Net wor k Wor ki ng Group J. Kohl

Request for Comments: 1510 Di gital Equi pnent Corporation
C. Neunan
| Sl

Sept enber 1993

The Kerberos Network Authentication Service (V5)
Status of this Meno

This RFC specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards” for the standardi zati on state and status
of this protocol. Distribution of this neno is unlinited.

Abst ract

Thi s docunent gives an overvi ew and specification of Version 5 of the
protocol for the Kerberos network authentication system Version 4,
descri bed el sewhere [1,2], is presently in production use at MT' s
Project Athena, and at other Internet sites.

Overvi ew

Project Athena, Athena, Athena MJSE, Discuss, Hesiod, Kerberos,
Moira, and Zephyr are trademarks of the Massachusetts Institute of
Technology (MT). No commrercial use of these trademarks nmay be nade
without prior witten perm ssion of MT.

This RFC describes the concepts and nodel upon which the Kerberos
networ k aut hentication systemis based. It also specifies Version 5
of the Kerberos protocol.

The notivations, goals, assunptions, and rational e behind nost design
decisions are treated cursorily; for Version 4 they are fully
described in the Kerberos portion of the Athena Technical Plan [1].
The protocol s are under review, and are not being submtted for
consideration as an Internet standard at this tinme. Conmments are
encouraged. Requests for addition to an electronic mailing list for
di scussi on of Kerberos, kerberos@ T.EDU, nay be addressed to
kerberos-request @A T.EDU. This nmailing list is gatewayed onto the
Usenet as the group conp. protocol s. kerberos. Requests for further

i nformation, including docunents and code availability, may be sent
to info-kerberos@ T. EDU.

Kohl & Neuman [Page 1]

RFC 1510 Ker ber os Sept ember 1993

Backgr ound

The Kerberos nodel is based in part on Needham and Schroeder’s
trusted third-party authentication protocol [3] and on nodifications
suggested by Denning and Sacco [4]. The original design and

i mpl enent ati on of Kerberos Versions 1 through 4 was the work of two
fornmer Project Athena staff nenbers, Steve MIler of Digital

Equi pnent Corporation and difford Neuman (now at the Information
Sciences Institute of the University of Southern California), along
with Jeronme Saltzer, Technical Director of Project Athena, and
Jeffrey Schiller, MT Canpus Network Manager. Many ot her nenbers of
Project Athena have also contributed to the work on Kerberos.
Version 4 is publicly available, and has seen w de use across the

I nternet.

Version 5 (described in this docunent) has evol ved from Version 4
based on new requirenents and desires for features not available in
Version 4. Details on the differences between Kerberos Versions 4
and 5 can be found in [5].

Tabl e of Contents

Introduction

1. Cross-RealmOperation
2. Environmental assunptions
3. dossary of terns

Ticket flag uses and requests
1. Initial and pre-authenticated tickets
2. Invalid tickets
3. Renewable tickets
4. Postdated tickets
5. Proxiable and proxy tickets
6. Forwardable tickets
7. Oher KDC Options i,

Message Exchanges
.1. The Authentication Service Exchange
Ceneration of KRB.AS REQ nessage
Recei pt of KRB AS REQ nessage
Generation of KRB_AS REP nessage
Ceneration of KRB ERROR nessage
Recei pt of KRB_AS REP nmessage
Recei pt of KRB ERROR nBSsage
The Client/Server Authentication Exchange
The KRB_AP_REQ MESSaget
Generation of a KRB_AP_REQ nessage
Recei pt of KRB _AP_REQ nmessage
Ceneration of a KRB_AP_REP nessage
Recei pt of KRB AP REP nessage

ourwNE
NNNNNNNNRFRPRPRPRPRPRPRPRPRPRPRPRPRRRRE
WWRFRPROOOOWOWONNNOOOITOPRWNDNNNOONO

WWWWWWWWWWWWWWNNNNNNNNEERPEP

NN EREEEEET

ghwNE

Kohl & Neuman [Page 2]

RFC 1510 Ker ber os Sept ember 1993

3.2.6. Using the encryption key 24
3.3. The Ticket-Granting Service (TGS) Exchange 24
3.3.1. CGeneration of KRB_TGS REQ nessage 25
3.3.2. Receipt of KRB TGS REQ nessage 26
3.3.3. Ceneration of KRB_ TGS REP nessage 27
3.3.3.1. Encoding the transited field 29
3.3.4. Receipt of KRB TGS REP nessage 31
3.4. The KRB_SAFE Exchange 31
3.4.1. Ceneration of a KRB_SAFE nmessage 31
3.4.2. Receipt of KRB_SAFE nessage 32
3.5. The KRB_PRIV Exchange 33
3.5.1. Generation of a KRB PRIV nessage 33
3.5.2. Receipt of KRB PRIV nessage 33
3.6. The KRB_CRED Exchange v ... 34
3.6.1. Generation of a KRB_CRED nessage 34
3.6.2. Receipt of KRB CRED nessage 34
4. The Kerberos Database 35
4.1. Database contents i 35
4.2. Additional fields 36
4.3. Frequently Changing Fields 37
4.4, Site Constants 37
5. Message Specifications 38
5.1. ASN. 1 Distinguished Encodi ng Representation 38
5.2. ASN. 1 Base Definitions 38
5.3. Tickets and Authenticators 42
5.3. 1. Tickets 42
5.3.2. Authenticators i, 47
5.4. Specifications for the AS and TGS exchanges 49
5.4.1. KRB_KDC REQ definition 49
5.4.2. KRB_KDC REP definition 56
5.5. dient/Server (CS) nessage specifications 58
5.5.1. KRB.AP REQ definitionccvuun.o... 58
5.5.2. KRB_AP_REP definition 60
5.5.3. Error nmessage reply 61
5.6. KRB_SAFE nessage specification 61
5.6.1. KRB_SAFE definition 61
5.7. KRB PRIV nessage specification 62
5.7.1. KRB_.PRIV definition 62
5.8. KRB_CRED nessage specification 63
5.8.1. KRB .CRED definition 63
5.9. Error message specification 65
5.9.1. KRB_.ERROR definition 66
6. Encryption and Checksum Specifications 67
6.1. Encryption Specifications 68
6.2. Encryption Keys 71
6.3. Encryption Systems, 71
6.3.1. The NULL Encryption System (null) 71
6.3.2. DES in CBC node with a CRC 32 checksum (descbc-crc) 71

Kohl & Neuman [Page 3]

RFC 1510 Ker ber os Sept ember 1993

6.3.3. DES in CBC node with an M checksum (descbc-nd4) 72
6.3.4. DES in CBC node with an MD5 checksum (descbc-nd5) 72
6.4. CheCKSUNMB 74
6.4.1. The CRC-32 Checksum (crc32) 74
6.4.2. The RSA MM Checksum (rsa-nd4) 75
6.4.3. RSA MM Cryptographi c Checksum Usi ng DES
(rsa-nd4-des) e 75
6.4.4. The RSA MD5 Checksum (rsa-md5) 76
6.4.5. RSA MD5 Cryptographi c Checksum Usi ng DES
(rsa-md5-des) 76
6.4.6. DES ci pher-bl ock chai ned checksum (des-nac)

6.4.7. RSA M4 Cryptographi c Checksum Usi ng DES

alternative (rsa-nd4-des-k), 77
6.4.8. DES cipher-block chained checksum alternative
(des-mBC-K) .. 77
7. Naming Constraints 78
7.1. RealmNames 77
7.2. Principal Nanes i 79
7.2.1. Nane of server principals 80
8. Constants and other defined values 80
8.1. Host address typest 80
8.2. KDC MBSSAQES . ..ttt it ittt e e e e 81
8.2.1. IP transport 81
8.2.2. OBl transport 82
8.2.3. Name of the TGS i 82
8.3. Protocol constants and associated values 82
9. Interoperability requirements 86
9.1. Specification 1 86
9.2. Reconmended KDC values 88
10. Acknow edgments e 88
11. References e 89
12. Security Considerations v, 90
13. Authors’ Addresses 90
A. Pseudo-code for protocol processing 91
A.1. KRB_AS REQ generation 91
A. 2. KRB_AS REQ verification and KRB_AS REP generation 92
A. 3. KRB_AS REP verification 95
A 4. KRB_AS REP and KRB_TGS REP common checks 96
A.5. KRB_ TGS REQ generationcoiuiunuon.. 97
A.6. KRB TGS REQ verification and KRB_TGS REP generation 98
A 7. KRB_ TGS REP verification 104
A. 8. Authenticator generation 104
A 9. KRB AP REQ generation 105
A 10. KRB_AP_REQ verification 105
A . 11. KRB_AP_REP generation, 106
A. 12. KRB AP REP verification 107
A.13. KRB _SAFE generation 107
A . 14. KRB SAFE verification 108

Kohl & Neuman [Page 4]

RFC 1510 Ker ber os Sept ember 1993

A.15. KRB _SAFE and KRB PRIV common checks 108

A 16. KRB PRIV generation, 109

A 17. KRB_PRIV verification 110

A.18. KRB CRED generation i, 110

A.19. KRB CRED verification 111

A.20. KRB ERROR generation 112
1. Introduction

Ker beros provides a nmeans of verifying the identities of principals,
(e.g., a workstation user or a network server) on an open
(unprotected) network. This is acconplished w thout relying on

aut hentication by the host operating system wi thout basing trust on
host addresses, w thout requiring physical security of all the hosts
on the network, and under the assunption that packets traveling al ong
the network can be read, nodified, and inserted at will. (Note,
however, that many applications use Kerberos’ functions only upon the
initiation of a stream based network connection, and assune the
absence of any "hijackers" who nmight subvert such a connection. Such
use inplicitly trusts the host addresses involved.) Kerberos
performs authentication under these conditions as a trusted third-
party authentication service by using conventional cryptography,

i.e., shared secret key. (shared secret key - Secret and private are
often used interchangeably in the literature. |In our usage, it takes
two (or nore) to share a secret, thus a shared DES key is a secret
key. Something is only private when no one but its owner knows it.
Thus, in public key cryptosystens, one has a public and a private

key.)

The aut hentication process proceeds as follows: A client sends a
request to the authentication server (AS) requesting "credential s"
for a given server. The AS responds with these credential s,
encrypted in the client’s key. The credentials consist of 1) a
"ticket" for the server and 2) a tenporary encryption key (often
called a "session key"). The client transmts the ticket (which
contains the client’s identity and a copy of the session key, al
encrypted in the server’'s key) to the server. The session key (now
shared by the client and server) is used to authenticate the client,
and nay optionally be used to authenticate the server. It nmay al so
be used to encrypt further communicati on between the two parties or
to exchange a separate sub-session key to be used to encrypt further
conmmuni cati on.

The inplenentati on consists of one or nore authentication servers
runni ng on physically secure hosts. The authentication servers

mai ntai n a dat abase of principals (i.e., users and servers) and their
secret keys. Code libraries provide encryption and inplenent the
Kerberos protocol. In order to add authentication to its

Kohl & Neuman [Page 5]

RFC 1510 Ker ber os Sept ember 1993

transactions, a typical network application adds one or two calls to
the Kerberos library, which results in the transnission of the
necessary nessages to achi eve authentication

The Kerberos protocol consists of several sub-protocols (or
exchanges). There are two nethods by which a client can ask a

Ker beros server for credentials. In the first approach, the client
sends a cleartext request for a ticket for the desired server to the
AS. The reply is sent encrypted in the client’s secret key. Usually
this request is for a ticket-granting ticket (TGI) which can |ater be
used with the ticket-granting server (TGS). In the second nethod

the client sends a request to the TGS. The client sends the TGT to
the TGS in the same nmanner as if it were contacting any other
application server which requires Kerberos credentials. The reply is
encrypted in the session key fromthe TGT.

Once obtained, credentials may be used to verify the identity of the
principals in a transaction, to ensure the integrity of nessages
exchanged between them or to preserve privacy of the nessages. The
application is free to choose whatever protection may be necessary.

To verify the identities of the principals in a transaction, the
client transmts the ticket to the server. Since the ticket is sent
"in the clear" (parts of it are encrypted, but this encryption
doesn’'t thwart replay) and might be intercepted and reused by an
attacker, additional information is sent to prove that the nessage
was originated by the principal to whomthe ticket was issued. This
information (called the authenticator) is encrypted in the session
key, and includes a tinmestanp. The tinestanp proves that the nessage
was recently generated and is not a replay. Encrypting the
authenticator in the session key proves that it was generated by a
party possessing the session key. Since no one except the requesting
principal and the server know the session key (it is never sent over
the network in the clear) this guarantees the identity of the client.

The integrity of the nessages exchanged between principals can al so
be guaranteed using the session key (passed in the ticket and
contained in the credentials). This approach provi des detection of
both replay attacks and nessage stream nodification attacks. It is
acconpl i shed by generating and transmitting a collision-proof
checksum (el sewhere called a hash or digest function) of the client’s
nmessage, keyed with the session key. Privacy and integrity of the
messages exchanged between principals can be secured by encrypting
the data to be passed using the session key passed in the ticket, and
contained in the credentials.

The aut henticati on exchanges nenti oned above require read-only access
to the Kerberos database. Sonetines, however, the entries in the

Kohl & Neuman [Page 6]

RFC 1510 Ker ber os Sept ember 1993

dat abase nust be nodified, such as when addi ng new principals or
changing a principal’s key. This is done using a protocol between a
client and a third Kerberos server, the Kerberos Adnministration
Server (KADM). The adm nistration protocol is not described in this
docunent. There is also a protocol for maintaining nultiple copies of
t he Kerberos database, but this can be considered an inplenentation
detail and may vary to support different database technol ogies.

1.1. Cross-Real m Qperation

The Kerberos protocol is designed to operate across organi zationa
boundaries. A client in one organi zation can be authenticated to a
server in another. Each organization wishing to run a Kerberos
server establishes its owmn "realnf. The name of the realmin which a
client is registered is part of the client’s nanme, and can be used by
the end-service to decide whether to honor a request.

By establishing "inter-realn keys, the administrators of two real ns
can allow a client authenticated in the local realmto use its

aut hentication remotely (O course, with appropriate pernission the
client could arrange registration of a separately-nanmed principal in
a renote realm and engage in normal exchanges with that realms
services. However, for even small nunbers of clients this becones
cunbersone, and nore automatic nethods as described here are
necessary). The exchange of inter-real mkeys (a separate key nay be
used for each direction) registers the ticket-granting service of
each realmas a principal in the other realm A client is then able
to obtain a ticket-granting ticket for the renpte realns ticket-
granting service fromits local realm Wen that ticket-granting
ticket is used, the renote ticket-granting service uses the inter-
real m key (which usually differs fromits own nornal TGS key) to
decrypt the ticket-granting ticket, and is thus certain that it was
i ssued by the client’s own TGS. Tickets issued by the renote ticket-
granting service will indicate to the end-service that the client was
aut henticated from another realm

Arealmis said to conmunicate with another realmif the two real ns
share an inter-real mkey, or if the local real mshares an inter-realm
key with an internediate real mthat comunicates with the renote
realm An authentication path is the sequence of internediate real ns
that are transited in conmunicating fromone real mto another

Real ns are typically organized hierarchically. Each real mshares a
key with its parent and a different key with each child. If an
inter-realmkey is not directly shared by two real ns, the

hi erarchi cal organi zation allows an authentication path to be easily
constructed. |If a hierarchical organization is not used, it may be
necessary to consult sone database in order to construct an

Kohl & Neuman [Page 7]

RFC 1510 Ker ber os Sept ember 1993

aut henti cati on path between real ns.

Al t hough realns are typically hierarchical, internediate real ns nmay
be bypassed to achi eve cross-real mauthentication through alternate
aut henti cation paths (these m ght be established to nake

conmruni cati on between two realns nore efficient). It is inportant
for the end-service to know which real ns were transited when deci di ng
how nmuch faith to place in the authentication process. To facilitate
this decision, a field in each ticket contains the nanes of the
realms that were involved in authenticating the client.

1.2. Environnmental assunptions

Ker beros i nposes a few assunptions on the environment in which it can
properly function:

+ "Deni al of service" attacks are not solved with Kerberos. There
are places in these protocols where an intruder intruder can
prevent an application fromparticipating in the proper
aut hentication steps. Detection and solution of such attacks
(some of which can appear to be not-uncomon "nornal" failure
nmodes for the system) is usually best left to the human
adm ni strators and users

+ Princi pals nust keep their secret keys secret. |f an intruder
sonmehow steals a principal’s key, it will be able to nmasquerade
as that principal or inpersonate any server to the legitimte
princi pal .

+ "Password guessing" attacks are not solved by Kerberos. If a
user chooses a poor password, it is possible for an attacker to
successfully nmount an offline dictionary attack by repeatedly
attenpting to decrypt, with successive entries froma
di ctionary, nessages obtained which are encrypted under a key
derived fromthe user’s password

+ Each host on the network nust have a clock which is "l oosely
synchroni zed" to the tinme of the other hosts; this
synchroni zation is used to reduce the bookkeepi ng needs of
application servers when they do replay detection. The degree
of "l ooseness"” can be configured on a per-server basis. |If the
cl ocks are synchroni zed over the network, the clock
synchroni zati on protocol nust itself be secured from network

att ackers.

+ Principal identifiers are not recycled on a short-termbasis. A
typi cal node of access control wll use access control lists
(ACLs) to grant permissions to particular principals. If a

Kohl & Neuman [Page 8]

RFC 1510 Ker ber os Sept ember 1993

stale ACL entry remains for a deleted principal and the
principal identifier is reused, the new principal will inherit
rights specified in the stale ACL entry. By not re-using
principal identifiers, the danger of inadvertent access is
renmoved.

1.3. dossary of terns

Belowis a list of ternms used throughout this docunent.

Aut henti cati on Verifying the clainmed identity of a
princi pal .

Aut henti cati on header A record containing a Ticket and an
Aut henticator to be presented to a
server as part of the authentication
process.

Aut hentication path A sequence of internediate realnms transited
in the authentication process when
conmmuni cating fromone real mto anot her

Aut hent i cat or A record containing information that can
be shown to have been recently generated
usi ng the session key known only by the
client and server.

Aut hori zati on The process of deternining whether a
client may use a service, which objects
the client is allowed to access, and the
type of access allowed for each.

Capability A token that grants the bearer perm ssion
to access an object or service. In
Kerberos, this might be a ticket whose
use is restricted by the contents of the
aut hori zation data field, but which
lists no network addresses, together
with the session key necessary to use
the ticket.

Kohl & Neuman [Page 9]

RFC 1510 Ker ber os Sept ember 1993

Ci phertext The out put of an encryption function
Encryption transforms plaintext into
ci phertext.

dient A process that nakes use of a network

service on behalf of a user. Note that
in sone cases a Server nay itself be a
client of sone other server (e.g., a
print server may be a client of a file
server).

Credential s A ticket plus the secret session key
necessary to successfully use that
ticket in an authentication exchange.

KDC Key Distribution Center, a network service
that supplies tickets and tenporary
session keys; or an instance of that
service or the host on which it runs.

The KDC services both initial ticket and
ticket-granting ticket requests. The
initial ticket portion is sonetines
referred to as the Authentication Server
(or service). The ticket-granting

ticket portion is sonetines referred to

as the ticket-granting server (or service).

Ker ber os Aside fromthe 3-headed dog guarding
Hades, the nane given to Project
Athena’ s authentication service, the
protocol used by that service, or the
code used to inplenment the authentication
servi ce.

Pl ai nt ext The input to an encryption function or
the out put of a decryption function
Decryption transfornms ci phertext into
pl ai nt ext.

Princi pal A uni quely naned client or server
i nstance that participates in a network
conmuni cati on.

Kohl & Neuman [Page 10]

RFC 1510 Ker ber os Sept ember 1993

Principal identifier The name used to uniquely identify each
di fferent principal

Seal To enci pher a record containing severa
fields in such a way that the fields
cannot be individually replaced without
ei ther know edge of the encryption key
or | eaving evidence of tanpering.

Secret key An encryption key shared by a principa
and the KDC, distributed outside the
bounds of the system with a long lifetine.
In the case of a human user’s
principal, the secret key is derived
froma password.

Server A particular Principal which provides a
resource to network clients.

Service A resource provided to network clients;
often provided by nore than one server
(for exanple, renote file service).

Sessi on key A tenmporary encryption key used between
two principals, with alifetine limted
to the duration of a single login "session"

Sub- sessi on key A temporary encryption key used between
two principals, selected and exchanged
by the principals using the session key,
and with alifetime linmted to the duration
of a single association.

Ti cket A record that helps a client authenticate
itself to a server; it contains the
client’s identity, a session key, a
ti mestanp, and other information, all
seal ed using the server’'s secret key.
It only serves to authenticate a client
when presented along with a fresh
Aut henti cat or.

Kohl & Neuman [Page 11]

RFC 1510 Ker ber os Sept ember 1993

2. Ticket flag uses and requests

Each Kerberos ticket contains a set of flags which are used to
indicate various attributes of that ticket. Mst flags may be
requested by a client when the ticket is obtained; sonme are
automatically turned on and off by a Kerberos server as required.

The followi ng sections explain what the various flags nean, and gives
exanpl es of reasons to use such a flag.

2.1. Initial and pre-authenticated tickets

The INITIAL flag indicates that a ticket was issued using the AS
protocol and not issued based on a ticket-granting ticket.
Application servers that want to require the know edge of a client’s
secret key (e.g., a passwordchangi ng progran) can insist that this
flag be set in any tickets they accept, and thus be assured that the
client’s key was recently presented to the application client.

The PRE- AUTHENT and HW AUTHENT fl ags provide addition information
about the initial authentication, regardl ess of whether the current
ticket was issued directly (in which case INNTIAL will also be set)
or issued on the basis of a ticket-granting ticket (in which case the
INFTIAL flag is clear, but the PRE-AUTHENT and HW AUTHENT fl ags are
carried forward fromthe ticket-granting ticket).

2.2. Invalid tickets

The INVALID flag indicates that a ticket is invalid. Application
servers nust reject tickets which have this flag set. A postdated
ticket will usually be issued in this form Invalid tickets nust be
val i dated by the KDC before use, by presenting themto the KDCin a
TGS request with the VALI DATE option specified. The KDC will only
validate tickets after their starttinme has passed. The validation is
required so that postdated tickets which have been stol en before
their starttime can be rendered permanently invalid (through a hot-
list nmechanisn).

2.3. Renewable tickets

Applications may desire to hold tickets which can be valid for |ong
periods of time. However, this can expose their credentials to
potential theft for equally |ong periods, and those stolen
credentials would be valid until the expiration tinme of the
ticket(s). Sinply using shortlived tickets and obtai ni ng new ones
periodically would require the client to have long-termaccess to its
secret key, an even greater risk. Renewable tickets can be used to
mtigate the consequences of theft. Renewable tickets have two
"expiration tinmes": the first is when the current instance of the

Kohl & Neuman [Page 12]

RFC 1510 Ker ber os Sept ember 1993

ticket expires, and the second is the |atest perm ssible value for an
i ndi vidual expiration time. An application client nust periodically
(i.e., before it expires) present a renewable ticket to the KDC, with
the RENEW option set in the KDC request. The KDC will issue a new
ticket with a new session key and a later expiration tinme. All other
fields of the ticket are left unnodified by the renewal process.

When the | atest pernissible expiration tine arrives, the ticket
expires permanently. At each renewal, the KDC may consult a hot-1li st
to determine if the ticket had been reported stolen since its |ast
renewal ; it will refuse to renew such stolen tickets, and thus the
usable lifetime of stolen tickets is reduced.

The RENEWABLE flag in a ticket is nornmally only interpreted by the
ticket-granting service (discussed belowin section 3.3). It can
usual Iy be ignored by application servers. However, sone
particularly careful application servers may wi sh to disall ow
renewabl e tickets.

If a renewable ticket is not renewed by its expiration tine, the KDC
will not renew the ticket. The RENEWABLE flag is reset by default,
but a client may request it be set by setting the RENEWABLE option

in the KRB_AS REQ nessage. |If it is set, then the renewtill field
in the ticket contains the time after which the ticket may not be
renewed.

2.4. Postdated tickets

Applications may occasionally need to obtain tickets for use nuch
|ater, e.g., a batch subm ssion system would need tickets to be valid
at the tine the batch job is serviced. However, it is dangerous to
hold valid tickets in a batch queue, since they will be on-line

| onger and nore prone to theft. Postdated tickets provide a way to
obtain these tickets fromthe KDC at job submission tinme, but to

| eave them "dormant” until they are activated and validated by a
further request of the KDC. |If a ticket theft were reported in the
interim the KDC would refuse to validate the ticket, and the thief
woul d be foil ed.

The MAY- POSTDATE flag in a ticket is nornmally only interpreted by the
ticket-granting service. It can be ignored by application servers.
This flag nust be set in a ticket-granting ticket in order to issue a
postdated ticket based on the presented ticket. It is reset by
default; it nay be requested by a client by setting the ALLOW
POSTDATE option in the KRB_AS REQ nessage. This flag does not all ow
a client to obtain a postdated ticket-granting ticket; postdated
ticket-granting tickets can only by obtained by requesting the
postdating in the KRB_AS REQ nmessage. The life (endtine-starttine)
of a postdated ticket will be the remaining life of the ticket-

Kohl & Neuman [Page 13]

RFC 1510 Ker ber os Sept ember 1993

granting ticket at the tine of the request, unless the RENEWABLE
option is also set, in which case it can be the full life (endtine-
starttinme) of the ticket-granting ticket. The KDC may linmt how far
inthe future a ticket may be postdated.

The POSTDATED flag indicates that a ticket has been postdated. The
application server can check the authtinme field in the ticket to see
when the original authentication occurred. Sone services may choose
to reject postdated tickets, or they may only accept themw thin a
certain period after the original authentication. Wen the KDC i ssues
a POSTDATED ticket, it will also be marked as I NVALID, so that the
application client nust present the ticket to the KDC to be validated
bef ore use.

2.5. Proxiable and proxy tickets

At times it may be necessary for a principal to allow a service to
performan operation on its behalf. The service nust be able to take
on the identity of the client, but only for a particular purpose. A
principal can allow a service to take on the principal’s identity for
a particular purpose by granting it a proxy.

The PROXI ABLE flag in a ticket is normally only interpreted by the
ticket-granting service. It can be ignored by application servers.
When set, this flag tells the ticket-granting server that it is OKto
issue a new ticket (but not a ticket-granting ticket) with a

di fferent network address based on this ticket. This flag is set by
defaul t.

