requests and requests that
only return a status and no data. |It’s syntax is:
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HerelsStatus ::=[1] I MPLIC T SEQUENCE ({
status [0] IMPLICIT CDCStatus DEFAULT success
}

status indicates success or the cause of the failure.
2.3.2.9 Status Codes
The following are the CDCStatus codes that can be returned by
servers. Not all of these values are possible with all calls, and
some of the status codes are not possible with any of the calls
described in this docunent.
CDCSt atus :: = | NTEGER {

success(0),
accessDeni ed(1),

wr ongCDC( 2) , --this CDC does not store the
--requested information

unr ecogni zedCA( 3),
unr ecogni zedPri nci pal (4),

decodeRequest Error (5),--invalid BER
i Il egal Request (6), --request not recogni sed

obj ect DoesNot Exi st (7),
illegal Attribute(8),

not Pri maryCDC(9),--wite requests not accepted
--at this CDC replica

aut henti cationFailure(11),
i ncorrectPassword(12),

obj ect Al readyExi sts(13),
obj ect Wul dBeOr phan( 15),

obj ect | sPer manent ( 16),

obj ectlsTentative(17),
parent|sTentative(18),

certificateNot Found(19),
attri but eNot Found( 20),

i OErrorOnCerti f Dat abase(100),
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dat abaseFul | (101),

serverlnternal Error(102),
server Fatal Error (103),

i nsuf ficientResources(104)

}

3. Services Provi ded

This section specifies the services provided by DASS in ternms of
abstract interfaces and a nodel inplenentation. A particular

i mpl enentati on nay support only a subset of these services and nay
provide them through interfaces which conbine functions and supply
sonme paraneters inplicitly. The specific calling interfaces are in
some cases | anguage and operating systemspecific. An actua

i npl enment ati on may choose, for exanple, to structure interfaces so
that security contexts are established and then passed inplicitly in
calls rather than explicitly including themin every call. It mght
al so bundl e keys into opaque structures to be used with supplied
encryption and decryption routines in order to enhance security and
nmodul arity and better conply with export regul ations. Annex B
describes a Portable APl designed so that applications using a
limted subset of the capabilities of DASS can be easily ported

bet ween operating systens and between DASS and Kerberos based
environnents. The nodel inplenentation describes data structures
whi ch include cached val ues to enhance perfornmance. |nplenentations
may choose different contents or different caching strategies so |ong
as the sane sequence of calls would produce the sane output for sone
cachi ng policy.

DASS operates on four kinds of data structures: Certificates,
Credentials, Tokens, and Certification Authority State. Certificates
and Tokens are passed between inplenentations and thus their exact
format nmust be architecturally specified. This detailed bit-for-bit
specification is in section 4. Credentials generally exist only
within a single node and their format is therefore not specified
here. The contents of all of these data structures is listed bel ow
followed by the algorithms for mani pulating them

There are three kinds of services provided by DASS: Certificate

Mai nt enance, Credential Mintenance, and Authentication. The first
two kinds exist only in support of the third. Certificate nmaintenance
functions maintain the database of public keys in the nam ng service.
These functions tend to be fairly specialized and nay not be
supported on all platforms. Before authentication can take place,
bot h authenticating principals nmust have constructed credentials
structures. These are built using the Credential Maintenance calls.
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The Aut hentication functions use credential information and
certificates, produce and consume authentication tokens and tell the
two conmuni cating parties one another’s nanes.

3.1 Certificate Contents

For purposes of this architecture, a certificate is a data structure
posted in the nami ng service which proclains that know edge of the
private key associated with a stated public key authenticates a naned
principal. Certificates are "signed" by some authority, are readable
by anyone, and can be verified by anyone know ng the public key of
the authority. DASS organizes the CA trust hierarchy around the

nam ng hi erarchy. There exists a trusted authority associated wth
each directory in the naming hierarchy. CGenerally, each authority
creates certificates stating the public keys of each of its children
(in the nanming hierarchy) and the public key of its parent (in the
nam ng hierarchy). In this way, anyone know ng the public key of any
authority can learn the public key of any other by "wal king the
tree". In order that principals nay authenticate even when all of
their ancestor directories do not participate in DASS, authorities
may al so create "cross-certificates" which certify the public key of
a naned entity which is not a descendent. Rules for finding and
followi ng these cross-certificates are described in the Get_Pub_Keys
routines. Every principal is expected to know the public key of the
CA of the directory in which it is named. This nust be securely

| earned when the principal is initialized and nay be maintained in
sone form of |ocal storage or by having the principal sign a
certificate listing the name and public key of its parent and posting
that certificate in the nam ng service

The syntax and content of DASS certificates are defined in terns of
X.509 (Directory - Authentication Framework). While that standard
prescribes a single syntax for certificates, DASS considers
certificates to be of one of six types:

- Normal Principal certificates are signed by a CA and certify
the nane and public key of a principal where the name of the
CAis a prefix of the name of the principal and is one
conmponent shorter.

- Trusted Authority certificates are signed by an ordi nary
principal and certify the nane and public key of the
principal’s CA (i.e., the CA whose nane is a prefix of the
principal’s name and i s one conponent shorter).

- Child certificates are signed by a CA and certify the name and

public key of a CA of a descendent directory (i.e., where the
nane of the issuing CAis a prefix of the nane of the subject

Kauf man [ Page 38]



RFC 1507 DASS Sept ember 1993

CA and is one conponent shorter).

- Parent certificates are signed by a CA and certify the nane
and public key of the CA of its parent directory (i.e., whose
nane is a prefix of the name of the issuer and is one
conponent shorter).

- Cross certificates are signed by a CA and certify the nanme and
public key of a CA of a directory where neither nane is a
prefix of the other.

- Self certificates are signed by a principal or a CA and the
i ssuer and subject nanme are the sane. They are not used in
this version of the architecture but are defined as a
conveni ent data structure in which in which inplenmentations
may insecurely pass public keys and they may be used in the
future in certain key roll-over procedures.

It is intended that sonme future version of the architecture relax the
restrictions above where prefixes nmust be one conponent shorter

Being able to handle certificates where prefixes are two or nore
components shorter conplicates the |ogic of treewal king sonewhat and
is not inmredi ately necessary, so such certificates are disallowed for
now.

The syntax of certificates is defined in section 4. For purposes of
the al gorithms which follow, the following is the portion of the
content which is used (nanes in brackets refer to the field names in
the ASN. 1 encoded structure):

- UD of the issuer (optional)

- Full name of the issuer (the authority or principal signing)
[1ssuer]

- U D of the subject (optional)

- Full name of the subject (the authority or principal whose key
is being certified) [subject]

- Public Key of the subject [subjectPublicKey]

- Period of validity (effective date and expiration date)
[valid]

- Signature over the entire content of the certificate created
using the private key of the issuer
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When parsing a certificate, the reader conpares the two nane fields
to determ ne what type of certificate it is. For Parent and Trusted
Authority certificates, the nanmes are ignored for purposes of al
further processing. For Child and Normal Principal certificates, only
the suffix by which the child s nane is |onger than the parent’s is
used for further processing. The reason for this is so that if a
branch of the namespace is renaned, all of the certificates in the
noved branch remain valid for purposes of DASS processing. The only
purposes of having full names in these certificates are (1) to conply
with X. 509, (2) for possible interoperability with other
architectures using different algorithns, and (3) to allow principals
to securely store their own names in trusted authority certificates
in the case where they do not have enough | ocal storage to keep it.

3.2 Encrypted Private Key Structure

In order that humans need only renenber a password rather than a ful
set of credentials, and also to nmake installation of nodes and
servers easier, there is a defined fornmat for encrypting RSA secrets
under a password and posting in the naming service. This structure
need only exi st when passwords are used to protect RSA secrets; for
servers which keep their secrets in non-volatile nmenory or users who
carry smart cards, they are unnecessary.

This structure includes the RSA private/public key pair encrypted
under a DES key. The DES key is conputed as a one-way hash of the
password. This structure also optionally includes the UD of the
principal. It is needed only if a single RSA key is shared by
multiple principals (with nmultiple U Ds).

Since this structure is posted in the nane service and may be used by
multiple inplenmentations, its format nust be architecturally defined.
The exact encoding is listed in section 4.

3.3 Authentication Tokens

This section of the docunment defines the contents of the

aut henti cation tokens which are produced and consuned by Create_token
and Accept _token. Wth DASS, the token passed fromthe client to the
server is conplex, with a |large nunber of optional parts, while the

t oken passed fromserver to client (in the case of mnutua

aut hentication only) is small and sinple.

The aut hentication token potentially contains a | arge nunber of

parts, nost of which are optional depending on the type of

aut hentication. The foll owi ng defines the content and purpose of each
of the parts, but does not describe the actual encoding (in the
belief that such details would be distracting). The encoding is in
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section 4.

The aut hentication process begins when the initiator calls
Create_token with the name of the target. This routine returns an
aut henti cation token, which is sent to the target. The target calls
Accept _token passing it the token. Both routines produce a second
"mutual authentication token". The target returns this to the
initiator to prove that it received the token

3.3.1 Initial Authentication Token

The conponents of the initial authentication token are (nanes in
brackets refer to the field names within the ASN. 1 encoded structures
defined in section 4):

a) Encrypted Shared Key - [authenticatingKey] - This is a Shared
(DES) key encrypted under the public key of the target. Al so
included in the encrypted structure is a validity interval and
a recogni zabl e pattern so that the receiver can tell whether
t he decryption was successful

b) Login Ticket - [sourcePrincipal.userTicket] - This is a
"del egation certificate" signed by a principal’s long term
private key delegating to a short termpublic key. Its "active
i ngredi ents" are:

1) U D of delegating principal [subjectU D]
2) Period of validity [validity]
3) Del egation public key [del egati ngPublicKey]

4) Signature by private key of principa
The existence of this signature is testinony that the
private key corresponding to the del egation public key
speaks for the user during the validity interval
This data structure is optional and will be missing if the
aut hentication is only on behalf of a Local Usernane on a
node (i.e., proxy) rather than on behalf of a real principa
with a real key.

c) Shared Key Ticket - [sourcePrincipal.sharedKeyTi cket Si gnat ure]
- This is a signature of the Encrypted Shared Key by the
Del egation Public key in the Login Ticket. The existence of
this signature is testinony that the DES key in the encrypted
shared key speaks for the user.

This data structure is optional and will be missing if the
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aut hentication is only on behalf of a Local Usernane on a node
(i.e., proxy) rather than on behalf of a real principal with a
real key. It will also be missing if delegation is taking

pl ace.

d) Node Ticket - [sourceNode.nodeTicketSignature] - This is a
signature of the Encrypted Shared key and a "Local Usernane"
on the host node by the node’'s private key. The existence of
this signature is testinony by the node that the DES key in
the encrypted shared key speaks for the named account on that
node.

e) Del egator - [sourcePrincipal.delegator] - This data structure
contains the private login key encrypted under the Shared key.
It is optional and is present only if the initiator is
del egating to the destination.

f) Authenticator - [authenticatorData] - This data structure
contains a tinmestanp and a nessage di gest of the channe
bi ndi ngs signed by the Shared Key. It is always present.

g) Principal name - [sourcePrincipal.userNane] - This is the nane
of the initiating principal. It is optional and will be
m ssing for strong proxy where bits on the wire are at a
prenmi um and where the destination is capabl e of independently
constructing the nane.

h) Node nane - [sourceNode.nodeNane] - This is the nane of the
initiating node. It is optional and will be missing for strong
proxy where bits on the wire are at a premumand the nane is
present el sewhere in the nessage bei ng passed.

i) Local Usernane - [sourceNode.usernane] - This is the |oca
user nane on the initiating node. It is optional and will be
m ssing for strong proxy where bits on the wire are at a
prem um and where the nane is present el sewhere in the nessage
bei ng passed.

3.3.2 Mutual Authentication Token
The aut hentication buffer sent fromthe target to the initiator (in
the case of nmutual authentication) is nmuch sinpler. It contains only

the tinestanp taken fromthe authenticator encrypted under the Shared
Key. It is ASN. 1 encoded to allow for future extensions.
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3.4 Credentials

DASS organi zes its internal state with Credentials structures. There
are many kinds of information which can be stored in credentials.

Rat her than nmaking a different kind of data structure for each kind
of data, DASS provides a single credentials structure where nost of
its fields are optional. Operating systens nust provide sone
mechani sm for havi ng several processes share credentials. An exanple
of a mechanismfor doing this would be for credentials to be stored
inafile and the nane of the file is used as a "handl e" by al
processes which use those credentials. Sone of the calls which follow
cause credentials structures to be updated. It is inportant to the
performance of a systemthat updates to credentials (such as occur
during the routines Verify_Principal _Nanme and Verify_Node_Name, where
the caches are updated) be visible to all processes sharing those
credenti al s.

In many of the calls which follow, the credentials passed nay be

| abel ed: claimant credentials, verifier credentials or some such

This indicates whose credentials are being passed rather than a type
of credentials. DASS supports only one type of credentials, though
the fields present in the credentials of one sort of principal may be
quite different fromthose present in the credentials of another

An i npl enentation may choose to support nultiple kinds of credentials
structures each of which will support only a subset of the functions
available if it is not inplenmenting the full architecture. This
woul d be the case, for exanple, if an inplenmentation did not support
the case where a server both received requests from other principals
and nade requests on its own behalf using a single set of

credenti al s.

The following are a list of the fields that may be contained in a
credentials structure. They are grouped according to common usage.

3.4.1 dainmant infornmation

This is the informati on used when the holder of these credentials is
requesting sonething. It includes:

a) Full X. 500 nanme of the principa
b) Public Key of the principal
c) Login Ticket - a login ticket contains:

1) the U D of the principa
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2) a period of validity (effective date & expiration date)
3) a delegation public key

4) a signature of the ticket contents by the principal’s |ong
term key

d) Del egation Private Key (corresponding to the public key in c3)
e) Encrypted Shared Key (present only when credentials were
created by accept_token; this information is needed to verify
a node ticket after credentials are accepted)
3.4.2 Verifier information
This is the informati on needed by a server to decrypt inconing
requests. It is also used by generate_server_ticket to generate a
login ticket.
a) RSA private key.
3.4.3 Trusted Authority
This is information used to seed the wal k of the CA hierarchy to
reliably find the public key(s) associated with a nane.
Normal Iy, the trusted authority in a set of credentials will be
the directory parent of the principal named in O ai mant
information. |n some circunstances, it may instead be the
directory parent of the node on which the credentials reside.
a) Full X 500 nane of a CA
b) Correspondi ng RSA Public Key
c) Corresponding U D
3.4.4 Renote node authentication
This information is present only for credentials generated by
"Accept _token". It includes information about any renote node which
vouched for the request.
a) Full X. 500 nanme of the node
b) Local Usernane on the node

c) Node ticket.
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3.4.5 Local node credentials

This information is added by Conbi ne_credentials, and is used by
Create_token to add a node signature to outbound requests.

a) Full X. 500 nane of the node

b) Local Usernane on the node

c) RSA private key of the node
3. 4.6 Cached outgoi ng contexts

There nay be one (or nore) such structures for each server for which
this principal has created authentication tokens. These represent a
cache: they may be discarded at any tine with no effect except on
performance. For each association, the following information is kept:

a) Destination RSA Public Key (index)
b) Encrypted Shared key

c) Shared Key Ticket (optional, included if there has been a
non- del egati ng connecti on)

d) Node Ti cket

e) Delegator (optional, included if there has been a del egating
connecti on)

f) Validity interva
g) Shared Key
3.4.7 Cached I ncom ng Contexts

There nay be one such structure for each client fromwhich this server
has received an authentication token. These represent a cache: they
may be discarded at any time with no effect except on perfornmance. (An
i npl enment ati on may choose to keep one System w de Cache (and list of
incoming tinmestanps). While it is unlikely that the sane Encrypted
Shared Key will result fromencryption of Shared keys generated by
different clients or for different servers, an inplenmentation nust
ensure that an entry made for one client/server can not be reused by
another client/server. Sinmilarly an inplenmentation nmay choose to keep
separate caches for the Shared Key/Validity Interval/Del egati on Public
Key, the Nodenane/ U D/ key/ usernanme and the Principal nane/ U D key.)
For each association, the following information is kept:
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a) Encrypted Shared key (index)

b) Shared Key

c) Validity Interva

d) Full X. 500 nane of dient Principa
e) UD of dient Principal

f) Public Key of Client Principa

g) Nane of dient Node

h) U D of dient Node

i) Public Key of dient Node

j) Local Usernane on Cient node

k) Del egation Public key of Client Principal’s Login Ticket

The Nane, U D and Public key of the Principal are all entered

toget her once the Login Ticket has been verified. Simlarly the Node
nane, Node key and Usernane are entered together once the Node Ticket
has been verified. These pieces of information are only present if

t hey have been verified.