This flag allows a client to pass a proxy to a server to performa
renote request on its behalf, e.g., a print service client can give
the print server a proxy to access the client’'s files on a particul ar
file server in order to satisfy a print request.

In order to conmplicate the use of stolen credentials, Kerberos
tickets are usually valid fromonly those network addresses
specifically included in the ticket (It is pernissible to request or
i ssue tickets with no network addresses specified, but we do not
reconmend it). For this reason, a client wishing to grant a proxy
must request a new ticket valid for the network address of the
service to be granted the proxy.

The PROXY flag is set in a ticket by the TGS when it issues a
proxy ticket. Application servers may check this flag and require
addi tional authentication from the agent presenting the proxy in
order to provide an audit trail.

Kohl & Neuman [Page 14]

RFC 1510 Ker ber os Sept ember 1993

2.6. Forwardable tickets

Aut hentication forwarding is an instance of the proxy case where the

service is granted conplete use of the client’s identity. An exanple
where it mght be used is when a user logs in to a renpte system and

wants aut hentication to work fromthat systemas if the login were

| ocal .

The FORWARDABLE flag in a ticket is normally only interpreted by the
ticket-granting service. It can be ignored by application servers.
The FORWARDABLE flag has an interpretation sinmlar to that of the
PROXI ABLE fl ag, except ticket-granting tickets nay al so be issued
with different network addresses. This flag is reset by default, but
users nmay request that it be set by setting the FORWARDABLE option in
the AS request when they request their initial ticket-granting
ticket.

This flag allows for authentication forwarding without requiring the

user to enter a password again. |If the flag is not set, then
aut hentication forwarding is not pernmitted, but the same end result
can still be achieved if the user engages in the AS exchange with the

requested network addresses and supplies a password.

The FORWARDED flag is set by the TGS when a client presents a ticket
with the FORWARDABLE flag set and requests it be set by specifying

t he FORWARDED KDC option and supplying a set of addresses for the new
ticket. It is also set in all tickets issued based on tickets with
the FORWARDED flag set. Application servers nay wi sh to process
FORWARDED tickets differently than non- FORWARDED ti ckets.

2.7. Oher KDC options

There are two additional options which may be set in a client’s
request of the KDC. The RENEWABLE- K option indicates that the
client will accept a renewable ticket if a ticket with the requested
Iife cannot otherwi se be provided. If a ticket with the requested
life cannot be provided, then the KDC may i ssue a renewabl e ticket
with a renewtill equal to the the requested endtine. The value of
the renewtill field may still be adjusted by site-determined linits
or limts inmposed by the individual principal or server.

The ENC- TKT-1 N-SKEY option is honored only by the ticket-granting
service. It indicates that the to-be-issued ticket for the end
server is to be encrypted in the session key fromthe additiona
ticket-granting ticket provided with the request. See section 3.3.3
for specific details.

Kohl & Neuman [Page 15]

RFC 1510 Ker ber os Sept ember 1993

3. Message Exchanges

The followi ng sections describe the interactions between network
clients and servers and the nessages involved in those exchanges.

3.1. The Authentication Service Exchange

Sunmmary
Message direction Message type Section
1. dient to Kerberos KRB_AS REQ 5.4.1
2. Kerberos to client KRB _AS REP or 5.4.2
KRB_ERROR 5.9.1

The Aut hentication Service (AS) Exchange between the client and the
Ker beros Aut hentication Server is usually initiated by a client when
it wishes to obtain authentication credentials for a given server but
currently holds no credentials. The client’s secret key is used for
encryption and decryption. This exchange is typically used at the
initiation of a login session, to obtain credentials for a Ticket-
Granting Server, which will subsequently be used to obtain
credentials for other servers (see section 3.3) without requiring
further use of the client’s secret key. This exchange is al so used
to request credentials for services which nust not be nedi ated
through the Ticket-Granting Service, but rather require a principal’'s
secret key, such as the password-changing service. (The password-
changi ng request nmust not be honored unl ess the requester can provide
the old password (the user’s current secret key). Oherwise, it
woul d be possible for soneone to walk up to an unattended session and
change another user’s password.) This exchange does not by itself
provi de any assurance of the the identity of the user. (To

aut henticate a user logging on to a local system the credentials
obtained in the AS exchange may first be used in a TGS exchange to
obtain credentials for a local server. Those credentials nust then
be verified by the |l ocal server through successful conpletion of the
dient/Server exchange.)

The exchange consists of two nessages: KRB _AS REQ fromthe client to
Ker beros, and KRB_AS REP or KRB_ERROR in reply. The formats for these
messages are described in sections 5.4.1, 5.4.2, and 5.9. 1.

In the request, the client sends (in cleartext) its own identity and
the identity of the server for which it is requesting credentials.
The response, KRB_AS REP, contains a ticket for the client to present
to the server, and a session key that will be shared by the client
and the server. The session key and additional information are
encrypted in the client’s secret key. The KRB_AS REP nessage
contains informati on which can be used to detect replays, and to

Kohl & Neuman [Page 16]

RFC 1510 Ker ber os Sept ember 1993

associate it with the nessage to which it replies. Various errors
can occur; these are indicated by an error response (KRB_ERROR)

i nstead of the KRB_AS REP response. The error nessage i s not
encrypted. The KRB_ERROR nessage al so contains information which can
be used to associate it with the nessage to which it replies. The

| ack of encryption in the KRB ERROR nessage precludes the ability to
detect replays or fabrications of such nessages.

In the normal case the authentication server does not know whet her
the client is actually the principal nanmed in the request. It sinply
sends a reply without knowi ng or caring whether they are the sane.
This is acceptabl e because nobody but the principal whose identity
was given in the request will be able to use the reply. Its critica
information is encrypted in that principal’s key. The initia

request supports an optional field that can be used to pass
additional information that m ght be needed for the initial exchange.
This field may be used for preauthentication if desired, but the
mechani smis not currently specified.

3.1.1. Generation of KRB_AS REQ nessage

The client may specify a nunber of options in the initial request.
Anong these options are whet her preauthentication is to be perforned;
whet her the requested ticket is to be renewabl e, proxiable, or
forwardabl e; whether it should be postdated or allow postdating of
derivative tickets; and whether a renewable ticket will be accepted
inlieu of a non-renewable ticket if the requested ticket expiration
dat e cannot be satisfied by a nonrenewable ticket (due to
configuration constraints; see section 4). See section A 1 for
pseudocode.

The client prepares the KRB _AS REQ nessage and sends it to the KDC.
3.1.2. Receipt of KRB_AS REQ nessage

If all goes well, processing the KRB_AS REQ nessage will result in
the creation of a ticket for the client to present to the server
The format for the ticket is described in section 5.3.1. The
contents of the ticket are determ ned as foll ows.

3.1.3. Generation of KRB_AS REP nessage

The aut hentication server |ooks up the client and server principals
naned in the KRB_.AS REQ in its database, extracting their respective
keys. If required, the server pre-authenticates the request, and if
the pre-authentication check fails, an error nessage with the code
KDC ERR PREAUTH FAILED is returned. If the server cannot accommpdate
the requested encryption type, an error nessage wth code

Kohl & Neuman [Page 17]

RFC 1510 Ker ber os Sept ember 1993

KDC ERR ETYPE NOSUPP is returned. Gtherwise it generates a "randont
session key ("Random!' neans that, anobng other things, it should be
i mpossi bl e to guess the next session key based on know edge of past
session keys. This can only be achieved in a pseudo-random nunber
generator if it is based on cryptographic principles. It would be
nore desirable to use a truly random nunber generator, such as one
based on neasurenents of random physical phenonena.).

If the requested start tinme is absent or indicates a tine in the
past, then the start tine of the ticket is set to the authentication
server’s current time. If it indicates a tine in the future, but the
POSTDATED option has not been specified, then the error

KDC ERR _CANNOT _POSTDATE is returned. Oherw se the requested start
time is checked against the policy of the local realm(the
admi ni strator might decide to prohibit certain types or ranges of
postdated tickets), and if acceptable, the ticket's start tinme is set
as requested and the INVALID flag is set in the new ticket. The
postdated ticket nust be validated before use by presenting it to the
KDC after the start tinme has been reached.

The expiration tinme of the ticket will be set to the nininmm of the
fol | owi ng:

+The expiration tine (endtine) requested in the KRB_AS REQ
nessage

+The ticket’'s start tine plus the maxi numall owable lifetinme
associated with the client principal (the authentication
server’s database includes a maximumticket lifetine field
in each principal’s record; see section 4).

+The ticket’'s start tine plus the maxi numall owable lifetine
associ ated with the server principal

+The ticket’s start tine plus the maxinumlifetine set by
the policy of the local realm

If the requested expiration tinme mnus the start tinme (as deternined
above) is less than a site-determined nminimumlifetinme, an error
message with code KDC ERR NEVER VALID is returned. |If the requested
expiration time for the ticket exceeds what was determ ned as above,
and if the "RENEWABLE- OK" option was requested, then the "RENEWABLE"
flag is set in the new ticket, and the renewtill value is set as if
the "RENEWABLE" option were requested (the field and option nanes are
described fully in section 5.4.1). |f the RENEWABLE opti on has been
requested or if the RENEWABLE- K option has been set and a renewabl e
ticket is to be issued, then the renewtill field is set to the

m ni num of :

Kohl & Neuman [Page 18]

RFC 1510 Ker ber os Sept ember 1993

+lts requested val ue.

+The start time of the ticket plus the nmininumof the two
maxi mum renewabl e lifetinmes associated with the principals’
dat abase entri es.

+The start tinme of the ticket plus the nmaxi num renewabl e
lifetime set by the policy of the local realm

The flags field of the newticket will have the foll ow ng options set
if they have been requested and if the policy of the |local realm

all ows: FORWARDABLE, MAY- POSTDATE, POSTDATED, PROXI ABLE, RENEWABLE.

If the newticket is postdated (the start tine is in the future), its
INVALID flag will also be set.

If all of the above succeed, the server formats a KRB_AS REP nessage
(see section 5.4.2), copying the addresses in the request into the
caddr of the response, placing any required pre-authentication data
into the padata of the response, and encrypts the ciphertext part in
the client’s key using the requested encryption nmethod, and sends it
to the client. See section A 2 for pseudocode.

3.1.4. CGeneration of KRB_ERROR nmessage

Several errors can occur, and the Authentication Server responds by
returning an error nessage, KRB_ERROR to the client, with the
error-code and e-text fields set to appropriate values. The error
nmessage contents and details are described in Section 5.9.1.

3.1.5. Receipt of KRB_AS REP nessage

If the reply nessage type is KRB_AS REP, then the client verifies
that the cname and crealmfields in the cleartext portion of the
reply match what it requested. |f any padata fields are present,
they may be used to derive the proper secret key to decrypt the
message. The client decrypts the encrypted part of the response
using its secret key, verifies that the nonce in the encrypted part

mat ches the nonce it supplied in its request (to detect replays). It
al so verifies that the sname and srealmin the response match those
in the request, and that the host address field is also correct. It

then stores the ticket, session key, start and expiration tinmes, and
other information for |later use. The key-expiration field fromthe
encrypted part of the response nmay be checked to notify the user of

i mpendi ng key expiration (the client programcould then suggest
renedi al action, such as a password change). See section A 3 for
pseudocode.

Proper decryption of the KRB_AS REP nessage is not sufficient to

Kohl & Neuman [Page 19]

RFC 1510 Ker ber os Sept ember 1993

verify the identity of the user; the user and an attacker could
cooperate to generate a KRB_AS REP fornmat nessage whi ch decrypts
properly but is not fromthe proper KDC. If the host wi shes to
verify the identity of the user, it nmust require the user to present
application credentials which can be verified using a securely-stored
secret key. |If those credentials can be verified, then the identity
of the user can be assured.

3.1.6. Receipt of KRB_ERROR nessage
If the reply nessage type is KRB ERROR, then the client interprets it
as an error and perforns whatever application-specific tasks are
necessary to recover

3.2. The dient/Server Authentication Exchange

Summary
Message direction Message type Section
Client to Application server KRB _AP_REQ 5.5.1
[optional] Application server to client KRB_AP_REP or 5.5.2
KRB_ERRCR 5.9.1

The client/server authentication (CS) exchange is used by network
applications to authenticate the client to the server and vice versa.
The client nust have already acquired credentials for the server
using the AS or TGS exchange.

3.2.1. The KRB_AP_REQ nessage

The KRB_AP_REQ contai ns authentication information which should be
part of the first message in an authenticated transaction. It
contains a ticket, an authenticator, and some additional bookkeeping
informati on (see section 5.5.1 for the exact format). The ticket by
itself is insufficient to authenticate a client, since tickets are
passed across the network in cleartext(Tickets contain both an
encrypted and unencrypted portion, so cleartext here refers to the
entire unit, which can be copied fromone nessage and replayed in
anot her w thout any cryptographic skill.), so the authenticator is
used to prevent invalid replay of tickets by proving to the server
that the client knows the session key of the ticket and thus is
entitled to use it. The KRB AP REQ nessage is referred to el sewhere
as the "authentication header."

3.2.2. CGeneration of a KRB_AP_REQ nessage

Wien a client wishes to initiate authentication to a server, it
obtains (either through a credentials cache, the AS exchange, or the

Kohl & Neuman [Page 20]

RFC 1510 Ker ber os Sept ember 1993

TGS exchange) a ticket and session key for the desired service. The
client may re-use any tickets it holds until they expire. The client
then constructs a new Authenticator fromthe the systemtine, its
nane, and optionally an application specific checksum an initia
sequence nunmber to be used in KRB_SAFE or KRB PRIV nessages, and/or a
session subkey to be used in negotiations for a session key unique to
this particular session. Authenticators nmay not be re-used and wll
be rejected if replayed to a server (Note that this can neke
applications based on unreliable transports difficult to code
correctly, if the transport might deliver duplicated messages. In
such cases, a new authenticator nust be generated for each retry.).

If a sequence nunber is to be included, it should be randomy chosen
so that even after nmany nessages have been exchanged it is not likely
to collide with other sequence nunbers in use.

The client may indicate a requirenment of mutual authentication or the
use of a session-key based ticket by setting the appropriate flag(s)
in the ap-options field of the nessage.

The Authenticator is encrypted in the session key and conbined with
the ticket to formthe KRB_AP_REQ nessage which is then sent to the
end server along with any additional application-specific
informati on. See section A 9 for pseudocode.

3.2.3. Receipt of KRB _AP_REQ nessage

Aut hentication is based on the server’s current tine of day (clocks
must be | oosely synchroni zed), the authenticator, and the ticket.
Several errors are possible. If an error occurs, the server is
expected to reply to the client with a KRB_ERROR nessage. This
message may be encapsulated in the application protocol if its "raw'
formis not acceptable to the protocol. The format of error nessages
is described in section 5.9.1.

The algorithm for verifying authentication information is as foll ows.
If the message type is not KRB AP REQ the server returns the

KRB _AP_ERR MSG TYPE error. If the key version indicated by the Ticket
in the KRB AP REQis not one the server can use (e.g., it indicates
an old key, and the server no | onger possesses a copy of the old
key), the KRB_AP_ERR BADKEYVER error is returned. |If the USE-

SESSI ON-KEY flag is set in the ap-options field, it indicates to the
server that the ticket is encrypted in the session key fromthe
server’s ticket-granting ticket rather than its secret key (This is
used for user-to-user authentication as described in [6]). Since it
is possible for the server to be registered in nmultiple realnms, with
different keys in each, the srealmfield in the unencrypted portion
of the ticket in the KRB_AP_ REQis used to specify which secret key
the server should use to decrypt that ticket. The KRB _AP_ERR NOKEY

Kohl & Neuman [Page 21]

RFC 1510 Ker ber os Sept ember 1993

error code is returned if the server doesn’'t have the proper key to
deci pher the ticket.

The ticket is decrypted using the version of the server’s key
specified by the ticket. |If the decryption routines detect a
nodi fication of the ticket (each encryption system nust provide
saf eguards to detect nodified ciphertext; see section 6), the
KRB_AP_ERR BAD | NTECRITY error is returned (chances are good that
di fferent keys were used to encrypt and decrypt).

The authenticator is decrypted using the session key extracted from
the decrypted ticket. |If decryption shows it to have been nodifi ed,
the KRB_AP_ERR BAD I NTEGRITY error is returned. The nanme and real m
of the client fromthe ticket are conpared agai nst the sanme fields in
the authenticator. |If they don’t match, the KRB_AP_ERR BADVMATCH
error is returned (they might not match, for exanple, if the wong
session key was used to encrypt the authenticator). The addresses in
the ticket (if any) are then searched for an address nmatching the
operating-systemreported address of the client. |If no match is
found or the server insists on ticket addresses but none are present
in the ticket, the KRB_AP_ERR BADADDR error is returned.

If the local (server) time and the client tine in the authenticator
differ by nore than the allowable clock skew (e.g., 5 nminutes), the
KRB _AP_ERR SKEW error is returned. |If the server nane, along with
the client nane, time and nicrosecond fields fromthe Authenticator
mat ch any recently-seen such tuples, the KRB_AP_ERR REPEAT error is
returned (Note that the rejection here is restricted to

aut henticators fromthe sanme principal to the sane server. Oher
client principals conmunicating with the sane server principal should
not be have their authenticators rejected if the tine and nicrosecond
fields happen to match sone other client’s authenticator.). The
server mnust renenber any authenticator presented within the allowabl e
cl ock skew, so that a replay attenpt is guaranteed to fail. If a
server loses track of any authenticator presented within the

al | owabl e cl ock skew, it nust reject all requests until the clock
skew i nterval has passed. This assures that any lost or re-played
authenticators will fall outside the allowable clock skew and can no
| onger be successfully replayed (If this is not done, an attacker
coul d conceivably record the ticket and authenticator sent over the
network to a server, then disable the client’s host, pose as the

di sabl ed host, and replay the ticket and authenticator to subvert the
authentication.). |[If a sequence nunber is provided in the

aut henticator, the server saves it for later use in processing
KRB_SAFE and/or KRB_PRIV nessages. |If a subkey is present, the
server either saves it for later use or uses it to help generate its
own choice for a subkey to be returned in a KRB_AP_REP nessage

Kohl & Neuman [Page 22]

RFC 1510 Ker ber os Sept ember 1993

The server conputes the age of the ticket: |ocal (server) tine mnus
the start tinme inside the Ticket. |If the start tine is later than
the current tinme by nore than the allowable clock skew or if the
INVALID flag is set in the ticket, the KRB_AP_ERR TKT_NYV error is
returned. Oherwise, if the current time is later than end tine by
nore than the all owabl e cl ock skew, the KRB_AP_ERR TKT_EXPI RED err or
i s returned.

If all these checks succeed without an error, the server is assured
that the client possesses the credentials of the principal naned in
the ticket and thus, the client has been authenticated to the server
See section A 10 for pseudocode.

3.2.4. Generation of a KRB _AP_REP nessage

Typically, a client’s request will include both the authentication
information and its initial request in the same nessage, and the
server need not explicitly reply to the KRB_ AP REQ However, if

mut ual authentication (not only authenticating the client to the
server, but also the server to the client) is being perforned, the
KRB_AP_REQ nmessage will have MJTUAL- REQUI RED set in its ap-options
field, and a KRB_AP_REP nessage is required in response. As with the
error nessage, this nessage may be encapsulated in the application
protocol if its "raw' formis not acceptable to the application's
protocol. The tinestanp and microsecond field used in the reply nust
be the client’s timestanp and microsecond field (as provided in the
authenticator). [Note: In the Kerberos version 4 protocol, the
timestanp in the reply was the client’s tinestanp plus one. This is
not necessary in version 5 because version 5 nessages are formatted
in such a way that it is not possible to create the reply by
judi ci ous nessage surgery (even in encrypted form) w thout know edge
of the appropriate encryption keys.] |If a sequence nunber is to be

i ncluded, it should be randomy chosen as descri bed above for the

aut henticator. A subkey may be included if the server desires to
negotiate a different subkey. The KRB_AP_REP nessage is encrypted in
the session key extracted fromthe ticket. See section A 11 for
pseudocode.

3.2.5. Receipt of KRB_AP_REP nessage

If a KRB_AP_REP nessage is returned, the client uses the session key
fromthe credentials obtained for the server (Note that for
encrypting the KRB_AP_REP nessage, the sub-session key is not used,
even if present in the Authenticator.) to decrypt the nessage, and
verifies that the timestanp and m crosecond fields match those in the
Aut henticator it sent to the server. |f they match, then the client
is assured that the server is genuine. The sequence nunber and subkey
(if present) are retained for later use. See section A 12 for

Kohl & Neuman [Page 23]

RFC 1510 Ker ber os Sept ember 1993

pseudocode.
3.2.6. Using the encryption key

After the KRB_AP_REQ KRB_AP_REP exchange has occurred, the client and
server share an encryption key which can be used by the application
The "true session key" to be used for KRB PRIV, KRB SAFE, or other
application-specific uses nmay be chosen by the application based on
t he subkeys in the KRB_AP_REP nessage and the authenticator

(I npl erent ati ons of the protocol may wish to provide routines to
choose subkeys based on session keys and random nunbers and to
orchestrate a negotiated key to be returned in the KRB_AP_REP
message.). In sone cases, the use of this session key will be
implicit in the protocol; in others the nethod of use nmust be chosen
froma several alternatives. W |eave the protocol negotiations of
how to use the key (e.g., selecting an encryption or checksumtype)
to the application programrer; the Kerberos protocol does not
constrain the inplenentation options.

Wth both the one-way and nutual authentication exchanges, the peers
shoul d take care not to send sensitive information to each other

wi t hout proper assurances. |In particular, applications that require
privacy or integrity should use the KRB_AP_REP or KRB _ERROR responses
fromthe server to client to assure both client and server of their
peer’s identity. |If an application protocol requires privacy of its
nessages, it can use the KRB PRIV nessage (section 3.5). The KRB_SAFE
nmessage (section 3.4) can be used to assure integrity.

3.3. The Ticket-Granting Service (TGS) Exchange

Summary
Message direction Message type Section
1. dient to Kerberos KRB TGS REQ 5.4.1
2. Kerberos to client KRB TGS REP or 5.4.2
KRB_ERRCR 5.9.1

The TGS exchange between a client and the Kerberos Ticket-Ganting
Server is initiated by a client when it wi shes to obtain

aut hentication credentials for a given server (which mght be
registered in a renote realm, when it w shes to renew or validate an
existing ticket, or when it wishes to obtain a proxy ticket. 1In the
first case, the client nust already have acquired a ticket for the

Ti cket-Granting Service using the AS exchange (the ticket-granting
ticket is usually obtained when a client initially authenticates to
the system such as when a user logs in). The nmessage format for the
TGS exchange is alnost identical to that for the AS exchange. The
primary difference is that encryption and decryption in the TGS

Kohl & Neuman [Page 24]

RFC 1510 Ker ber os Sept ember 1993

exchange does not take place under the client’s key. Instead, the
session key fromthe ticket-granting ticket or renewable ticket, or
sub-session key froman Authenticator is used. As is the case for
all application servers, expired tickets are not accepted by the TGS
so once a renewabl e or ticket-granting ticket expires, the client
nmust use a separate exchange to obtain valid tickets.

The TGS exchange consists of two nessages: A request (KRB_TGS_REQ
fromthe client to the Kerberos Ticket-Ganting Server, and a reply
(KRB_TGS_REP or KRB _ERROR). The KRB TGS REQ nessage i ncl udes

i nformati on authenticating the client plus a request for credentials.
The aut hentication information consists of the authentication header
(KRB_AP_REQ which includes the client’s previously obtained ticket-
granting, renewable, or invalid ticket. |In the ticket-granting
ticket and proxy cases, the request may include one or nore of: a
list of network addresses, a collection of typed authorization data
to be sealed in the ticket for authorization use by the application
server, or additional tickets (the use of which are described | ater).
The TGS reply (KRB_TGS REP) contains the requested credential s,
encrypted in the session key fromthe ticket-granting ticket or
renewabl e ticket, or if present, in the subsession key fromthe

Aut henticator (part of the authentication header). The KRB_ERROR
message contains an error code and text explaining what went wong.
The KRB_ERROR nessage is not encrypted. The KRB TGS REP nessage
contains informati on which can be used to detect replays, and to
associate it with the nessage to which it replies. The KRB_ERROR
nmessage al so contains information which can be used to associate it
with the nmessage to which it replies, but the lack of encryption in
the KRB_ERROR nessage precludes the ability to detect replays or
fabrications of such nessages.

3.3.1. Generation of KRB TGS REQ nessage

Bef ore sending a request to the ticket-granting service, the client
nmust determine in which realmthe application server is registered
[Note: This can be acconplished in several ways. It mght be known
bef orehand (since the realmis part of the principal identifier), or
it mght be stored in a nameserver. Presently, however, this
information is obtained froma configuration file. |If the realmto
be used is obtained froma nameserver, there is a danger of being
spoofed if the naneservice providing the real mnanme is not
authenticated. This might result in the use of a real mwhich has
been conproni sed, and would result in an attacker’s ability to
conpromi se the authentication of the application server to the
client.]. |If the client does not already possess a ticket-granting
ticket for the appropriate realm then one nmust be obtained. This is
first attenpted by requesting a ticket-granting ticket for the
destination realmfromthe | ocal Kerberos server (using the

Kohl & Neuman [Page 25]

RFC 1510 Ker ber os Sept ember 1993

KRB TGS REQ nessage recursively). The Kerberos server nay return a
TGT for the desired realmin which case one can proceed.
Alternatively, the Kerberos server may return a TGI for a real mwhich
is "closer"” to the desired realm (further along the standard

hi erarchi cal path), in which case this step nust be repeated with a
Kerberos server in the realmspecified in the returned TGI. |If
neither are returned, then the request nust be retried with a

Ker beros server for a realmhigher in the hierarchy. This request
will itself require a ticket-granting ticket for the higher realm

whi ch nmust be obtained by recursively applying these directions.

Once the client obtains a ticket-granting ticket for the appropriate
realm it determ nes which Kerberos servers serve that realm and
contacts one. The list night be obtained through a configuration file
or network service; as long as the secret keys exchanged by real ns
are kept secret, only denial of service results froma fal se Kerberos
server.