3.4.8 Received Authenticators

A record of all the authenticators received is kept. This is used to
det ect replayed nessages. (This list nust be common to all targets
that could accept the same authenticator (channel bindings wll
prevent other targets fromaccepting the same authenticator). This
includes different ‘servers’ sharing the sane key.) The entries in
this list may be del eted when the tinestanp is old enough that they
woul d no | onger be accepted. This list is kept separate fromthe
Cached i ncom ng context in order that the information in the cached
i ncom ng context can be discarded at any time. An inplenentation
could choose to save these timestanps with the cached incom ng
context if it ensures that it can never purge entries fromthe cache
before the ti mestanp has aged sufficiently. This list is accessed
based on an extract fromthe signature fromthe Authenticator. The
extract nmust be at least 64 bits, to ensure that it is very unlikely
that 2 authenticators will be received with nmatching signatures.

a) Extract from Signature from Aut henti cat or
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b) Ti nest anp

If an inplementation runs out of space to store additiona

aut henticators, it may either reject the token which wuld have
overflowed the table or it may tenporarily narrow the allowed cl ock
skewto allowit to free sone of the space used to hold "ol d"
authenticators. The first strategy will always fal sely reject

t okens; the second nay cause false rejection of tokens if the allowed

cl ock skew gets narrowed beyond the actual clock skew in the network
3.5 CA State

The CA needs to naintain sone internal state in order to generate

certificates. This internal state nust be protected at all tines, and

great care nmust be taken to prevent its being disclosed. A CA may
choose to naintain additional state information in order to enhance

security. In particular, it is the responsibility of the CAto
assure that the sane U D is not serially reused by two hol ders of a
single nane. In nost cases, this can be done by creating the UD at

the tine the user is registered. To securely pernit users to keep
their U Ds when transferring fromanother CA the CA nust keep a
record of any U Ds used by previous hol ders of the nanme. Since
actions of a CA are so security sensitive, the CA should al so

mai ntain an audit trail of all certificates signed so that a history
can be reconstructed in the event of a conpromise. Finally, for the
conveni ence of the CA operator, the CA should record a list of the
directories for which it is responsible and their U Ds so that these
need not be entered whenever the CAis to be used. The state
includes at least the followi ng information

- Public Key of CA

- Private Key of CA

- Serial nunber of next certificate to be issued
3.6 Data types used in the routines

There are several abstract data types used as paraneters to the
routines described in this section. These are listed here

a) | nteger

b) Name
Names unl ess otherwi se noted are always X. 500 nanmes. While
nost of the design of DASS is naming service independent, the
syntax of certificates and tokens only permts X. 500 nanes to
be used. If DASS is to be used in an environnment where sone
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ot her form of name is used, those names nust be transl ated
into sonething syntactically conpliant with X 500 using some
nmechani sm whi ch is beyond the scope of this architecture. The
only other formof nanme appearing in this architecture is a

"l ocal user nane", which corresponds to the sinple nane of an
"account"” on a node. As a type, such nanes appear in
paraneter lists as "Strings".

c) String
A String is a sequence of printable characters.

d) Absolute Tine
A UTC tine. The precision of these Tines is not stated. A
precision of the order of one second in all times is
suf ficient.

e) Time Interval
A Time interval is conposed of 2 tinmes. A Start Tine and an
End Time, both of which are Absolute Tines

f) Tinestanp
A Timestanp is atine in POSIX format. |.e., two 32 bit
Integers. The first representing seconds, and the second
representi ng nanoseconds.

g) Duration
A Duration is the length of a tine interval.

h) Octet String
A sequence of bytes containing binary data

i) Bool ean
A val ue of either True or False

j) Uub
A UDis an bit string of 128 bits.

k) dD
An ODis an | SO hject Identifier.

) Shared key
A Shared key is a DES key, a sequence of 8 bytes

m CA State
A structure of the formdescribed in 3.5

n) Credentials
A structure of the formdescribed in 3.4
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0) Certificate
An ASN. 1 encoding of the structure described in '3.1

p) Aut hentication Token
An ASN. 1 encoding of the structure described in '3.3.1

g) Miutual Authentication Token
An ASN. 1 encoding of the structure described in *3.3.2

r) Encrypted Credentials
An ASN. 1 encoding of the structure described in 3.2

s) Public key
A representation of an RSA Public key, including all the
i nformati on needed to encode the public key in a certificate.

t) Set of Public key/U D pairs
A set of Public key/U D pairs. This Data type is only used
internally in DASS - it does not appear in any interface used
to other architectures.

3.7 Error conditions

These routines can return the following error conditions (an
i mpl enentation nay indicate errors with nore or |ess precision):

a) Inconplete chain of trustworthy CAs

b) Target has no keys which can be trusted.

c) Invalid Authentication Token

d) Login Ticket Expired

e) Invalid Password

f) Invalid Credentials

g) Invalid Authenticator

h) Duplicate Authenticator

3.8 Certificate Miintenance Functions

Aut henti cation services depend on a set of data structures nmintained
in the naming service. There are two kinds of information

Certificates, which associate nanes and public keys and are signed by
off-line Certification Authorities; and Encrypted Credentials, which

Kauf man [ Page 49]



RFC 1507 DASS

Sept ember 1993

contain RSA Private Keys and certain context information encrypted
under passwords. Encrypted Credentials are only necessary in

envi ronnents where passwords are used. Credentials nay alternatively
be stored in sone other secure manner (for exanple on a smart card).

The certificate mai ntenance services are designed so that the nost
sensitive - the actual signing of certificates - nay be done by an
off-line authority. Once signed, certificates nust be posted in the
nam ng service to be believed. The precise nechanisns for noving
certificates between off-line CAs and the on-line nam ng service are
i npl enent ati on dependent. For the off-line nmechanisns to provide any
actual security, the CAs nust be told what to sign in sone reliable
manner. The mechani snms for doing this are inplenmentation dependent.
The abstract interface says that the CAis given all of the
informati on that goes into a certificate and it produces the signed

certificate.

There are requirenents surroundi
CA's actions. The details of what actions are
audit trail is maintained, and what utilities

ng the auditing of a
audi ted, where the
exi st to search that

audit trail are not specified here. The functions a CA nust provide
are:
3.8.1 Install CA
I nstal |l _CA(
keysi ze I nt eger, --inputs
CA state CA State, --outputs
CA Publ i c_Key Publ i c Key)

This routine need only generate a public/private key pair of the
requested size. Keysize is likely to be in inplenentation constant

rat her than a paraneter.
640. Key sizes throughout will
factoring technol ogy and CPU speeds i nprove.

part of the CA state; the public key is returned so that other CAs

The value is likely to be either 512 or
have to increase over tinme as
Both keys are stored as

may cross-certify this one. The ‘Next Serial nunmber’ in the CA state

is set to 1.

3.8.2 Create Certificate

Create_certificate(

Kauf man

--inputs
Renewal Bool ean
I ncl ude_U D Bool ean
| ssuer _nane Name,
| ssuer _UI D Ul D,

Ef fective date
Expiration_date
Subj ect _nanme

Absol ute Tine,
Absol ute Ti ne,
Nane,
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Ul D,
Public Key,
- -updat ed
CA State,
--outputs

Certificate)

Note that the

various contents of the certificate nust be communicated to the CAin

sone reliable fashion.

The Issuer_name and U D are the name and U D

of the directory on whose behalf the certificate is being signed.

This routine formats and signs a certificate with the private key in

CA state.

format X 509 certificate.

3.8.3 Create Principa

Create_principal (

Passwor d

keysi ze

Pri nci pal _nane
Principal _UD
Parent _Public_key
Parent _Ul D

this routine wll
otherwise it wll

It audits the creation of the certificate and updates the
sequence nunmber which is part of CA state.
nanmes are X 500 nanes.
U Ds have previously been used by what nanes,
succeed in the collision case if the Renewal

the Include U D boolean is set true,
1992 format X 509 certificate;

The | ssuer and Subj ect

If the CA state includes a history of what

this call will only
boolean is set true. |If
generate a
generate a 1988

--inputs
String,
| nt eger,
Nanme,
Ul D,
Publ i c Key,
Ul D,
--outputs

Encrypted_Credentials Encrypted Credenti al s,
Trusted_authority certificate Certificate)

This procedure creates a new principa

public/private key pair,

by generating a new
encrypting the public and private keys under

the password, and signing a trusted authority certificate for the

parent CA.
cards),
princi pal s.

the principa
name.

Kauf man

If a principa
authority information, it
authority certificate and store it
procedure anal ogous to this one nust be executed, however,
| earns the public key and U D of

In an inplenmentation not using passwords (e.qg.
an alternative mechani smnust be used for initially creating
has protected storage for trusted
is not necessary to create a trusted
in the nam ng service

smart

Sone
i n which
its CAand its own
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This routine creates two output structures with the follow ng steps:

a) Cenerate a public/private key pair using the indicated
keysize. An inplenentation will likely fix the keysize as an
i npl ement ati on constant, nost likely 512 or 640 bits, rather
than accepting it as a paraneter. Key sizes generally will
have to increase over tine as factoring technol ogy and CPU
speeds i nprove.

b)

c)

Form the encrypted credentials by using the public key,
private key, and Principal _U D and encrypting themusing a
hash of the password as the key.

Generate a trusted authority certificate (which is identica
in format to a "parent" certificate) getting fields as

fol | ows:

1) Certificate version is X 509 1992.

2) lssuer nane is the Principal nane (which is an X 500 nane).

3) Issuer UDis the Principal UD

4) Validity is for all tine.

5) Subject nanme is constructed fromthe Principal nanme by
removing the last sinple nane fromthe hierarchical nane

6) Subject UDis the CA U D

7) Subject Public Key is the CA Public_Key

8) Sequence nunber is 1

9) Sign the certificate with the newy generated private key of

the princi pal

3. 8.4 Change Password

Change_passwor d( --inputs
Encrypted_credentials Encrypted Credenti al s,
a d_password String,
New _password String,

--outputs
Encrypted_credentials Encrypted Credential s)

If credentials are stored encrypted under a password, it is possible
to change the password if the old one is known. Note that it is

Kauf man

[ Page 52]



RFC 1507 DASS Sept ember 1993

insufficient to just change a user’'s password if the password has
been di scl osed. Anyone knowi ng the ol d password nmay have al ready
| earned the user’s private key. |If a password has been discl osed,
the secure recovery procedure is to call create_principal again
followed by create certificate to certify the new key.

Using DASS, it may not be appropriate for users to periodically
change their passwords as a precaution unless they also change their
private keys by the procedure above. The only likely use of the
change_password procedure is to handl e the case where an

adm ni strator has chosen a password for the user in the course of
setting up the account and the user wi shes to change it to sonething
the user can renenber. A future version of the architecture nmay
smoot h key roll-over by having the change_password comuand al so
generate a new key and sign a "self" certificate in which the old key
certifies the new one. As a separate step, a CA which notices a self
certificate posted in the nam ng service could certify the new key

i nstead of the old one when the user’s certificate is renewed. Wile
this procedure is not as rapid or as reliable as having the user
directly interact with the CA it offers a reasonable tradeoff

bet ween security and conveni ence when there is no evidence of
password conprom se

This routine sinply decrypts the encrypted credentials structure
supplied using the password supplied. It returns a bad status if the
format of the decrypted information is bad (indicating an incorrect
password). Otherwise, it creates a new encrypted credentials
structure by encrypting the sane data with the new password. It would
be highly desirable for the user interface to this function to
provide the capability to randonly generate passwords and prohibit
easi |y guessed user chosen passwords using | ength, character set, and
di ctionary | ookup rules, but such capabilities are beyond the scope
of this docunent. |If encrypted credentials are stored in sone |oca
secure storage, the above function is all that is necessary (in fact,
if the storage is sufficiently secure, no password i s needed;
credentials could be stored unenci phered). |If they are stored in a
nam ng service, this function nust be coupled with one which
retrieves the old encrypted credentials fromthe nam ng service and
stores the new. The full protocol is likely to include access
control checks that require the principal to acquire credentials and
produce tokens. For best security, the encrypted credentials should
be accessible only through a login agent. The role of the login
agent is to audit and limt the rate of password guessing. |f
passwords are well chosen, there is no significant threat from
password guessi ng because searching the space is conputationally
infeasible. 1In the context of a |ogin agent, change password will be
i npl emented with a specialized protocol requiring know edge of the
password and (for best security) a trusted authority fromwhich the
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public key of the login agent can be learned. See section 2.3.2 for
the plans for the non-X 500 credential storage facility.
3. 8.5 Change Name

Change_nane(

--inputs
Cd ainant_Credentials Credentials,
New_nane Nane,
CA Publ i c_Key Publ i c Key,
CA UD u D

--outputs

Trusted Authority Certificate Certificate)

DASS pernits a principal to have many current aliases, but only one
current name. A principal can authenticate itself as any of its
aliases but verifies the nanes of others relative to the nane by
which it knows itself. Aliases can be created sinply by using the
create certificate function once for each alias. To change the nane
of a principal, however, requires that the principal securely learn
the public key and U D of its new parent CA. As with
create_principal, if a principal has secure private storage for its
trusted authority information, it need not create a certificate, but
sonme anal ogous procedure nust be able to install new naning

i nformation.

This routine produces a new Trusted Authority Certificate with
contents as foll ows:

a) |ssuer nane is New nane (an X. 500 nane)

b) Issuer UDis Principal U D from Credenti al s.

c) Validity is for all tine.

d) Subject nane is constructed fromthe |Issuer name by renoving
the | ast sinple name fromthe hierarchical nane, and
converting to an X 500 nane.

e) Subject UDis CAUD

f) Subject Public Key is CA Public_Key

g) Sequence nunber is 1.

h) The certificate is signed with the private key of the

principal fromthe credentials. Note that this call will only
succeed if the principal’s private key is in the credential s,
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which will only be true if the credentials were created by
calling Create_server_credentials.

3.9 Credenti al M ntenance Functions

DASS credentials can potentially have infornmation about two
principals. This functionality is included to support the case
where a user on a node has two identities that m ght be

recogni zed for purposes of managi ng access controls. First,
there is the user’s network identity; second, there is an
identity as controlling a particular "account” or "usernane" on
that node. There are two reasons for recognizing this second
identity: first, access controls mght be specified such that
only a user is only permtted access to certain resources when
comi ng through certain trusted nodes (e.g., files that can't be
accessed froma term nal at hone); and second, before the
transition strategy to global identities is conplete, as a way to
refer to USERGNODE in a way anal ogous to existing nmechani sns but
with greater security.

The mappi ng of gl obal usernames to | ocal user nanes on a node is
out side the scope of DASS. This is done via a "proxy database"
or some anal ogous | ocal mechanism \What DASS provides are
mechani snms for addi ng node oriented credentials into a user’s
credentials structure, carrying the dual authentication
informati on in authentication tokens, and extracting the
information fromthe credentials structure created by
Accept _t oken.

Sonme applications of DASS will not nake use of the node

aut hentication related extensions. |In that case, they will never
use the Conbi ne_credentials, Create_credentials, Get_node_info,
or Verify_node_nane functions.

The "normal " sequence of events surrounding a user logging into a
node are as follows:

a) Wen the user logs in, he types either a |local user |ID known
to the node or a global nanme (the details of the user
interface are inplenmentation specific). Through sone sort of
| ocal mapping, the node determ nes both a gl obal nane and a
| ocal account nane. The user also enters a password
correspondi ng to the gl obal nane.

b) The node calls network_ | ogin specifying the user’s gl obal name
and the supplied password. The result is credentials which
can be used to access network services but which have not yet
been verified to be valid.
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c) The node calls verify principal _nanme using its own credentials
to verify the authenticity of the user’s credentials (these
node credentials nust have previously been established by a
call to initialize_server during node initialization).

d) If that test succeeds, the node adds its credentials to those
of the user by calling conbine credentials.

The set of facilities for manipulating credentials follow
3.9.1 Network login

Net wor k_I ogi n(

--inputs

Narme Nane,

password String,

keysi ze I nt eger,

expiration Tinme interval

TA credentials Credential s, --optiona
--outputs

Clai mant _credentials Credentials)

This function creates credentials for a principal when the principa
"l ogs into the network".

Name is the X 500 nane of the principal

Password is a secret which authenticates the principal to the
net wor k.

Keysi ze specifies the size of the tenporary "l ogin" or "del egation”
key. In a real inplementation, it is expected to be an
i mpl ement ati on constant (nost likely 384 or 512 bits).

Expiration sets a lifetime for the credentials created. For a normnal
login, this is likely to be an inplenentation constant on the order
of 8-72 hours. Sone nechanismfor overriding it nust be provided to
make it possible (for exanple) to subnit a background job that night
run days or even nonths after they are submitted.

TA credential s are used if the encrypted credentials are protected
by a login agent. If they are missing, the password will be Iess well
protected from guessing attacks.

This routine does not (as one night expect) securely authenticate the
principal to the calling procedure. Since the password is used to
obtain the principal’s private key, this call will normally fail if
the principal supplies an invalid password. A penetrator who has
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conpromi sed the naming service could plant fake encrypted credentials
under any nane and inpersonate that name as far as this call is
concerned. A caller that wishes to authenticate the user in addition
to obtaining credentials to be able to act on the user’s behal f
shoul d call Verify_principal _name (below) with the created
credentials and the credentials of the calling process.

This routine constructs a credentials structure frominformation
found in the nanming service encrypted using the supplied password.

a) If the encrypted credentials structure is protected with a
|l ogin agent, retrieve the public key of the |ogin agent:

1) If TA credentials are available, use themin a call to
Get _Pub_Keys to get the public key of the |login agent (whose
nane is derived fromthe name of the principal by truncating
the last element of the RDN and addi ng CSS=X509).

2) If TA credentials are not available, |ook up the public key
of the login agent in the naning service

Login agents limt and audit password guesses, and are

i mportant when passwords may not be well chosen (as when users
are allowed to choose their owmn). To fully prevent the
password guessing threat, principals may only | og onto nodes
that al ready have TA credentials which can be used to

aut henticate the login agent. To support nodes which have no
credentials of their own and to allow this procedure to
support node initialization, it is possible to network |ogin
wi t hout TA credenti al s.

A principal who logs into a node that [ acks TA credentials is
subject to the followi ng subtle security threat: A penetrator
who i npersonates the nam ng service could post his own public
key and address as those of the login agent. This procedure
woul d then in the process of logging in reveal the the
penetrator enough infornmation for the penetrator to nount an
unaudi ted password guessing attack against the principal’s
credenti al s.

b) Retrieve the encrypted credentials fromthe nanmi ng service or
login agent. In the case of the |login agent, the password is
one-way hashed to produce proof of know edge of the password
and the hashed value is supplied to the |ogin agent encrypted
under its public key as part of the request.

c) Decrypt the encrypted credentials structure using a the
suppl i ed password. Verify that the decryption was successfu
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d)

f)
9)

h)

by verifying that the resulting structure can be parsed
according the the ASN. 1 rules for Encrypted_Credentials and
that the two included primes when multiplied together produce
the included modulus. If the decryption was unsuccessful then
the routine returns the ‘lInvalid password error status. The
decryption results in both the Private Key and the Public Key.

Cenerate a public/private key pair for the Del egation Key,
using the indicated keysize. Key size is likely to be an

i npl enment ati on constant rather than a supplied paraneter, with
likely values being 384 and 512 bits. Key sizes generally
will have to increase over tine as factoring technol ogy and
CPU speeds inprove. Delegation keys can be relatively shorter
than | ong term keys because DASS is designed so that
conpromi se of the delegation key after it has expired does not
result in a security conprom se. An inportant advantage of
maki ng key size an inplenentation constant is that nodes can
generate key pairs in advance, thus speeding up this procedure.
Key generation is the nost CPU intensive RSA procedure and
coul d nmake I ogi n annoyi ngly sl ow

Construct a Login Ticket by signing with the user’s private
key a conbination of the public key, a validity period
constructed fromthe current tine and the expiration passed in
the call, and the principal U D found in the encrypted-key
structure.

Forget the user’s private key.

Retrieve fromthe naming service any trusted authority
certificates stored with the user’s entry. Discard any that
are not signed by the user’'s public key and UD. An

i mpl ementation in which the I ogin node has credentials of its
own may choose its trusted authority information instead of
retrieving and verifying trusted authority certificates from
the naning service. This will have a subtle effect on the
security of the resulting system

Construct a credentials structure from

1) daimant credentials:
(i) Nane of the principal fromcalling paraneter
(ii) Login Ticket as constructed in (e)
(iii)Delegation Private key as constructed in (d)

(iv) Public key fromthe encrypted credentials structure

2) No verifier credentials
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3) Trusted Authorities: for the nost recently signed trusted
authority certificate (There is nornmally only one Trusted
Authority Certificate. |If there is nore than one then an
i npl enment ati on nmay choose to maintain a list of all the valid
keys. They should all refer to the same CA (U D and nane).):

(i) Nane of the CAfromthe subject field of the certificate
(ii) Public Key of the CA fromthe subject public key field
(iii)UDof the CAfromthe subject UD field

4) no renote node credentials

5) no local node credentials

6) no cached out goi ng associ ati ons

7) no cached inconi ng associ ations
3.9.2 Create Credentials

Create_credential s(
--outputs
G ai mant _credentials Credentials)

This routine creates an "enpty" credentials structure. 1t is needed
in the case of a user logging into a node and obtai ni ng node oriented
credential s but no global username credentials. Because the

"conbi ne_credentials" call wants to nodify a set of user credentials
rather than create a new set, this call is needed to produce the
"shell" for conbine credentials to fill in.

It is unlikely that any real inplenentation would support this
function, but rather would have sonme functions whi ch conbi ne
network_|l ogin, create_credentials, and conbine_credentials in
what ever ways are supported by that node.

3.9.3 Conbine Credentials

Conbi ne_credenti al s(

--inputs
node credential s Credenti al s,
| ocal user nanme String,

- -updat ed
user _credentials Credenti al s)

This routine is provided by inplenmentations which support the notion
of local node credentials. After the node has verified to its own
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satisfaction that the user _credentials are entitled to access to a
particul ar |local account, this call adds node credential infornation
to the user_credential structure. This function nmay be applied to
user_credentials created by network | ogin, create_credentials, or
accept _t oken.

a) Fill in the I ocal node credentials substructure of
user _credentials as foll ows:

1) Full nanme of the node: from Full nane of the Principal in
node_credentials

2) Local usernanme on the node: from proxy | ookup

3) RSA private key of the node: fromverifier credentials in
node credentials

b) Optionally, change the trusted authorities to match the
trusted authorities fromthe node credentials. This is an
i mpl ement ati on option, done nost likely as a perfornmance
optim zation. The only case where this option is required is
where no trusted authorities existed in the user credentials
(because they were created by create_credential s of
accept _token). Server credentials should generally keep their
own trusted authorities.

It is likely that an inplenmentation will choose not to replicate its
node credentials in every credentials structure that it supports, but
rather will maintain sone sort of pointer to a single copy. This
algorithmis stated as it is only for ease of specification

3.9.4 Initialize_server

initialize_server(

--inputs
Name Nane,
password String,
TA credential s Credentials, --optiona
--outputs
Server_credential s Credenti al s)

Sonmehow a server nust get access to its credentials. One way is for
the credentials to be stored in the naming service |ike user
credentials encrypted under a service password. The service then
needs to gain at startup time access to a service password. This may
be easier to manage and is not insecure so long as the service
password is well chosen. Alternately, the service needs some

mechani smto gain access directly to its credentials. The credentials
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created by this call are intended to be very long lived. They do not
time out, so a node or server nmight store themin Non-Volatile menory
after "initial installation” rather than calling this routine at each
"boot". These credentials are shared between all servers which use
the sane key. This routine works as foll ows:

a) Retrieve fromthe nam ng service or |ogin agent the encrypted
credentials structure corresponding to the supplied nane. See
Network_login for a discussion of the use of TA credentials
and | ogi n agents.

b) Decrypt that structure using a one-way hash of the supplied
password. Verify that the decryption was successful. Verify
that the public key in the structure matches the private key.

c) Retrieve fromthe nam ng service any trusted authority
certificates stored under the supplied name. Discard any which
do not contain the UD fromthe encrypted credentials
structure or are not signed by the key in the encrypted
credentials structure.

d) Construct a credentials structure from

1) daimant credentials:
(i) Nane of the principal fromthe calling paraneter
(ii) U Dof the principal fromthe encrypted-key structure
(iii) No login ticket
(iv) No login secret key

2) Verifier credentials:
(i) Server secret key fromthe encrypted-key structure

3) Trusted Authorities: fromthe nost recently signed Trusted
Authority Certificate:
(i) Nanme of CA fromthe Subject Nane field
(ii) UDof the CAfromthe Subject UDfield
(iii) Public Key of the CA fromthe Subject Public Key field
4) no node credentials
5) no cached out goi ng associ ati ons

6) no cached inconing associ ations
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3.9.5 CGenerate Server Ticket

gener ate_server _ti cket (

--inputs
expiration Time interval

- - updat ed
Server_credentials Credenti al s)

Server credentials created by initialize_server can be used to accept
i ncom ng aut hentication tokens and can act as node_credentials for
out goi ng aut hentications, but cannot create user_credentials of their
own. |If a server initiates connections on its own behalf, it nust
have a ticket just like any other user might have. That ticket has
limted lifetime and the right to act on behalf of the server can be
del egated. The server cannot, however, delegate the right to receive
connections intended for it. An inplenmentation nust come up with a
policy for the expiration of server tickets and how | ong before
expiration they are renewed. A likely policy is for this procedure
to be inplicitly called by Create token if there is no current ticket
present in the credentials. |If so, this interface need not be
exposed.

This routine is inplenented as foll ows:
a) Cenerate an RSA public/private key pair.

b) Conpute a validity interval fromthe current tinme and the
expiration supplied.

c) Construct a login ticket fromthe RSA public key (froma),
validity interval (fromb), the UD fromthe credentials, and
signed with the server key in the credentials. (Discard
previous Login Ticket if there was one).

d) Discard all information in the Cached Qutgoing Contexts.

3.9.6 Delete Credentials
del et e_credenti al s(
- -updat ed
credential s Credenti al s)

Erases the secrets in the credentials structure and deal | ocates the
st or age.
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3.10 Aut hentication Procedures

The guts of the authentication process takes place in the next two
calls. When one principal wishes to authenticate to another, it calls
Create_t oken and sends the token which results to the other. The

reci pient calls Accept_token and creates a new set of credentials.
The other calls in this section nanipulate the received credentials
in order to retrieve its contents and verify the identity of the
token creator.

3.10.1 Create Token

Creat e_t oken(

--inputs
target _nane Nane
del eg req_fl ag Bool ean
mut ual _req_fl ag Bool ean,
replay_det _req flag Bool ean,
sequence_req_fl ag Bool ean
chan_bi ndi ngs Cctet String
I ncl ude_pri nci pal _nane Bool ean
I ncl ude_node_nane Bool ean
I ncl ude_user name Bool ean

- - updat ed

cl ai mant _credentials Credenti al s,

--outputs

aut henti cati on_t oken Aut hent i cati on token
mut ual _aut henti cati on_t oken
Mut ual Aut henti cati on token

Shar ed_key Shar ed Key,

i nstance_identifier Ti mest anp)
This routine is used by the initiator of a connection to create an
aut henti cation token which will prove its identity. If the claimnt
credential s includes node/account information, the token will include

node aut henticati on

target _nanme is the X 500 nane of the intended recipient of the token
Only an entity with access to the private key associated with that
nane will be able to verify the created token and generate the

mut ual _aut henti cati on_t oken.

del eg req_flag indicates whether the caller w shes to delegate to the
reci pient of the token. If it is set, the del egated credentials
returned by Accept _token will be capable of generating tokens on
behal f of the caller. Node based authentication infornmation cannot be
del egated. The mutual req_flag, replay_det _req_flag , and
sequence_req _flag are put in the authentication token and passed to
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the target. This information is included in the token to nake it
easier to inplenment the GSSAPI over DASS. DASS itself nmakes no use
of this information

In nost applications, the purpose of a token exchange is to
authenticate the principals controlling the two ends of a

communi cati on channel. chan_bindings contains an identifier of the
channel which is being authenticated, and thus its format and content
shoul d be tied to the underlying conmuni cation protocol. DASS only

guarantees that the informati on has been conmunicated reliably to the
naned target. If DASS is used with a cryptographically protected
channel (such as SP4), this data should contain a one-way hash of the
key used to encrypt the channel. If that channel is nultiplexed, the
data should al so include the ID of the subchannel. [|f the channel is
not encrypted, the network nust be trusted not to nodify data on a
connection. The source and target network addresses and a connection
I D should be included in the chan_bi ndings at the source and checked
at the target. A token exchange also results in the two ends sharing
a key and an instance identifier. |If that key and instance
identifier are used to cryptographically protect subsequent
conmuni cati ons, then chan_bi ndi ngs need not have any cryptographic
significance but nmay be used to differentiate nultiple entities
sharing the public keys of communicating principals. For exanple, if
a service is replicated and all replicas share a public key,
chan_bi ndi ngs shoul d i ncl ude sonething that identifies a single

i nstance of the service (such as current address) so that the token
cannot be successfully presented to nore than one of the servers.

i ncl ude_princi pal _nane, include_node_name, and include_usernane are
flags which determ ne whether the principal nane, node nane, and/or
username fromthe credentials structure are to be included in the
token. This information is nade optional in a token so that
applications which comunicate this information out of band can
produce "conpressed" tokens. If this information is included in the
token, it will be used to populate the corresponding fields in the
credentials structure created by Accept token. clainmant_credentials
are the credentials of the calling procedure. The secrets contained
therein are used to sign the token and the trusted authorities are
used to securely learn the public key of the target. The cached

out goi ng contexts portion of the credentials may be updated as a side
effect of this call.

The major output of this routine is an authentication_token which
can be passed to the target in order to authenticate the caller

In addition to returning an authentication token, this routine

returns a nutual _authentication_token, a shared_key, and an
instance_identifier. The nutual authentication token is the sane as
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the one generated by the Accept _token call at the target. If the
protocol using DASS wi shes nutual authentication, the target should
return this token to the source. The source will conpare it to the
one returned by this routine using Conpare_Mitual Token (bel ow) and
know t hat the token was accepted at its proper destination

The DES key and instance identifier can be used to encrypt or sign
data to be sent to this target. The key and instance will be given to
the target by Accept_token, and the key will only be known by the two
parties to the authentication. If a single set of credentials is used
to authenticate to the same target nore than once, the sanme DES key
is likely to be returned each tine. |If the parties wish to protect
agai nst the possibility of an outside agent nixing and matching
nmessages from one aut henticated session with those of another, they
shoul d include the instance identifier in the nessages. The instance
identifier is a tinmestanp and it is guaranteed that the DES
key/instance identifier pair will be unique.

An inmplenentation may wish to "hide" the DES key fromcalling
applications by placing it in systemstorage and providing calls
whi ch encrypt/decrypt/sign/verify using the key.

The primary tasks of this routine are to create its output
paraneters. As a side effect, it may al so update claimant_credential s
It'’s algorithmis as follows:

a) The login ticket is checked. If it has passed the end of its
lifetime an ‘Login Ticket Expired error is returned. If there
is alogin ticket, but no corresponding private key then an
‘“Invalid credentials’ error is returned (this is the case if
the credentials were created by an authentication-wi thout -
del egation operation). |If there is no login ticket or an
expired one and if the long termprivate key is present in the
credentials, an inplenmentation may choose to automatically cal
create_server _ticket to renew the ticket.

b) Create new tinestanp using the current tine. (This tinestanp
nmust be unique for this Shared Key. The tinmestanp is a 64 bit
POSI X tine, with a resolution of 1 nanosecond An inplenen tation
must ensure that tinmestanps cannot be reused.)

c) The public key and U D of target _nane are | ooked up by calling
get _pub_keys, using the target_name and the Trusted Authority
section of the claimnt _credentials structure. If none is
found, an error status is returned. Otherw se, the cached
out bound connections portion of credentials are searched
(i ndexed by target Public Key) for a cached Shared key with a
validity interval which has not expired. If a suitable one is
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d)

f)

9)

h)

i)

k)

found skip to step g, else create a cache entry as foll ows:

Destination Public Key is the one found | ooking up the target.
A Shared Key is generated at random A validity interval is
chosen according to node policy but not to exceed the validity
interval of the ticket in the credentials (if any).

Create the Encrypted Shared Key, using the public key of the
Target, and place in the cache.

If node authentication credentials are available in the
credentials structure, create a "Node Ticket" signature using
the node secret and include it in the cache.

If delegation is requested and no del egator is present in the
cache, create one by encrypting the del egation private key
under the Shared key. The del egation private key is
represented as an ASN. 1 data structure containing only one of
the prines (p).

If delegation is not requested and no Shared Key Ticket is in
the cache, create one by signing the requisite information
with the del egation private key.

Create the Authenticator. The contents of the Authenticator
(i ncluding the channel bindings) are encoded into ASN. 1, and
the signature is conputed. The Authenticator is then
re-encoded, wi thout including the Channel Bindings but using
the sane signature.

Create output _token as follows:

1) Encrypted Shared Key from cache

2) Login Ticket fromdainmant Credentials (if present)

3) Shared Key Ticket fromcache (if no delegation and if
present)

4) Node Ticket fromcache (if present)

5) Del egator fromcache (if delegation and if present)

6) Aut henti cator

7) Principal name fromcredentials (if present and paraneter
requests this)

8) Node name fromcredentials (if present and paraneter request
t hi s)

9) Local Username fromcredentials (if present and paraneter
requests this)

Conmput e Mut ual _aut henti cati on_token by encrypting the
timestanp fromthe authenticator using the Shared key.
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I) The instance_ identifier is the tinestanp. This and the Shared
key are returned for use by the caller for further encryption
operations (if these are supported).

3.10. 2 Accept _token

Accept _t oken(

--inputs
aut henti cation_token Authentication Token,
chan_bi ndi ngs Cctet String,

- - updat ed
verifying credentials Credentials,

--outputs
accepted credentials Credentials,
del eg req_fl ag Bool ean
mut ual _req_fl ag Bool ean
replay_det _req_flag Bool ean,
sequence_req_fl ag Bool ean

mut ual _aut henti cati on_t oken

Miut ual aut hentication token
shar ed_key Shared Key,
i nstance_identifier Ti mest anp)

This routine is used by the recipient of an authentication token to
validate it. authentication_token is the token as received,
chan_bindings is the identifier of the channel being authenticated.
See the description of Create_token for information on the
appropriate contents for chan_bi ndings. DASS does not enforce any
particul ar content, but checks to assure that the sane value is
supplied to both Create_token and Accept token

Verifying_credentials are the credentials of the recipient of the
token. They nmust include the private key of the entity naned as the
target in Create_token or the call will fail. The cached incon ng
contexts section of the verifying credentials my be nodified as a
side effect of this call

Accepted credentials will contain additional information about the
token creator. |If del egati on was requested, these credentials can be
used to make additional calls to Create token on the creator’s
behal f. Whether or not del egation was requested, they can al so be
used in the calls which follow to gain additional information about
t he token creator.

The del eg_req_flag indicates whether the accepted_credentials include
del egati on which can be used by the recipient to act on behal f of the
principal. Mitual _req_flag, replay_det _req_flag, and
sequence_req_flag are passed through from Create_token in support of
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t he GSSAPI. DASS nakes no use of these fields.