As in the AS exchange, the client may specify a nunber of options in
the KRB_TGS _REQ nessage. The client prepares the KRB_TGS_REQ
nmessage, providing an authentication header as an el ement of the
padata field, and including the sanme fields as used in the KRB_AS REQ
message along with several optional fields: the enc-authorization-
data field for application server use and additional tickets required
by sone options.

In preparing the authentication header, the client can select a sub-
session key under which the response fromthe Kerberos server will be
encrypted (If the client selects a sub-session key, care nust be
taken to ensure the randommess of the sel ected subsession key. One
approach would be to generate a random nunber and XOR it with the
session key fromthe ticket-granting ticket.). |If the sub-session key
is not specified, the session key fromthe ticket-granting ticket

will be used. |If the enc-authorization-data is present, it nust be
encrypted in the sub-session key, if present, fromthe authenticator
portion of the authentication header, or if not present in the
session key fromthe ticket-granting ticket.

Once prepared, the nessage is sent to a Kerberos server for the
destination realm See section A 5 for pseudocode.

3.3.2. Receipt of KRB TGS REQ nessage

The KRB_TGS_REQ nessage is processed in a nmanner simlar to the
KRB_AS REQ nessage, but there are many additional checks to be
performed. First, the Kerberos server nust determ ne which server
the acconpanying ticket is for and it mnmust select the appropriate key
to decrypt it. For a normal KRB TGS REQ nessage, it will be for the

Kohl & Neuman [Page 26]

RFC 1510 Ker ber os Sept ember 1993

ticket granting service, and the TGS's key will be used. |If the TGI
was issued by another realm then the appropriate inter-realmkey
must be used. |If the acconpanying ticket is not a ticket granting
ticket for the current realm but is for an application server in the
current realm the RENEW VALI DATE, or PROXY options are specified in
the request, and the server for which a ticket is requested is the
server naned in the acconpanying ticket, then the KDC will decrypt
the ticket in the authentication header using the key of the server
for which it was issued. |If no ticket can be found in the padata
field, the KDC ERR PADATA TYPE NOSUPP error is returned

Once the acconpanying ticket has been decrypted, the user-supplied
checksumin the Authenticator nust be verified against the contents
of the request, and the nmessage rejected if the checksuns do not
match (with an error code of KRB_AP_ERR MODI FIED) or if the checksum
is not keyed or not collision-proof (wth an error code of
KRB_AP_ERR I NAPP_CKSUM). If the checksumtype is not supported, the
KDC ERR SUMTYPE NOSUPP error is returned. |f the authorization-data
are present, they are decrypted using the sub-session key fromthe
Aut hent i cat or

If any of the decryptions indicate failed integrity checks, the
KRB_AP_ERR BAD I NTEGRITY error is returned.

3.3.3. Generation of KRB TGS REP nessage

The KRB _TGS_REP nessage shares its format with the KRB _AS REP
(KRB_KDC REP), but with its type field set to KRB_TGS REP. The
detailed specification is in section 5.4.2.

The response will include a ticket for the requested server. The

Ker beros database is queried to retrieve the record for the requested
server (including the key with which the ticket will be encrypted).

If the request is for a ticket granting ticket for a renote realm
and if no key is shared with the requested realm then the Kerberos
server will select the realm"closest" to the requested realmw th
which it does share a key, and use that realminstead. This is the
only case where the response fromthe KDC will be for a different
server than that requested by the client.

By default, the address field, the client’s nane and realm the |ist
of transited realns, the tinme of initial authentication, the
expiration tinme, and the authorization data of the new y-issued
ticket will be copied fromthe ticket-granting ticket (TGI) or
renewabl e ticket. |If the transited field needs to be updated, but
the transited type is not supported, the KDC _ERR TRTYPE_NOSUPP error
i s returned.

Kohl & Neuman [Page 27]

RFC 1510 Ker ber os Sept ember 1993

If the request specifies an endtinme, then the endtine of the new
ticket is set to the mninmumof (a) that request, (b) the endtine
fromthe TGT, and (c) the starttine of the TGI plus the m ni mum of
the maximumlife for the application server and the maximumlife for
the local realm (the maximumlife for the requesting principal was

al ready applied when the TGT was issued). |If the newticket is to be
a renewal, then the endtine above is replaced by the m ni nrum of (a)
the value of the renew till field of the ticket and (b) the starttine
for the newticket plus the life (endtinestarttine) of the old
ticket.

I f the FORWARDED option has been requested, then the resulting ticket
will contain the addresses specified by the client. This option will
only be honored if the FORWARDABLE flag is set in the TGI. The PROXY
option is sinmlar; the resulting ticket will contain the addresses
specified by the client. It will be honored only if the PROXI ABLE
flag in the TGl is set. The PROXY option will not be honored on
requests for additional ticket-granting tickets.

If the requested start tine is absent or indicates a tine in the
past, then the start tine of the ticket is set to the authentication
server’s current tine. |If it indicates a tinme in the future, but the
POSTDATED option has not been specified or the MAY-POSTDATE flag is
not set in the TGI, then the error KDC_ERR CANNOT_POSTDATE i s
returned. Oherwise, if the ticket-granting ticket has the
MAYPOSTDATE fl ag set, then the resulting ticket will be postdated and
the requested starttine is checked against the policy of the |oca
realm |f acceptable, the ticket’s start tine is set as requested,
and the INVALID flag is set. The postdated ticket nust be validated
before use by presenting it to the KDC after the starttine has been
reached. However, in no case nmay the starttinme, endtinme, or renew
till time of a newly-issued postdated ticket extend beyond the
renew-till time of the ticket-granting ticket.

If the ENC- TKT-I N SKEY option has been specified and an additiona
ticket has been included in the request, the KDC will decrypt the
additional ticket using the key for the server to which the
additional ticket was issued and verify that it is a ticket-granting
ticket. If the name of the requested server is missing fromthe
request, the nane of the client in the additional ticket will be
used. O herw se the nane of the requested server will be conmpared to
the name of the client in the additional ticket and if different, the
request will be rejected. |f the request succeeds, the session key
fromthe additional ticket will be used to encrypt the new ticket
that is issued instead of using the key of the server for which the
new ticket will be used (This allows easy inplenentation of user-to-
user authentication [6], which uses ticket-granting ticket session
keys in lieu of secret server keys in situations where such secret

Kohl & Neuman [Page 28]

RFC 1510 Ker ber os Sept ember 1993

keys coul d be easily conpronmi sed.).

If the name of the server in the ticket that is presented to the KDC
as part of the authentication header is not that of the ticket-
granting server itself, and the server is registered in the real mof
the KDC, If the RENEWoption is requested, then the KDC will verify
that the RENEWABLE flag is set in the ticket and that the renew till
time is still in the future. |If the VALIDATE option is rqgeuested,
the KDC will check that the starttime has passed and the INVALID fl ag
is set. If the PROXY option is requested, then the KDC will check
that the PROXIABLE flag is set in the ticket. |If the tests succeed
the KDC will issue the appropriate new ticket.

Whenever a request is nade to the ticket-granting server, the
presented ticket(s) is(are) checked against a hot-1list of tickets
whi ch have been canceled. This hot-list mght be inplenented by
storing a range of issue dates for "suspect tickets"; if a presented
ticket had an authtine in that range, it would be rejected. 1In this
way, a stolen ticket-granting ticket or renewable ticket cannot be
used to gain additional tickets (renewals or otherw se) once the
theft has been reported. Any nornmal ticket obtained before it was

reported stolen will still be valid (because they require no
interaction with the KDC), but only until their normal expiration
time.

The ciphertext part of the response in the KRB TGS REP nessage i s
encrypted in the sub-session key fromthe Authenticator, if present,
or the session key key fromthe ticket-granting ticket. It is not
encrypted using the client’s secret key. Furthernore, the client’s
key's expiration date and the key version nunber fields are left out
since these values are stored along with the client’s database
record, and that record is not needed to satisfy a request based on a
ticket-granting ticket. See section A 6 for pseudocode.

3.3.3.1. Encoding the transited field

If the identity of the server in the TGI that is presented to the KDC
as part of the authentication header is that of the ticket-granting

service, but the TGl was issued fromanother realm the KDC will | ook
up the inter-real mkey shared with that real mand use that key to
decrypt the ticket. |If the ticket is valid, then the KDC will honor

the request, subject to the constraints outlined above in the section
describing the AS exchange. The realmpart of the client’'s identity
will be taken fromthe ticket-granting ticket. The nanme of the realm
that issued the ticket-granting ticket will be added to the transited
field of the ticket to be issued. This is acconplished by reading
the transited field fromthe ticket-granting ticket (which is treated
as an unordered set of real mnanes), adding the new realmto the set,

Kohl & Neuman [Page 29]

RFC 1510 Ker ber os Sept ember 1993

then constructing and witing out its encoded (shorthand) form (this
may invol ve a rearrangenent of the existing encoding).

Note that the ticket-granting service does not add the nane of its
own realm Instead, its responsibility is to add the nane of the
previous realm This prevents a nalicious Kerberos server from
intentionally leaving out its own nane (it could, however, omt other
real ns’ nanes).

The nanes of neither the local realmnor the principal’s realmare to
be included in the transited field. They appear el sewhere in the
ticket and both are known to have taken part in authenticating the
principal. Since the endpoints are not included, both I|ocal and
single-hop inter-realmauthentication result in a transited field
that is enpty.

Because the name of each realmtransited is added to this field,

it might potentially be very long. To decrease the length of this
field, its contents are encoded. The initially supported encoding is
optinmized for the normal case of inter-realmcomunication: a

hi erarchi cal arrangenent of realns using either domain or X 500 style
real m names. This encoding (called DOVAI N- X500- COVPRESS) i s now

descri bed.
Real mnanes in the transited field are separated by a ",". The ","
"\", trailing "."s, and |l eading spaces (" ") are special characters,

and if they are part of a realmnane, they nust be quoted in the
transited field by preceding themwith a "\".

A realmnane ending with a "." is interpreted as being prepended to
the previous realm For exanple, we can encode traversal of EDU
M T. EDU, ATHENA. M T. EDU, WASHI NGTON. EDU, and CS. WASHI NGTON. EDU as:

"EDU, M T., ATHENA. , WASHI NGTON. EDU, CS. ".

Note that if ATHENA. M T. EDU, or CS. WASH NGTON. EDU wer e endpoi nts,
that they would not be included in this field, and we woul d have:

"EDU, M T. , WASHI NGTON. EDU"

A real m nane beginning with a "/" is interpreted as being appended to
the previous real m (For the purpose of appending, the real mpreceding
the first listed realmis considered to be the null realm("")). |If
it is to stand by itself, then it should be preceded by a space ("

"). For exanple, we can encode traversal of /COM HP/ APOLLO, /COM HP,
/ COM and / COM DEC as:

"/ COM / HP, | APOLLO, / COM DEC'

Kohl & Neuman [Page 30]

RFC 1510 Ker ber os Sept ember 1993

Li ke the exanpl e above, if /COM HP/ APOLLO and / COM DEC are endpoi nts,
they they would not be included in this field, and we woul d have:

"/ COM / HP"
A null subfield preceding or following a "," indicates that all
real ne between the previous real mand the next real mhave been
traversed (For the purpose of interpreting null subfields, the
client’s realmis considered to precede those in the transited field,
and the server’s realmis considered to follow them). Thus, ",’
means that all realns along the path between the client and the
server have been traversed. ",EDU, /COM" means that that all real ns
fromthe client’s realmup to EDU (in a donmain style hierarchy) have
been traversed, and that everything from/COM down to the server’s
realmin an X 500 style has al so been traversed. This could occur if
the EDU real min one hierarchy shares an inter-realmkey directly
with the /COMreal min another hierarchy.

3.3.4. Receipt of KRB TGS REP nessage

When the KRB TGS REP is received by the client, it is processed in
the sane manner as the KRB_AS REP processing described above. The
primary difference is that the ciphertext part of the response nust
be decrypted using the session key fromthe ticket-granting ticket
rather than the client’s secret key. See section A 7 for pseudocode.

3.4. The KRB_SAFE Exchange

The KRB_SAFE nessage may be used by clients requiring the ability to
detect nodifications of nessages they exchange. It achieves this by
i ncluding a keyed col lisionproof checksum of the user data and sone
control information. The checksumis keyed with an encryption key
(usually the I ast key negotiated via subkeys, or the session key if
no negoti ati on has occured).

3.4.1. Generation of a KRB _SAFE nessage

Wien an application wishes to send a KRB_SAFE nessage, it collects
its data and the appropriate control information and conputes a
checksum over them The checksum al gorithm shoul d be sone sort of
keyed one-way hash function (such as the RSA-MD5- DES checksum
algorithmspecified in section 6.4.5, or the DES MAC), generated
usi ng the sub-session key if present, or the session key. Different
al gorithnms may be sel ected by changing the checksumtype in the
message. Unkeyed or non-collision-proof checksunms are not suitable
for this use.

The control information for the KRB _SAFE nessage i ncludes both a

Kohl & Neuman [Page 31]

RFC 1510 Ker ber os Sept ember 1993

ti mestanp and a sequence nunber. The designer of an application
usi ng the KRB_SAFE nessage nust choose at | east one of the two
nmechani sms. This choi ce shoul d be based on the needs of the
application protocol

Sequence nunbers are useful when all nessages sent will be received
by one’'s peer. Connection state is presently required to nmaintain
t he session key, so nmmintaining the next sequence nunber shoul d not
present an additional problem

If the application protocol is expected to tolerate | ost nessages

wi t hout them being resent, the use of the tinestanp is the
appropriate replay detection mechanism Using tinestanps is also the
appropriate nechanismfor nulti-cast protocols where all of one's
peers share a common sub-session key, but sone nessages will be sent
to a subset of one' s peers.

After conputing the checksum the client then transmts the
i nformati on and checksumto the recipient in the nessage fornat
specified in section 5.6. 1.

3.4.2. Receipt of KRB_SAFE nessage

When an application receives a KRB_SAFE nessage, it verifies it as
follows. |f any error occurs, an error code is reported for use by
t he application.

The message is first checked by verifying that the protocol version
and type fields match the current version and KRB _SAFE, respectively.
A m smat ch generates a KRB_AP_ERR BADVERSI ON or KRB AP _ERR MSG TYPE
error. The application verifies that the checksumused is a

col I'i si onproof keyed checksum and if it is not, a
KRB_AP_ERR | NAPP_CKSUM error is generated. The recipient verifies
that the operating systenis report of the sender’s address matches
the sender’s address in the nessage, and (if a recipient address is
specified or the recipient requires an address) that one of the
reci pient’s addresses appears as the recipient’s address in the
message. A failed match for either case generates a

KRB_AP_ERR BADADDR error. Then the tinmestanp and usec and/or the
sequence nunber fields are checked. |If timestanp and usec are
expected and not present, or they are present but not current, the
KRB _AP_ERR SKEWerror is generated. |If the server name, along wth
the client nane, time and nicrosecond fields fromthe Authenticator
mat ch any recently-seen such tuples, the KRB_AP_ERR REPEAT error is

generated. |If an incorrect sequence nunber is included, or a
sequence nunmber is expected but not present, the KRB _AP_ERR BADCORDER
error is generated. |If neither a tinmestanp and usec or a sequence

nunber is present, a KRB_AP_ERR MODI FI ED error is generated.

Kohl & Neuman [Page 32]

RFC 1510 Ker ber os Sept ember 1993

Finally, the checksumis conmputed over the data and contro
information, and if it doesn’t natch the received checksum a
KRB_AP_ERR MODI FI ED error is generated.

If all the checks succeed, the application is assured that the
nmessage was generated by its peer and was not nodified in transit.

3.5. The KRB_PRIV Exchange

The KRB_PRIV nessage may be used by clients requiring confidentiality
and the ability to detect nodifications of exchanged nessages. It
achieves this by encrypting the nessages and addi ng contro

i nformation.

3.5.1. Generation of a KRB_PRIV nessage

When an application wishes to send a KRB_PRIV nessage, it collects
its data and the appropriate control information (specified in
section 5.7.1) and encrypts them under an encryption key (usually the
| ast key negotiated via subkeys, or the session key if no negotiation
has occured). As part of the control information, the client nust
choose to use either a tinestanp or a sequence nunber (or both); see
the discussion in section 3.4.1 for guidelines on which to use.

After the user data and control information are encrypted, the client
transmits the ciphertext and sone "envel ope" information to the
recipi ent.

3.5.2. Receipt of KRB PRIV nessage

When an application receives a KRB PRIV nessage, it verifies it as
follows. |If any error occurs, an error code is reported for use by
t he application.

The message is first checked by verifying that the protocol version
and type fields match the current version and KRB PRIV, respectively.
A m smat ch generates a KRB_AP_ERR BADVERSI ON or KRB AP _ERR MSG TYPE
error. The application then decrypts the ciphertext and processes
the resultant plaintext. If decryption shows the data to have been
nodi fied, a KRB_AP_ERR BAD INTEGRITY error is generated. The

reci pient verifies that the operating system s report of the sender’s
address matches the sender’s address in the nmessage, and (if a

reci pient address is specified or the recipient requires an address)
that one of the recipient’s addresses appears as the recipient’s
address in the nmessage. A failed match for either case generates a
KRB_AP_ERR BADADDR error. Then the tinmestanp and usec and/or the
sequence nunber fields are checked. If tinmestanp and usec are
expected and not present, or they are present but not current, the
KRB _AP_ERR SKEWerror is generated. |If the server name, along wth

Kohl & Neuman [Page 33]

RFC 1510 Ker ber os Sept ember 1993

the client nane, tinme and mcrosecond fields fromthe Authenticator
mat ch any recently-seen such tuples, the KRB_AP_ERR REPEAT error is

generated. |If an incorrect sequence nunber is included, or a
sequence nunmber is expected but not present, the KRB _AP_ERR BADCORDER
error is generated. |If neither a tinmestanp and usec or a sequence

nunber is present, a KRB_AP_ERR MODI FIED error is generated.

If all the checks succeed, the application can assunme the nessage was
generated by its peer, and was securely transmtted (w thout
intruders able to see the unencrypted contents).

3.6. The KRB _CRED Exchange

The KRB _CRED nessage may be used by clients requiring the ability to
send Kerberos credentials fromone host to another. It achieves this
by sending the tickets together with encrypted data containing the
session keys and other information associated with the tickets.

3.6.1. Generation of a KRB _CRED nessage

When an application wishes to send a KRB_CRED nessage it first (using
the KRB _TGS exchange) obtains credentials to be sent to the renote
host. It then constructs a KRB _CRED nessage using the ticket or
tickets so obtained, placing the session key needed to use each
ticket in the key field of the correspondi ng KrbCredl nfo sequence of
the encrypted part of the the KRB_CRED nessage.

O her information associated with each ticket and obtai ned during the
KRB_TGS exchange is also placed in the correspondi ng KrbCredlnfo
sequence in the encrypted part of the KRB CRED nessage. The current
time and, if specifically required by the application the nonce, s-
address, and raddress fields, are placed in the encrypted part of the
KRB_CRED nessage whi ch is then encrypted under an encryption key
previ osuly exchanged in the KRB_AP exchange (usually the | ast key
negoti ated vi a subkeys, or the session key if no negotiation has
occured).

3.6.2. Receipt of KRB CRED nessage

When an application receives a KRB_CRED nessage, it verifies it. |If
any error occurs, an error code is reported for use by the
application. The nessage is verified by checking that the protoco
version and type fields nmatch the current versi on and KRB_CRED,
respectively. A mismatch generates a KRB_AP_ERR BADVERSI ON or
KRB_AP_ERR MSG TYPE error. The application then decrypts the

ci phertext and processes the resultant plaintext. |If decryption shows
the data to have been nodified, a KRB_AP_ERR BAD I NTEGRITY error is
gener at ed.

Kohl & Neuman [Page 34]

RFC 1510 Ker ber os Sept ember 1993

If present or required, the recipient verifies that the operating
systenmi s report of the sender’s address matches the sender’s address
in the nessage, and that one of the recipient’s addresses appears as
the recipient’s address in the message. A failed match for either
case generates a KRB_AP_ERR BADADDR error. The tinmestanp and usec
fields (and the nonce field if required) are checked next. |[If the
ti mestanp and usec are not present, or they are present but not
current, the KRB_AP_ERR SKEWerror is generated.

If all the checks succeed, the application stores each of the new
tickets in its ticket cache together with the session key and other
information in the correspondi ng KrbCredl nfo sequence fromthe
encrypted part of the KRB _CRED nessage

4. The Kerberos Dat abase

The Kerberos server nust have access to a database containing the
principal identifiers and secret keys of principals to be

aut henticated (The inplenmentation of the Kerberos server need not
conbi ne the database and the server on the same machine; it is
feasible to store the principal database in, say, a network name
service, as long as the entries stored therein are protected from

di sclosure to and nodification by unauthorized parties. However, we
recommend agai nst such strategies, as they can nake system nanagenent
and threat analysis quite conplex.).

4.1. Database contents

A dat abase entry should contain at |east the follow ng fields:

Field Val ue

name Principal’s identifier

key Principal’s secret key

p_kvno Principal’s key version

max_life Maxi mum | i fetime for Tickets

max_renewable life Maxi mumtotal lifetinme for renewabl e
Ti ckets

The nane field is an encoding of the principal’s identifier. The key
field contains an encryption key. This key is the principal’s secret
key. (The key can be encrypted before storage under a Kerberos
"master key" to protect it in case the database is conproni sed but
the master key is not. |In that case, an extra field nust be added to
i ndi cate the master key version used, see below.) The p_kvno field is
the key version nunmber of the principal’s secret key. The max_life
field contains the maxi mumallowable lifetime (endtinme - starttine)
for any Ticket issued for this principal. The max_renewable life

Kohl & Neuman [Page 35]

RFC 1510 Ker ber os Sept ember 1993

field contains the nmaxi mumallowable total lifetinme for any renewabl e
Ti cket issued for this principal. (See section 3.1 for a description
of how these lifetimes are used in determining the lifetinme of a

gi ven Ti cket.)

A server may provide KDC service to several realns, as long as the
dat abase representati on provides a nechanismto distinguish between
principal records with identifiers which differ only in the realm
namne.

When an application server’s key changes, if the change is routine
(i.e., not the result of disclosure of the old key), the old key
shoul d be retained by the server until all tickets that had been

i ssued using that key have expired. Because of this, it is possible
for several keys to be active for a single principal. G phertext
encrypted in a principal’s key is always tagged with the version of
the key that was used for encryption, to help the recipient find the
proper key for decryption.

Wien nore than one key is active for a particular principal, the
principal will have nore than one record in the Kerberos database.
The keys and key version nunbers will differ between the records (the
rest of the fields may or may not be the sane). \Whenever Kerberos

i ssues a ticket, or responds to a request for initial authentication
the nost recent key (known by the Kerberos server) will be used for
encryption. This is the key with the hi ghest key version nunber.

4.2. Additional fields

Project Athena' s KDC inpl enentation uses additional fields inits

dat abase
Field Val ue
K_kvno Ker beros’ key version

expiration Expiration date for entry
attributes Bit field of attributes

nod_dat e Ti mestanp of |ast nodification
nod_narne Modi fying principal’s identifier

The K kvno field indicates the key version of the Kerberos nmaster key
under which the principal’s secret key is encrypted.

After an entry’s expiration date has passed, the KDC will return an
error to any client attenpting to gain tickets as or for the
principal. (A database may want to maintain two expiration dates:
one for the principal, and one for the principal’s current key. This
al | ows password aging to work independently of the principal’s

Kohl & Neuman [Page 36]

RFC 1510 Ker ber os Sept ember 1993

expiration date. However, due to the linmted space in the responses,
the KDC nust conbi ne the key expiration and principal expiration date
into a single value called "key_exp", which is used as a hint to the
user to take adm nistrative action.)

The attributes field is a bitfield used to govern the operations
involving the principal. This field nmight be useful in conjunction
with user registration procedures, for site-specific policy

i mpl enentations (Project Athena currently uses it for their user

regi stration process controlled by the systemw de database service,
Moira [7]), or to identify the "string to key" conversion algorithm
used for a principal’s key. (See the discussion of the padata field
in section 5.4.2 for details on why this can be useful.) Qher bits
are used to indicate that certain ticket options should not be
allowed in tickets encrypted under a principal’s key (one bit each):
Di sal |l ow i ssuing postdated tickets, disallowissuing forwardable
tickets, disallowissuing tickets based on TGI authentication

di sal l ow i ssuing renewabl e tickets, disallowissuing proxiable
tickets, and disallow issuing tickets for which the principal is the
server.

The nod _date field contains the tinme of last nodification of the
entry, and the nod_nane field contains the name of the principa
which last nodified the entry.

4.3. Frequently Changing Fields

Some KDC i nmpl enentations may wish to maintain the last tinme that a
request was nmade by a particular principal. Information that night
be nmumintained includes the tine of the | ast request, the tine of the
| ast request for a ticket-granting ticket, the tinme of the |ast use
of a ticket-granting ticket, or other tinmes. This information can
then be returned to the user in the last-req field (see section 5.2).

O her frequently changing information that can be nmaintained is the
| atest expiration tine for any tickets that have been issued using
each key. This field would be used to indicate how | ong ol d keys
nmust remain valid to allow the continued use of outstanding tickets.

4.4. Site Constants
The KDC i npl enmentation should have the follow ng configurable
constants or options, to allow an adnm nistrator to nake and enforce
pol i cy deci sions:
+ The m ni mum supported lifetine (used to determ ne whether the

KDC _ERR _NEVER VALI D error should be returned). This constant
shoul d refl ect reasonabl e expectations of round-trip tinme to the

Kohl & Neuman [Page 37]

RFC 1510 Ker ber os Sept ember 1993

KDC, encryption/decryption tine, and processing tine by the client
and target server, and it should allow for a mninum "useful"

lifetime.

+ The maxi mum al | owabl e total (renewable) lifetine of a ticket
(renew till - starttine).

+ The maxi mum al lowable lifetine of a ticket (endtinme - starttine).

+ Whether to allow the issue of tickets with enpty address fields
(including the ability to specify that such tickets may only be
i ssued if the request specifies sone authorization data).

+ Whet her proxiable, forwardable, renewabl e or post-datable tickets

are to be issued.
5. Message Specifications

The followi ng sections describe the exact contents and encodi ng of
protocol nmessages and objects. The ASN. 1 base definitions are
presented in the first subsection. The renaining subsections specify
the protocol objects (tickets and authenticators) and nessages.

Speci fication of encryption and checksum t echni ques, and the fields
related to them appear in section 6.