The mut ual _aut hentication_token can be returned to the token creator
as proof of receipt. In many protocols, this will be used by a client
to authenticate a server. Only the genuine server would be able to
conpute the nutual authentication_token fromthe token

The shared_key and instance_identifier can be used to encrypt or sign
data between the two authenticating parties. See Create_token

This routine verifies the contents of the authentication token in the
context of the verifying credentials (In particular, the Private Key
of the server is used. Also, the Cached Incom ng Contexts and
Incoming Timestanp list is used.) and returns information about it.
The al gorithm updates a cache of information. This cache is not
updated if the algorithmexits with an error. The algorithmis as
fol | ows:

a) If there is a Login Ticket, but no Shared Key Ticket or
Del egator then exit with error ‘Invalid Authenticator’. I|f
there is a Shared Key Ticket or Del egator, but no Login Ticket
then exit with error ‘Invalid Authentication Token’

Look up the Encrypted Shared key in the Cached I ncomi ng Contexts
of the credentials structure. (This cache entry is used during
the execution of this routine. An inplenmentation nust ensure that
references to the cache entry can not be affected by other users
nmodi fying the cache. One way is to use a copy of the cache entry,
and update it at exit.) If it is not found then create

a new cache entry as foll ows:

1) Encrypted Shared Key, fromthe Authentication Token

2) Shared Key and Validity Interval, by decrypting the
Encrypted Shared Key using the server private key in
credentials. If the decryption fails then exit with error
“Invalid Authentication Token’

b) Check that the Validity Interval (in the cache entry) includes
the current tinme; return ‘Invalid Authentication Token’ if not.

Check the Tinestanp is wthin max-cl ock-skew of the current
time, return ‘invalid Authentication Token’ if not.

Reconstruct the Authenticator including the Channel Bindings
passed as a paraneter.
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Check that the reconstructed Authenticator is signed by the
Shared key. If not then exit with error ‘Invalid
Aut hent i cati on Token’

Look up the Authenticator Signature in the Received

Aut henticators. If the same Signature is found in the |ist
then exit with error ‘Duplicate Authenticator’. O herw se add
the Signature and tinmestanp to the I|ist.

If there is a Login Ticket and the Delegation Public key is in
the cache entry, then check that the sane key is specified in
the Login Ticket, if not then exit with error ‘Invalid

Aut henti cation Token'. Place the Delegation Public key in the
cache if it is not already there.

If there is a Login Ticket, the Del egati on Public key was not
previously in the cache entry, and there is a Shared Key
Ticket in the Authentication Token, then check that the Shared
Key Ticket is signed by the Del egation Public Key in the Login
Ticket. If not then exit with error ‘Invalid Authentication
Token’ .

If a delegator is present in the nessage then decrypt the

del egator using the Shared key. |If the private key does not

mat ch the Del egation Public key then exit with error

‘“Invalid Authentication Token” (The prinme in the del egator

is used to find the other prime (fromthe nodul us). The division
must not have a remainder. Neither prinme may be 1. The two
primes are then used to reconstruct any other information

needed to perform cryptographi c operations.).

Build the delegation credentials data structure as foll ows:

1) daimant credentials:
(i) Login Ticket fromthe Authentication token
(ii) Delegation Private key fromthe decrypted del egator if
the token is del egating.
(iii)Encrypted Shared Key fromthe Authentication token

2) There are no verifier credentials.

3) Trusted authorities are copied fromthe verifying credentials
passed to this routine (If an inplenmentation is able to
obtain the original Trusted Authorities of the Principal then
it my do so instead of using the server’s Trusted
Aut horities.).

4) Renote node credential s (Node nane, Usernane, Node Ticket)

5) There are no |l ocal node credentials.

6) There are no cached contexts.
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c) The returned bool ean val ues are obtained fromthe
Aut hent i cat or
d) Mitual _aut hentication_token is conputed by encrypting the

timestanp fromthe Authenticator with the Shared key fromthe
cache.

e) Instance_ identifier is the timestanp fromthe Authenticator
This and the Shared key are returned to the caller for further
encryption operations (if these are supported).

3.10. 3 Conpare Mutual Token

Conpar e_rmut ual _t oken(

--inputs
Cener at ed_t oken Mut ual aut henti cation token
Recei ved_t oken Mut ual aut henti cati on token
--outputs

equality flag Bool ean)

This routine conpares two nutual authentication tokens and tells

whet her they match. 1In the expected use, the first is the token
generated by Create_token at the initiating end and the second is the
t oken generated by Accept token at the accepting end and returned to
the initiating end. This routine can be inplenented as a byte by
byt e conparison of the two paraneters

3.10.4 Get Node Info

get _node_i nf of

--inputs
accepted credentials Credentials,
--out puts
nodenarne Nane,
user nane String)

This routine extracts from accepted credentials the nane of the node
fromwhi ch the authentication token cane and the named account on

t hat node. Because this information is not cryptographically
protected within the token, this information can only be regarded as
a "hint" by the receiving application. It can, however, be verified
using Verify node nane in a cryptographically secure manner. This
information will only be present if these are accepted credentials
and it the caller of Create _token set the include_node_name and/ or

i ncl ude_usernane fl ags.

An actual inplenmentation is not likely to have get_node_i nfo and
verify node nane as separate calls. They are specified this way

Kauf man [ Page 70]



RFC 1507 DASS Sept ember 1993

because there are different ways this information night be used. For
nost applications, the nodenanme and usernanme will be included in the
token, and a single function m ght extract and verify them (it night
in fact be part of accept token). For other applications, the
nodenane and usernane will not be in the token but rather will be
conputed from other information passed during connection initiation
so a call would have to take these as inputs. Still other
applications such as ACL evaluators that want to support the renaning
and aliasing capabilities of DASS woul d defer verifying node
information until they came upon an ACL which allowed access only
froma particular node. They would then verify that the name on the
ACL was an authenticatable alias for the node which created the
token. Al of these uses can be defined in ternms of calls to

get _node_info and verify_node_nane.

3.10.5 Get Principal UD

get _principal _uid(
--inputs
accepted credentials Credentials,
--outputs
uid Ul D)

This routine extracts a principal UD froma set of credentials.

As with Get_Node_ Info, this interface is not likely to appear in an
actual inplenentation, but rather will be bundled with other
routines. It is specified this way because there might be a variety
of algorithms by which credentials are evaluated and all of them can
be defined in terns of these primtives.

In DASS, it is possible for a principal to have nany aliases. This
can happen either because the principal was given multiple nanes to
limt the nunber of CAs that need to be trusted when authenticating
to different servers or because the principal’s nane has changed and
the old nane renmins behind as an alias. Accept_token returns the
nane by which the principal identified itself when creating its
credentials. A service may know the user by sone alias. The normal
way to handle this is for the service to know the principal’s UD
(which is constant over nanme changes) and to conpare it with the UD
in the token to identify a likely alias situation. It gets the UD
fromthe token using this routine. It then confirns the alias by
calling verify_principal _nane.

The UDis in a signed portion of accepted credentials, but the

signature may not have been verified at the time this call is issued.
The information returned by this routine nust therefore be regarded
as a hint. If acall to Verify_principal_name succeeds, however,
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then the caller can securely know that the nane given to that routine
and the U Dreturned by this one are the authenticated source of the
t oken.

3.10.6 Get Principal Name

get _princi pal _name(
--inputs
accepted_credentials Credentials,
--outputs
nane Nane)

This routine extracts a principal nane froma set of credentials.
This nanme is the nane nost recently associated with the principal. It
may be the name that the principal supplied when the credentials were
created (in which case it may not have been verified yet) or it may
be a different name that has been verified.

As with Get _Node Info and Get _Principal _UD, this routine is not
likely to appear in an actual inplenmentation, but will be bundled in
sone fashion with related procedures. The name returned by this
procedure is not guaranteed to have been cryptographically verified.
Verify_ Principal _Nane perforns that function

3.10.7 Get Lifetine

get _lifetime(
--inputs
Claimant _credentials Credentials,
--outputs
lifetinme Dur ati on)

This routine conputes the life remaining in a set of credentials.
Its nost common use would be to know to renew credentials before they
expire

Returns the remaining lifetime of the login ticket in the
credentials. This can either be the done on the node where the
original login took place, or at a server which has been del egat ed
to. It indicates how nuch | onger these credentials can be used for
further delegations. This routine will return O if the login ticket
has passed the end of its life, if there is no login ticket, or if
the credentials do not contain the private key certified by the
ticket (i.e., where they were created by an authentication-w thout-
del egati on operation).
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3.10.8 Verify Node Name

Verify_node_name(
--inputs
nodenane Nane,
user name String,

- - updat ed
verifying_credentials Credentials,
accepted_credentials Credentials,

--outputs
Nanme mat ches Bool ean)

This routine tests whether the originating node of an authentication
t oken can be authenticated as having the provided name. Like a
principal, a node may have nultiple aliases. One of them may be
returned by Get_node_info, but this call allows a suspected alias to
be verified. The verifying credentials supplied with this call nust
be the sanme credentials as were used in the Accept _token call. The
procedure for conpleting this request is as follows:

a) If there is no Node Ticket in the claimnt credentials then
return Fal se.

b) Search the incom ng context cache of the verifying credentials
for an entry containing the sanme encrypted shared key as the
encrypted shared key subfield of the claimnt infornation of
the accepted credentials. |In the steps which follow,
references to "the cache" refer to this entry. |If none is
found, initialize such an entry as foll ows:

1) Encrypted shared key fromthe encrypted shared key subfield
of the claimant information of the accepted credential s.

2) The shared key and validity interval are determ ned by
decrypting the encrypted shared key using the RSA private
key in the verifier information of the server credentials.
If this procedure is called after a call to Accept _token
using the sane server credentials (as is required for
correct use), the shared key and validity interval nust

correctly decrypt. |If called in sone other context, the
results are undefined. The validity interval is not
checked.

3) Initialize all other entries in the cache to mnissing.
c) If there is a "local usernane on client node" in the cache and

it does not match the usernane supplied as a paraneter, return
Fal se.
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d) If there is a "nane of client node" in the cache and it
mat ches the nodenane supplied as a paraneter:

1) Set the "Full nanme of the node" subfield of the renote node
aut hentication field of the accepted credentials to be the
nodenane supplied as a paraneter.

2) Set the "Local Username on the node" subfield of the renote
node authentication field of the accepted credentials to be
t he usernanme supplied as a paraneter.

3) return True.

e) Call the Get Pub_Keys subroutine with the server_credential s,
t he nodenane supplied as a paraneter, and Try_Hard=Fal se.

f) If "Public Key of dient Node" is mssing fromthe cache
check all of the Public keys returned to see if one verifies
the node ticket. |f one does, set the "Public Key of Cient
Node" and "U D of Client Node" fields in the cache to be the
PK/U D pair that verified the ticket and set the "Loca
Username on Cient node" field to be the usernane supplied as
a paraneter.

g) If any of the Public Key/U D pairs natch the "Public Key of
Cient Node" and "U D of Cient Node" fields in the cache,
t hen:

1) Set the "nane of client node" in the cache equal to the
nodenane supplied as a paraneter.

2) Set the "Full name of the node" subfield of the renote node
aut hentication field of the accepted credentials to be the
nodenane supplied as a paraneter.

3) Set the "Local Usernane on the node" subfield of the renote
node authentication field of the accepted credentials to be
t he usernanme supplied as a paraneter.

4) Return True.

h) If none of themmatch, call Get_ Pub_Keys again with
Try Hard=True and repeat steps 6 & 7. |If Step 7 fails a
second tine, return Fal se.
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3.10.9 Verify Principal Name

Verify_principal _name(
--inputs
princi pal _nane Nane,
- - updat ed
verifier _credentials Credentials,
clai mant _credentials Credentials,
--outputs
Name mat ches Bool ean)

This routine tests (in the context of the verifier credentials)
whet her the claimant credentials are authenticatable as being those
of the named principal. This procedure is called with a set of
accepted credentials to authenticate their source, or with a set of
credential s produced by network |login to authenticate the creator of

those credentials. |If the claimant credentials were created by
Accept _token, then the verifier credentials supplied in this cal
nmust be the same as those used in that call. The procedure for

completing this request is as foll ows:

a) If there is no Login Ticket in the claimant credentials, then
return Fal se.

b) If the current tine is not within the validity interval of the
Login Ticket, then return Fal se.

c) If there is an Encrypted Shared Key present in the C ai mant
information field of the claimnt credentials, then find or
create a matching cache entry in the Cached | ncom ng Contexts

of the verifier credentials. In the description which
follows, references to "the cache" refer to this entry. |If
the cache entry nust be created, its contents is set to be as
fol | ows:

1) Encrypted shared key fromthe encrypted shared key subfield
of the claimant infornmation of the accepted credential s.

2) The shared key and validity interval are deternined by
decrypting the encrypted shared key using the RSA private
key in the verifier information of the server credentials.
If this procedure is called after a call to Accept_token
using the sane server credentials (as is required for
correct use), the shared key and validity interval nust

correctly decrypt. |If called in sone other context, the
results are undefined. The validity interval is not
checked.
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3) Initialize all other entries in the cache to m ssing.

d) If there is a cache entry and if the "Public Key of dient
Principal" field is present and if the "UD of dient
Principal"” field is present and matches the U D in the Login
Ti cket, then:

1) Set the Public Key of the principal field in the C ai mant
information to be the Public Key of Cient Principal

2) If the "Full name of the principal” field is mssing from
the claimant information of the claimant credentials, then
set it to the "Nane of Client Principal" field fromthe
cache.

e) If there is a cache entry and if the "Nane of Cient
Principal" field is present and if it matches the principa
nane supplied to this routine and if the UD in the cache
mat ches the U D in the Login Ticket, return True.

f) Call the Get_Pub_Keys subroutine with the name and verifier
credentials supplied to this routine and Try_Har d=FALSE
I gnore any keys retrieved where the corresponding U D does not
match the U D in the claimnt credentials.

g) If the Public Key of the principal is mssing fromthe
claimant information of the claimnt credentials, then attenpt
to verify the signature on the login ticket with each public
key returned by Get Pub_Keys. If verification succeeds:

1) Set the Public Key of the principal in the clainmant
informati on of the clainant credentials to be the Public Key
that verified the ticket.

2) If the Full nane of the principal in the claimnt
informati on of the clainmant credentials is mssing, set it
to the nanme supplied to this routine.

3) If there is a cache entry, set the Nane of Cient Principa
to be the name supplied to this routine, the UD of dient
Principal to be the UD fromthe Login Ticket, and the
Public Key of Client Principal to be the Public Key that
verified the ticket.

4) Return True.

h) If the Public Key of the principal is present in the claimant
information of the claimant credentials, then see if it
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mat ches any of the public keys returned by Get Pub _Keys. |f
one of them natches:

1) If the Full nane of the principal in the claimnt
informati on of the claimnt credentials is mssing, set it
to the nanme supplied to this routine.

2) If there is a cache entry, set the Nane of Cient Principa
to be the name supplied to this routine, the UD of dient
Principal to be the UD fromthe Login Ticket, and the
Public Key of Client Principal to be the Public Key that
verified the ticket.

3) Return True.

i) If steps 7 & 8 fail, retry the call to Get_Pub_Keys with
Try_Hard=TRUE, and retry steps 7 & 8. If they fail again,
return fal se.

3.10.10 CGet Pub Keys

Get _Pub_Keys(

--inputs
TA credentials Credential s
Try Hard Bool ean
Tar get Nane Name,
--out puts
Pub_keys Set of Public key/U D pairs

This common subroutine is used in the execution of Create_ Token
Verify Principal _Nane, and Verify Node Nane. G ven the nane of a
principal, it retrieves a set of public key/U D pairs which

aut henticate that principal (normally only one pair). It does this
by retrieving fromthe nam ng service a series of certificates,
verifying the signatures on those certificates, and verifying that
the sequence of certificates constitute a valid "treewal k".

The credentials structure passed into this procedure represent a
starting point for the treewalk. Included in these credentials wll
be the public key, U D, and nane of an authority that is trusted to
authenticate all renote principals (directly or indirectly).

The "Try _Hard" bit is a specification anonaly resulting fromthe fact
that caches maintained by this routine are not transparent to the
calling routines. It tells this procedure to bypass caches when
doing all nane service | ookups because the information in caches is
believed to be stale. 1In general, a routine will call Get_Pub_Keys
with Try Hard set false and try to use the keys returned. |f use of
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those keys fails, the calling routine may call this routine again
with Try Hard set true in hopes of getting additional keys.
Routinely calling this routine with Try Hard set true is likely to
have adverse performance inplications but would not affect the
correctness or the security of the operation

The nane supplied is the full X 500 name of the principal for whom
public keys are needed as part of sone authentication process.

This procedure securely |learns the public keys and U Ds of foreign
principals by constructing a valid chain of certificates between its
trusted TA and the certificate namng the foreign principal. 1In the
si mpl est case, where the TA has signed a certificate for the foreign
principal, the chain consists of a single certificate. Oherw se,
the chain nust consist of a series of certificates where the first is
signed by the TA the last is a certificate for the foreign
principal, and the subject of each principal in the chain is the

i ssuer of the next. What follows is first a definition of what
constitutes a valid chain of certificates followed by a node

al gorithm which constructs all of (and only) the valid chains which
exi st between the TA and the target nane.

In order to limt the inplications of the conprom se of a single CA
and also to limt the conplexity of the search of the certificate
space, there are restrictions on what constitutes a valid chain of
certificates fromthe TA to the Nane provided. The only CAs whose
conprom se should be able to conpronmi se an authentication are those
controlling directories that are ancestors of one of the two nanes
and that are not above a common ancestor. Therefore, only
certificates signed by those CAs will be considered valid in a
certificate chain. Normally, the CA for a directory is expected to
certify a public key and U D for the CA of each child directory and
one parent directory. A CA may also certify another CA for sone
renote part of the nam ng hierarchy, and such certificates are
necessary if there are no CAs assigned to directories high in the
nam ng hi erarchy.

A certificate chain is considered valid if it neets the foll ow ng
criteria:

a) It nust consist of zero or nore parent certificates, followed
by zero or one cross certificates, followed by zero or nore
child certificates.

b) The number of parent certificates may not exceed the nunber of
I evel s in the nam ng hierarchy between the TA nane and the
nane of the | east conmmon ancestor in the nam ng hierarchy
bet ween the TA nane and the target nane.
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c) Each parent certificate nust be stored in the naning service
under the entry of its issuer

d) The subject of the cross certificate (if any) nust be an
ancestor of the target nanme but nust be a |onger nanme than the
| east common ancestor of the TA nanme and the target nane.

e) The cross certificate (if any) nust have been stored in the
nami ng service under the entry of its issuer or there nust
have been an indication in the nam ng service that
certificates signed by this issuer may be stored with their
subj ect s.

f) The issuer of each parent certificate does not have stored
with it in the nanming service a cross certificate with the
same i ssuer whose subject is an ancestor of the target nane.

g) Each child certificate nust be stored in the nam ng service
under the entry of its subject.

h) The subject of each child certificate does not have associ ated
with it in the naming service a cross certificate with the
same subj ect whose issuer is the sane as the issuer of any of
the parent certificates or the cross certificate of the chain.

i) The subject of each certificate nust be the issuer of the
certificate that follows in the chain. The equality test can
be met by either of two nethods:

1) The public key of the subject in the earlier certificate
verifies the signature of the later and the subject UDin
the earlier certificate is equal to the issuer UDin the
| ater; or

2) The public key of the subject in the earlier certificate
verifies the signature of the later, the earlier lacks a
subject U D and/or the later lacks an issuer U D and the
name of the subject in the earlier certificate is equal to
the nanme of the issuer in the later

j) The Public Key of the TA verifies the signature of the first
certificate.

k) The U D of the TA equals the U D of the issuer of the first
certificate or the UDis mssing on one or both places and
the nane of the TA equals the nane of the issuer of the first
certificate.
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I) All of the certificates are valid X 509 encodi ngs and the
current tine is within all of their validity intervals.

If a chainis valid, the nane which it authenticates can be
constructed as foll ows:

a) If the chain contains a cross certificate, the name
aut henti cated can be constructed by taking the subject name
fromthe cross certificate and appending to it a relative nane
for each child certificate which follows. The relative nane
is the extension by which the subject nane in the child
certificate extends the issuer nane.

b) If the chain does not contain a cross certificate, the nane
aut henti cated can be constructed by taking the TA nane,
truncating fromit the last n name conponents where n is the
nunber of parent certificates in the chain, and appending to
the result a relative nanme for each child certificate. The
relative nane is the extension by which the subject nane in
the child certificate extends the issuer namne.

In the cormon case, the authenticated name will be the subject
nane in the last certificate. The authenticated nanme is
constructed by the rules above to deal w th nanespace

reorgani zation. |f a branch of the nanespace is renaned (due to,
for exanple, a corporate acquisition or reorganization), only the
certificates around the break point need to be regenerated.
Certificates below the break will continue to contain the old
nanes (until renewed), but the algorithnms above assure the
principals in that branch will be able to authenticate as their
new nanes. Further, if the certificates at the branch point are
mai ntai ned for both the old and new nanes for an interim period,
principals in the noved branch will be able to authenticate as
either their old or new nanes for that interimperiod wthout
havi ng duplicate certificates.

A final conplication that the algorithmnust deal with is the

| ocation of «cross certificates. |If a key is conpronised or for
sonme other reason it is inportant to revoke a certificate ahead
of its expiration, it is renoved fromthe nam ng service. This
algorithmw Il only use certificates that it has recently
retrieved fromthe nam ng service, so revocation is as effective
as the nechani sns that prevent inpersonation of the naning

servi ce. There are plans to eventual ly use DASS mechani sms to
secure access to the naming service; until they are in place,
nane service inpersonation is a theoretical threat to the
security of revocation. Opinions differ as to whether it is a
practical threat. Child certificates are always stored with the
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subject and will not be found unless stored in the nane server of
t he subj ect. Parent certificates are always stored with the

i ssuer and will not be found unless stored in the name server of
the issuer. For best security, cross certificates should be
stored with the issuer because the nanme server for the subject
may not be adequately trustworthy to performrevocation. There
are performance and availability penalties, however, in doing so.
The architecture and the algorithmtherefore support storing
cross certificates with either the issuer or the subject. There
must be sone sort of flag in the nanme service associated with the
i ssuer saying whether cross certificates fromthat issuer are
pernmitted to be stored in the subject’s name service entry, and
if that flag is set such certificates will be found and used.

In order to nmake revocation effective, DASS nust assure that

nam ng servi ce caches do not becone arbitrarily stale (the

al | oned age of a cache entry is included in the sumof tinmes with
together nmake up the revocation tine). |If DASS uses a naning
service such as DNS that does not tinme out cache entries, it nust
bypass cache on all calls and (to achi eve reasonabl e perfornance)
mai ntain its own naning service cache. |t may be advantageous to
mai ntain a cache in any case so the that the fact that the
certificates have been verified can be cached as well as the fact
that they are current.

3.10.10.1 Basic Al gorithm

For ease of exposition, this first description will ignore the
operation of any caches. Perm ssible nodifications to take
advant age of caches and enhance perfornance will be covered in
the next section. This path will be followed if the Try Hard bit
is set True on the call.

Rat her than trying construct all possible chains between the TA
and the name to be authenticated (in the event of multiple
certificates per principal, there could be exponentially nmany
valid chains), this algorithmconputes a set of PK/ U DN Nare
triples that are valid for each principal on the path between the
TA and the nane to be authenticated. By doing so, it mnininizes

t he processing of redundant information

a) Determining path and initialization

Several state variables are manipulated during the tree walk.
These are call ed:
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2)

3)

4)

5)
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Current-directory-name
This is the nane indicating the current place in the tree
wal k. Initially, this is the name of the TA

Least - Conmon- Ancest or - Nane

This is the portion of the nanes which is commopn to both the
CA and the Target. This is conputed at initialization and
does not change during the treewal k.

Tr ust ed- Key- Set

For each name which is an ancestor of either the TA or the
Target but not of the Least-Conmon-Ancestor, a list of
PK/U D/ Nane triples. This is initialized to a single triple
fromthe TA information in the supplied credentials.

Sear ch- when- descendi ng
This is a list of PK/UD Nane triples of issuers that wll
be trusted when descending the tree. This set is initially

enpty.

Saved- RDNs

This is a sequence of Rel ative Distingui shed Nanes (RDNs)
stripped off the right of the target nanme to form

Least - conmon- ancestor-nane. This "stack"” is initially enpty
and is popul ated during Step 3.

b) Ascending the "TA side" of the tree

VWhile Current-directory-nanme is not identical to
Conmon- poi nt - Nane the al gorithm noves up the tree. At each
step it does the follow ng operations.

1

Kauf man

Find all cross certificates stored in the nam ng service
under Current-directory-nanme in which the subject is an
ancestor of the principal to be authenticated or an
indication that cross certificates fromthis issuer are
stored in the subject entry. |If there is an indication that
such certificates are stored in the subject entry, copy al
triples in Trusted-Key-Set for Current-directory-nanme into

t he "Search-when-descending” list. |f any such certificates
are found, filter themto include only those which neet the
following criteria:

(i) For sone triple in the Trusted-Key-Set corresponding to
the Current-directory-name, the public key in the triple
verifies the signature on the certificate and either the
UDin the triple mtches the issuer UDin the
certificate or the UDin the triple and/or the
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certificate is mssing and the nane in the triple matches
the issuer nane in the certificate.

(ii) No certificates were found signed by this issuer in which
the subject nane is longer than the subject name in this
certificate (i.e., if there are cross certificates to two
di fferent ancestors, accept only those which lead to the
cl osest ancestor).

(iii)The current time is within the validity interval of the
certificate.

2) If any cross certificates were found (whether or not they
were all elimnated as part of the filtering process), set
Current-directory-nane to the | ongest name that was found in
any certificate and construct a set of PK/ U D/ Nane triples
for that nane fromthe certificates which pass the filter
and place themin the Trusted Key Set associated with their
subject. Exit the ascending tree loop at this point and
proceed directly to step 3. Note that this neans that if
there are cross certificates to an ancestor of the target
but they are all rejected (for exanple if they have
expired), the treewal k wll not construct a chain through
the | east common ancestor and will ultimately fail unless a
crosslink froma | ower ancestor is found stored with its
subject. This is a security feature.

3) If no cross certificates are found, find all the parent
directory certificates for the directory whose nane is in
the Current-directory-nane. Filter these to find only those
which neet the following criteria:

(i) The current tine is within the validity interval

(ii) For some triple corresponding to the
Current-directory-nane, the public key in the triple
verifies the signature on the certificate and either the
UDin the triple matches the issuer UDin the
certificate or the UDin the triple and/or the
certificate is mssing and the nane in the triple matches
the issuer nane in the certificate.

4) Construct PK/U D/ Nanme triples fromthe remaining
certificates for the directory whose nane is constructed by
stripping the rightnost sinple name fromthe
Current-directory-nanme and place themin the Trusted-Key-Set.
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5) Strip the rightnost sinple name of the
Current-directory-nane.

6) Repeat fromstep (a) (testing to see if
current-directory-nane is the same as Conmon- poi nt - Nane) .

c) Searching the "target side" of the tree for a crosslink

1) Initialization: set Current-directory-nane to the nane
supplied as input to this procedure.

2) Retrieve fromthe nam ng service all cross certificates
associated with Current-directory-nanme. Filter to only
those that nmeet the following criteria:

(i) The current time is within their validity interval
(ii) The subject nane is equal to Current-directory-nane.

(iii)For sone PK/U D/ Nane triple in the
" Sear ch- when- descendi ng" |ist conpiled while ascending
the tree, the Public Key verifies the signature on the
certificate and either the UD matches the issuer UDin
the certificate or a UDis nmssing fromthe triple
and/ or the certificate and the Nane in the triple matches
the issuer nane in the certificate.

(iv) There are no certificates found neeting criteria (ii) and
(iii) matching a PK/' U D/ Name triple in the
Sear ch- when-descending |ist whose subject is a directory
| ower in the nam ng hierarchy.

3) If any qualifying certificates are found, construct
PK/U D/ Name triples for each of them these should replace
rat her than supplenent any triples already in the
Trust ed-key-set for that directory.

4) |If after steps (b) and (c), there are no PK/U D/ Nane triples
corresponding to Current-directory-name in Trusted-Key- Set,
shorten Current-directory-nanme by one RDN (pushing it onto
the Saved- RDNs stack) and repeat this process unti
Current-directory-nane is equal to
Least - conmon- ancestor-nane or there is at least one triple
in Trusted-key-set corresponding to Current-directory-nane.

d) Descending the tree

While the list Saved-RDNs is not Enpty the al gorithm noves

Kauf man [ Page 84]



RFC 1507 DASS Sept ember 1993

down the tree. At each step it does the follow ng operations.

1) Renove the first RDN from Saved- RDNs and append it to the
Current-directory-nane.

2) Find all the child directory certificates for the directory
whose nane is in the current-directory-nane.

3) Filter these certificates to find only those which neet the
following criteria:

(i) The current tine is within the validity interval

(ii) For sone PK/U D/ Nane triple in the Current-key-set for
the parent directory, the Public Key verifies the
signature on the certificate and either the U D nmatches
the issuer UD of the certificate or the UDis mssing
fromthe triple and/or the certificate and the Nane in
the triple matches the issuer nane in the certificate.

(iii)The issuer name in the certificate is a prefix of the
subj ect name and the difference between the two nanes is
the final RDN of Current-directory-nane.

4) Take the key, U D, and nane fromeach renmaining certificate
and forma new triple corresponding to
Current-directory-nanme in Trusted-Key-Set. If this set is
enpty then the algorithmexits with the
"I nconpl et e-chai n-of -trustworthy-CAs’ error condition

5) repeat fromstep (a), appending a new sinple nane to
Current-directory-nane.

e) Find public keys:
If there are no triples in the Trusted-Key-Set for the naned
principal, then the algorithmexits with the ‘' Target-has-no-keys-w
error condition. Gtherwi se, the Public Key and U D are
extracted fromeach pair, duplicates are elinmnated, and this
set is returned as the Pub_keys.

3.10.10.2 Allowed Variations - Caching

Sonme use of caches can be inplenented without affecting the semantics
of the Get_Pub_Keys routine. For exanple, a crypto-cache could
remenber the public key that verified a signature in the past and
could avoid the verification operation if the sane key was used to
verify the same data structure again. In sonme cases, however, it is
i npossible (or at |east inconvenient) for a cache inplenentation to
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be conpl etely transparent.

In particular, for good performance it is inportant that certificates
not be re-retrieved fromthe nanming service on every authentication
Thi s nmust be bal anced agai nst the need to have changes to the
contents of the nanming service be reflected in DASS calls on a tinely
basis. There are two cases of interest: changes which cause an

aut henti cati on which previously would have succeeded to fail and
changes whi ch cause an aut hentication which previously woul d have
failed to succeed. These two cases are subject to different tine
constrai nts.

In general, changes that cause authentication to succeed nust be
reflected quite quickly - on the order of minutes. |If a user
attenpts an operation, it fails, the user tracks down a system
manager and causes the appropriate updates to take place, and the
user retries the operation, it is unacceptable for the operation to
continue to fail for an extended period because of stale caches.

Changes that cause authentication to fail nust be reflected reliably
within a bounded period of tine for security reasons. |If a user

| eaves the conmpany, it nust be possible to revoke his ability to
authenticate within a relatively short period of tine - say hours.

These constraints nmean that a nam ng service cache which contains
arbitrarily old information is unacceptable. To neet the second
constraint, naming service cache entries nust be tinmed out within a
reasonabl e period of tinme unless in inplenentation verifies that the
certificate is still present (a crypto-cache which [asted | onger
woul d be legal; rather than deleting a nane service cache entry, in
i mpl enentation mght instead verify that the entry was still present
in the naming service. This would avoid repeating the cryptographic
"verify").

In order to assure that information cached for even a few hours not
deny authentication for that extended period, it nust be possible to
bypass caches when the result would otherwise be a failure. Since
the performance of authentication failures is not a serious concern
it is acceptable to expect that before an operation fails a retry
will be nade to the naming service to see if there are any new

rel evant certificates (or in certain obscure conditions, to see if
any relevant certificates have been del eted).

If on a call to Get_Pub_Keys, the Try Hard bit is True, then this
procedure nmust return results based on the contents of the naming
service no nore than five minutes previous (this would normally be
acconpl i shed by ignoring nane service caches and maki ng all
operations directly to the naming service). |If the Try Hard bit is
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Fal se, this procedure may return results based on the contents of the
nam ng service any time in the previous few hours, in the sense that
it may ignore any certificate added in the previous few hours and nay
use any certificate deleted in the previous few hours. Procedures
which call this routine with Try Hard set to fal se nust be prepared
tocall it again with Try Hard True if their operation fails possibly
fromthis result.

The exact tiner values for "five mnutes" and "a few hours" are
expected to be inplenentation constants.

In the envisioned i npl enentation, the entire "ascending treewal k" is
retrieved, verified, and its digested contents cached when a
principal first establishes credentials. A mechani smshould be
provided to refresh this information periodically for principals
whose sessions mght be long lived, but it would probably be
acceptable in the unlikely event of a user’s ancestor’s keys changi ng
to require that the user log out and |log back in. This is consistent
with the observed behavi or of existing security nechanisns.

The descending treewal k, on the other hand, is expected to be

mai nt ai ned as a nore conventional cache, where entries are kept in a
fixed anmount of nenory with a "least recently used" repl acenent
policy and a watchdog tiner that assures that stale information is
not kept indefinitely. A call to Get_Pub _Keys with Try Hard set

fal se would first check that cache for relevant certificates and only
if none were found there would it go out to the nanming service. |If
there were newer certificates in the naming service, they m ght not
be found and an authentication nmight therefore fail

When Try Hard is false, an inplenentati on may assune that
certificates not in the cache do not exist so long as that assunption
does not cause an authentication to falsely succeed. |In that case,

it my only make that assunption if the certificates have been
verified to not exist within the revocation tinme (a few hours).

3. 11 DASSI essness Deterni nation Functions

In order to provide better interoperability with alternative

aut henti cati on nmechani sms and to provi de backward conpatibility wth
ol der (insecure) authentication nechanisns, it is sonmetines inportant
to be able to deternine in a secure way what the appropriate

aut henti cation nmechanismis for a particular naned principal. For
sonme applications, this will be done by a |ocal nechanism where

ei ther the person creating access control information nmust know and
specify the nechani smfor each principal or a system admi ni strator on
the node nust maintain a database mappi ng nanes to nechani snms. Three
applications conme to mnd where scal eability nmakes such nechani sns
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i mpl ausi bl e:

a) To transparently secure proxy-based applications (like rlogin)
in an environnment where sone hosts have been upgraded to
support DASS and sone have not, a node nust be willing to
accept connections authenticated only by their network
addresses but only if they can be assured that such nodes do
not have DASS installed. Access to a resource becones secure
wi t hout admi nistrative action when all nodes authorized to
access it have been upgraded.