5.1. ASN. 1 Distinguished Encodi ng Representation

Al'l uses of ASN.1 in Kerberos shall use the Distinguished Encodi ng
Representation of the data el enments as described in the X 509
specification, section 8.7 [8].

5.2. ASN. 1 Base Definitions

The following ASN. 1 base definitions are used in the rest of this
section. Note that since the underscore character (_) is not
permitted in ASN. 1 names, the hyphen (-) is used in its place for the
pur poses of ASN. 1 nanes.

Realm:: = General String
Princi pal Nanme ::= SEQUENCE ({
nane-t ype[0] | NTEGER,

nane-string[1] SEQUENCE OF General String
}

Kerberos real ms are encoded as Ceneral Strings. Realns shall not
contain a character with the code 0 (the ASCII NUL). Mst real ns

wi |l usually consist of several conponents separated by periods (.),
in the style of Internet Donmain Nanmes, or separated by slashes (/) in

Kohl & Neuman [Page 38]

RFC 1510 Ker ber os Sept ember 1993

the style of X 500 nanes. Acceptable forns for real mnanes are
specified in section 7. A PrincipalNane is a typed sequence of
conmponents consi sting of the follow ng sub-fields:

nane-type This field specifies the type of nanme that foll ows.
Pre-defined values for this field are
specified in section 7.2. The nane-type should be
treated as a hint. Ilgnoring the name type, no two
nanes can be the sane (i.e., at least one of the
conmponents, or the realm nust be different).
This constraint may be elimnated in the future.

nane-string This field encodes a sequence of conponents that
forma name, each conponent encoded as a Cenera
String. Taken together, a Principal Nane and a Real m
forma principal identifier. Most Principal Nanmes
will have only a few conponents (typically one or two).

Ker berosTine ::= Cener al i zedTi ne
-- Specifying UTC tine zone (2)

The tinestanps used in Kerberos are encoded as CeneralizedTinmes. An
encodi ng shall specify the UTC time zone (Z) and shall not include
any fractional portions of the seconds. It further shall not include
any separators. Exanple: The only valid format for UTCtine 6

m nutes, 27 seconds after 9 pmon 6 Novenber 1985 is 19851106210627Z.

Host Address :: = SEQUENCE {

addr -t ype[0] | NTEGER

addr ess[1] OCTET STRI NG
}
Host Addresses ::= SEQUENCE OF SEQUENCE ({

addr -t ype[0] | NTEGER

addr ess[1] OCTET STRI NG
}

The host adddress encodi ngs consists of two fields:

addr-type This field specifies the type of address that
follows. Pre-defined values for this field are
specified in section 8. 1.

addr ess This field encodes a single address of type addr-type.

The two forns differ slightly. Host Address contains exactly one

Kohl & Neuman [Page 39]

RFC 1510 Ker ber os Sept ember 1993

address; Host Addresses contai ns a sequence of possibly nmany

addr esses.
Aut hori zationbData ::= SEQUENCE OF SEQUENCE {

ad-type[0] | NTEGER

ad- dat a[1] OCTET STRI NG
}

ad- dat a This field contains authorization data to be
interpreted according to the value of the
correspondi ng ad-type field.

ad-type This field specifies the format for the ad-data
subfield. Al negative values are reserved for
| ocal use. Non-negative values are reserved for
regi stered use.

APOptions ::= BIT STRI NG {
reserved(0),
use-sessi on-key(1),
mut ual - requi red(2)

Ti cketFlags ::= BI T STRI NG {
reserved(0),
f orwar dabl e(1),
forwarded(2),
proxi abl e(3),
proxy(4),
may- post dat e(5),
post dat ed(6) ,
invalid(7),
renewabl e(8),
initial (9),
pr e- aut hent (10),
hw aut hent (11)

}

KDCOptions ::= BIT STRING {
reserved(0),
f orwar dabl e(1),
forwarded(2),
proxi abl e(3),
proxy(4),
al | ow postdate(5),
post dat ed(6),

Kohl & Neuman [Page 40]

RFC 1510 Ker ber os Sept ember 1993

unused7(7),

renewabl e(8),
unused9(9),
unused10(10),
unused11(11),

r enewabl e- ok(27),
enc-t kt-in-skey(28),
renew(30),

val i dat e(31)

}
LastReq :: = SEQUENCE OF SEQUENCE {
Ir-type[0] | NTEGER,
I r-val ue[1] Ker ber osTi e

Ir-type This field indicates how the followi ng |r-val ue
field is to be interpreted. Negative values indicate
that the information pertains only to the
respondi ng server. Non-negative values pertain to
all servers for the realm

If the Ir-type field is zero (0), then no infornation
is conveyed by the Ir-value subfield. If the
absolute value of the Ir-type field is one (1),

then the Ir-value subfield is the tinme of |ast

initial request for a TGI. |If it is two (2), then
the Ir-value subfield is the time of last initial
request. If it is three (3), then the Ir-value
subfield is the tine of issue for the newest
ticket-granting ticket used. If it is four (4),

then the Ir-value subfield is the tinme of the |ast

renewal . If it is five (5), then the Ir-value
subfield is the time of |ast request (of any
type).

Ir-value This field contains the tine of the |ast request.
The tine nust be interpreted according to the contents
of the acconpanying Ir-type subfield.

See section 6 for the definitions of Checksum Checksunilype,
Encrypt edDat a, Encrypti onKey, EncryptionType, and KeyType.

Kohl & Neuman [Page 41]

RFC 1510 Ker ber os Sept ember 1993

5.3. Tickets and Authenticators
This section describes the format and encryption paraneters for
tickets and authenticators. Wen a ticket or authenticator is
included in a protocol nessage it is treated as an opaque object.
5.3.1. Tickets

Aticket is a record that helps a client authenticate to a service.
A Ticket contains the follow ng infornmation:

Ticket ::= [APPLI CATI ON 1] SEQUENCE {
t kt-vno[0] | NTEGER,
real ni 1] Real m
shane[2] Pri nci pal Nane,
enc- part|[3] Encrypt edDat a
}
-- Encrypted part of ticket
EncTi cket Part ::= [APPLI CATI ON 3] SEQUENCE {
fl ags[0] Ti cket Fl ags,
key[1] Encrypti onKey,
creal nf 2] Real m
cnane[3] Pri nci pal Nane,
transited[4] Transi t edEncodi ng,
aut hti ne[5] Ker ber osTi ne,
starttime[6] Ker ber osTi me OPTI ONAL,
endti me[7] Ker ber osTi ne,
renew-till[8] Ker ber osTi me OPTI ONAL,
caddr[9] Host Addr esses OPTI ONAL,
aut hori zati on- dat a 10] Aut hori zat i onDat a OPTI ONAL
}
-- encoded Transited field
TransitedEncoding :: = SEQUENCE {
tr-type[0] |INTEGER, -- nust be registered
content s[1] OCTET STRI NG
}

The encodi ng of EncTicketPart is encrypted in the key shared by
Kerberos and the end server (the server’s secret key). See section 6
for the format of the ciphertext.

tkt-vno This field specifies the version nunber for the ticket
format. This docunent describes version nunber 5.

realm This field specifies the realmthat issued a ticket. It
al so serves to identify the real mpart of the server’s
principal identifier. Since a Kerberos server can only
i ssue tickets for servers withinits realm the two wll

Kohl & Neuman [Page 42]

RFC 1510

snane

enc- part

flags

Kohl

& Neuman

Ker ber os Sept ember 1993

al ways be identi cal

This field specifies the name part of the server’s
identity.

This field holds the encrypted encodi ng of the
EncTi cket Part sequence.

This field indicates which of various options were used or
requested when the ticket was issued. It is a bit-field,
where the selected options are indicated by the bit being
set (1), and the unsel ected options and reserved fields
being reset (0). Bit 0 is the nost significant bit. The
encodi ng of the bits is specified in section 5.2. The
flags are described in nore detail above in section 2. The
nmeani ngs of the flags are:

Bit(s) Narme Descri ption

0 RESERVED Reserved for future expansion of this
field.

1 FORWARDABLE The FORWARDABLE flag is normally only

interpreted by the TGS, and can be
i gnored by end servers. \Wen set,
this flag tells the ticket-granting
server that it is OKto issue a new
ticket- granting ticket with a

di fferent network address based on
the presented ticket.

2 FORWARDED When set, this flag indicates that
the ticket has either been forwarded
or was i ssued based on authentication
invol ving a forwarded ticket-granting
ticket.

3 PROXI ABLE The PROXI ABLE flag is nornmally only
interpreted by the TGS, and can be
i gnored by end servers. The PROXI ABLE
flag has an interpretation identica
to that of the FORWARDABLE fl ag,
except that the PROXIABLE flag tells
the ticket-granting server that only
non- ticket-granting tickets may be
i ssued with different network
addr esses.

[Page 43]

RFC 1510

Kohl

& Neuman

10

11

Ker ber os Sept ember 1993

PROXY

When set, this flag indicates that a

ticket is a proxy.

MAY- POSTDATE The MAY- POSTDATE flag is normally

POSTDATED

I NVALI D

RENEWABL E

I NI TI AL

PRE- AUTHENT

HW AUTHENT

only interpreted by the TGS, and can
be ignored by end servers. This flag
tells the ticket-granting server that
a post- dated ticket may be issued

based on this ticket-granting ticket.

This flag indicates that this ticket
has been postdated. The end-service
can check the authtinme field to see
when the original authentication
occurred.

This flag indicates that a ticket is
invalid, and it nust be validated by
the KDC before use. Application
servers must reject tickets which
have this flag set.

The RENEWABLE flag is normally only
interpreted by the TGS, and can
usual ly be ignored by end servers
(some particularly careful servers
may wi sh to disallow renewabl e
tickets). A renewable ticket can be
used to obtain a replacenment ticket
that expires at a later date.

This flag indicates that this ticket
was i ssued using the AS protocol, and
not issued based on a ticket-granting
ticket.

This flag indicates that during
initial authentication, the client
was aut henticated by the KDC before a
ticket was issued. The strength of
the preaut hentication nmethod is not

i ndi cated, but is acceptable to the
KDC.

This flag indicates that the protoco
enpl oyed for initial authentication
required the use of hardware expected
to be possessed solely by the naned

[Page 44]

RFC 1510

key

crealm

chamne

transited

aut hti ne

starttine

Kohl & Neunman

Ker ber os Sept ember 1993

client. The hardware authentication
met hod is selected by the KDC and the
strength of the nethod is not

i ndi cat ed.

12-31 RESERVED Reserved for future use

This field exists in the ticket and the KDC response and is
used to pass the session key from Kerberos to the
application server and the client. The field s encoding is
described in section 6. 2.

This field contains the name of the realmin which the
client is registered and in which initial authentication
t ook pl ace.

This field contains the name part of the client’s principa
identifier.

This field lists the nanes of the Kerberos real ns that took
part in authenticating the user to whomthis ticket was
issued. It does not specify the order in which the real ns
were transited. See section 3.3.3.1 for details on how
this field encodes the traversed real ns.

This field indicates the time of initial authentication for
the naned principal. It is the tine of issue for the
original ticket on which this ticket is based. It is
included in the ticket to provide additional information to
the end service, and to provide the necessary infornation
for inplenmentation of a ‘hot list’ service at the KDC. An
end service that is particularly paranoid could refuse to
accept tickets for which the initial authentication
occurred "too far" in the past.

This field is also returned as part of the response from

the KDC. Wien returned as part of the response to initia
aut hentication (KRB_AS REP), this is the current tine on

the Kerberos server (It is NOT recomrended that this tine
val ue be used to adjust the workstation’s clock since the
wor kst ation cannot reliably determ ne that such a

KRB _AS REP actually canme fromthe proper KDCin a tinely

manner.).

This field in the ticket specifies the tine after which the
ticket is valid. Together with endtine, this field
specifies the life of the ticket. If it is absent from
the ticket, its value should be treated as that of the

[Page 45]

RFC 1510

endti nme

renewtill

caddr

Kohl & Neunman

Ker ber os Sept ember 1993

authtine field.

This field contains the time after which the ticket will
not be honored (its expiration tine). Note that individua
services may place their owmn limts on the life of a ticket
and nay reject tickets which have not yet expired. As
such, this is really an upper bound on the expiration tine
for the ticket.

This field is only present in tickets that have the
RENEWABLE flag set in the flags field. It indicates the
maxi mum endti me that may be included in a renewal. It can
be thought of as the absolute expiration tinme for the
ticket, including all renewals.

This field in a ticket contains zero (if omtted) or nore
(if present) host addresses. These are the addresses from
which the ticket can be used. |[|f there are no addresses,
the ticket can be used fromany |ocation. The decision

by the KDC to issue or by the end server to accept zero-
address tickets is a policy decision and is left to the

Ker beros and end-service administrators; they may refuse to
i ssue or accept such tickets. The suggested and default
policy, however, is that such tickets will only be issued
or accepted when additional information that can be used to
restrict the use of the ticket is included in the

aut hori zation_data field. Such a ticket is a capability.

Net wor k addresses are included in the ticket to make it
harder for an attacker to use stolen credentials. Because
the session key is not sent over the network in cleartext,
credentials can't be stolen sinply by listening to the
network; an attacker has to gain access to the session key
(perhaps through operating system security breaches or a
carel ess user’s unattended session) to nmake use of stolen
tickets.

It is inportant to note that the network address from which
a connection is received cannot be reliably determ ned.
Even if it could be, an attacker who has conprom sed the
client’s workstation could use the credentials fromthere.

I ncl udi ng the network addresses only nakes it nore
difficult, not inpossible, for an attacker to walk off with
stolen credentials and then use themfroma "safe"

| ocati on.

[Page 46]

RFC 1510

Ker ber os Sept ember 1993

aut hori zati on-data The aut horization-data field is used to pass

aut hori zation data fromthe princi pal on whose behalf a
ticket was issued to the application service. If no

aut hori zation data is included, this field will be left

out. The data in this field are specific to the end
service. It is expected that the field will contain the
nanes of service specific objects, and the rights to those
objects. The format for this field is described in section
5.2. Although Kerberos is not concerned with the format of
the contents of the subfields, it does carry type

i nformati on (ad-type).

By using the authorization data field, a principal is able
to issue a proxy that is valid for a specific purpose. For
exanple, a client wishing to print a file can obtain a file
server proxy to be passed to the print server. By
specifying the nane of the file in the authorization_data
field, the file server knows that the print server can only
use the client’s rights when accessing the particular file
to be printed.

It is interesting to note that if one specifies the

aut hori zation-data field of a proxy and | eaves the host
addresses blank, the resulting ticket and session key can
be treated as a capability. See [9] for sone suggested
uses of this field.

The aut horization-data field is optional and does not have
to be included in a ticket.

5.3.2. Authenticators

An authenticator is a record sent with a ticket to a server to
certify the client’s know edge of the encryption key in the ticket,
to help the server detect replays, and to hel p choose a "true session
key" to use with the particular session. The encoding is encrypted
in the ticket’'s session key shared by the client and the server

-- Unencrypted authenticator
Aut henti cat or

Kohl

& Neuman

1= [APPLICATION 2] SEQUENCE {

aut henti cat or - vno[0] | NTEGER,

creal nf 1] Real m

chane[2] Pri nci pal Nane,

cksunf 3] Checksum OPTI ONAL,
cusec] 4] | NTEGER

ctime[5] Ker ber osTi ne,

subkey[6] Encrypti onKey OPTI ONAL,
seq- nunber [7] | NTEGER OPTI ONAL,

[Page 47]

RFC 1510

Ker ber os Sept ember 1993

aut hori zati on- dat a[8] Aut hori zat i onDat a OPTI ONAL
}

aut henticator-vno This field specifies the version nunber for the

format of the authenticator. This docunment specifies
version 5.

creal mand cnane These fields are the sane as those described for the

cksum

cusec

ctime

subkey

ticket in section 5.3.1.

This field contains a checksumof the the application data
that acconpani es the KRB_AP_REQ

This field contains the m crosecond part of the client’'s
timestanp. Its value (before encryption) ranges fromO to
999999. It often appears along with ctine. The two fields
are used together to specify a reasonably accurate

ti nest anp.

This field contains the current tine on the client’s host.

This field contains the client’s choice for an encryption
key which is to be used to protect this specific
application session. Unless an application specifies
otherwise, if this field is left out the session key from
the ticket will be used.

seqg- nunber This optional field includes the initial sequence nunber

Kohl & Neunman

to be used by the KRB_PRIV or KRB _SAFE nessages when
sequence nunbers are used to detect replays (It may al so be
used by application specific nmessages). Wen included in
the authenticator this field specifies the initial sequence
nunber for nmessages fromthe client to the server. Wen

i ncluded in the AP-REP nessage, the initial sequence nunber
is that for nessages fromthe server to the client. Wen
used in KRB PRIV or KRB _SAFE nessages, it is increnented by
one after each nessage is sent.

For sequence nunbers to adequately support the detection of
repl ays they shoul d be non-repeating, even across
connection boundaries. The initial sequence nunber shoul d
be random and uniformy distributed across the full space
of possi bl e sequence nunbers, so that it cannot be guessed
by an attacker and so that it and the successive sequence
nunbers do not repeat other sequences.

[Page 48]

RFC 1510 Ker ber os Sept ember 1993

aut hori zation-data This field is the same as described for the ticket
in section 5.3.1. It is optional and will only appear when
additional restrictions are to be placed on the use of a
ticket, beyond those carried in the ticket itself.

5.4. Specifications for the AS and TGS exchanges

This section specifies the format of the nessages used in exchange
between the client and the Kerberos server. The format of possible
error nessages appears in section 5.9.1.

5.4.1. KRB_KDC_REQ definition

The KRB_KDC REQ nessage has no type of its own. Instead, its type is
one of KRB_AS REQ or KRB_TGS_REQ dependi ng on whether the request is
for an initial ticket or an additional ticket. 1In either case, the
message is sent fromthe client to the Authentication Server to
request credentials for a service.

The message fields are:

AS-REQ :: = [APPLI CATI ON 10] KDC- REQ
TGS-REQ :: = [APPLI CATI ON 12] KDC- REQ
KDC- REQ : : = SEQUENCE {
pvno[1] | NTEGER,
nmsg-type[2] | NTEGER,
padat a[3] SEQUENCE OF PA- DATA OPTI ONAL,
req- body[4] KDC- REQ BODY
}
PA- DATA :: = SEQUENCE {
padat a- t ype[1] | NTEGER,
padat a- val ue[2] OCTET STRI NG
-- mght be encoded AP-REQ
}
KDC- REQ BODY ::= SEQUENCE {
kdc- opti ons][0] KDCOpt i ons,
chane[1] Pri nci pal Nanme OPTI ONAL,
-- Used only in AS-REQ
real nf 2] Realm -- Server’'s realm
-- Also client’s in AS-REQ
shane[3] Pri nci pal Nane OPTI ONAL,
fronf4] Ker ber osTi me OPTI ONAL,
till[5] Ker ber osTi ne,
rtime[6] Ker ber osTi me OPTI ONAL,
noncel 7] | NTEGER,

Kohl & Neuman [Page 49]

RFC 1510 Ker ber os Sept ember 1993

et ypel 8] SEQUENCE OF | NTECER, -- EncryptionType,
-- in preference order
addr esses[9] Host Addr esses OPTI ONAL,

enc- aut hori zati on-dat a[10] Encrypt edDat a OPTI ONAL,
-- Encrypted AuthorizationData encoding

addi tional -tickets[11] SEQUENCE OF Ticket OPTI ONAL
}

The fields in this nessage are:

pvno This field is included in each nmessage, and specifies the
protocol version nunber. This docunment specifies protoco
version 5.

meg-type This field indicates the type of a protocol nessage. It
will alnost always be the same as the application
identifier associated with a message. It is included to

make the identifier nore readily accessible to the
application. For the KDC REQ nessage, this type will be
KRB_AS REQ or KRB TGS REQ

padat a The padata (pre-authentication data) field contains a of
aut hentication information which may be needed before
credentials can be issued or decrypted. In the case of
requests for additional tickets (KRB TGS REQ), this field
will include an el enent with padata-type of PA-TGS- REQ and
data of an authentication header (ticket-granting ticket
and authenticator). The checksumin the authenticator
(whi ch nust be collisionproof) is to be computed over the
KDC- REQ BODY encoding. In nost requests for initia
aut hentication (KRB_AS REQ and nost replies (KDC- REP), the
padata field will be left out.

This field may al so contain informati on needed by certain
extensions to the Kerberos protocol. For exanple, it m ght
be used to initially verify the identity of a client before
any response is returned. This is acconplished with a
padata field with padata-type equal to PA-ENC- TI MESTAMP and
padat a- val ue defined as foll ows:

PA- ENC- TI MESTAMP
EncryptedData -- PA-ENC TS- ENC

padat a- t ype
padat a- val ue

PA- ENC- TS-ENC ::= SEQUENCE {
pati mest anp[0] KerberosTine, -- client’s tinme
pausec][1] | NTEGER OPTI ONAL

Kohl & Neuman [Page 50]

RFC 1510

Ker ber os Sept ember 1993

with patinmestanp containing the client’s time and pausec
contai ni ng the nicroseconds which nmay be onmitted if a
client will not generate nore than one request per second.
The ci phertext (padata-val ue) consists of the PA-ENC TS- ENC
sequence, encrypted using the client’s secret key.

The padata field can also contain information needed to
help the KDC or the client select the key needed for
generating or decrypting the response. This formof the
padata is useful for supporting the use of certain
"smartcards” with Kerberos. The details of such extensions
are beyond the scope of this specification. See [10] for
additional uses of this field.

padat a-type The padata-type el enent of the padata field indicates the

req- body

way that the padata-value elenent is to be interpreted
Negati ve val ues of padata-type are reserved for

unregi stered use; non-negative values are used for a
registered interpretation of the el enent type.

This field is a placeholder delimiting the extent of the
remaining fields. |If a checksumis to be cal cul ated over
the request, it is calcul ated over an encodi ng of the KDC
REQ BODY sequence which is enclosed within the reqg-body
field.

kdc-options This field appears in the KRB_AS REQ and KRB_TGS_REQ

Kohl

& Neuman

requests to the KDC and indicates the flags that the client
wants set on the tickets as well as other information that
is to nodify the behavior of the KDC. Where appropriate,
the nane of an option nmay be the sane as the flag that is
set by that option. Although in nost case, the bit in the
options field will be the same as that in the flags field,
this is not guaranteed, so it is not acceptable to sinply
copy the options field to the flags field. There are

vari ous checks that nust be nade before honoring an option
anyway.

The kdc_options field is a bit-field, where the selected
options are indicated by the bit being set (1), and the
unsel ected options and reserved fields being reset (0).
The encoding of the bits is specified in section 5.2. The
options are described in nore detail above in section 2.
The meani ngs of the options are:

[Page 51]

RFC 1510 Ker ber os Sept ember 1993

Bit(s) Nane Description

0 RESERVED Reserved for future expansion of this
field.

1 FORWARDABLE The FORWARDABLE option indicates that
the ticket to be issued is to have its
forwardable flag set. It may only be

set on the initial request, or in a
subsequent request if the ticket-
granting ticket on which it is based
is also forwardabl e.

2 FORWARDED The FORWARDED option is only specified
in arequest to the ticket-granting
server and will only be honored if the

ticket-granting ticket in the request
has its FORWARDABLE bit set. This
option indicates that this is a
request for forwarding. The
address(es) of the host fromwhich the
resulting ticket is to be valid are
included in the addresses field of the
request.

3 PROXI ABLE The PROXI ABLE option indicates that
the ticket to be issued is to have its
proxiable flag set. It may only be set
on the initial request, or in a
subsequent request if the ticket-
granting ticket on which it is based
i s al so proxiable.

4 PROXY The PROXY option indicates that this
is a request for a proxy. This option
will only be honored if the ticket-
granting ticket in the request has its
PROXI ABLE bit set. The address(es) of
the host from which the resulting
ticket is to be valid are included in
the addresses field of the request.

5 ALLOW POSTDATE The ALLOW POSTDATE option indicates
that the ticket to be issued is to
have its MAY- POSTDATE flag set. It
may only be set on the initial
request, or in a subsequent request if

Kohl & Neuman [Page 52]

RFC 1510 Ker ber os Sept ember 1993

6 POSTDATED
7 UNUSED
8 RENEWABL E

9- 26 RESERVED

27 RENEWABL E- OK

the ticket-granting ticket on which it
is based also has its MAY- POSTDATE
flag set.

The POSTDATED option indicates that
this is a request for a postdated
ticket. This option will only be
honored if the ticket-granting ticket
on which it is based has its MAY-
POSTDATE flag set. The resulting
ticket will also have its INVALID fl ag
set, and that flag may be reset by a
subsequent request to the KDC after
the starttime in the ticket has been
r eached.

This option is presently unused.

The RENEWABLE option indicates that
the ticket to be issued is to have its
RENEWABLE flag set. It may only be
set on the initial request, or when
the ticket-granting ticket on which
the request is based is also
renewable. |If this optionis
requested, then the rtine field in the
request contains the desired absolute
expiration time for the ticket.

Reserved for future use

The RENEWABLE- OK option indicates that
a renewabl e ticket will be acceptable
if aticket with the requested life
cannot otherw se be provided. If a
ticket with the requested |ife cannot
be provided, then a renewabl e ticket
may be issued with a renewtill equal
to the the requested endtinme. The
val ue of the renewtill field may
still be limted by local limts, or
limts selected by the individua
princi pal or server.