In this scenario, the server node nust be able to determ ne
whet her the client node is DASSless in a secure fashion.

b) Sinmlarly, in a nmixed environment where sonme servers are
runni ng DASS and sone are not, it may be desirable for clients
to authenticate servers if they can but it would be
unacceptable for a client to stop being able to access a
DASSI| ess server once DASS is installed on the client. In such
a situation where server authentication is desirable but not
essential, the client would Iike to determne in a secure
fashi on whether the server can accept DASS aut henticati on.

c) In a DASS/ Kerberos interoperability scenario, a server may
deci de that Kerberos authentication is "good enough" for
principals that do not have DASS credentials w thout
introducing trust in on-line authorities when DASS credentials
are available. In parallel with case 1, we want it to be true
that when the last principal with authority to access an
object is upgraded to DASS, we automatically cease to trust
PasswdEt ¢ servers wi thout admi nistrative action on the part of
the object owner. For this purpose, the authenticator nust
learn in a secure fashion that the principal is incapable of
DASS aut henti cation

Rel i ably determ ni ng DASSI essness is optional for inplenentations of
DASS and for applications. No other capabilities of DASS rely on
this one.

The interface to the DASSI essness inquiry function is specified as a
call independent of all others. This capability nust be exposed to
the calling application so that a server that receives a request and
no token can ask whether the naned principal should be believed
without a token. It might inprove performance and usability if in
real interfaces DASSI essness were returned in addition to a bad
status on the function that creates a token if the token is targeted
toward a server incapable or processing it. An application could
then deci de whether to nake the request without a token (and give up
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server authentication) or to abort the request.
3.11.1 Query DASS| essness

Query_DASSI essness(
--inputs
verifying credentials Credentials,
princi pal _nane Nane,
--outputs
al ternate_aut hentication Set of QO Ds)

This function uses the verifying credentials to search for an

al ternative authentication nmechanismcertificate for the naned
principal or for any CA on the path between the verifying credentials
and the named principal. Such a certificate is identical to an DASS
X. 509 certificate except that it lists a different algorithm
identifier for the public key of the subject than that expected by
DASS.

This function is inplenmented identically to Get_Pub_Keys except:

a) If in any set of certificates found, no valid DASS certificate
is found and one or nore certificates are found that woul d
otherwi se be valid except for an invalid subject public key
OD, the ADfromthat certificate or certificates is returned
and the algorithmtermnates

b) On initial execution, Try Hard=False. |If the first execution
fails to retrieve any valid PK/U D pairs but also fails to
find any invalid OD certificates, repeat the execution wth
Try_ Hard=Tr ue.

c) If the either execution finds PK/UD pairs or if neither finds
and invalid OD certificates, fail by returning a null set.

4., Certificate and nessage fornmats
4.1 ASN. 1 encoding
Sone definitions are taken from X 501 and X 509.
Dass DEFI NI TIONS :: =
BEG N
--CC TT Definitions:

joint-iso-ccitt OBJECT IDENTIFIER ::= {2}
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ds OBJECT | DENTI FI ER : ={10|nt—|so ccitt 5}

al gorithm OBJECT I DENTIFIER ::= {ds 8}

encryptionAl gorithm OBJECT | DENTIFIER :: = {al gorl t hm 1}

hashAl gorithm OBJECT | DENTI FI ER ::= {al gorithm 2}

si gnatureAl gorithm OBJECT I DENTIFIER ::= {algorithm 3}

rsa OBJECT I DENTI FI ER ::= {encryptionAlgorithm 1}
i so OBJECT | DENTIFIER :: = {1}

i dentifi ed-organi zati on OBJECT | DENTI FI ER = {iso 3}

ecna OBJECT | DENTI FI ER : {| dent i fied-organi zation 12}
menber - conpany OBJECT | DENTI FI ER ::= {ecma 2}

digital OBJECT | DENTI FI ER :: = {nenber-conpany 1011}

--1989 Osl I nplementors Wirkshop "Stabl e" Agreenents

oi w OBJECT I DENTIFIER ::= {identified-organization 14}

dssig CB.JECTIDEI\I'I’IFIER..:{0|W7}

oi WAl gorithm OBJECT I DENTIFIER ::= {dssig 2}

oi weEncryptionAl gorithm OBJECT | DENTI FI ER ::= {oi wAl gorithm 1}

oi wHashAl gorithm OBJECT | DENTIFIER ::= {oi wAl gorithm 2}

oi WSi gnat ur eAl gorithm OBJECT | DENTI FI ER ::= {oi wAl gorithm 3}

oi wivD2 OBJECT | DENTI FI ER :: = {oi wHashAl gorithm 1}
--null paraneter

oi WWD2wi t hRSA OBJECT | DENTI FI ER :: = {oi wSi gnatureAl gorithm 1}

--null paraneter
--X. 501 definitions
AttributeType ::= OBJECT | DENTI FI ER
AttributeValue ::= ANY
AttributeVal ueAssertion ::= SEQUENCE {AttributeType, Attri buteVal ue}

Name ::= CHO CE { --only one for now
RDNSequence

}
RDNSequence ::= SEQUENCE OF Rel ativeDi sti ngui shedNane
Di sti ngui shedNanme ::= RDNSequence

Rel ati veDi sti ngui shedNane ::= SET OF Attri buteVal ueAssertion

--X. 509 definitions (with proposed 1992 extensions presuned)

ENCRYPTED MACRO : :
BEG N

TYPE NOTATION t ype( ToBeEnci pher ed)
VALUE NOTATION ::= val ue(VALUE BI T STRI NG
END -- of ENCRYPTED
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SI GNED MACRO =
BEGA N
TYPE NOTATI ON = type (ToBeSi gned)
VALUE NOTATI ON = val ue (VALUE
SEQUENCE{
ToBeSi gned,
Al gorithmdentifier, --of the algorithmused to
--generate the signature
ENCRYPTED OCTET STRING --where the octet string is the
--result of the hashing of the
--val ue of "ToBeSi gned”
}
END -- of SIGNED
SI GNATURE MACRO :: =
BEG N
TYPE NOTATI ON = type (O Signature)
VALUE NOTATI ON = val ue (VALUE
SEQUENCE {
Al gorithm dentifier, --of the algorithmused to conpute
ENCRYPTED OCTET STRING -- the signature where the octet
-- string is a function (e.g., a
-- conpressed or hashed version)
-- of the value 'O Signhature’
-- which may include the
-- identifier of the algorithm
-- used to conpute the signature
}
END -- of SI GNATURE
Certificate ::= SI GNED SEQUENCE {
versi on [ 0] Ver si on DEFAULT v1988,
seri al Number CertificateSerial Nunber,
signature Al gorithm dentifier
i ssuer Nane,
valid Validity,
subj ect Nane,
subj ect Publ i cKey Subj ect Publ i cKeyl nf o,
i ssuerUl D [1] IMPLICIT U D OPTI ONAL, -- v1992
subjectUD[2] IMPLICIT UD OPTIONAL  -- v1992
}
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--and in the signature itself is:
-- oi WD2wi t hRSA (1.3.14.7.2.3.1)

Version ::= I NTEGER {v1988(0), v1992(1)}
CertificateSerial Nunmber ::= | NTEGER
Validity ::= SEQUENCE {
Not Bef or e UTCTi e,
Not Af t er UTCTi ne
}
Al gorithm dentifier ::= SEQUENCE {
al gorithm OBJECT | DENTI FI ER,
par anet er ANY DEFI NED BY al gorithm OPTI ONAL
}

--The algorithns we support in one context or another are:
--0i WWD2wi t hRSA (1.3.14.7.2.3.1) with paraneter NULL
--rsa (2.5.8.1.1) with parameter keysize |INTEGER which is
- the keysize in bits
——decDEA (1.3.12.1001.7.1.2) with optional paraneter

-- m ssi ng
--decDEAVAC (1.3.12.2.1011.7.3.3) with optional paraneter
-- m ssi ng

Subj ect Publ i cKeyl nfo ::= SEQUENCE {
al gorithm Al gorithm dentifier, -- rsa (2.5.8.1.1)
subj ect Publ i cKey BI T STRI NG

-- the "bits" further decode into a DASS public key

}

UD::=BIT STRING

-- the following definitions are for Digital specified A gorithns
crypt oAl gorithm OBJECT IDENTIFIER ::= {digital 7}

decEncrypti onAl gorithm OBJECT I DENTIFIER ::= {cryptoAl gorithm 1}

decHashAl gorithm OBJECT I DENTI FIER ::= {cryptoAl gorithm 2}
decSi gnatureAl gorithm OBJECT IDENTIFIER ::= {cryptoAl gorithm 3}
decDASSLessness OBJECT I DENTI FIER ::= {cryptoAl gorithm 6}

decMD2wi t hRSA  OBJECT | DENTI FI ER ::
decVD4wi t hRSA  OBJECT | DENTI FI ER : :
decDEAVAC OBJECT | DENTI FI ER ::

{decSi gnat ureAl gorithm 1}
{decSi gnat ureAl gorithm 2}
{decSi gnat ureAl gorithm 3}
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decDEA OBJECT | DENTI FI ER :: = {decEncryptionAl gorithm 2}
dechvD2 OBJECT | DENTI FI ER :: = {decHashAl gorithm 1}
decvA4 OBJECT | DENTI FI ER :: = {decHashAl gorithm 2}
Short Posi xTi ne ::= | NTEGER -- nunber of seconds since base tine
LongPosi xTi me :: = SEQUENCE {
| NTEGER, -- nunber of seconds since base tine
| NTEGER -- nunber of nanoseconds since second
}
Short Posi xValidity ::= SEQUENCE {
not Bef or e Short Posi xTi e,
not Af t er Short Posi xTi me }

-- Note: Annex C of X 509 prescribes the following format for the
-- representation of a public key, but does not give the structure

-- a nane.
DASSPubl i cKey ::= SEQUENCE {
nmodul us | NTEGER,
exponent | NTEGER
}
DASSPr i vat eKey ::= SEQUENCE {
p | NTEGER -- prine p
g [0] | MPLICI' T | NTEGER OPTI ONAL -- prine g
nmod[ 1] I MPLICIT | NTEGER OPTI ONAL, -- nodul us
exp [2] IMPLICIT | NTEGER OPTI ONAL, -- public exponent
dp [3] |IMPLICIT I NTEGER OPTI ONAL -- exponent nod p
dg [4] |IMPLICIT I NTEGER OPTI ONAL , -- exponent nod
cr [5] IMPLICIT | NTEGER OPTI ONAL , -- Chinese
--remai nder coefficient
uid[6] IMPLICIT U D OPTI ONAL,
nmore[ 7] IMPLICIT BIT STRI NG OPTI ONAL --Reserved for
--future use
}
Local User Name ;.= OCTET STRI NG
Channel 1 d .= OCTET STRI NG

Ver si onNunber ;.= OCTET STRI NG (Sl ZE(3))
-- first octet is mmjor version
-- second octet is mnor version
-- third octet is ECO rev.

versi onZero VersionNunmber ::= '000000" H
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Aut henticator ::= SI GNED SEQUENCE {

type BIT STRI NG
-- first bit ‘delegation required
-- second bit ‘Mitual Authentication Requested

whenSi gned LongPosi xTi ne

channelld [3] [IMPLICIT Channelld OPTI ONAL
-- channel bindings are included when doing the
-- signature, but excluded when transnitting the
-- Authenticator

-- uses decDEAMAC (1.3.12.2.1011.7.3.3)

Encrypt edKey :: = SEQUENCE {
al gorithm Al gorithm dentifier,
-- uses rsa (2.5.8.1.1)
encr ypt edAut hKey BI T STRI NG
-- as defined in section 4.4.5
}

Si gnat ur eOnEncrypt edKey ::= SI GNATURE Encrypt edKey
-- uses oi wwD2wi t hRSA (1.3.14.7.2.3.1)
-- Signature bits conputed over EncryptedKey structure

Logi nTi cket ::= SI GNED SEQUENCE {
version [0] | MPLI CI' T Versi onNunber DEFAULT ver si onZero
validity Short Posi xValidity ,
subj ectU D ub,
del egati ngPubl i cKey Subj ect Publ i cKeyl nf o

-- uses oi wWwD2wi t hRSA (1.3.14.7.2.3.1)

Del egat or ::= SEQUENCE {
al gorithm Al gorithm dentifier
-- decDEA encryption (1.3.12.1001.7.1.2)
encrypt edPri vKey ENCRYPTED DASSPri vat eKey,
-- (only p is included)
}
Userd ai mant ::= SEQUENCE {

userTicket [0] |IMPLICIT LoginTicket,
evi dence CHO CE {
del egator [1] | MPLI CI' T Del egat or
-- encrypted del egation private key
-- under DES authenticating key
-- present if delegating
shar edKeyTi cket Si gnature [ 2]
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| MPLI CI' T Si gnat ur eOnEncr ypt edKey
-- present if not del egating

b
user Nane [ 3] | MPLI CI' T Name OPTI ONAL
-- name of user principal
}
Encr ypt edKkeyandUser Nane :: = SEQUENCE {
encr ypt edKey Encrypt edKey ,
user name Local User Name
}

Si gnat ur eOnEncr ypt edkeyandUser Nane :: =
SI GNATURE Encr ypt edKeyandUser Name
-- uses oi wwD2wi t hRSA (1.3.14.7.2.3.1)
-- Signature bits conputed over
-- Encrypt edkeyandUser Nane structure
-- using node private key

Noded ai mant ::= SEQUENCE ({
nodeTi cket Signature[0] IMPLICIT
Si gnat ur eOnEncr ypt edKeyandUser Nane,
nodeNarme [1] | MPLI CI' T Nane OPTI ONAL,

usernanme [ 2] | MPLI G T Local User Nane OPTI ONAL
}
Aut hent i cati onToken ::= SEQUENCE {
versi on [ 0] | MPLI CI' T Versi onNunber DEFAULT versi onZer o,
aut henti cator [1] | MPLI CI T Aut henticator ,
encrypt edkey [ 2] | MPLI CI' T Encrypt edKey OPTI ONAL ,
-- required if initiating token
userclai mant [ 3] I MPLICI T Userd ai mant OPTI ONAL ,

-- missing if only doing node authentication

-- required if not doing node authentication
nodecl ai mant [ 4] | MPLI CI T Noded ai mant OPTI ONAL

-- mssing if only doing principal authentication

-- required if not doing principal authentication

}

Mut ual Aut henti cati onToken ::= CHO CE {
vlResponse [0] IMPLICIT OCTET STRING (Sl ZE(6))
-- Constructed as follows: A single DES bl ock
-- of eight octets is constructed fromthe two
-- integers in the tinmestanp. First four bytes
-- are the high order integer encoded MSB
-- first; Last four bytes are the | ow order
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-- integer encoded MSB first. The block is
-- encrypted using the shared DES key, and
-- the first six bytes are the OCTET STRI NG
-- Wth the [0] type and 6-byte |l ength, the
-- Muitual Aut henti cati onToken has a fixed

-- length of eight bytes.

END

4.2 Encoding Rul es
Whenever a structure is to be signed it nust always be const
the sane way. This is particularly inportant where a signed
has to be reconstructed by the recipient before the signatur
verified. The rules listed bel ow are taken from X 509.

- the definite formof |ength encoding shall be used, encod
the m ni nrum nunber of octets;

- for string types, the constructed form of encodi ng shal
be used;

- if the value of a type is its default value, it shall be
absent ;

- the conponents of a Set type shall be encoded in ascendin
order of their tag val ue;

- the conponents of a Set-of type shall be encoded in ascen
order of their octet val ue;

- if the value of a Boolean type is true, the encoding sha
have its contents octet set to ‘FF 16;

- each unused bits in the final octet of the encoding of a
BitString value, if there are any, shall be set to zero;

- the encoding of a Real type shall be such that bases 8, 1
16 shall not be used, and the binary scaling factor sha
zero.

4.3 Version nunbers and forward conpatibility

The Logi nTi cket and Aut henticati onToken structures contain a

three octet version identifier which is intended to ease

nmber 1993

ruct ed
structure
eis

ed in

not

g

di ng

0 and
| be

transition to future revisions of this architecture. The default

val ue, and the val ue which should al ways be supplied by
i npl enentations of this version of the architecture is 0.0.0
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(three zero octets). The first octet is the mgjor version. An

i mpl ementation of this version of the architecture should refuse
to process data structures where it is other than zero, because
changing it indicates that the interpretation of sone subsidiary
data structure has changed. The second octet is the m nor
version. An inplenentation of this version of the architecture
shoul d ignore the value of this octet. Sone future version of
the architecture may set a value other than zero and nmay specify
sonme di fferent processing of the remainder of the structure based
on that different value. Such a change woul d be backward conpati bl e
and interoperable. The third octet is the ECO revision. No

i mpl enent ati on shoul d make any processi ng deci si ons based on the
val ue of that octet. It may be | ogged, however, to help in
debuggi ng i nteroperability problens.

In the CDC protocol, there is also a three octet version
nunbering schene, where versions 1.0.0 and 2.0.0 have been
defined. Inplenentations should foll ow the sane rul es above and
reject major version nunbers greater than 2.

ASN. 1 is inherently extensible because it allows new fields to be
added "onto the end" of existing data structures in an

unambi guous way. | nplenentations of DASS are encouraged to

i gnore any such additional fields in order to enhance backwards
compatibility with future versions of the architecture.
Unfortunately, commonly available ASN. 1 conpilers lack this
capability, so this behavior cannot reasonably be required and
may limt options for future extensions.

4.4 Cryptographi c Encodi ng

Some of the substructures listed in the previous sections are
speci fi ed as ENCRYPTED OCTET STRINGs contai ni ng encrypted

i nformati on. DASS uses the DES, RSA, and MD2 cryptosystens Each
of those cryptosystens specifies a function fromoctet string
into another in the presence of a key (except MD2, which is

keyl ess). This section describes howto formthe octet strings
on whi ch the DES and RSA operations are perforned.