28 ENC- TKT- I N- SKEY This option is used only by the

Kohl & Neunman

ticket-granting service. The ENC
TKT-1 N- SKEY option indicates that the
ticket for the end server is to be

[Page 53]

RFC 1510

Ker ber os Sept ember 1993

encrypted in the session key fromthe
additional ticket-granting ticket

provi ded.
29 RESERVED Reserved for future use
30 RENEW This option is used only by the

ticket-granting service. The RENEW
option indicates that the present
request is for a renewal. The ticket
provided is encrypted in the secret
key for the server on which it is
valid. This option will only be
honored if the ticket to be renewed
has its RENEWABLE flag set and if the
time inits renewtill field has not
passed. The ticket to be renewed is
passed in the padata field as part of
t he aut henti cati on header

31 VALI| DATE This option is used only by the
ticket-granting service. The VALI DATE
option indicates that the request is
to validate a postdated ticket. It
will only be honored if the ticket
presented is postdated, presently has
its INVALID flag set, and woul d be
otherwi se usable at this tine. A
ti cket cannot be validated before its
starttime. The ticket presented for
validation is encrypted in the key of
the server for which it is valid and
is passed in the padata field as part
of the authentication header.

cnane and snane These fields are the sane as those described for the

ticket in section 5.3.1. snane nay only be absent when the
ENC- TKT- I N- SKEY option is specified. |f absent, the nane
of the server is taken fromthe nane of the client in the
ticket passed as additional-tickets.

enc-aut hori zati on-data The enc-aut horization-data, if present (and it

Kohl

& Neuman

can only be present in the TGS REQ forn), is an encodi ng of
the desired authorization-data encrypted under the sub-
session key if present in the Authenticator, or
alternatively fromthe session key in the ticket-granting
ticket, both fromthe padata field in the KRB_AP_REQ

[Page 54]

RFC 1510

real m

from

till

rtime

nonce

etype

addr esses

addi ti ona

Kohl & Neunman

Ker ber os Sept ember 1993

This field specifies the real mpart of the server’s
principal identifier. In the AS exchange, this is also the
real mpart of the client’s principal identifier

This field is included in the KRB_AS REQ and KRB _TGS_ REQ
ticket requests when the requested ticket is to be
postdated. It specifies the desired start tine for the
requested ticket.

This field contains the expiration date requested by the
client in a ticket request.

This field is the requested renewtill tinme sent froma
client to the KDCin a ticket request. It is optional

This field is part of the KDC request and response. It it
i ntended to hold a random nunber generated by the client.
If the sanme nunber is included in the encrypted response
fromthe KDC, it provides evidence that the response is
fresh and has not been replayed by an attacker. Nonces
must never be re-used. ldeally, it should be gen erated
randomy, but if the correct tine is known, it may suffice
(Note, however, that if the time is used as the nonce, one
nmust nake sure that the workstation tinme is nonotonically

increasing. |If the tinme is ever reset backwards, there is
a small, but finite, probability that a nonce will be
reused.).

This field specifies the desired encryption algorithmto be
used in the response.

This field is included in the initial request for tickets,
and optionally included in requests for additional tickets
fromthe ticket-granting server. It specifies the
addresses from which the requested ticket is to be valid.
Normal ly it includes the addresses for the client’s host.
If a proxy is requested, this field will contain other
addresses. The contents of this field are usually copied
by the KDC into the caddr field of the resulting ticket.

-tickets Additional tickets may be optionally included in a
request to the ticket-granting server. |f the ENC TKT-I N
SKEY option has been specified, then the session key from
the additional ticket will be used in place of the server’s
key to encrypt the newticket. |If nore than one option

whi ch requires additional tickets has been specified, then
the additional tickets are used in the order specified by
the ordering of the options bits (see kdc-options, above).

[Page 55]

RFC 1510 Ker ber os Sept ember 1993

The application code will be either ten (10) or twelve (12) depending
on whether the request is for an initial ticket (AS-REQ or for an
additional ticket (TGS REQ.

The optional fields (addresses, authorization-data and additional -
tickets) are only included if necessary to performthe operation
specified in the kdc-options field.

It should be noted that in KRB_TGS REQ the protocol version nunber
appears twice and two different nmessage types appear: the KRB TGS _REQ
message contains these fields as does the authentication header
(KRB_AP_REQ that is passed in the padata field.

5.4.2. KRB_KDC REP definition

The KRB_KDC REP nessage format is used for the reply fromthe KDC for
either an initial (AS) request or a subsequent (TGS) request. There
is no nessage type for KRB KDC REP. Instead, the type will be either
KRB_AS REP or KRB TGS REP. The key used to encrypt the ciphertext
part of the reply depends on the nessage type. For KRB _AS REP, the
ciphertext is encrypted in the client’s secret key, and the client’'s
key version nunber is included in the key version nunber for the
encrypted data. For KRB TGS REP, the ciphertext is encrypted in the
sub-session key fromthe Authenticator, or if absent, the session key
fromthe ticket-granting ticket used in the request. |In that case,
no version nunber will be present in the EncryptedData sequence.

The KRB_KDC REP nessage contains the follow ng fields:

AS-REP :: = [APPLI CATI ON 11] KDC- REP
TGS-REP :: = [APPLI CATI ON 13] KDC- REP
KDC-REP ::= SEQUENCE {
pvno[0] | NTEGER,
nmsg-type[1] | NTEGER,
padat a[2] SEQUENCE OF PA- DATA OPTI ONAL,
creal nf 3] Real m
chane[4] Pri nci pal Nane,
ticket[5] Ti cket ,
enc- part|[6] Encrypt edDat a
}
EncASRepPart ::= [APPLI CATI ON 25[25]] EncKDCRepPart
EncTGSRepPart ::= [APPLI CATI ON 26] EncKDCRepPart
EncKDCRepPart ::= SEQUENCE ({
key[0] Encrypti onKey,
| ast-req[1] Last Req,

Kohl & Neuman [Page 56]

RFC 1510

}

Ker ber os Sept ember 1993

nonce[2] | NTEGER,
key-expiration[3] Ker ber osTi me OPTI ONAL,
flags[4] Ti cket Fl ags,

aut hti ne[5] Ker ber osTi ne,
starttime[6] Ker ber osTi me OPTI ONAL,
endti ne[7] Ker ber osTi ne,
renew-till[8] Ker ber osTi ne OPTI ONAL,
sreal nf 9] Real m

sname[10] Pri nci pal Nane,

caddr[11] Host Addr esses OPTI ONAL

NOTE: In EncASRepPart, the application code in the encrypted
part of a nessage provides an additional check that
t he message was decrypted properly.

pvno and nmsg-type These fields are described above in section 5.4.1

padat a

nsg-type is either KRB_AS REP or KRB TGS REP.

This field is described in detail in section 5.4.1. One
possible use for this field is to encode an alternate
"mx-in" string to be used with a string-to-key algorithm
(such as is described in section 6.3.2). This ability is
useful to ease transitions if a real mnane needs to change
(e.g., when a conpany is acquired); in such a case all

exi sting password-derived entries in the KDC dat abase woul d
be flagged as needing a special mx-in string until the
next password change.

crealm cnane, sreal mand snane These fields are the sane as those

ticket

enc- part

key

| ast-req

Kohl & Neunman

described for the ticket in section 5.3.1.
The newl y-issued ticket, fromsection 5.3.1.

This field is a place holder for the ciphertext and rel ated
information that forns the encrypted part of a nessage.

The description of the encrypted part of the nessage

foll ows each appearance of this field. The encrypted part
is encoded as described in section 6. 1.

This field is the sane as described for the ticket in
section 5.3.1.

This field is returned by the KDC and specifies the tine(s)
of the last request by a principal. Depending on what
information is available, this nmght be the last tine that
a request for a ticket-granting ticket was nade, or the
last tine that a request based on a ticket-granting ticket

[Page 57]

RFC 1510 Ker ber os Sept ember 1993

was successful. It also nmight cover all servers for a
realm or just the particular server. Some inplementations
may display this information to the user to aid in

di scovering unauthorized use of one’s identity. It is
simlar in spirit to the last login tinme displayed when

| ogging into tinesharing systens.

nonce This field is descri bed above in section 5.4.1

key-expiration The key-expiration field is part of the response from
the KDC and specifies the tinme that the client’s secret key
is due to expire. The expiration mght be the result of
password agi ng or an account expiration. This field will
usually be left out of the TGS reply since the response to
the TGS request is encrypted in a session key and no client
i nformati on need be retrieved fromthe KDC database. It is
up to the application client (usually the login program to
take appropriate action (such as notifying the user) if the
expira tion tinme is inmnent.

flags, authtine, starttinme, endtine, renewtill and caddr These
fields are duplicates of those found in the encrypted
portion of the attached ticket (see section 5.3.1),
provided so the client nay verify they nmatch the intended
request and to assist in proper ticket caching. If the
message is of type KRB TGS REP, the caddr field will only
be filled in if the request was for a proxy or forwarded
ticket, or if the user is substituting a subset of the
addresses fromthe ticket granting ticket. If the client-
requested addresses are not present or not used, then the
addresses contained in the ticket will be the same as those
included in the ticket-granting ticket.

5.5. dient/Server (CS) nessage specifications

This section specifies the format of the nessages used for the
aut hentication of the client to the application server.

5.5.1. KRB_AP_REQ definition

The KRB_AP_REQ nessage contains the Kerberos protocol version nunber

the nmessage type KRB AP _REQ, an options field to indicate any options
in use, and the ticket and authenticator thenselves. The KRB _AP_REQ
message is often referred to as the "aut henticati on header"

AP-REQ :: = [APPLI CATI ON 14] SEQUENCE {
pvno[0] | NTEGER,
nmsg-type[1] | NTEGER,

Kohl & Neuman [Page 58]

RFC 1510 Ker ber os Sept ember 1993

ap-options[2] APQpt i ons,

ticket[3] Ti cket,

aut henti cat or[4] Encrypt edDat a
}

APOptions ::

BI T STRI NG {
reserved(0),
use-sessi on-key(1),
nmut ual - requi red(2)

}

pvno and nsg-type These fields are described above in section 5.4.1
neg-type i s KRB_AP_REQ

ap-options This field appears in the application request (KRB_AP_REQ
and affects the way the request is processed. It is a
bit-field, where the selected options are indicated by the
bit being set (1), and the unsel ected options and reserved
fields being reset (0). The encoding of the bits is
specified in section 5.2. The neanings of the options are:

Bit(s) Nane Description

0 RESERVED Reserved for future expansion of
this field.

1 USE- SESSI ON- KEYThe USE- SESSI ON- KEY option i ndi cates

that the ticket the client is
presenting to a server is encrypted in
the session key fromthe server’s
ticket-granting ticket. Wien this
option is not specified, the ticket is
encrypted in the server’s secret key.

2 MUTUAL- REQUI REDThe MUTUAL- REQUI RED option tells the
server that the client requires nmutua
aut hentication, and that it nust
respond with a KRB_AP_REP nessage

3-31 RESERVED Reserved for future use
ticket This field is a ticket authenticating the client to the
server.

aut henticator This contains the authenticator, which includes the
client’s choice of a subkey. |Its encoding is described in
section 5. 3. 2.

Kohl & Neuman [Page 59]

RFC 1510 Ker ber os Sept ember 1993

5.5.2. KRB_AP_REP definition

The KRB_AP_REP nmessage contains the Kerberos protocol version number
the nmessage type, and an encrypted tinestanp. The nessage is sent in
in response to an application request (KRB _AP_REQ where the nutua
aut henti cation option has been selected in the ap-options field.

AP-REP : .= [APPLI CATI ON 15] SEQUENCE ({
pvno[0] I NTEGER
msg-type[1] | NTEGER
enc- part|[2] Encr ypt edDat a

}

EncAPRepPart ::= [APPLI CATI ON 27] SEQUENCE {
ctime[0] Ker ber osTi ne,
cusec[1] | NTEGER,
subkey[2] Encrypti onKey OPTI ONAL,
seq- nunber [3] | NTEGER OPTI ONAL

}

NOTE: in EncAPRepPart, the application code in the encrypted part of
a message provides an additional check that the nessage was decrypted

properly.

The encoded EncAPRepPart is encrypted in the shared session key of
the ticket. The optional subkey field can be used in an
application-arranged negotiation to choose a per association session
key.

pvno and nsg-type These fields are descri bed above in section 5.4.1
nsg-type is KRB_AP_REP.

enc-part This field is described above in section 5.4.2.

ctinme This field contains the current tine on the client’s host.

cusec This field contains the m crosecond part of the client’s
ti mestanp.

subkey This field contains an encryption key which is to be used

to protect this specific application session. See section
3.2.6 for specifics on howthis field is used to negotiate
a key. Unless an application specifies otherwise, if this
field is left out, the sub-session key fromthe

aut henticator, or if also left out, the session key from
the ticket will be used.

Kohl & Neuman [Page 60]

RFC 1510 Ker ber os Sept ember 1993

5.5.3. Error nessage reply

If an error occurs while processing the application request, the
KRB_ERRCOR nessage will be sent in response. See section 5.9.1 for
the format of the error nessage. The cnanme and crealmfields may be
left out if the server cannot determine their appropriate val ues from
the correspondi ng KRB_AP_REQ nessage. |f the authenticator was
deci pherabl e, the ctinme and cusec fields will contain the values from
it.

5.6. KRB_SAFE nessage specification
This section specifies the format of a nmessage that can be used by
either side (client or server) of an application to send a tanper-
proof nmessage to its peer. It presumes that a session key has

previ ously been exchanged (for exanple, by using the
KRB_AP_REQ KRB_AP_REP nessages).

5.6.1. KRB SAFE definition

The KRB_SAFE nessage contains user data along with a collision-proof
checksum keyed with the session key. The nmessage fields are:

KRB- SAFE :: = [APPLI CATI ON 20] SEQUENCE {
pvno[0] | NTEGER,
nmsg-type[1] | NTEGER,
saf e- body[2] KRB- SAFE- BODY,
cksunf 3] Checksum
}
KRB- SAFE- BODY ::= SEQUENCE {
user - dat a[0] OCTET STRI NG
timestanp[1] Ker ber osTi me OPTI ONAL,
usec[2] | NTEGER OPTI ONAL,
seq- nunber [3] | NTEGER OPTI ONAL,
s- addr ess| 4] Host Addr ess,
r-address|[5] Host Addr ess OPTI ONAL
}

pvnho and msg-type These fields are described above in section 5.4.1
msg-type i s KRB_SAFE

safe-body This field is a placeholder for the body of the KRB-SAFE
message. It is to be encoded separately and then have the
checksum conmput ed over it, for use in the cksumfield.

cksum This field contains the checksum of the application data.
Checksum details are described in section 6.4. The

Kohl & Neuman [Page 61]

RFC 1510

user - dat a

ti mestanp

usec

Ker ber os Sept ember 1993

checksumis conputed over the encodi ng of the KRB-SAFE-BODY
sequence.

This field is part of the KRB_SAFE and KRB_PRI V nessages
and contain the application specific data that is being
passed fromthe sender to the recipient.

This field is part of the KRB_SAFE and KRB_PRI V nessages.
Its contents are the current tinme as known by the sender of
the message. By checking the tinmestanp, the recipient of
the message is able to nmake sure that it was recently
generated, and is not a replay.

This field is part of the KRB_SAFE and KRB_PRI V headers.
It contains the nicrosecond part of the tinestanp.

seqg-nunber This field is described above in section 5.3.2.

s- addr ess

r - addr ess

This field specifies the address in use by the sender of
t he nmessage.

This field specifies the address in use by the recipient of
the message. It may be omtted for some uses (such as
broadcast protocols), but the recipient may arbitrarily
reject such nessages. This field along with s-address can
be used to hel p detect nessages whi ch have been incorrectly
or maliciously delivered to the wong recipient.

5.7. KRB_PRIV nmessage specification

This section specifies the format of a nmessage that can be used by
either side (client or server) of an application to securely and

privately

send a nessage to its peer. It presunes that a session key

has previously been exchanged (for exanple, by using the
KRB_AP_REQ KRB_AP_REP nessages).

5.7.1. KRB PRIV definition

The KRB_PRIV nessage contains user data encrypted in the Session Key.
The message fields are:

KRB- PRIV :

Kohl & Neunman

[APPLI CATI ON 21] SEQUENCE {

pvnol[O] I NTECER,
nmsg-type[1] | NTEGER,
enc- part|[3] Encrypt edDat a

[Page 62]

RFC 1510 Ker ber os Sept ember 1993

EncKrbPrivPart ::= [APPLI CATI ON 28] SEQUENCE ({
user - dat a[0] OCTET STRI NG
timestanp[1] Ker ber osTi me OPTI ONAL,
usec[2] | NTEGER OPTI ONAL,
seq- nunber [3] | NTEGER OPTI ONAL,
s- addr ess| 4] Host Address, -- sender’s addr
r-address|[5] Host Addr ess OPTI ONAL
-- recip’ s addr
}

NOTE: In EncKrbPrivPart, the application code in the encrypted part
of a nessage provides an additional check that the nessage was
decrypted properly.

pvho and nmsg-type These fields are described above in section 5.4.1
msg-type is KRB_PRIV.

enc-part This field holds an encoding of the EncKrbPrivPart sequence
encrypted under the session key (If supported by the
encryption nmethod in use, an initialization vector may be
passed to the encryption procedure, in order to achieve
proper cipher chaining. The initialization vector m ght
come fromthe |ast block of the ciphertext fromthe
previous KRB PRIV nessage, but it is the application’s
choi ce whether or not to use such an initialization vector
If left out, the default initialization vector for the
encryption algorithmwll be used.). This encrypted
encoding is used for the enc-part field of the KRB-PRIV
message. See section 6 for the format of the ciphertext.

user-data, timestanp, usec, s-address and r-address These fields are
descri bed above in section 5.6. 1.

seqg-nunber This field is described above in section 5.3.2.
5.8. KRB_CRED nessage specification

This section specifies the format of a nessage that can be used to
send Kerberos credentials fromone principal to another. It is
presented here to encourage a common nmechani smto be used by
applications when forwarding tickets or providing proxies to

subordi nate servers. It presunes that a session key has al ready been
exchanged perhaps by using the KRB_AP_REQ KRB_AP_REP nessages.

5.8.1. KRB_CRED definition

The KRB_CRED nessage contains a sequence of tickets to be sent and
i nformati on needed to use the tickets, including the session key from

Kohl & Neuman [Page 63]

RFC 1510

Ker ber os Sept ember 1993

each. The information needed to use the tickets is encryped under an
encryption key previously exchanged. The nessage fields are:

KRB- CRED ;.= [APPLI CATI ON 22] SEQUENCE {
pvno[0] | NTEGER
nsg-type[1] | NTEGER, -- KRB_CRED
tickets[2] SEQUENCE OF Ti cket,
enc-part[3] Encrypt edDat a

}

EncKr bCr edPar t ;.= [APPLI CATI ON 29] SEQUENCE {
ticket-info[0] SEQUENCE OF KrbCredlnfo
nonce[1] | NTEGER OPTI ONAL,
ti mest anp[2] Ker ber osTi me OPTI ONAL,
usec[3] | NTEGER OPTI ONAL,
s- addr ess|[4] Host Addr ess OPTI ONAL,
r- addr ess[5] Host Addr ess OPTI ONAL

}

Kr bCr edl nf o = SEQUENCE {
key[0] Encrypti onKey,
preal ni 1] Real m OPTI ONAL,
pname[2] Pri nci pal Nanme OPTI ONAL,
flags[3] Ti cket Fl ags OPTI ONAL,
aut hti ne[4] Ker ber osTi ne OPTI ONAL,
starttime[5] Ker ber osTi me OPTI ONAL,
endti e[6] Ker ber osTi ne OPTI ONAL
renew-till[7] Ker ber osTi me OPTI ONAL,
sreal ni 8] Real m OPTI ONAL,
snane[9] Pri nci pal Nanme OPTI ONAL,
caddr[10] Host Addr esses OPTI ONAL

}

pvno and nmsg-type These fields are described above in section 5.4.1

tickets

enc- part

Kohl & Neunman

nsg-type i s KRB _CRED.

These are the tickets obtained fromthe KDC specifically
for use by the intended recipient. Successive tickets are
paired with the correspondi ng KrbCredl nfo sequence fromthe
enc-part of the KRB-CRED nessage.

This field holds an encodi ng of the EncKrbCredPart sequence
encrypted under the session key shared between the sender
and the intended recipient. This encrypted encoding is
used for the enc-part field of the KRB-CRED nessage. See
section 6 for the format of the ciphertext.

[Page 64]

RFC 1510 Ker ber os Sept ember 1993

nonce If practical, an application nay require the inclusion of a
nonce generated by the recipient of the nmessage. If the
sane value is included as the nonce in the nessage, it
provi des evidence that the nessage is fresh and has not
been repl ayed by an attacker. A nonce nust never be re-
used; it should be generated randonmy by the recipient of
the message and provided to the sender of the nes sage in
an application specific manner.

ti mestanp and usec These fields specify the time that the KRB-CRED
message was generated. The time is used to provide
assurance that the nessage is fresh

s-address and r-address These fields are described above in section
5.6.1. They are used optionally to provide additiona
assurance of the integrity of the KRB-CRED nessage.

key This field exists in the corresponding ticket passed by the
KRB- CRED nessage and is used to pass the session key from
the sender to the intended recipient. The field s encoding
is described in section 6. 2.

The following fields are optional. If present, they can be
associated with the credentials in the renote ticket file. |If left
out, then it is assuned that the recipient of the credentials already
knows their val ue.

preal m and pnane The nane and real m of the del egated principa
identity.

flags, authtinme, starttime, endtine, renewtill, srealm snane,
and caddr These fields contain the values of the
corresponding fields fromthe ticket found in the ticket
field. Descriptions of the fields are identical to the
descriptions in the KDC-REP nessage.

5.9. FError nessage specification

This section specifies the format for the KRB_ERRCOR nessage. The
fields included in the nmessage are intended to return as much

i nformati on as possible about an error. It is not expected that al
the information required by the fields will be avail able for al
types of errors. |If the appropriate information is not avail abl e

when the nessage is conposed, the corresponding field will be left
out of the nmessage.

Note that since the KRB_ERROR nessage is not protected by any
encryption, it is quite possible for an intruder to synthesize or

Kohl & Neuman [Page 65]

RFC 1510 Ker ber os Sept ember 1993

nmodi fy such a nmessage. |In particular, this nmeans that the client
shoul d not use any fields in this nessage for security-critica

pur poses, such as setting a systemclock or generating a fresh

aut henticator. The nessage can be useful, however, for advising a
user on the reason for sone failure.

5.9.1. KRB _ERROR definition

The KRB_ERROR nessage consists of the follow ng fields:

KRB- ERRCR ::= [APPLI CATI ON 30] SEQUENCE {
pvno[0] | NTEGER,
nsg-type[1] | NTEGER,
ctinme[2] Ker ber osTi me OPTI ONAL,
cusec] 3] | NTEGER OPTI ONAL,
stime[4] Ker ber osTi ne,
susec][5] | NTEGER
error-code[6] | NTEGER
creal nf 7] Real m OPTI ONAL,
chanel 8] Pri nci pal Nanme OPTI ONAL,
real nf 9] Realm -- Correct realm
sname[10] Pri nci pal Name, -- Correct nane
e-text[11] Ceneral String OPTI ONAL,
e-dat a[12] OCTET STRI NG OPTI ONAL

}

pvho and nmsg-type These fields are described above in section 5.4.1
msg-type i s KRB_ERROR

ctime This field is described above in section 5.4.1
cusec This field is described above in section 5.5. 2.
stinme This field contains the current tine on the server. It is

of type KerberosTine.

susec This field contains the m crosecond part of the server’'s
timestanp. Its value ranges fromO to 999. It appears
along with stine. The two fields are used in conjunction to
specify a reasonably accurate tinestanp.

error-code This field contains the error code returned by Kerberos or
the server when a request fails. To interpret the value of
this field see the list of error codes in section 8.
| mpl enent ati ons are encouraged to provide for nationa
| anguage support in the display of error nessages.

crealm cnane, sreal mand snane These fields are described above in

Kohl & Neuman [Page 66]

RFC 1510 Ker ber os Sept ember 1993

section 5.3.1.

e-text This field contains additional text to help explain the
error code associated with the failed request (for exanple,
it might include a principal name which was unknown).

e-data This field contains additional data about the error for use
by the application to help it recover fromor handle the
error. |f the errorcode is KDC ERR PREAUTH REQUI RED, t hen
the e-data field will contain an encodi ng of a sequence of
padata fields, each corresponding to an acceptable pre-
aut henti cati on nmethod and optionally containing data for
t he met hod:

METHOD- DATA :: = SEQUENCE of PA- DATA

If the error-code is KRB_AP_ ERR METHOD, then the e-data field wll
contain an encodi ng of the foll owi ng sequence:

METHOD- DATA : : = SEQUENCE {

nmet hod- t ype[0] | NTEGER,

net hod- dat a[1] OCTET STRI NG OPTI ONAL
}

met hod-type will indicate the required alternate nethod; nethod-data
will contain any required additional information.

6. Encryption and Checksum Speci fications

The Kerberos protocols described in this docunent are designed to use
stream encryption ci phers, which can be sinmulated using comonly
avai | abl e bl ock encryption ciphers, such as the Data Encryption
Standard [11], in conjunction with bl ock chaining and checksum

met hods [12]. Encryption is used to prove the identities of the
network entities participating in nmessage exchanges. The Key
Distribution Center for each realmis trusted by all principals
registered in that realmto store a secret key in confidence. Proof
of know edge of this secret key is used to verify the authenticity of
a principal.

The KDC uses the principal’s secret key (in the AS exchange) or a
shared session key (in the TGS exchange) to encrypt responses to
ticket requests; the ability to obtain the secret key or session key
i mplies the know edge of the appropriate keys and the identity of the
KDC. The ability of a principal to decrypt the KDC response and
present a Ticket and a properly formed Authenticator (generated with
the session key fromthe KDC response) to a service verifies the
identity of the principal; likewise the ability of the service to

Kohl & Neuman [Page 67]

RFC 1510 Ker ber os Sept ember 1993

extract the session key fromthe Ticket and prove its know edge
thereof in a response verifies the identity of the service.

The Kerberos protocols generally assune that the encryption used is
secure from cryptanal ysis; however, in sone cases, the order of
fields in the encrypted portions of nessages are arranged to mninze
the effects of poorly chosen keys. It is still inportant to choose
good keys. If keys are derived fromuser-typed passwords, those
passwords need to be well chosen to nake brute force attacks nore
difficult. Poorly chosen keys still make easy targets for intruders.

The follow ng sections specify the encryption and checksum nechani sns
currently defined for Kerberos. The encodi ngs, chaining, and paddi ng
requirenents for each are described. For encryption nethods, it is
often desirable to place randominformation (often referred to as a
confounder) at the start of the message. The requirenments for a
confounder are specified with each encryption nmechani sm

Some encryption systens use a bl ock-chai ning nmethod to i nprove the
the security characteristics of the ciphertext. However, these
chai ni ng nethods often don't provide an integrity check upon
decryption. Such systems (such as DES in CBC node) nust be augmented
with a checksum of the plaintext which can be verified at decryption
and used to detect any tanpering or damage. Such checksuns shoul d be
good at detecting burst errors in the input. |If any danmage is
detected, the decryption routine is expected to return an error
indicating the failure of an integrity check. Each encryption type is
expected to provide and verify an appropriate checksum The
specification of each encryption nmethod sets out its checksum
requirenents.

Finally, where a key is to be derived froma user’s password, an
algorithm for converting the password to a key of the appropriate
type is included. It is desirable for the string to key function to
be one-way, and for the mapping to be different in different real ns.
This is inportant because users who are registered in nore than one
realmwi |l often use the same password in each, and it is desirable
that an attacker conpromni sing the Kerberos server in one real mnot
obtain or derive the user’s key in another

For a discussion of the integrity characteristics of the candidate
encryption and checksum net hods consi dered for Kerberos, the the
reader is referred to [13].

6.1. Encryption Specifications

The following ASN. 1 definition describes all encrypted nmessages. The
enc-part field which appears in the unencrypted part of nessages in

Kohl & Neuman [Page 68]

RFC 1510 Ker ber os Sept ember 1993

section 5 is a sequence consisting of an encryption type, an optiona
key version nunmber, and the ciphertext.

EncryptedData :: = SEQUENCE ({
etype[0] | NTECER, -- EncryptionType
kvno[1] | NTEGER OPTI ONAL,
ci pher[2] OCTET STRING -- ciphertext
}
etype This field identifies which encryption algorithmwas used
to enci pher the cipher. Detailed specifications for
sel ected encryption types appear later in this section
kvno This field contains the version nunber of the key under
which data is encrypted. It is only present in nessages
encrypted under long |lasting keys, such as principals’
secret keys.
ci pher This field contains the enci phered text, encoded as an

OCTET STRI NG

The cipher field is generated by applying the specified encryption
algorithmto data conposed of the nessage and al gorithm specific

i nputs. Encryption nechani sns defined for use with Kerberos nust
take sufficient neasures to guarantee the integrity of the plaintext,
and we recomend they al so take nmeasures to protect against
preconputed dictionary attacks. |If the encryption algorithmis not
itself capable of doing so, the protections can often be enhanced by
addi ng a checksum and a conf ounder

The suggested format for the data to be encrypted includes a
confounder, a checksum the encoded plaintext, and any necessary
paddi ng. The nmsg-seq field contains the part of the protocol nessage
described in section 5 which is to be encrypted. The confounder,
checksum and padding are all untagged and untyped, and their length
is exactly sufficient to hold the appropriate item The type and
length is inplicit and specified by the particular encryption type
bei ng used (etype). The format for the data to be encrypted is
described in the follow ng di agram

The format cannot be described in ASN. 1, but for those who prefer an
ASN. 1-1i ke notation:

Kohl & Neuman [Page 69]

RFC 1510 Ker ber os Sept ember 1993

Ci pher Text ::= ENCRYPTED SEQUENCE {
conf ounder [0] UNTAGGED OCTET STRI NG conf _| engt h) OPTI ONAL,
check[1] UNTAGGED OCTET STRI NG checksum | engt h) OPTI ONAL,
nmsg- seq[2] MsgSequence,
pad UNTAGGED OCTET STRI NG pad_I| ength) OPTI ONAL

}

In the above specification, UNTAGGED OCTET STRING | ength) is the
notation for an octet string with its tag and length renmoved. It is
not a valid ASN.1 type. The tag bits and | ength nust be renoved from
t he confounder since the purpose of the confounder is so that the
message starts with randomdata, but the tag and its length are
fixed. For other fields, the Iength and tag woul d be redundant if
they were included because they are specified by the encryption type.

One generates a random confounder of the appropriate |ength, placing
it in confounder; zeroes out check; calculates the appropriate
checksum over confounder, check, and nsg-seq, placing the result in
check; adds the necessary padding; then encrypts using the specified
encryption type and the appropriate key.

Unl ess ot herwi se specified, a definition of an encryption algorithm
that specifies a checksum a length for the confounder field, or an
octet boundary for padding uses this ciphertext fornmat (The ordering
of the fields in the C pherText is inportant. Additionally, nessages
encoded in this format nust include a length as part of the nmsg-seq
field. This allows the recipient to verify that the nessage has not
been truncated. Wthout a length, an attacker could use a chosen

pl ai ntext attack to generate a nessage which could be truncated,
whil e | eaving the checksumintact. Note that if the nsg-seq is an
encodi ng of an ASN. 1 SEQUENCE or OCTET STRING then the length is
part of that encoding.). Those fields which are not specified will be
omitted.

In the interest of allowing all inplenentations using a particul ar
encryption type to communicate with all others using that type, the
specification of an encryption type defines any checksumthat is
needed as part of the encryption process. |f an alternative checksum
is to be used, a new encryption type nust be defi ned.

Some cryptosystens require additional information beyond the key and
the data to be encrypted. For exanple, DES, when used in cipher-

bl ock-chai ni ng node, requires an initialization vector. |If required,
the description for each encryption type nust specify the source of
such additional information

Kohl & Neuman [Page 70]

RFC 1510 Ker ber os Sept ember 1993

6.2. Encryption Keys

The sequence bel ow shows the encodi ng of an encryption key:

EncryptionKey ::= SEQUENCE ({
keyt ype[0] | NTEGER
keyval ue[1] OCTET STRI NG
}
keyt ype This field specifies the type of encryption key that

follows in the keyvalue field. It will alnost always
correspond to the encryption algorithmused to generate the
Encrypt edDat a, though nore than one algorithmmay use the
same type of key (the mapping is nany to one). This mght
happen, for exanple, if the encryption algorithmuses an
alternate checksumalgorithmfor an integrity check, or a
di fferent chai ni ng nechani sm

keyvalue This field contains the key itself, encoded as an octet
string.

Al'l negative values for the encryption key type are reserved for
| ocal use. Al non-negative values are reserved for officially
assigned type fields and interpretations.

6.3. Encryption Systens
6.3.1. The NULL Encryption System (null)

If no encryption is in use, the encryption systemis said to be the
NULL encryption system |In the NULL encryption systemthere is no
checksum confounder or padding. The ciphertext is sinply the
plaintext. The NULL Key is used by the null encryption systemand is
zero octets in length, with keytype zero (0).

6.3.2. DES in CBC node with a CRC 32 checksum (des-cbhc-crc)

The des-cbc-crc encryption node encrypts information under the Data
Encryption Standard [11] using the cipher block chaining node [12].
A CRC- 32 checksum (described in 1SO 3309 [14]) is applied to the
conf ounder and nessage sequence (nsg-seq) and placed in the cksum
field. DES blocks are 8 bytes. As a result, the data to be
encrypted (the concatenation of confounder, checksum and nessage)
nmust be padded to an 8 byte boundary before encryption. The details
of the encryption of this data are identical to those for the des-
cbc-nmd5 encryption node.

Note that, since the CRC-32 checksumis not collisionproof, an

Kohl & Neuman [Page 71]

RFC 1510 Ker ber os Sept ember 1993

attacker could use a probabilistic chosenplaintext attack to generate
a valid nessage even if a confounder is used [13]. The use of

col I'i si on-proof checksunms is recomended for environments where such
attacks represent a significant threat. The use of the CRC-32 as the
checksum for ticket or authenticator is no | onger mandated as an
interoperability requirenent for Kerberos Version 5 Specification 1
(See section 9.1 for specific details).

6.3.3. DES in CBC node with an MM checksum (des-cbc- nd4)

The des-cbc-nd4 encryption node encrypts information under the Data
Encryption Standard [11] using the cipher block chaining node [12].
An MD4 checksum (described in [15]) is applied to the confounder and
nmessage sequence (nsg-seq) and placed in the cksumfield. DES blocks
are 8 bytes. As a result, the data to be encrypted (the

concat enati on of confounder, checksum and nessage) nust be padded to
an 8 byte boundary before encryption. The details of the encryption
of this data are identical to those for the descbc-nd5 encryption
node.

6.3.4. DES in CBC node with an MD5 checksum (des-cbc- nd5)

The des-cbc-nmd5 encryption node encrypts information under the Data
Encryption Standard [11] using the cipher block chaining node [12].
An MD5 checksum (described in [16]) is applied to the confounder and
nmessage sequence (nsg-seq) and placed in the cksumfield. DES blocks
are 8 bytes. As a result, the data to be encrypted (the

concat enati on of confounder, checksum and nessage) nust be padded to
an 8 byte boundary before encryption.

Pl ai ntext and DES ci phtertext are encoded as 8-octet blocks which are
concatenated to nmake the 64-bit inputs for the DES algorithms. The
first octet supplies the 8 nost significant bits (with the octet’s
MBbit used as the DES input block’s Mshit, etc.), the second octet
the next 8 bits, ..., and the eighth octet supplies the 8 | east
significant bits.

Encrypti on under DES using cipher block chaining requires an
additional input in the formof an initialization vector. Unless
ot herwi se specified, zero should be used as the initialization
vector. Kerberos’ use of DES requires an 8-octet confounder

The DES specifications identify sone "weak" and "sem weak" keys;
those keys shall not be used for encrypting nmessages for use in
Kerberos. Additionally, because of the way that keys are derived for
the encryption of checksunms, keys shall not be used that yield "weak"
or "sem -weak" keys when eXclusive-ORed with the constant
FOFOFOFOFOFOFOFO.

Kohl & Neuman [Page 72]

RFC 1510 Ker ber os Sept ember 1993

A DES key is 8 octets of data, with keytype one (1). This consists
of 56 bits of key, and 8 parity bits (one per octet). The key is
encoded as a series of 8 octets witten in MSB-first order. The bits
within the key are al so encoded in MSB order. For exanple, if the
encryption key is:

(B1,B2,...,B7,P1,B8,...,Bl4, P2, B15, ..., B49, P7, B50, ..., B56, P8) where
B1,B2,...,B56 are the key bits in MSB order, and P1,P2,...,P8 are the
parity bits, the first octet of the key would be B1,B2,...,B7, P1

(with BL as the Mshit). [See the FIPS 81 introduction for
ref erence.]

To generate a DES key froma text string (password), the text string
normal Iy nmust have the real mand each conponent of the principal’s
nane appended(ln sone cases, it nmay be necessary to use a different
"mx-in" string for conpatibility reasons; see the discussion of
padata in section 5.4.2.), then padded with ASCII nulls to an 8 byte
boundary. This string is then fan-fol ded and eXcl usive-CRed with
itself to forman 8 byte DES key. The parity is corrected on the
key, and it is used to generate a DES CBC checksumon the initia
string (with the real mand nanme appended). Next, parity is corrected
on the CBC checksum If the result matches a "weak" or "seniweak"
key as described in the DES specification, it is eXclusive-ORed with
t he constant 00000000000000F0. Finally, the result is returned as
the key. Pseudocode foll ows:

string_to_key(string,real mnanme) {
odd = 1;
s = string + realm
for(each conponent in nane) {
S = s + conponent;
}

tenpkey = NULL;
pad(s); /* with nulls to 8 byte boundary */
for(8byteblock in s) {
if(odd == 0) {
odd = 1;
rever se(8byt ebl ock)

el se odd = 0;

tenpkey = tenpkey XOR 8byt ebl ock;
}
fixparity(tenpkey);
key = DES- CBC-check(s, t enpkey);
fixparity(key);
i f(is_weak _key key(key))

key = key XOR O0xFO;
return(key);

Kohl & Neuman [Page 73]

RFC 1510 Ker ber os Sept ember 1993

6.4. Checksuns
The following is the ASN. 1 definition used for a checksum

Checksum : : = SEQUENCE ({
cksunt ype[0] | NTEGER
checksun 1] OCTET STRI NG

}

cksuntype This field indicates the algorithmused to generate the
acconpanyi ng checksum

checksum This field contains the checksumitself, encoded
as an octet string.

Det ai | ed specification of selected checksumtypes appear later in
this section. Negative values for the checksumtype are reserved for
| ocal use. Al non-negative values are reserved for officially
assigned type fields and interpretations.

Checksuns used by Kerberos can be classified by two properties:

whet her they are collision-proof, and whether they are keyed. It is
infeasible to find two plaintexts which generate the same checksum
value for a collision-proof checksum A key is required to perturb
or initialize the algorithmin a keyed checksum To prevent
message- stream nodi ficati on by an active attacker, unkeyed checksuns
shoul d only be used when the checksum and nessage will be
subsequently encrypted (e.g., the checksuns defined as part of the
encryption algorithns covered earlier in this section). Collision-
proof checksuns can be nade tanper-proof as well if the checksum

val ue is encrypted before inclusion in a nessage. |In such cases, the
conposition of the checksum and the encryption al gorithm nust be
consi dered a separate checksum al gorithm (e.g., RSA-MD5 encrypted
using DES is a new checksum al gorithm of type RSA-NMD5-DES). For nost
keyed checksunms, as well as for the encrypted forns of collisionproof
checksuns, Kerberos prepends a confounder before the checksumis

cal cul at ed

6.4.1. The CRC 32 Checksum (crc32)

The CRC- 32 checksum cal cul ates a checksum based on a cyclic
redundancy check as described in I SO 3309 [14]. The resulting
checksumis four (4) octets in length. The CRC-32 is neither keyed
nor collision-proof. The use of this checksumis not recomended.

An attacker using a probabilistic chosen-plaintext attack as
described in [13] might be able to generate an alternative nessage
that satisfies the checksum The use of collision-proof checksums is
recommended for environnents where such attacks represent a

Kohl & Neuman [Page 74]

RFC 1510 Ker ber os Sept ember 1993

significant threat.
6.4.2. The RSA MM Checksum (rsa-nd4)

The RSA- MD4 checksum cal cul ates a checksum using the RSA M4
algorithm[15]. The algorithmtakes as input an input nessage of
arbitrary length and produces as output a 128-bit (16 octet)
checksum RSA-MXM is believed to be collision-proof.

6.4.3. RSA MM Cryptographi c Checksum Usi ng DES (rsa-nd4des)

The RSA- MD4- DES checksum cal cul ates a keyed col |i si onproof checksum
by prepending an 8 octet confounder before the text, applying the RSA
M checksum al gorithm and encrypting the confounder and the
checksum usi ng DES in ci pher-bl ock-chai ning (CBC) node using a
variant of the key, where the variant is conputed by eXcl usive-ORi ng
the key with the constant FOFOFOFOFOFOFOFO (A variant of the key is
used to linmt the use of a key to a particular function, separating
the functions of generating a checksum from other encryption
performed using the session key. The constant FOFOFOFOFOFOFOFO was
chosen because it nmintains key parity. The properties of DES

precl uded the use of the conplenent. The sane constant is used for
simlar purpose in the Message Integrity Check in the Privacy
Enhanced Mail standard.). The initialization vector should be zero.
The resulting checksumis 24 octets long (8 octets of which are
redundant). This checksumis tanper-proof and believed to be

col I'i si on-proof.

The DES specifications identify some "weak keys"; those keys shal
not be used for generating RSA-MX checksuns for use in Kerberos.

The format for the checksumis described in the foll owi ng di agram

S

| des-cbc(confounder
I R i it il T S SR

e LT I r SIS

r sa- md4(conf ounder +nsg) , key=var (key), i v=0)
B I s S e T s T T S SR S

The format cannot be described in ASN. 1, but for those who prefer an
ASN. 1-1i ke notation:

r sa- nd4- des- checksum : : = ENCRYPTED UNTAGGED SEQUENCE {
conf ounder [0] UNTAGGED OCTET STRI NGE 8),
check][1] UNTAGGED OCTET STRI NG 16)
}

Kohl & Neuman [Page 75]

RFC 1510 Ker ber os Sept ember 1993

6.4.4. The RSA MD5 Checksum (rsa- nd5)

The RSA- MD5 checksum cal cul ates a checksum using the RSA MD5
algorithm[16]. The algorithmtakes as input an input nessage of
arbitrary length and produces as output a 128-bit (16 octet)
checksum RSA-MD5 is believed to be collision-proof.

6.4.5. RSA MD5 Cryptographic Checksum Usi ng DES (rsa-nmd5des)

The RSA- MD5- DES checksum cal cul ates a keyed col |'i si onproof checksum
by prepending an 8 octet confounder before the text, applying the RSA
MD5 checksum al gorithm and encrypting the confounder and the
checksum usi ng DES i n ci pher-bl ock-chai ning (CBC) node using a
variant of the key, where the variant is conputed by eXclusive-ORing
the key with the constant FOFOFOFOFOFOFOFO. The initialization
vector should be zero. The resulting checksumis 24 octets long (8
octets of which are redundant). This checksumis tanper-proof and
bel i eved to be collision-proof.

The DES specifications identify some "weak keys"; those keys shal
not be used for encrypting RSA-MD5 checksuns for use in Kerberos.

The format for the checksumis described in the foll ow ng di agram

B L S I TR R S
| des-cbc(confounder
B T e e S e e o

5SS S S T R S R B S
rsa- md5(conf ounder +nsg) , key=var (key), i v=0)
e 5 S S TS T SR

The format cannot be described in ASN. 1, but for those who prefer an
ASN. 1-1i ke notation:

r sa- nd5- des- checksum :: = ENCRYPTED UNTAGGED SEQUENCE {
conf ounder [0] UNTAGGED OCTET STRI NG 8),
check[1] UNTAGGED OCTET STRI NG 16)
}

6.4.6. DES cipher-bl ock chai ned checksum (des-nac)

The DES- MAC checksumis conputed by prepending an 8 octet confounder
to the plaintext, perform ng a DES CBC-nbde encryption on the result
using the key and an initialization vector of zero, taking the |ast
bl ock of the ciphertext, prepending the sanme confounder and
encrypting the pair using DES in cipher-block-chaining (CBC) node
using a a variant of the key, where the variant is conputed by

Kohl & Neuman [Page 76]

RFC 1510 Ker ber os Sept ember 1993

eXcl usive-ORing the key with the constant FOFOFOFOFOFOFOFO. The
initialization vector should be zero. The resulting checksumis 128
bits (16 octets) long, 64 bits of which are redundant. This checksum
i s tanper-proof and collision-proof.

The format for the checksumis described in the foll owi ng di agram
B T S R S S

| des- cbc(conf ounder
B T I S I S S

+-- oo - +-- oo - +-- oo - +-- oo - +-- oo - +-- oo - +-- oo - +-- oo - +
des- mac(conf +nmsg, i v=0, key) , key=var (key), i v=0)
Fommm - Fommm - Fommm - Fommm - Fommm - Fommm - Fommm - Fommm - +

The format cannot be described in ASN. 1, but for those who prefer an
ASN. 1-1i ke notation:

des- nac- checksum : : = ENCRYPTED UNTAGGED SEQUENCE {
conf ounder [0] UNTAGGED OCTET STRI NG 8),
check[1] UNTAGGED OCTET STRI NG 8)
}

The DES specifications identify sone "weak" and "sem weak" keys;

t hose keys shall not be used for generating DES- MAC checksuns for use
in Kerberos, nor shall a key be used whose veriant is "weak" or
"sem - weak".

6.4.7. RSA MM Cryptographi c Checksum Usi ng DES al ternative
(rsa-nd4- des- k)

The RSA- MD4- DES- K checksum cal cul ates a keyed col i si on- pr oof
checksum by applying the RSA MD4 checksum al gorithm and encrypting
the results using DES in cipherbl ock-chaining (CBC) node using a DES
key as both key and initialization vector. The resulting checksumis
16 octets long. This checksumis tanper-proof and believed to be
collision-proof. Note that this checksumtype is the old nmethod for
encodi ng the RSA-MD4-DES checksumand it is no | onger recomended.

6.4.8. DES ci pher-bl ock chai ned checksum al ternative (desmac-Kk)

The DES- MAC-K checksumis conputed by perforning a DES CBC node
encryption of the plaintext, and using the |ast block of the

ci phertext as the checksumvalue. It is keyed with an encryption key
and an initialization vector; any uses which do not specify an
additional initialization vector will use the key as both key and
initialization vector. The resulting checksumis 64 bits (8 octets)
I ong. This checksumis tanper-proof and collision-proof. Note that

Kohl & Neuman [Page 77]

RFC 1510 Ker ber os Sept ember 1993

this checksumtype is the old nmethod for encodi ng the DESMAC checksum
and it is no |longer recomended.

The DES specifications identify some "weak keys"; those keys shal
not be used for generating DES- MAC checksuns for use in Kerberos.

7. Namng Constraints
7.1. Real m Nanes

Al t hough real m names are encoded as CGeneral Strings and al though a
real mcan technically select any nane it chooses, interoperability
across real mboundaries requires agreenent on how real m nanes are to
be assigned, and what information they inply.

To enforce these conventions, each real mnust conformto the
conventions itself, and it nust require that any realms with which
inter-real mkeys are shared al so conformto the conventions and
require the sane fromits nei ghbors

There are presently four styles of real mnanmes: domain, X500, other
and reserved. Exanples of each style follow

domai n: host . subdonai n. domai n (exanpl e)
X500: C=US/ O=CsF (exanpl e)
ot her: NAMETYPE: r est/ of . name=wi t hout -restrictions (exanple)
reserved: reserved, but will not conflict with above

Domai n names nust | ook |ike domai n nanes: they consist of conponents
separated by periods (.) and they contain neither colons (:) nor
sl ashes (/).

X. 500 nanmes contain an equal (=) and cannot contain a colon (:)
before the equal. The real mnanes for X 500 nanes will be string
representations of the nanes with conponents separated by sl ashes.
Leading and trailing slashes will not be included.

Names that fall into the other category nust begin with a prefix that
contains no equal (=) or period (.) and the prefix nust be followed
by a colon (:) and the rest of the nanme. All prefixes nust be
assigned before they may be used. Presently none are assigned.

The reserved category includes strings which do not fall into the
first three categories. Al nanmes in this category are reserved. It
is unlikely that names will be assigned to this category unless there
is a very strong argunment for not using the "other" category.

These rul es guarantee that there will be no conflicts between the

Kohl & Neuman [Page 78]

RFC 1510 Ker ber os Sept ember 1993

7.

2.

various nane styles. The followi ng additional constraints apply to

t he assignnent of real mnanmes in the domain and X 500 categories: the
nane of a realmfor the domain or X 500 formats nust either be used
by the organi zati on owning (to whomit was assigned) an |nternet
domai n nane or X 500 name, or in the case that no such names are

regi stered, authority to use a real mnane may be derived fromthe
authority of the parent realm For exanple, if there is no donain
nane for E40. M T. EDU, then the adm nistrator of the MT. EDU real m can
aut horize the creation of a realmw th that nane

This is acceptabl e because the organi zation to which the parent is
assigned is presunably the organi zati on authorized to assign nanes to
its children in the X 500 and donai n nane systens as well. If the
parent assigns a real mnanme w thout also registering it in the domain
nane or X. 500 hierarchy, it is the parent’s responsibility to nake
sure that there will not in the future exists a nane identical to the
real m name of the child unless it is assigned to the same entity as

t he real m nane.

Princi pal Nanes

As was the case for real mnanes, conventions are needed to ensure
that all agree on what information is inplied by a principal nane.
The nane-type field that is part of the principal nanme indicates the
kind of information inplied by the nanme. The nane-type shoul d be
treated as a hint. Ilgnoring the nane type, no two nanes can be the
same (i.e., at |least one of the conponents, or the realm nust be
different). This constraint may be elimnated in the future. The
foll owi ng name types are defined:

nane-type val ue meani ng
NT- UNKNOAN 0 Name type not known
NT- PRI NCI PAL 1 Just the name of the principal as in

DCE, or for users
NT- SRV- | NST 2 Service and ot her unique instance (krbtgt)
NT- SRV- HST 3 Service with host nanme as instance

(tel net, rcommands)
NT- SRV- XHST 4 Service with host as remmini ng conponents
NT- Ul D 5 Uni que ID

When a nane inplies no information other than its uni queness at a
particular time the nane type PRI NCI PAL should be used. The

princi pal nane type should be used for users, and it night also be
used for a unique server. |f the nane is a unique nmachi ne generated
I D that is guaranteed never to be reassigned then the nanme type of

U D shoul d be used (note that it is generally a bad idea to reassign
nanes of any type since stale entries mght remain in access contro
lists).

Kohl & Neuman [Page 79]

RFC 1510 Ker ber os Sept ember 1993

If the first conponent of a nane identifies a service and the
remai ni ng conponents identify an instance of the service in a server
speci fied manner, then the name type of SRV-1NST should be used. An
exanple of this name type is the Kerberos ticket-granting ticket

whi ch has a first conmponent of krbtgt and a second conponent
identifying the realmfor which the ticket is valid.

If instance is a single conponent follow ng the service nanme and the
instance identifies the host on which the server is running, then the
nane type SRV-HST should be used. This type is typically used for
Internet services such as telnet and the Berkeley R commands. |If the
separate conponents of the host nane appear as successive conponents
followi ng the nane of the service, then the name type SRVXHST shoul d
be used. This type mght be used to identify servers on hosts with
X. 500 nanmes where the slash (/) mght otherw se be anbi guous.

A name type of UNKNOWN shoul d be used when the formof the nane is
not known. Wen conparing nanes, a nane of type UNKNOM will match
principals authenticated with nanes of any type. A principa
authenticated with a nanme of type UNKNOAN, however, will only match
ot her names of type UNKNOMWN

Names of any type with an initial conponent of "krbtgt" are reserved
for the Kerberos ticket granting service. See section 8.2.3 for the
form of such nanes.

7.2.1. Nane of server principals

8.

8.

The principal identifier for a server on a host will generally be
conposed of two parts: (1) the realmof the KDC with which the server
is registered, and (2) a two-conponent nane of type NT-SRV-HST if the
host nane is an Internet domain name or a nulti-conponent nane of
type NT-SRV-XHST if the name of the host is of a formsuch as X 500
that allows slash (/) separators. The first conponent of the two- or
mul ti-component nane will identify the service and the latter
conponents will identify the host. Were the nane of the host is not
case sensitive (for exanple, with Internet donain nanes) the nane of
the host nust be |ower case. For services such as telnet and the

Ber kel ey R commands which run with systemprivil eges, the first
component will be the string "host" instead of a service specific
identifier.

Constants and ot her defined val ues
1. Host address types

Al'l negative values for the host address type are reserved for |oca
use. All non-negative values are reserved for officially assigned

Kohl & Neuman [Page 80]

RFC 1510 Ker ber os Sept ember 1993

type fields and interpretations.

The val ues of the types for the followi ng addresses are chosen to
mat ch the defined address fanmily constants in the Berkel ey Standard
Distributions of Unix. They can be found in <sys/socket.h> wth
synbol i ¢ names AF_xxx (where xxx is an abbreviation of the address
fam |y nane).