4.4.1 Al gorithm I ndependence vs. Key Parity

Al'l of the defined encodings for DASS for secret key encryption
are based on DES. It is intended, however, that other
cryptosystens could be substituted without any other changes for
formats or algorithms. The required "formfactor” for such a
cryptosystemis that it have a 64 bit key and operate on 64 bit
bl ocks (this appears to be a common formfactor for a
cryptosystem). For this reason, DES keys are in all places
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treated as though they were 64 bits long rather than 56. Only in
the operation of the algorithmitself are eight bits of the key
dropped and key parity bits substituted. Choosing a key al ways

i nvol ves picking a 64 bit random number.

4.4.2 Password Hashi ng

Encrypted credentials are encrypted using DES as described in the
next section. The key for that encryption is derived fromthe
user’s password and nanme by the follow ng al gorithm

a)

b)

c)

d)

Kauf man

Put the rightnost RDN of the user’s nane in canonical form
according to BER and the X 509 encoding rules. For any string
types that are case insensitive, map to upper case, and where
mat chi ng i s i ndependent of nunber of spaces coll apse all

mul tiple spaces to a single space and del ete | eading and
trailing spaces

Note: the RDNis used to add "salt" to the hash cal cul ation
so that sonmeone can’t preconpute the hash of all the words in
a dictionary and then apply them agai nst all nanmes. Deriving

the salt fromthe last RDN of the nanme is a conpronmise. |If it
were derived fromthe whol e nane, all encrypted keys would be
obsol eted when a branch of the nanmespace was renaned. |[If it

wer e i ndependent of name, interaction with a login agent would
take two extra nessages to retrieve the salt. Wth this
schene, encrypted keys are obsoleted by a change in the I|ast
RDN and if a final RDNis comon to a | arge nunber of users,
dictionary attacks against them are easier; but the common
case wor ks as desired.

Compute TEMP as the MD2 nessage di gest of the concatenation of
t he password and the RDN conputed above.

Repeat the following 40 tines: Use the first 64 bits of TEM
as a DES key to encrypt the second 64 bits; XOR the result
with the first 64 bits of TEMP, and conpute a new TEMP as M2
of the 128 bit result.

Use the final 64 bits of the result (called hashl) as the key
to decrypt the encrypted credentials. Use the first 64 bits
(call ed hash2) as the proof of know edge of the password for
presentation to a login agent (if any).
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4.4.3 Digital DEA encryption
DES encryption is used in the foll owi ng places:

- In the encryption of the encrypted credentials structure

To encrypt the del egator in authentication tokens

To encrypt the time in the nutual authenticator

In the first two cases, a varying |length block of information
coded in ASN.1 is encrypted. This is done by dividing the bl ock
of information into 8 octet blocks, padding the last block wth
zero bytes if necessary, and encrypting the result using the CBC
node of DES. A zero IV is used.

In the third case, a fixed length (8 byte) quantity (a tinestanp)
is encrypted. The tinmestanp is napped to a byte string using
"bi g endi an" order and the bl ock is encrypted using the ECB node
of DES.

4.4.4 Digital MAC Signing

DES signing is used in the Authenticator. Here, the signature is
conputed over an ASN. 1 structure. The signature is the CBC residue
of the structure padded to a multiple of eight bytes with zeros. The
CBC is conputed with an IV of zero.

4.4.5 RSA Encryption

RSA encryption is used in the Encrypted Shared Key. RSA encryption

i s best thought of as operating on blocks which are integers rather
than octet strings and the results are also integers. Because an RSA
encryption pernutes the integers between zero and (nodulus-1), it is
general ly thought of as acting on a block of size (keysizeinbits-1)
and producing a block of size (keysizeinbits) where keysizeinbits is
the smal |l est nunber of bits in which the nodul us can be represented.

DASS only supports key sizes which are a nultiple of eight bits (This
restriction is only required to support interoperation with certain

existing inplenentations. |If the key size is not a multiple of eight
bits, the high order byte may not be able to hold values as large as
the mandated '64’. This is not a problemso |long as the two high

order bytes together are non-zero, but certain early inplenentations
check for the value '64" and will not interoperate with
i npl enent ati ons that use sonme other val ue.).

The encrypted shared key structure is laid out as foll ows:

Kauf man [ Page 99]



RFC 1507 DASS Sept ember 1993

- The DES key to be shared is placed in the |ast eight bytes

- The POsSI X format creation tine encoded in four bytes using big
endi an byte order is placed in the next four (fromthe end)
byt es

- The PCSI X format expiration tine encoded in four bytes using
big endian byte order is placed in the next four (fromthe
end) bytes

- Four zero bytes are placed in the next four (fromthe end)
byt es

- The first byte contains the constant '64’ (decinal)

- Al remaining bytes are filled with random bytes (the security
of the system does not depend on the cryptographic randommess
of these bytes, but they should not be a frequently repeating
or predictable value. Repeating the DES key fromthe | ast
byt es woul d be good).

The RSA algorithmis applied to the integer forned by treating the
byt es above as an integer in big endian order and the resulting
integer is converted to a BIT STRING by laying out the integer in
"big endian’ order.

On decryption, the process is reversed; the decryptor should verify
the four explicitly zero bytes but should not verify the contents of
the high order byte or the random bytes.

4.4.6 oi wwD2wi t hRSA Si gnat ur es

RSA- MD2 signatures are used on certificates, login tickets, shared

key tickets, and node tickets. |In all cases, a signature is conmputed
on an ASN. 1 encoded string using an RSA private key. This is done as
fol | ows:

- The MD2 algorithmis applied to the ASN. 1 encoded string to
produce a 128 bit nessage di gest

- The nessage digest is placed in the | ow order bytes of the RSA
bl ock (bi g endi an)

- The next two | owest order bytes are the ASN.1 'T and 'L’ for
an OCTET STRI NG

- The remni nder of the RSA block is filled with zeros
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- The RSA operation is perfornmed, and the resulting integer is
converted to an octet string by laying out the bytes in big
endi an order.

On verification, a value like the above or one where the nessage
digest is present but the '"T" and 'L’ are missing (zero) should be
accepted for backwards conpatibility with an earlier definition of
this crypto algorithm

4.4.7 decMD>2wi t hRSA Si gnat ur es

This algorithmis the sane as the oi wwD2wi t hRSA al gorithm as defi ned
above. W allocated an algorithmobject identifier fromthe Digital
space in case the definition of that O D should change. It wll not
be used unl ess the neani ng of oi wWwD2wi t hRSA becones unst abl e.

Annex A
Typi cal Usage

Thi s annex describes one way a system coul d use DASS services (as
described in section 3) to provide security services. Wile this
exanpl e provided notivation for sonme of the properties of DASS, it is
not intended to represent the only way that DASS nay be used. This
goes through the steps that would be needed to install DASS "from
scratch".

A.1 Creating a CA

A CAis created by initializing its state. Each CA can sign
certificates that will be placed in sone directory in the nane
service. Before these certificates will be believed in a wider
context than the sub-tree of the nane space which is headed by that
directory, the CA nust be certified by a CA for the parent directory.
The procedure bel ow acconplishes this. For nbst secure operation, the
CA should run on an off-line systemand comunicate with the rest of
the network by interchanging files using a sinple specialized

mechani sm such as an RS232 line or a floppy disk. It is assuned that
access to the CAis controlled and that the CA will accept

i nstructions from an operator.

- Call Install _CAto create the CA State.
This state is saved within the CA systemand is never
di scl osed.

- If thisis the first CAin the nanespace and the CAis

intended to certify only nenbers of a single directory, we are
done. O herw se, the new CA nust be linked into the CA
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hi erarchy by cross-certifying the parent and children of this
CA. There is no requirement that CA hierarchies be created
fromthe root down, but to sinplify exposition, only this case
will be described. The newly created CA nmust learn its nane,
its UD the UDof its parent directory, and the public key
of the parent directory CA by sone out of band reliable neans.
Most likely, this would be done by | ooking up the infornation
in the nami ng service and asking the CA operator to verify it.
The CA then fornms this information into a parent certificate
and signs it using the Create certificate function. It

communi cates the certificate to the network and posts it in
the nani ng service

- This name, U D, and public key of the new CA are taken to the
CA of the parent directory, which verifies it (again by somne
unspeci fi ed out-of-band nmechani sm and calls
Create_Certificate to create a child certificate using its own
Name and U D in the issuer fields. This certificate is al so
pl aced in the naning service

A CA can sign certificates for nore than one directory. In this case
it is possible that a single CAwll take the role of both CAs in the
exanpl e above. The above procedure can be sinplified in this case, as
no i nterchange of infornmation is required.

A .2 Creating a User Principa

A system manager may create a new user principal by invoking the
Create_principal function supplying the principal’s nane, U D, and
the public key/U D of the parent CA. The public key and U D nust be
obtained in a reliable out of band manner. This is probably by
havi ng know edge of that information "wired into" the utility which
creates new principals. At account creation tinme, the system nanager
must supply what will beconme the user’s password. This m ght be done
by having the user present and directly enter a password or by having
the password sel ected by sone random gener at or

The trusted authority certificate and correspondi ng user public key
generated by the Create_principal function are sent to the CA which
verifies its contents (again by an out-of-band nechanisn) and signs a
corresponding certificate. The encrypted credentials, CA signed
certificate, and trusted authority certificates are all placed in the
nam ng service. The process by which the password is nade known to
the user nust be protected by sone out-of-band nechani sm

In sone cases the principal may wi sh to generate its own key, and not

use the Encrypted_Credentials. (e.g., if the Principal is represented
by a Smart Card). This nay be done using a procedure sinlar to the
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one for creating a new CA
A.3 Creating a Server Principa

A server also has a public/private key pair. Conceptually, the sane
procedure used to create a user principal can be used to create a
server. In practice, the nost inportant difference is likely to be
how t he password is protected when installing it on a server conpared
to giving it to a user.

A server may wish to retrieve (and store) its Encrypted Credentials
directly and never have them placed in the naming service. In this
case sone ot her mechani smcan be used (e.g., passing the floppy disk
containing the encrypted credentials to the server). This would
require a variant of the Initialize_Server routine which does not
fetch the Encrypted Credentials fromthe nam ng service.

A. 4 Booting a Server Principal

Wien the server first boots it needs its name (unreliably) and
password (reliably). It then calls Initialize_Server to obtain its

credentials and trusted authority certificates (which it will later
need in order to authenticate users). These credentials never time
out, and are expected to be saved for a long tine. |In particular the

associ ated I nconm ng Tinestanp List nust be preserved while there are
any tinestanps on it. It is desirable to preserve the Cached Inconing
Contexts as long as there are any contexts likely to be reused.

If a server wants to initiate associations on its own behalf then it
nmust call Generate_ Server Ticket. It nust repeat this at intervals
if the expiration period expires.

A node that w shes to do node authentication (or which acts as a
server under its own name) nust be created as a server.

A.5 A user logs on to the network

The systemthat the user logs onto finds the user’s nanme and
password. It then calls Network Login to obtain credentials for the
user. These credentials are saved until the user wants to nmake a
networ k connection. The credentials have a tine limt, so the user
will have to obtain new credentials in order to nake connections
after the tine Iimt. The credentials are then checked by calling
Verify Principal Nane, in order to check that the key specified in
the encrypted credentials has been certified by the CA

If the system does source node authentication it will cal
Conbi ne_credentials, once the |ocal usernanme has been found. (This
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can either be found by | ooking the principal's global nane up in a
file, or the user can be asked to give the I ocal nanme directly.
Alternatively the user can be asked to give his |ocal usernanme, which
the system | ooks up to find the gl obal nane).

A.6 An Riogin (TCP/IP) connection is nmade

Wien the user calls a nodified version of the rlogin utility, it
calls Create_token in order to create the Initial Authentication
Token, which is passed to the other systemas part of the rlogin
protocol. The rlogind utility at the destination node calls

Accept _token to verify it. It then looks up in a local rhosts-like
dat abase to determ ne whether this global user is allowed access to
the requested destination account. It calls Verify_principal _nane
and/ or Verify node_nanme to confirmthe identity of the requester. |If
access is allowed, the connection is accepted and the Mitua

Aut hentication Token is returned in the response nessage.

The source receives the returned Mutual Authentication Token and uses
it toconfirmit comunicating with the correct destination node.

Rl ogind then calls Conbine_credentials to conbine its node/account
information with the global user identification in the received
credentials in case the user accesses any network resources fromthe
destination system

A.7 A Transport-I|ndependent Connection

As an alternative to the description in A 6, an application w shing
to be portable between different underlying transports may cal
create_token to create an authentication token which it then sends to
its peer. The peer can then call accept_token and
verify_principal _name and learn the identity of the requester

Annex B
Support of the GSSAP

In order to support applications which need to be portable across a
vari ety of underlying security mechanisns, a "CGeneric Security
Service API" (or GSSAPlI) was designed which gives access to a conmon
core of security services expected to be provided by severa

mechani sms. The GSSAPI was designed with DASS, Kerberos V4, and
Kerberos V5 in mind, and could be witten as a front end to any or
all of those systens. It is hoped that it could serve as an
interface to other security systens as well

Application portability requires that the security services supported
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be conparable. Applications using the GSSAPI will not be able to
access all of the features of the underlying security nechani sns.

For exanple, the GSSAPI does not allow access to the "node

aut henti cation"” features of DASS. To the extent the underlying
security nechani sns do not support all the features of GSSAPI,
applications using those features will not be portable to those
security nechani sns. For exanple, Kerberos V4 does not support

del egation, so applications using that feature of the GSSAPI will not
be portable to Kerberos V4.

Thi s annex expl ains how the GSSAPI can be inpl emented using the
primtive services provided by DASS.

B.1 Summary of GSSAP

The latest draft of the GSSAPI specification is available as an
internet draft. The following is a brief summary of that evol ving

docunent and should not be taken as definitive. Included here are
only those aspects of GSSAPI whose inplenentation woul d be DASS
speci fic.

The GSSAPI provides four classes of functions: Credential Managenent,
Cont ext-Level Calls, Per-nessage calls, and Support Calls; two types
of objects: Credentials and Contexts; and two kinds of data
structures to be transmtted as opaque byte strings: Tokens and
Messages. Credentials hold keys and support information used in
creating tokens. Contexts hold keys and support information used in
si gning and encrypti ng nessages.

The Credential Managenent functions of GSSAPI are "inconplete" in the
sense that one could not build a useful security inplenentation using
only GSSAPI. Functions which create credentials based on passwords
or smart cards are needed but not provided by GSSAPI. It is
envi si oned that such functions would be invoked by security mechani sm
specific functions at user login or via sone separate utility rather
than fromw thin applications intended to be portable. The

Credential Managenent functions avail able to portable applications
are:

- GSS Acquire_cred: get a handle to an existing credenti al
structure based on a name or process default.

- GSS Release cred: release credentials after use.
The Context-Level Calls use credentials to establish contexts.
Contexts are like connections: they are created in pairs and are

generally used at the two ends of a connection to process nessages
associ ated with that connection. The Context-Level Calls of interest
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are:

- GSS Init_sec_context: given credentials and the nane of a
destination, create a new context and a token which wll
permt the destination to create a correspondi ng context.

- GSS _Accept _sec_context: given credentials and an incom ng
token, create a context corresponding to the one at the
initiating end and provide information identifying the
initiator.

- GSS Delete_sec_context: delete a context after use.

The Per-Message Calls use contexts to sign, verify, encrypt, and
decrypt nessages between the hol ders of matching contexts. The Per-
Message Calls are:

- GSS Sign: Gven a context and a nessage, produces a string of
byt es which constitute a signature on a provided nessage.

- GSS Verify: Gven a context, a nessage, and the bytes
returned by GSS Sign, verifies the message to be authentic
(unaltered since it was signed by the correspondi ng context).

- GSS Seal: Gven a context and a nessage, produces a string of
byt es which include the nessage and a signature; the nessage
may optionally be encrypted.

- GSS Unseal: dGven a context and the string of bytes from
GSS Seal, returns the original nessage and a status indicating
its authenticity.

The Support Calls provide utilities like translating names and status
codes into printable strings.

B.2 I nplenentation of GSSAPI over DASS
B.2.1 Data Structures

The objects and data structures of the GSSAPI do not nap neatly into
the objects and data structures of the DASS architecture.

This section describes how those data structures can be i npl enent ed
using the DASS data structures and primtives

Credential handles correspond to the credentials structures in DASS,

where the portable APl assumes that the credential structures
t hensel ves are kept from applications and handl es are passed to and
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fromthe various subroutines.

Context initialization tokens correspond to the tokens of DASS. The
GSSAPI prescribes a particular ASN. 1 encoded formfor tokens which

i ncludes a nmechani smspecific bit string withinit. An

i mpl enent ati on of GSSAPI shoul d encl ose the DASS token within the
GSSAPI "wr apper”.

Cont ext handl es have no corresponding structure in DASS. The
Create_token and Accept _token calls of DASS return a shared key and
instance identifier. An inplementation of the GSSAPI nust take those
val ues along with sone other status infornmation and package it as a
"context" opaque structure. These data structures nust be allocated
and freed with the appropriate calls.

Per - message tokens and seal ed nessages have no correspondi ng data
structure within DASS. To fully support the GSSAPI functionality,
DASS nust be extended to include this functionality. These data
structures are created by cryptographic routines given the keys and
status information in context structures and the nessages passed to
them Wile not properly part of the DASS architecture, the formats
of these data structures are included in section C 3.

B. 2.2 Procedures

This section explains howthe functions of the GSSAPI can be provided
in ternms of the Services Provided by DASS. Not all of the DASS
features are accessible through the GSSAPI.