I nt ernet addresses

I nternet addresses are 32-bit (4-octet) quantities, encoded in NMSB
order. The type of internet addresses is two (2).

CHAOSnet addresses

CHACSnet addresses are 16-bit (2-octet) quantities, encoded in MSB
order. The type of CHACSnet addresses is five (5)

| SO addr esses

| SO addresses are variable-length. The type of |1SO addresses is
seven (7).

Xerox Network Services (XNS) addresses

XNS addresses are 48-bit (6-octet) quantities, encoded in MSB
order. The type of XNS addresses is six (6).

Appl eTal k Datagram Del i very Protocol (DDP) addresses
Appl eTal k DDP addresses consist of an 8-bit node nunmber and a 16-
bit network number. The first octet of the address is the node
nunber; the remai ning two octets encode the network nunber in MSB
order. The type of AppleTal k DDP addresses is sixteen (16).

DECnet Phase |V addresses

DECnet Phase |V addresses are 16-bit addresses, encoded in LSB
order. The type of DECnet Phase |V addresses is twelve (12).

8.2. KDC nessages
8.2.1. IP transport
When contacting a Kerberos server (KDC) for a KRB _KDC REQ request

using I P transport, the client shall send a UDP dat agram cont ai ni ng
only an encodi ng of the request to port 88 (decimal) at the KDC's IP

Kohl & Neuman [Page 81]

RFC 1510 Ker ber os Sept ember 1993

address; the KDC will respond with a reply datagram containing only
an encoding of the reply message (either a KRB_ERROR or a
KRB_KDC REP) to the sending port at the sender’s |IP address.

8.2.2. OSI transport

During authentication of an OSI client to and OSlI server, the nmutua
aut hentication of an OSI server to an CSlI client, the transfer of
credentials froman OSI client to an OSI server, or during exchange
of private or integrity checked nessages, Kerberos protocol nessages
may be treated as opaque objects and the type of the authentication
nmechanismw || be:

OBJECT IDENTIFIER ::= {iso (1), org(3), dod(5),internet(1),
security(5), kerberosv5(2)}

Dependi ng on the situation, the opaque object will be an

aut henti cation header (KRB _AP_REQ), an authentication reply
(KRB_AP_REP), a safe nessage (KRB_SAFE), a private nessage
(KRB_PRIV), or a credentials nmessage (KRB _CRED). The opaque data
contains an application code as specified in the ASN. 1 description
for each nessage. The application code may be used by Kerberos to
determ ne the nessage type

8.2.3. Nane of the TGS

The principal identifier of the ticket-granting service shall be
conmposed of three parts: (1) the real mof the KDC issuing the TGS
ticket (2) a two-part nane of type NT-SRVINST, with the first part
"krbtgt" and the second part the nane of the realmwhich will accept
the ticket-granting ticket. For exanple, a ticket-granting ticket

i ssued by the ATHENA. M T. EDU real mto be used to get tickets fromthe
ATHENA. M T. EDU KDC has a principal identifier of "ATHENA. M T. EDU'
(realm, ("krbtgt", "ATHENA. M T.EDU') (nane). A ticket-granting
ticket issued by the ATHENA. M T. EDU real mto be used to get tickets
fromthe MT.EDU real mhas a principal identifier of "ATHENA M T. EDU'
(realm, ("krbtgt", "MT.EDU") (nane).

8.3. Protocol constants and associ ated val ues

The following tables list constants used in the protocol and defines
t hei r neani ngs.

Kohl & Neuman [Page 82]

RFC 1510 Ker ber os Sept ember 1993

--------------- T T T ppep U
Encryption type| etype val ue| bl ock size| m ni mum pad si ze| conf ounder size
--------------- T T T T T T T pepup S
NULL 0 1 0 0
des-cbc-crc 1 8 4 8
des- cbc- nd4 2 8 0 8
des-cbc- nd5 3 8 0 8
............................... e -
Checksum type | sunt ype val ue | checksum si ze
_______________________________ e
CRC32 1 4

rsa-nd4 2 16

rsa- nd4- des 3 24

des- mac 4 16

des- nmac- k 5 8

r sa- nd4- des-k 6 16

rsa- nd5 7 16

rsa- nd5- des 8 24
............................... e,

padata type | padat a-t ype val ue
_______________________________ o e e e e e e e e - -

PA- TGS- REQ 1

PA- ENC- TI MESTAMP 2

PA- PW SALT 3
_______________________________ o e e e e e e - ==

aut hori zati on data type | ad-type val ue
_______________________________ o e e e e e e - = -

reserved val ues 0-63

OSF- DCE 64

SESAMVE 65
_______________________________ o e e e e e e e e - -

alternate authentication type |nmethod-type val ue
_______________________________ o e e e e e e e e e e ==

reserved val ues 0-63

ATT- CHALLENGE- RESPONSE 64
_______________________________ o e e e e e e e - - =

transited encodi ng type [tr-type val ue
_______________________________ e e e e e e e e m - -

DOMAI N- X500- COVPRESS 1

reserved val ues all others

Kohl & Neuman [Page 83]

RFC 1510 Ker ber os Sept enber

______________ e

Label | Val ue | Meaning or M T code

.............. e

pvno 5 current Kerberos protocol version nunber

nessage types

KRB_AS REQ 10 Request for initial authentication

KRB_AS REP 11 Response to KRB_AS REQ request

KRB TGS REQ 12 Request for authentication based on TGI

KRB_TGS_REP 13 Response to KRB_TGS_REQ request

KRB _AP_REQ 14 application request to server

KRB_AP_REP 15 Response to KRB_AP_REQ MJTUAL

KRB_SAFE 20 Saf e (checksummed) application nmessage

KRB_PRI V 21 Private (encrypted) application nmessage

KRB_CRED 22 Private (encrypted) message to forward
credential s

KRB_ERROR 30 Error response

nane types

KRB_NT_UNKNOWN O Nanme type not known

KRB_NT_ PRI NCl PAL 1 Just the nane of the principal as in DCE, or
for users

KRB NT_SRV INST 2 Service and other unique instance (krbtgt)

KRB_NT_SRV_HST 3 Service with host nane as instance (telnet,
r comrands)

KRB_NT_SRV_XHST 4 Service with host as remini ng conponents

KRB_NT_UI D 5 Uni que I D

error codes

KDC_ERR_NONE 0 No error

KDC_ERR _NAME_EXP 1 Cient’s entry in database has
expired

KDC _ERR_SERVI CE_EXP 2 Server’'s entry in database has
expi red

KDC_ERR_BAD_PVNO 3 Request ed protocol version nunber
not supported

KDC ERR _C OLD _MAST_KVNO 4 Cient’s key encrypted in old
mast er key

KDC ERR S OLD MAST_KVNO 5 Server’'s key encrypted in old

mast er key
KDC_ERR_C PRI NCI PAL__UNKNOWN
KDC_ERR_S PRI NCI PAL_UNKNON
KDC_ERR_PRI NCI PAL_NOT_UNI QUE

0o ~NO®

Multiple principal entries in
dat abase

1993

Cient not found in Kerberos database
Server not found in Kerberos database

Kohl & Neuman [Page 84]

RFC 1510

KDC_ERR NULL_KEY
KDC_ERR_CANNOT _POSTDATE
KDC_ERR_NEVER VALI D

KDC_ERR_POLI CY
KDC_ERR_BADCPTI ON

KDC_ERR_ETYPE_NOSUPP

KDC_ERR_SUMTI'YPE_NOSUPP
KDC_ERR_PADATA_TYPE_NOSUPP
KDC_ERR_TRTYPE_NOSUPP
KDC_ERR_CLI ENT_REVOKED
KDC_ERR_SERVI CE_REVOKED

KDC_ERR_TGT_REVOKED
KDC_ERR_CLI ENT_NOTYET

KDC_ERR_SERVI CE_NOTYET
KDC_ERR_KEY_EXPI RED
KDC_ERR_PREAUTH_FAI LED
KDC_ERR_PREAUTH_REQUI RED
KRB_AP_ERR BAD_| NTEGRI TY

KRB_AP_ERR_TKT_EXPI RED
KRB_AP_ERR_TKT_NYV
KRB_AP_ERR_REPEAT
KRB_AP_ERR_NOT_US
KRB_AP_ERR_BADNATCH
KRB_AP_ERR_SKEW
KRB_AP_ERR_BADADDR
KRB_AP_ERR_BADVERS| ON
KRB_AP_ERR_MSG_TYPE
KRB_AP_ERR_MODI FI ED
KRB_AP_ERR_BADORDER
KRB_AP_ERR_BADKEYVER

KRB_AP_ERR_NOKEY
KRB_AP_ERR_MJT_FAI L
KRB_AP_ERR_BADDI RECTI ON
KRB_AP_ERR_METHOD

KRB_AP_ERR_BADSEQ
KRB_AP_ERR_| NAPP_CKSUM

Kohl & Neunman

10
11

12
13

14

15
16
17
18
19

20
21

22

23

24

25

31

32
33
34

36
37
38
39
40
41
42
44

45
46
47
48

49
50

Ker ber os

Sept ember 1993

The client or server has a null key
Ti cket not eligible for postdating
Requested start tine is later than
end tinme

KDC policy rejects request

KDC cannot accommobdat e requested
option

KDC has no support for encryption
type

KDC has no support for checksumtype
KDC has no support for padata type
KDC has no support for transited type
Clients credentials have been revoked
Credentials for server have been

r evoked

TGT has been revoked

Cient not yet valid - try again

| ater

Server not yet valid - try again

| ater

Password has expired - change
password to reset

Pre-aut hentication information

was invalid
Addi ti ona
requi red*
Integrity check on decrypted field
fail ed

Ti cket expired

Ti cket not yet valid

Request is a replay

The ticket isn't for us

Ti cket and aut henticator don’t match
O ock skew too great

I ncorrect net address

Prot ocol version msnmatch

Invalid nsg type

Message stream nodi fied

Message out of order

Specified version of key is not
avail abl e

Service key not avail abl e

Mut ual aut hentication failed

I ncorrect nessage direction
Alternative authentication nmethod
requi r ed*

I ncorrect sequence nunber in nessage
| nappropriate type of checksumin

pre-aut hentication

[Page 85]

RFC 1510 Ker ber os Sept ember 1993

nessage
KRB _ERR GENERI C 60 Ceneric error (description in e-text)
KRB_ERR_FI ELD_TOOLONG 61 Field is too long for this

i mpl enent ati on

*This error carries additional information in the e-data field. The
contents of the e-data field for this nessage is described in section
5.9. 1.

9. Interoperability requirenments

Version 5 of the Kerberos protocol supports a nyriad of options.
Anong these are nultiple encryption and checksum types, alternative
encodi ng schermes for the transited field, optional nechani sns for
pre-authentication, the handling of tickets with no addresses,
options for nutual authentication, user to user authentication
support for proxies, forwarding, postdating, and renew ng tickets,
the format of real mnanes, and the handling of authorization data.

In order to ensure the interoperability of realns, it is necessary to
define a mninmal configuration which must be supported by al

i npl ementations. This minimal configuration is subject to change as
technol ogy does. For exanple, if at some later date it is discovered
that one of the required encryption or checksumal gorithns is not
secure, it will be replaced.

9.1. Specification 1

This section defines the first specification of these options.
| npl enent ati ons which are configured in this way can be said to
support Kerberos Version 5 Specification 1 (5.1).

Encrypti on and checksum net hods

The follow ng encryption and checksum nmechani snms nust be supported.
| npl enent ati ons nmay support ot her nechanisns as well, but the
addi ti onal nechanisns nay only be used when conmunicating with
principals known to al so support them Encryption: DES-CBC MD5
Checksunms: CRC- 32, DES-MAC, DES- MAC-K, and DES- MD5

Real m Nanes

Al'l inplenmentations nust understand hierarchical realns in both the

Internet Domain and the X 500 style. Wen a ticket granting ticket

for an unknown realmis requested, the KDC nust be able to deternine
the nanes of the internedi ate real ms between the KDCs real mand the

requested realm

Kohl & Neuman [Page 86]

RFC 1510 Ker ber os Sept ember 1993

Transited field encodi ng

DOVAI N- X500- COMPRESS (described in section 3.3.3.1) nust be
supported. Alternative encodi ngs may be supported, but they may be
used only when that encoding is supported by ALL internediate real ns.

Pr e- aut henti cati on net hods

The TGS- REQ net hod nust be supported. The TGS-REQ nethod is not used
on the initial request. The PA-ENC- TI MESTAMP net hod nust be supported
by clients but whether it is enabled by default may be determ ned on
arealmby realmbasis. If not used in the initial request and the
error KDC ERR PREAUTH REQUI RED i s returned specifying PA-ENCTI MESTAMP
as an acceptable nethod, the client should retry the initial request
usi ng the PA-ENC- TI MESTAMP preaut henti cati on nethod. Servers need not
support the PAENC TI MESTAWMP net hod, but if not supported the server
shoul d i gnore the presence of PA-ENC- TI MESTAMP pre-authentication in
a request.

Mut ual aut hentication

Mut ual aut hentication (via the KRB_AP_REP nessage) nust be supported.
Ti cket addresses and fl ags

Al'l KDC s nmust pass on tickets that carry no addresses (i.e., if a
TGT contains no addresses, the KDC will return derivative tickets),
but each realmnmay set its own policy for issuing such tickets, and

each application server will set its own policy with respect to
accepting them By default, servers should not accept them

Proxi es and forwarded tickets nust be supported. |Individual realns
and application servers can set their own policy on when such tickets
wi || be accepted.

Al'l inplenentations nust recogni ze renewabl e and postdated tickets,
but need not actually inplenent them |If these options are not
supported, the starttine and endtine in the ticket shall specify a
ticket’'s entire useful life. Wen a postdated ticket is decoded by a
server, all inplenentations shall make the presence of the postdated
flag visible to the calling server

User-to-user authentication
Support for user to user authentication (via the ENC TKTI N- SKEY KDC
option) nust be provided by inplenentations, but individual realns

may decide as a matter of policy to reject such requests on a per-
principal or real mw de basis.

Kohl & Neuman [Page 87]

RFC 1510 Ker ber os Sept ember 1993

9. 2.

10.

Aut hori zati on data

| mpl enent ati ons nust pass all authorization data subfields from
ticket-granting tickets to any derivative tickets unless directed to
suppress a subfield as part of the definition of that registered
subfield type (it is never incorrect to pass on a subfield, and no
regi stered subfield types presently specify suppression at the KDC).

| mpl enent ati ons nust make the contents of any authorization data
subfields available to the server when a ticket is used.

| mpl enentations are not required to allow clients to specify the
contents of the authorization data fields.

Recommended KDC val ues
Following is a list of recommended val ues for a KDC i npl enent ati on,

based on the list of suggested configuration constants (see section
4.4).

mnimmlifetinme 5 m nutes

maxi mum renewabl e lifetine 1 week

maxi mumticket lifetinme 1 day

enpty addresses only when suitable restrictions appear

in authorization data
proxi abl e, etc. Al'l owned.
Acknowl edgrent s

Early versions of this document, describing version 4 of the
protocol, were witten by Jennifer Steiner (formerly at Project

At hena); these drafts provided an excellent starting point for this
current version 5 specification. Many people in the Internet
community have contributed i deas and suggested protocol changes for
version 5. Notable contributions came from Ted Anderson, Steve

Bell ovin and M chael Merritt [17], Daniel Bernstein, M ke Burrows,
Donal d Davis, Ravi Ganesan, Mrrie Gasser, Virgil digor, Bill
Giffeth, Mark Lillibridge, Mark Lomas, Steve Lunt, Piers MMahon,
Joe Pato, WIliam Sommerfeld, Stuart Stubblebine, Ralph Sw ck, Ted
T so, and Stanley Zanarotti. Many others commented and hel ped shape
this specification into its current form

Kohl & Neuman [Page 88]

RFC 1510 Ker ber os Sept ember 1993

11. References

[1] Mller, S., Neuman, C., Schiller, J., and J. Saltzer, "Section
E.2.1: Kerberos Authentication and Authorization Systeni,
MI.T. Project Athena, Canbridge, Massachusetts, Decenber 21,
1987.

[2] Steiner, J., Neuman, C., and J. Schiller, "Kerberos: An
Aut hentication Service for Open Network Systens", pp. 191-202 in
Useni x Conference Proceedi ngs, Dallas, Texas, February, 1988.

[3] Needham R., and M Schroeder, "Using Encryption for
Aut hentication in Large Networks of Conputers", Conmunications
of the ACM Vol. 21 (12), pp. 993-999, Decenber 1978.

[4] Denning, D., and G Sacco, "Tinme stanps in Key Distribution
Prot ocol s", Communi cations of the ACM Vol. 24 (8), pp. 533-536,
August 1981.

[5] Kohl, J., Neuman, C., and T. Ts'o, "The Evolution of the
Ker beros Aut hentication Service", in an | EEE Conputer Society
Text soon to be published, June 1992.

[6] Davis, D., and R Sw ck, "Wrkstation Services and Kerberos
Aut hentication at Project Athena", Technical Menorandum TM 424,
M T Laboratory for Conputer Science, February 1990.

[7] Levine, P., Getzinger, M Diaz, J., Sonmerfeld, W, and K
Raeburn, "Section E.1: Service Managenent System MI.T.
Project Athena, Canbridge, Mas sachusetts (1987).

[8] CCTT, Recommendation X 509: The Directory Authentication
Framewor k, Decenber 1988.

[9] Neuman, C., "Proxy-Based Authorization and Accounting for
Distributed Systens,”" in Proceedings of the 13th International
Conference on Distributed Conputing Systens", Pittsburgh, PA,
May 1993.

[10] Pato, J., "Using Pre-Authentication to Avoid Password Guessi ng
Attacks", Open Software Foundation DCE Request for Comments 26,
Decenber 1992.

[11] National Bureau of Standards, U. S. Department of Conmerce, "Data

Encryption Standard", Federal |nformation Processing Standards
Publ i cation 46, Washi ngton, DC (1977).

Kohl & Neuman [Page 89]

RFC 1510 Ker ber os Sept ember 1993

[12] National Bureau of Standards, U. S. Departnent of Comerce, "DES
Modes of Operation", Federal Information Processing Standards
Publication 81, Springfield, VA Decenber 1980.

[13] Stubblebine S., and V. digor, "On Message Integrity in
Crypt ographic Protocols", in Proceedings of the | EEE Synposi um
on Research in Security and Privacy, Oakland, California, My
1992.

[14] International Organization for Standardization, "ISO Information
Processi ng Systens - Data Comuni cation Hi gh-Level Data Link
Control Procedure - Frame Structure", 1S 3309, Cctober 1984, 3rd
Edi tion.

[15] Rivest, R, "The MD4 Message Digest Algorithni, RFC 1320, MT
Laboratory for Conputer Science, April 1992.

[16] Rivest, R, "The MD5 Message Digest Algorithni, RFC 1321, MT
Laboratory for Conputer Science, April 1992,

[17] Bellovin S., and M Merritt, "Linitations of the Kerberos
Aut henti cation Systent, Conputer Conmunications Review, Vol.
20(5), pp. 119-132, Cctober 1990.

12. Security Considerations

Security issues are discussed throughout this neno.
13. Authors’ Addresses

John Kohl

Di gi tal Equi pment Corporation

110 Spit Brook Road, M S ZKG3-3/Ul4

Nashua, NH 03062

Phone: 603-881-2481

EMai | : jtkohl @k3. dec. com

B. difford Neunman

USC/ I nf ormati on Sciences Institute
4676 Admiralty Way #1001

Mari na del Rey, CA 90292-6695

Phone: 310-822-1511
EMail : bcn@si. edu

Kohl & Neuman [Page 90]

RFC 1510 Ker ber os Sept ember 1993

A. Pseudo-code for protocol processing

Thi s appendi x provi des pseudo-code describing how the nmessages are to
be constructed and interpreted by clients and servers.

A. 1. KRB _AS REQ generation
request.pvno : = protocol version; /* pvno
request.nsg-type := nessage type; /* type

5 %/
KRB_AS_REQ */

i f(pa_enc_tinestanp_required) then
request . padat a. padat a-type = PA- ENC- TI MESTAMP
get systemti ne;
padat a- body. pat i nest anp, pausec = systemti ne;
encrypt padat a-body into request. padat a. padat a-val ue
using client.key; /* derived from password */

endi f
body. kdc- options := users’s preferences;
body. cnanme := user’s nane;

user’'s realm
service's nane; /* usually "krbtgt",
"localreal mi' */
i f (body. kdc-options. POSTDATED is set) then
body. from : = requested starting tineg;

body.real m:
body. sname

el se
omt body.from
endi f
body.till := requested end tine;
i f (body. kdc-options. RENEWABLE is set) then
body.rtime := requested final renewal tineg;
endi f
body. nonce : = random nonce();
body. etype : = requested etypes;
if (user supplied addresses) then
body. addresses : = user’s addresses;
el se
omt body. addresses;
endi f
omit body. enc-authorization-dat a;
request.reqg-body := body;

kerberos := | ookup(name of |ocal kerberos server (or servers));
send(packet, ker beros);

wait (for response);
if (timed_out) then

retry or use alternate server
endi f

Kohl & Neuman [Page 91]

RFC 1510

A 2.

Kohl

& Neuman

Ker ber os Sept ember 1993

KRB _AS REQ verification and KRB_AS REP generation

decode nessage into req

client := 1ookup(req.cnane,req.realn;
server := | ookup(req.snane,req.realn;
get systemti ne;

kdc _tinme := systemtine. seconds;

if (!client) then

/* no client in Database */

error_out (KDC_ERR_C PRI NCI PAL_UNKNOWN) ;
endi f
if (!server) then

/* no server in Database */

error_out (KDC_ERR_S_PRI NCI PAL_UNKNOWN) ;
endi f

if(client.pa_enc_tinestanp_required and
pa_enc_tinmestanp not present) then

error_out (KDC_ERR_PREAUTH REQUI RED(PA_ENC_TI MESTAWP)) ;

endi f

i f(pa_enc_tinestanp present) then

decrypt req. padata-value into decrypted enc_tinestanp
using client. key;
usi ng aut h_hdr. aut henti cat or. subkey;

if (decrypt_error()) then
error_out (KRB_AP_ERR BAD | NTEGRI TY)

i f(decrypted_enc_tinmestanp is not within allowable
skew) then error_out (KDC_ERR PREAUTH FAI LED)

endi f

i f(decrypted_enc_tinmestanp and usec is replay)
error_out (KDC_ERR PREAUTH_FAI LED)

endi f

add decrypted_enc_tinestanp and usec to replay cache;
endi f
use_etype := first supported etype in req.etypes;

if (no support for req.etypes) then
error _out (KDC_ERR_ETYPE_NGCSUPP)

endi f

new tkt.vno := ticket version; /* =5 */
new_t kt. snane : = req.snane;

new tkt.srealm:= req.srealm

reset all flags in new tkt.flags;

[Page 92]

RFC 1510

/* It should be note
/* processing of any
/* realms may refuse

if (req. kdc-options.
set new tKkt.

endi f

if (req.kdc-options.
set new_tKkt.

endi f

if (req. kdc-options.
set new tKkt.

endi f

if ((req.kdc-options.
(req. kdc-options.
(req. kdc-options.
(req. kdc-options.
(req. kdc-opti ons.

Ker ber os

d that local policy nay affect the */
of these flags. For exanple, sonme */
to i ssue renewabl e tickets */

FORWARDABLE is set) then
fl ags. FORWARDABLE

PROXI ABLE is set) then
fl ags. PROXI ABLE

ALLOWN POSTDATE is set) then
fl ags. ALLON POSTDATE;

RENEW i s set) or

VALI DATE is set) or

PROXY is set) or
FORWARDED i s set) or

ENC- TKT-I N- SKEY is set)) then

error_out (KDC_ERR BADCPTI ON) ;

endi f

session :=r
cnanme = req
crealm:
transited :

new t Kkt .
new t Kkt .
new tkt.
new tkt.

new tkt.authtinme : =

if (req. kdc-options.

andom sessi on_key();
. chane;

req.crealm

enpty transited field();
kdc_ti rne;

POSTDATED i s set) then

i f (against_postdate policy(req.from) then
error_out (KDC_ERR _PCLI CY);

endi f

Kohl

set new_tkt.flags.|NVALI D
new tkt.starttine := req.from
el se
omt new tkt.starttime; /* treated as authtime when
omtted */
endi f
if (reg.till = 0) then
till :=infinity;
el se
till :=req.till;
endi f
new tkt.endtinme := mn(till,
new tkt.starttinme+client.max_life,
new tkt.startti me+server. max_life,
new tkt.starttine+nax _life for _realm;

& Neuman

[Page

Sept ember 1993

93]

RFC 1510

Kohl

if ((req.kdc-options. RENEWABLE-OK is set) and
(new tkt.endtime < req.till)) then

/* we set the RENEWABLE option for later

set req. kdc-opti ons. RENEWABLE

endi f
if (r
el se
endi f

if (r

el se
endi f
if (r
el se
endi f

new_t

encode to-be-encrypted part of ticket
kt.enc-part := encrypt OCTET STRI NG
usi ng etype_for_key(server.key),

new_t

/* St

resp.
resp.
resp.
resp.
resp.

resp.
resp.
resp.
resp.