B.2.2.1 GSS Acquire_cred

The GSSAPI does not provide a nechanismfor |ogging in users or
establishing server credentials. It assunes that some system specific
mechani sm created those credentials and that applications need sone
mechani smfor getting at them A nodel inplenentation m ght save al
credentials in a node-gl obal pool indexed by sone sort of credentia
nane. The credentials in the pool would be access controlled by sone
| ocal policy which is not concern of portable applications. Those
applications would sinply call GSS Acquire_cred and if they passed
the access control check, they would get a handle to the credentials
whi ch could be used in subsequent calls.

B.2.2.2 GSS Rel ease_cred

This call corresponds to the "delete_credentials" call of DASS.
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B.2.2.3 GSS | nit_sec_context

In the course of a normal nutual authentication, this routine will be
called twice. The procedure can determ ne whether this is the first
or second call by seeing whether the "input_context_handle" is zero
(it will be on the first call). On the first call, it will use the
DASS Create_token service to create a token and it will also allocate
and popul ate a "context" structure. That structure will hold the key,
instance identifier, and nutual authentication token returned by
Create_token and will in addition hold the flags which were passed
into the Init_sec_context call. The token returned by
Init_sec_context will be the DASS token included in the GSSAPI token
"wrapper". The DASS token will include the optional principal nane.

If nmutual authentication is not requested in the GSSAPI call, the
mut ual aut hentication token returned by DASS will be ignored and the
initial call will return a COMPLETE status. |If mutual authentication
is requested, the nutual authentication token will be stored in the
context information and a CONTI NUE_NEEDED st at us returned.

On the second call to GSS I nit_sec_context (wth input_context _handl e
non-zero), the returned token will be conpared to the one in the
context information using the Conpare_nutual _token procedure and a
COWPLETE status will be returned if they match.

B. 2. 2.4 GSS_Accept _sec_cont ext
This routine in GSSAPI accepts an incom ng token and creates a
context. It combines the effects of a series of DASS functions. It
could be inplenented as foll ows:

- Renmove the GSSAPI "wapper" fromthe inconming token and pass

the rest and the credentials to "Accept_token". Accept_token
produces a mutual authentication token and a new credentials
structure. |If delegation was requested, the new credentials
structure will be an output of GSS Accept_sec_context. In any
case, it will be used in the subsequent steps of this
procedure.

- Use the DASS Get _principal _name function to extract the
principal nane fromthe credentials produced by Accept_token
This nane is one of the outputs of "GSS Accept sec_context.

- Apply the DASS Verify principal _name to the new credentials
and the retrieved name to authenticate the token as having
conme fromthe named principal

- Create and popul ate a context structure with the key and
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timestanp returned by Accept token and a status of COVPLETE.
Return a handle to that context.

- If delegation was requested, return the new credentials from
GSS _Accept _sec_context. Oherwise, call Delete_credentials.

- If nmutual authentication was requested, wap the nutual
aut hentication token from Accept _token in a GSSAPI "w apper"
and return it. Oherwise return a null string.

B.2.2.5 GSS Del ete_sec_cont ext

This routine sinply deletes the context state. No calls to DASS are
required.

B.2.2.6 GSS_Sign

This routine takes as input a context handle and a nessage. It
creates a per_nsg_token by conputing a digital signature on the
message using the key and tinestanp in the context block. No DASS
services are required. If additional cryptographic services were
requested (replay detection or sequencing), a tinmestanp or sequence
nunber nust be prepended to the nessage and sent with the signature.
The syntax for this nessage is listed in section C. 3.

B.2.2.7 GSS_Verify

This routine repeats the calculation of the sign routine and verifies
the signature provided. If replay detection or sequencing services
are provided, the context nust nmaintain as part of its state

i nformati on containing the sequence nunbers or tinestanps of nessages
al ready received and this one nust be checked for acceptability.

B.2.2.8 GSS_Sea
This routine perforns the sane functions as Sign but also optionally
encrypts the nessage for privacy using the shared key and
encapsul ates the whole thing in a GSSAPI specified ASN. 1 w apper.
B.2.2.9 GSS Unsea
This routine perforns the sane functions as GSS Verify but al so

parses the data structure including the signature and nessage and
decrypts the nessage if necessary.
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B. 3 Synt ax

The GSSAPI specification reconmends the following ASN. 1 encoding for
the tokens and nessages generated through the GSSAPI:

--optional top-level token definitions to franme
-- different mechani snms

GSSAPI DEFINITIONS :: =
BEG N

MechType ::= OBJECT | DENTI FI ER
-- data structure definitions
Cont ext Token :: =
-- option indication (delegation, etc.) indicated
-- within mechani smspecific token
[ APPLI CATI ON 0] I MPLICI T SEQUENCE {
t hi sMech MechType,
responsekExpect ed BOOLEAN,
i nner Cont ext Token ANY DEFI NED BY MechType
-- contents mechani smspecific
}

Per MsgToken :: =
-- as enmtted by GSS Sign and processed by
-- GSS_Verify
[ APPLI CATION 1] | MPLI CI' T SEQUENCE {
t hi sMech MechType,
i nner MsgToken ANY DEFI NED BY MechType
-- contents nechani smspecific
}

Seal edMessage :: =
-- as enmitted by GSS _Seal and processed by
-- GSS Unseal
[ APPLI CATI ON 2] I MPLICI T SEQUENCE {

seal i ngToken PERMSGIOKEN,

conf Fl ag BOOLEAN,

user Data OCTET STRI NG

-- encrypted if confFlag TRUE
}

The object identifier for the DASS MechType is 1.3.12.2.1011.7.5.

The i nner Cont ext Token of a token is a DASS token or nutual
aut henti cati on token.

The i nner MsgToken is a null string in the case where the nessage is
encrypted and the token is included as part of a Seal edMessage.
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O herwise, it is an eight octet sequence conputed as the CBC residue

comput ed using a key and string of bytes defined as foll ows:

Pad the nessage provided by the application with 1-8 bytes of
pad to produce a string whose length is a multiple of 8
octets. Each pad byte has a value equal to the nunber of pad
byt es.

Comput e the key by taking the tinmestanp of the association
(two four byte integers laid out in big endian order with the
nmost significant integer first), conplenenting the high order
bit (to avoid aliasing with nutual authenticators), and
encrypting the block in ECB node with the shared key of the
associ ati on.

The userData field of a Seal edMessage is exactly the application
provided byte string if confFlag=FALSE. O herwise, it is the
application supplied nessage encrypted as foll ows:

Pad the nessage provided by the application with 1-8 bytes of
pad to produce a string whose length = 4 (nod 8). Each pad
byte has a value equal to the nunber of pad bytes.

Append a four byte CRC32 conputed over the nessage + pad.

Comput e a key by taking the tinestanp of the association (two
four byte integers laid out in big endian order with the nost
significant integer first), conplenenting the high order bit
(to avoid aliasing with nmutual authenticators), and encrypting
the block in ECB node with the shared key of the association

Encrypt the nessage + pad + CRC32 using CBC and the key
conmputed in the previous step.

A note of the logic behind the above:

Kauf man

Because t he shared key of an association may be reused by nany
associ ati ons between the sanme pair of principals, it is
necessary to bind the association tinestanp into the nessages
sonmehow to prevent nessages from a previ ous associ ati on bei ng
replayed into a new sequence. The techni que above of
generating an associ ation key acconplishes this and has a side
benefit. An inplenentation nay with to keep the long term
keys out of the hands of applications for purposes of
confinenment but may wish to put the encryption associated with
an association in process context for reasons of performance.
Defining an associ ati on key makes that possible.
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- The reason that the association specific key is not specified
as the output of Create_token and Accept _token is that the DCE
RPC security inplenentation requires that a series of
associ ati ons between two principals always have the sane key
and we did not want to have to support a different interface
in that application

- The CRC32 after pad constitutes a cheap integrity check when
data is encrypted.

- The fact that padding is done differently for encrypted and
si gned nmessages neans that there are no threats related to
sendi ng the sane nessage encrypted and unencrypted and using
the | ast block of the encrypted nessage as a signature on the
unencrypted one.

Annex C
| nported ASN. 1 definitions

This annex contains extracts fromthe ASN. 1 description of X 509 and
X. 500 definitions referenced by the DASS ASN. 1 definitions.

CCITT DEFINITIONS :: =

BEA N joint-iso-ccitt OBJECT IDENTIFIER ::= {2} ds

OBJECT IDENTIFIER ::= {joint-iso-ccitt 5} algorithm

OBJECT IDENTIFIER ::= {ds 8}

i so OBJECT I DENTIFIER ::= {1} identified-
organi zation OBJECT IDENTIFIER ::= {iso 3} ecna OBJECT
| DENTI FIER ::= {identified-organi zation 12} digita

OBJECT IDENTIFIER ::= { ecrma 1011 }

-- X. 501 definitions

AttributeType ::= OBJECT | DENTIFIER AttributeVal ue ::= ANY

-- useful ones are
-- COCTET STRI NG ,
-- PrintableString
-- NurmericString
-- T61String ,
-- Vi sibleString

AttributeVal ueAssertion ::= SEQUENCE {Attri buteType
Attri but eVal ue}
Name ::= CHOCE {-- only one possibility for now --
RDNSequence}
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RDNSequence ::= SEQUENCE OF Rel ativeDi sti ngui shedNane
Di sti ngui shedName ::= RDNSequence
Rel ati veDi sti ngui shedNane ::= SET OF Attri buteVal ueAssertion

-- X.509 definitions

Certificate ::= SI GNED SEQUENCE {
version [0] Ver si on DEFAULT 1988
seri al Nurber Seri al Nurber
signature Algorithmdentifier ,
i ssuer Nane,
valid Validity,
subj ect Nane,
subj ect Publ i cKey Subj ect Publ i cKeyl nfo }
Version ::= | NTEGER { 1988(0)} Serial Number ::= INTEGER Validity
= SEQUENCE{
not Bef or e UTCTi e,
not Aft er UTCTi ne}
Subj ect Publ i cKeyl nfo ::= SEQUENCE {
al gorithm Algorithm dentifier ,
subj ect Publ i cKey BI T STRI NG
}
Al gorithm dentifier ::= SEQUENCE {
al gorithm OBJECT | DENTI FI ER
par anet ers ANY DEFI NED BY al gorithm OPTI ONAL}
ALGORI THM MACRO BEG N TYPE NOTATI ON  ::= "PARAMETER' type VALUE
NOTATION ::= value (VALUE OBJECT | DENTIFIER) END -- of ALGORI THM
ENCRYPTED MACRO BEGA N TYPE NOTATION ::=type(ToBeEnci phered) VALUE
NOTATI ON ::= val ue(VALUE BI T STRI NG

-- the value of the bit string is generated by

-- taking the octets which formthe conplete

-- encoding (using the ASN.1 Basi c Encodi ng Rul es)

-- of the value of the ToBeEnci phered type and

-- applying an enci phernment procedure to those octets-- END

S| GNED MACRO ::= BEGA N TYPE NOTATION ::= type (ToBeSi gned) VALUE
NOTATI ON :: = val ue( VALUE SEQUENCE{

ToBeSi gned,

Algorithldentifier, -- of the algorithmused to generate

-- the signature
ENCRYPTED OCTET STRI NG
-- where the octet string is the result
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-- of the hashing of the value of "ToBeSi gned" END -- of

SI GNED
SI GNATURE MACRO :: = BEG N TYPE NOTATION ::= type( O Signature) VALUE
NOTATI ON :: = val ue( VALUE

SEQUENCE{

Al gorithmdentifier,
-- of the algorithmused to conpute the signature
ENCRYPTED OCTET STRI NG
-- where the octet string is a function (e.g., a
-- conpressed or hashed version) of the val ue
-- "OFSignature", which may include the identifier
-- of the algorithmused to conpute
-- the signature--}

) END -- of SIGNATURE

-- X.509 Annex H (not part of the standard)

encryptionAl gorithm OBJECT I DENTIFIER ::= {algorithm1} rsa ALGORl THM
PARAMETER KeySi ze
::= {encryptionAl gorithm 1}

KeySi ze ::= | NTEGER

END

d ossary

aut henti cati on
The process of deternmining the identity
(usually the nane) of the other party in sone comuni cation
exchange.

aut henti cati on context
Cached infornmation used during a particular instance of
aut henti cation and including a shared symetric (DES) key as
wel |l as conmponents of the authentication token conveyed
during establishnment of this context.

aut henti cation token
I nformation conveyed during a strong authenticati on exchange
that can be used to authenticate its sender. An
aut hentication token can, but is not necessarily linted to,
include the claimant identity and ticket, as well as signed
and encrypted secret key exchange nessages conveying a
secret key to be used in future cryptographic operations. An
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aut henti cation token nanmes a particular protocol data
structure conponent.

aut hori zati on
The process of determning the rights
associated with a particular principal

certificate
The public key of a particular principal, together
with some other information relating to the nanmes of the
principal and the certifying authority, rendered unforgeable
by enci phernent with the private key of the certification
authority that issued it.

certification authority
An authority trusted by one or nore principals to create and
assign certificates.

cl ai mant
The party that initiates the authentication process.
In the DASS architecture, claimnts possess credentials
whi ch include their identity, authenticating private key and
a ticket certifying their authenticating public key.

credential s
Information "state" required by principals in order
to for themto authenticate. Credentials may contain
information used to initiate the authentication process
(claimant information), information used to respond to an
aut hentication request (verifier information), and cached
i nformati on useful in inproving performance.

crypt ographi ¢ checksum
I nformation which is derived by performng a cryptographic
transformation on the data unit. This information can be
used by the receiver to verify the authenticity of data
passed in cleartext

deci pher
To reverse the effects of encipherment and render a
message conprehensi bl e by use of a cryptographic key.

del egati on

The granting of tenporary credentials that allow a
process to act on behal f of a principal
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del egati on key
A short term public/private key pair used by a clai mant
to act on behalf of a principal for a bounded period. The
del egation public key appears in the ticket, whereas the
del egation private key is used to sign secret key exchange

nessages.

DES
Data Encryption Standard: a symmetric (secret key)
encryption algorithmused by DASS. An alternate encryption
al gorithmcould be substituted with little or no disruption
to the architecture.

DES key

A 56-bit secret quantity used as a paraneter to the
DES encryption al gorithm

digital signature
A val ue conputed froma bl ock of data
and a key which could only be conputed by sonmeone know ng
the key. A digital signature conputed with a secret key can
only be verified by soneone know ng that secret key. A
digital signature conputed with a private key can be
verified by anyone know ng the correspondi ng public key.

enci pher
To render inconprehensible except to the holder of a
particul ar key. If you encipher with a secret key, only the
hol der of the same secret can deci pher the nessage. If you
enci pher with a public key, only the holder of the
correspondi ng private key can deci pher it.

initial trust certificate
A certificate signed by a principal for its own use which
states the nanme and public key of a trusted authority.

gl obal user nane
A hierarchical nane for a user which is
uni que within the entire domain of discussion (typically the
net wor k) .

| ocal user nanme
A sinple (non-hierarchical) nane by
which a user is known within a limted context such as on a
singl e conputer.
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princi pal
Abstract entity which can be authenticated by nane.
In DASS there are user principals and server principals.

private key
Crypt ographi c key used in asymetric (public key)
cryptography to decrypt and/or sign nessages. In asymetric
crypt ography, knowi ng the encryption key is independent of
knowi ng the decryption key. The decryption (or signing)
private key cannot be derived fromthe encrypting (or
verifying) public key.

pr oxy
A mapping froman external nane to a | ocal account
name for purposes of establishing a set of |ocal access
rights. Note that this differs fromthe definition in ECVA
TR/ 46.

public key
Crypt ographi c key used in asymmetric cryptography to
encrypt messages and/or verify signatures.

RSA
The Rivest-Shanir-Adel man public key cryptosystem
based on nodul ar exponenti ati on where the nodulus is the
product of two large prines. Wen the term RSA key is used,
it should be clear from context whether the public key, the
private key, or the public/private pair is intended.

secret key
Crypt ographi c key used in symretric cryptography to
encrypt, sign, decrypt and verify nessages. In synmmretric
crypt ography, know edge of the decryption key inplies
know edge of the encryption key, and vice-versa.

sign
A process which takes a piece of data and a key and
produces a digital signature which can only be cal cul ated by
soneone with the key. The hol der of a corresponding key can
verify the signature

source
The initiator of an authentication exchange.

strong aut hentication
Aut henti cation by means of cryptographically derived
aut hentication tokens and credentials. The actual working
definition is closer to that of "zero know edge" proof:
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aut hentication so as to not reveal any information usable by
either the verifier, or by an eavesdropping third party, to
further their potential ability to inpersonate the claimnt.

t ar get
The intended second party (other than the source) to
an aut henti cati on exchange.

ticket
A data structure certifying an authenticating
(public) key by virtue of being signed by a user principa
using their (long ternm private key. The ticket also
i ncludes the U D of the principal

trusted authority
The public key, name and U D of a
certification authority trusted in sonme context to certify
the public keys of other principals.

u b
A 128 bit unique identifier produced according to OSF
standard specifications.

user key
A "long terni RSA key whose private portion
aut henticates its holder as having the access rights of a
particul ar person.

verify
To cryptographically process a piece of data and a
digital signature to deternine that the holder of a
particul ar key signed the data.

verifier

The party who will performthe operations necessary
to verify the clainmed identity of a clainant.
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Security Considerations

Security issues are discussed throughout this neno.
Aut hor’ s Addr ess

Char |l es Kauf man

Di gi tal Equi pment Corporation
ZKCB- 3/ U14

110 Spit Brook Road

Nashua, NH 03062

Phone: (603) 881-1495
Emai | : kauf nan@k3. dec. com

CGeneral comments on this docunment should be sent to cat-ietf@rit. edu
M nor corrections should be sent to the author
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