& Neuman

Ker ber os

req.rtine :=req.till;
eq.rtine = 0) then

rtime :=infinity;

rtime :=req.rtine;

eq. kdc- opti ons. RENEWABLE is set) then
set new tkt.flags. RENEWABLE
new tkt.renewtill := mn(rtine,
new tkt.starttine+client.max_rlife,
new tkt.starttine+server.max_rlife,
new tkt.starttine+tmax _rlife for_realn;

Sept ember 1993

processing */

omit new tkt.renewtill; /* only present if RENEWABLE */
eq. addresses) then

new tkt.caddr := req. addresses;

omt new_tkt.caddr;
kt.aut horization data := enpty_authorization_data();

art processing the response */

pvno : = 5;

nmsg-type : = KRB_AS REP

cnanme : = req.cnang;

crealm:=req.realm

ticket := new_ tkt;

key := new_tkt.session

last-req := fetch_last_request_info(client);
nonce : = req.nonce;

key-expiration := client.expiration

server. key,

into OCTET STRI NG

server. p_kvno;

[Page 94]

RFC 1510 Ker ber os Sept ember 1993

resp.flags := new tkt.flags;
resp.authtine := new_ tkt.authtine;
resp.starttine := new tkt.starttine;
resp.endtime : = new_tkt.endtine;

if (new_ tkt.flags. RENEWABLE) then
resp.renewtill := new tkt.renewtill;
endi f

resp.realm:
resp. snane :

new tkt.realm
new t kt. snane;

resp. caddr new_t kt . caddr;

encode body of reply into OCTET STRI NG

resp.enc-part := encrypt OCTET STRI NG
usi ng use_etype, client.key, client.p_kvno;
send(resp);

A.3. KRB _AS REP verification
decode response into resp;

if (resp.msg-type = KRB_ERROR) then
i f(error = KDC_ERR PREAUTH REQUI RED(PA_ENC TI MESTAWP))
then set pa_enc_tinmestanp_required;
goto KRB_AS REQ
endi f
process_error(resp);
return;
endi f

/* On error, discard the response, and zero the session key */
/* fromthe response i mediately */

key = get _decryption_key(resp.enc-part.kvno, resp.enc-part.etype,
resp. padat a) ;
unencrypted part of resp := decode of decrypt of resp.enc-part
usi ng resp.enc-part.etype and key;
zero(key);

if (common_as rep_tgs _rep_checks fail) then
destroy resp. key;
return error;

endi f

i f near(resp.princ_exp) then

Kohl & Neuman [Page 95]

RFC 1510 Ker ber os Sept ember 1993

print (warni ng nessage);
endi f
save_for_later(ticket, session,client,server,tines,flags);

A 4. KRB _AS REP and KRB TGS REP common checks
if (decryption_error() or
(reg.cnanme != resp.cnane) or
(req.realm!= resp.crealn) or
(reg.sname != resp.snane) or
(reg.realm resp.realm or
(reg. nonce != resp.nonce) or
(reg. addresses ! = resp.caddr)) then
destroy resp. key;
return KRB_AP_ERR MJDI FI ED;

endi f

/* make sure no flags are set that shouldn't be, and that */
/* all that should be are set */
if (!check _flags for_conpatability(req. kdc-options,resp.flags))
then destroy resp. key;
return KRB_AP_ERR MJDI FI ED;
endi f

if ((req.from= 0) and
(resp.starttinme is not within allowabl e skew)) then
destroy resp. key;
return KRB_AP_ERR SKEW
endi f
if ((req.from!=0) and (req.from!= resp.starttine)) then
destroy resp. key;
return KRB_AP_ERR MODI FI ED;

endi f

if ((req.till '=0) and (resp.endtine > req.till)) then
destroy resp. key;
return KRB_AP_ERR MODI Fl ED,

endi f

if ((req.kdc-options. RENEWABLE is set) and
(req.rtime = 0) and (resp.renewtill > req.rtine)) then
destroy resp. key;
return KRB_AP_ERR MODI Fl ED,
endi f
if ((req.kdc-options. RENEWABLE-OK is set) and
(resp.fl ags. RENEWABLE) and
(req.till !'=0) and
(resp.renewtill > req.till)) then
destroy resp. key;
return KRB_AP_ERR MODI Fl ED;

Kohl & Neuman [Page 96]

RFC 1510 Ker ber os Sept ember 1993

endi f

A. 5. KRB_TGS_REQ generation
/* Note that make_application_request might have to */
/* recursivly call this routine to get the appropriate */
/* ticket-granting ticket */
request.pvno : = protocol version; /* pvho =5 */
request. nmsg-type : = nessage type; /* type = KRB _TGS_REQ */

body. kdc- options : = users’s preferences;

/* If the TGT is not for the real mof the end-server */
/* then the sname will be for a TGT for the end-realm*/
/* and the real mof the requested ticket (body.realm */
/* will be that of the TGS to which the TGl we are */
/* sending applies */
body. sname : = service’s nane;

body.realm: = service's realm

i f (body. kdc-options. POSTDATED is set) then
body. from : = requested starting tineg;

el se
omt body.from

endi f

body.till := requested end tineg;

i f (body. kdc-options. RENEWABLE is set) then
body.rtime : = requested final renewal tineg;

endi f

body. nonce : = random nonce();

body. etype : = requested etypes;
if (user supplied addresses) then

body. addresses : = user’s addresses;
el se
omt body. addresses;
endi f
body. enc-aut hori zati on-data : = user-supplied data;

i f (body. kdc-options. ENC TKT-1 N- SKEY) then
body. addi tional -tickets_ticket := second TGT,;
endi f

request.reqg-body := body;
check := generate_checksum (req. body, checksunt ype);

request. padat a[0] . padat a-type : = PA-TGS- REQ

request. padat a[0] . padat a-val ue : = create a KRB_AP_REQ usi ng
the TGI and checksum

Kohl & Neuman [Page 97]

RFC 1510 Ker ber os Sept ember 1993

/* add in any other padata as required/ supplied */

kerberos := | ookup(name of |ocal kerberose server (or servers));
send(packet , ker ber os) ;

wait (for response);
if (timed_out) then

retry or use alternate server
endi f

A.6. KRB TGS REQ verification and KRB TGS REP generation
/* note that reading the application request requires first
determning the server for which a ticket was issued, and
choosing the correct key for decryption. The nane of the
server appears in the plaintext part of the ticket. */

if (no KRB_LAP_REQ in req. padata) then

error _out (KDC_ERR_PADATA_TYPE_NOSUPP)
endi f
verify KRB_AP_REQ i n req. padat a;

/* Note that the realmin which the Kerberos server is
operating is determ ned by the instance fromthe
ticket-granting ticket. The realmin the ticket-granting
ticket is the real munder which the ticket granting ticket was
issued. It is possible for a single Kerberos server to
support nore than one realm */

auth_hdr := KRB_AP_REQ
tgt := auth_hdr.ticket;

if (tgt.snane is not a TGT for local realmand is not
req. snane) then error_out (KRB_AP_ERR NOT_US);

realm:=realmtgt_is for(tgt);
decode renni nder of request;

i f (auth_hdr.authenticator.cksumis missing) then
error_out (KRB_AP_ERR | NAPP_CKSUM ;

endi f

i f (auth_hdr.authenticator.cksumtype is not supported) then
error _out (KDC_ERR_SUMIYPE_ NOSUPP) ;

endi f

i f (auth_hdr.authenticator.cksumis not both collision-proof

and keyed) then

error_out (KRB_AP_ERR | NAPP_CKSUM ;

endi f

Kohl & Neuman [Page 98]

RFC 1510 Ker ber os Sept ember 1993

set conputed_checksum : = checksumn(req);

i f (computed_checksum != auth_hdr. aut henticatory.cksum then
error_out (KRB_AP_ERR_MODI FI ED) ;

endi f

server := | ookup(req.snane,realm;

if (!server) then
if (is_foreign_tgt_nanme(server)) then
server := best_internedi ate_tgs(server);
el se
/* no server in Database */
error_out (KDC _ERR S PRI NCI PAL_UNKNOWN) ;
endi f
endi f

session : = generate_random sessi on_key();

use_etype := first supported etype in req.etypes;

if (no support for req.etypes) then
error _out (KDC_ERR_ETYPE_NGCSUPP)

endi f

new tkt.vno := ticket version; /* =5 */
new_t kt. snane : = req.snane;

new tkt.srealm:= realm

reset all flags in new tkt.flags;

/* 1t should be noted that |ocal policy may affect the */
/* processing of any of these flags. For exanple, sone */
/* realnms may refuse to issue renewable tickets */

new tkt.caddr := tgt.caddr
resp.caddr := NULL; /* We only include this if they change */
if (reqg. kdc-options. FORMARDABLE i s set) then
if (tgt.flags. FORWARDABLE is reset) then
error_out (KDC_ERR_BADOPTI ON) ;
endi f
set new_ tkt.fl ags. FORWARDABLE
endi f
if (reqg. kdc-options. FORWARDED i s set) then
if (tgt.flags. FORWARDABLE is reset) then
error_out (KDC_ERR_BADOPTI ON) ;

endi f
set new_tkt.fl ags. FORWARDED;
new tkt.caddr := req. addresses;

Kohl & Neuman [Page 99]

RFC 1510 Ker ber os Sept ember 1993

resp.caddr := req. addresses;
endi f
if (tgt.flags. FORWARDED is set) then
set new_ tkt.fl ags. FORWARDED;
endi f

if (req. kdc-options. PROXI ABLE is set) then
if (tgt.flags. PROXI ABLE is reset)
error_out (KDC_ERR_BADOPTI ON) ;
endi f
set new_ tkt.flags. PROXI ABLE;
endi f
if (reqg.kdc-options. PROXY is set) then
if (tgt.flags. PROXI ABLE is reset) then
error_out (KDC_ERR_BADOPTI ON) ;
endi f
set new_ tkt.flags. PROXY;
new tkt.caddr := req. addresses;
resp.caddr := req. addresses;
endi f

if (reqg.kdc-options. POSTDATE is set) then
if (tgt.flags. POSTDATE is reset)
error _out (KDC_ERR BADCPTI ON) ;
endi f
set new_tkt.fl ags. POSTDATE;
endi f
if (reqg. kdc-options. POSTDATED is set) then
if (tgt.flags. POSTDATE is reset) then
error _out (KDC_ERR BADCPTI ON) ;
endi f
set new_tkt.fl ags. POSTDATED;
set new_ tkt.flags.|NVALID;
i f (against_postdate_policy(req.from) then
error_out (KDC_ERR_PCLI CY) ;
endi f
new tkt.starttine := req.from
endi f

if (reqg.kdc-options. VALIDATE is set) then

if (tgt.flags.INVALID is reset) then
error_out (KDC_ERR _PCLI CY);

endi f

if (tgt.starttine > kdc_tinme) then
error_out (KRB_AP_ERR NYV);

endi f

if (check _hot list(tgt)) then

Kohl & Neuman [Page 100]

RFC 1510 Ker ber os Sept ember 1993

error_out (KRB_AP_ERR REPEAT);
endi f
tkt = tgt;
reset new_ tkt.flags.|NVALID
endi f

if (reqg.kdc-options. (any flag except ENC- TKT-1 N SKEY, RENEW
and those already processed) is set) then
error_out (KDC_ERR_BADOPTI ON) ;
endi f

new tkt.authtime := tgt.authtine;

if (req.kdc-options. RENEWis set) then
/* Note that if the endtinme has already passed, the ticket */
/* woul d have been rejected in the initial authentication */
/* stage, so there is no need to check again here */
if (tgt.flags. RENEWABLE is reset) then
error_out (KDC_ERR BADCPTI ON) ;

endi f
if (tgt.renewtill >= kdc_time) then
error_out (KRB_AP_ERR TKT_EXPI RED) ;
endi f
tkt .= tgt;
new tkt.starttine := kdc_ti ne;
old_life :=tgt.endttine - tgt.starttine;
new tkt.endtinme := mn(tgt.renewtill,
new tkt.starttine + old_life);
el se
new tkt.starttine := kdc_ti ne;
if (reg.till = 0) then
till :=infinity;
el se
till :=req.till;
endi f
new tkt.endtime := mn(till,

new tkt.starttine+client.max_life,
new tkt.startti ne+server.max_life,
new tkt.starttine+max_life_for_realm
tgt.endtine);

if ((req.kdc-options. RENEWABLE-OK is set) and
(new tkt.endtime < req.till) and
(tgt.flags. RENEWABLE is set) then
/* we set the RENEWABLE option for later */

/* processing */
set req. kdc-opti ons. RENEWABLE
req.rtinme := mn(req.till, tgt.renewtill);

Kohl & Neuman [Page 101]

RFC 1510

Kohl

endi f
if (req.
el se

endi f

Ker ber os Sept ember 1993
endi f
rtime = 0) then
rtime := infinity;
rtime :=req.rtine;

if ((req.kdc-options. RENEWABLE is set) and
(tgt.flags. RENEWABLE is set)) then

el se

endi f
if (req.

endi f
new tkt.

set new tkt.flags. RENEWABLE

new tkt.renewtill := mn(rtine,

new tkt.starttine+client.max_rlife,
new tkt.starttine+server.max_rlife,
new tkt.starttinme+max_rlife for _realm
tgt.renewtill);

new tkt.renewtill := OMT,;
/* |l eave the renewtill field out */

enc-aut hori zation-data is present) then
decrypt req.enc-authorization-data

into decrypted_aut hori zation_data

usi ng aut h_hdr. aut henti cat or. subkey;
if (decrypt_error()) then

error_out (KRB_AP_ERR BAD | NTECRI TY)
endi f

aut hori zation_data : =

req.auth_hdr.ticket.authorization_data +

new t Kkt .
new t Kkt .
new tkt.
if (real

el se

endi f

& Neuman

decrypted_aut hori zati on_dat a;

key : = session
crealm:=tgt.crealm
chame := req.auth_hdr.ticket.cnane;

mtgt is for(tgt) :=tgt.realm then
/* tgt issued by local realm?*/
new tkt.transited := tgt.transited,

/* was issued for this real mby sone other realm?*/
if (tgt.transited.tr-type not supported) then
error_out (KDC_ERR_TRTYPE_NCSUPP)
endi f
new tkt.transited
= conpress_transited(tgt.transited + tgt.realm

[Page 102]

RFC 1510 Ker ber os

Sept ember 1993

encode encrypted part of new tkt into OCTET STRI NG

if (req.kdc-options. ENCG-TKT-1 N SKEY is set) then
if (server not specified) then

server = req.second_ticket.client;

endi f
if ((req.second_ticket is not a TGI) or

(reqg.second ticket.client != server)) then

error_out (KDC _ERR PCLI CY);
endi f

new tkt.enc-part := encrypt OCTET STRI NG usi ng
usi ng etype_for_key(second-ticket. key),
second-ti cket. key;

server. key,

server. p_kvno;

el se
new_t kt.enc-part := encrypt OCTET STRI NG
usi ng etype_for_key(server.key),
endi f
resp. pvno := 5;
resp. nsg-type : = KRB_TGS_REP;
resp.crealm:= tgt.crealm
resp.cnane : = tgt.cnaneg;
resp.ticket := new tkt;
resp. key := session;
resp. nonce : = req.nonce;
resp.last-req := fetch_l ast_request _info(client);
resp.flags := new tkt.flags;
resp.authtine := new_ tkt.authting;
resp.starttinme := new_ tkt.starttime;
resp.endtime := new_tkt.endtimne;

omt resp. key-expiration;

resp. sname : = new_t kt. snane;
resp.realm:= new tkt.realm

if (new_tkt.flags. RENEWABLE) then
resp.renewtill := new tkt.renewtill;
endi f

encode body of reply into OCTET STRI NG

i f (req.padata. aut henti cator. subkey)

resp.enc-part := encrypt OCTET STRI NG usi ng use_etype,

Kohl & Neunman

[Page 103]

RFC 1510 Ker ber os Sept ember 1993

req. padat a. aut henti cat or. subkey;
el se resp.enc-part := encrypt OCTET STRI NG
usi ng use_etype, tgt.key;

send(resp);

A 7. KRB TGS REP verification
decode response into resp;

if (resp.msg-type = KRB_ERROR) then
process_error(resp);
return;

endi f

/* On error, discard the response, and zero the session key from
the response inmediately */

i f (req.padata. aut henticator. subkey)
unencrypted part of resp :=
decode of decrypt of resp.enc-part
usi ng resp.enc-part.etype and subkey;
el se unencrypted part of resp :=
decode of decrypt of resp.enc-part
using resp.enc-part.etype and tgt’'s session key;
if (common_as rep_tgs_rep_checks fail) then
destroy resp. key;
return error;
endi f

check authorization_data as necessary;
save _for_later(ticket,session,client,server,tines,flags);

A.8. Authenticator generation
body. aut henti cator-vno := authenticator vno; /* =5 */
body. cname, body.crealm:= client nane;
i f (supplying checksum) then
body. cksum : = checksum

endi f
get systemti ne;
body. cti me, body.cusec := systemti ne;

if (selecting sub-session key) then
sel ect sub-session key;
body. subkey : = sub-session key;
endi f
i f (using sequence nunbers) then
select initial sequence number;
body. seq-nunber := initial sequence;
endi f

Kohl & Neuman [Page 104]

RFC 1510 Ker ber os Sept ember 1993

A.9. KRB _AP_REQ generation
obtain ticket and session_key from cache;

packet.pvno : = protocol version; /* 5 */
packet . nsg-type : = nessage type; /* KRB_AP_REQ */

i f (desired(MJTUAL AUTHENTI CATION)) then

set packet. ap-opti ons. MUTUAL- REQUI RED;
el se

reset packet.ap-options. MUTUAL- REQUI RED;
endi f
if (using session key for ticket) then

set packet. ap- opti ons. USE- SESSI O\- KEY;

el se

reset packet.ap-options. USE- SESSI ON- KEY;
endi f
packet.ticket := ticket; /* ticket */

generate aut henticator;

encode authenticator into OCTET STRI NG

encrypt OCTET STRING i nto packet. aut henti cator
usi ng session_key;

A.10. KRB _AP_REQ verification
recei ve packet;
i f (packet.pvno !'= 5) then
ei ther process using other protocol spec
or error_out (KRB_AP_ERR BADVERSI ON) ;
endi f
i f (packet.nsg-type != KRB_AP_REQ) then
error_out (KRB_AP_ERR MSG TYPE)
endi f
if (packet.ticket.tkt_vno !=5) then
ei ther process using other protocol spec
or error_out (KRB_AP_ERR BADVERSI ON) ;
endi f
i f (packet.ap_options. USE- SESSI ON-KEY is set) then
retrieve session key fromticket-granting ticket for
packet . ticket.{snane, sreal m enc-part.etype};
el se
retrieve service key for
packet . ticket.{snane, sreal m enc-part.etype, enc-part.skvno};
endi f
if (no_key_ available) then
i f (cannot_find_specified_skvno) then
error_out (KRB_AP_ERR BADKEYVER)
el se
error_out (KRB_AP_ERR NCKEY)
endi f

Kohl & Neuman [Page 105]

RFC 1510 Ker ber os Sept ember 1993

A 11.

Kohl

endi f
decrypt packet.ticket.enc-part into decr_ticket
using retrieved key;
if (decryption_error()) then
error_out (KRB_AP_ERR BAD | NTEGRI TY)
endi f
decrypt packet.authenticator into decr_authenticator
usi ng decr _ticket. key;
if (decryption_error()) then
error_out (KRB_AP_ERR BAD | NTEGRI TY)
endi f
if (decr_authenticator.{cnane,crealnt !=
decr _ticket.{cnane, crealnt) then
error_out (KRB_AP_ERR BADMATCH)
endi f
if (decr_ticket.caddr is present) then
i f (sender_address(packet) is not in decr_ticket.caddr)
then error_out (KRB_AP_ERR BADADDR) ;
endi f
el seif (application requires addresses) then
error_out (KRB_AP_ERR BADADDR) ;
endi f
if (not in_clock _skew(decr_authenticator.ctine,
decr _aut henticator.cusec)) then
error_out (KRB_AP_ERR SKEW ;
endi f
if (repeated(decr_authenticator.{ctine, cusec,chane, crealn}))
then error_out (KRB_AP_ERR REPEAT);
endi f
save_identifier(decr_authenticator.{ctine, cusec, cnane,creal n});
get systemti ne;
if ((decr_ticket.starttinme-systemtine > CLOCK SKEW or
(decr _ticket.flags.INVALID is set)) then
/* it hasn’t yet becone valid */
error_out (KRB_AP_ERR TKT_NYV);
endi f
if (systemtinme-decr _ticket.endtine > CLOCK SKEW then
error_out (KRB_AP_ERR TKT_EXPI RED) ;
endi f
/* caller must check decr _ticket.flags for any pertinent */
/* details */
return(OK, decr_ticket, packet.ap_options. MUTUAL- REQUI RED)

KRB_AP_REP generati on

packet.pvno : = protocol version; /* 5 */
packet . nsg-type : = nessage type; /* KRB_AP_REP */
body. ctime : = packet.cti ne;

body. cusec : = packet. cusec;

& Neuman [Page 106]

& Neuman

RFC 1510 Ker ber os Sept ember 1993

if (selecting sub-session key) then
sel ect sub-session key;
body. subkey : = sub-session key;
endi f
i f (using sequence numnbers) then
select initial sequence nunber;
body. seq-nunber := initial sequence;
endi f

encode body into OCTET STRI NG

sel ect encryption type;
encrypt OCTET STRI NG i nto packet.enc-part;

KRB_AP_REP verification
recei ve packet;
i f (packet.pvno !'= 5) then
ei ther process using other protocol spec
or error_out (KRB_AP_ERR BADVERSI ON) ;
endi f
i f (packet.nsg-type != KRB_AP_REP) then
error_out (KRB_AP_ERR MSG TYPE)
endi f
cleartext := decrypt(packet.enc-part)
using ticket’'s session key;
if (decryption_error()) then
error_out (KRB_AP_ERR BAD | NTECRI TY)
endi f
if (cleartext.ctinme != authenticator.ctine) then
error_out (KRB_AP_ERR MJT FAIL);
endi f
if (cleartext.cusec != authenticator.cusec) then
error_out (KRB_AP_ERR MJUT_FAIL);
endi f
if (cleartext.subkey is present) then
save cl eartext.subkey for future use;
endi f
if (cleartext.seqg-nunber is present) then
save cl eartext.seq-nunber for future verifications;
endi f
ret ur n(AUTHENTI CATI ON_SUCCEEDED) ;

KRB_SAFE generation
col l ect user data in buffer;

/* assenbl e packet: */
packet.pvno : = protocol version; /* 5 */
packet.nsg-type : = nessage type; /* KRB SAFE */

[Page 107]

RFC 1510 Ker ber os Sept ember 1993

body. user-data : = buffer; /* DATA */
if (using timestanp) then
get systemti ne;

body. ti nest anp, body.usec := systemtine;
endi f
i f (using sequence nunbers) then
body. seq- nunber := sequence nunber;
endi f
body. s-address : = sender host addresses;
if (only one recipient) then
body. r-address : = recipient host address;
endi f
checksum cksuntype : = checksum type

comput e checksum over body;

checksum checksum : = checksum val ue; /* checksum checksum */
packet . cksum : = checksum

packet . saf e-body : = body;

A . 14. KRB _SAFE verification

recei ve packet;

if (packet.pvno != 5) then
ei ther process using other protocol spec
or error_out (KRB_AP_ERR BADVERSI ON) ;

endi f

i f (packet.nsg-type != KRB _SAFE) then
error_out (KRB_AP_ERR MSG TYPE)

endi f

i f (packet.checksum cksuntype is not both collision-proof

and keyed) then

error_out (KRB_AP_ERR | NAPP_CKSUM ;

endi f

if (safe_priv_comon_checks_ok(packet)) then
set conput ed_checksum : = checksun{ packet . body);
i f (conmputed_checksum != packet.checksum then

error_out (KRB_AP_ERR MODI FI ED) ;

endi f

return (packet, PACKET |IS GENU NE)
el se

return comon_checks_error
endi f

A.15. KRB_SAFE and KRB PRIV comobn checks
i f (packet.s-address != O S sender(packet)) then
/* S report of sender not who clains to have sent it */
error_out (KRB_AP_ERR BADADDR) ;

endi f
if ((packet.r-address is present) and
(packet.r-address != |l ocal host_address)) then

Kohl & Neuman [Page 108]

RFC 1510

Ker ber os
/* was not sent to proper place */
error_out (KRB_AP_ERR BADADDR) ;
endi f

if (((packet.tinestanp is present) and

Sept ember 1993

(not in_clock_skew(packet.tinestanp, packet.usec))) or
(packet.tinestanp is not present and tinestanp expected))

then error_out (KRB_AP_ERR SKEW ;
endi f

i f (repeated(packet.tinmestanp, packet. usec, packet. s-address))

then error_out (KRB_AP_ERR REPEAT);
endi f
if (((packet.seq-nunber is present) and
((not in_sequence(packet.seq-nunber)))) or

(packet . seqg-nunber is not present and sequence expected))

t hen error_out (KRB_AP_ERR BADORDER)
endi f
i f (packet.timestanp not present and
packet . seq- nunber not present) then
error_out (KRB_AP_ERR MODI FI ED) ;
endi f

save_identifier(packet.{tinmestanp, usec, s-address},
sender _pri nci pal (packet));

return PACKET | S OK

A.16. KRB_PRIV generation

coll ect user data in buffer;

/* assenbl e packet: */
packet.pvno := protocol version; /* 5 */
packet.nsg-type : = nessage type; /* KRB PRIV */

packet . enc-part.etype := encryption type;

body. user-data : = buffer;
if (using tinmestanp) then
get systemti ne;
body. ti nest anp, body.usec := systemtine;
endi f
i f (using sequence numnbers) then
body. seq- nunber : = sequence nunber;
endi f
body. s-address : = sender host addresses;
if (only one recipient) then
body. r-address : = recipient host address;
endi f

Kohl & Neunman

[Page 109]

RFC 1510 Ker ber os Sept ember 1993

A 17.

A. 18.

Kohl

encode body into OCTET STRI NG

sel ect encryption type;
encrypt OCTET STRI NG i nt o packet.enc-part. cipher;

KRB PRIV verification
recei ve packet;
i f (packet.pvno != 5) then
ei ther process using other protocol spec
or error_out (KRB_AP_ERR BADVERSI ON) ;
endi f
i f (packet.nsg-type != KRB PRIV) then
error_out (KRB_AP_ERR MSG TYPE);
endi f

cleartext := decrypt(packet.enc-part) using negotiated key;
if (decryption_error()) then

error_out (KRB_AP_ERR _BAD_| NTEGRI TY)
endi f

if (safe_priv_common_checks_ok(cleartext)) then
return(cl eartext.DATA, PACKET | S _GENU NE_AND UNMODI Fl ED) ;
el se
return comon_checks_error
endi f

KRB_CRED gener ati on
i nvoke KRB _TGS; /* obtain tickets to be provided to peer */

/* assenbl e packet: */
packet.pvno := protocol version; /* 5 */
packet.nsg-type : = nessage type; /* KRB CRED */

for (tickets[n] in tickets to be forwarded) do
packet.tickets[n] = tickets[n].ticket;
done

packet.enc-part.etype := encryption type;

for (ticket[n] in tickets to be forwarded) do
body.ticket-info[n].key = tickets[n].session
body.ticket-info[n].prealm= tickets[n].crealm
body.ticket-info[n].pnane = tickets[n].cnang;
body.ticket-info[n].flags = tickets[n].flags;
body.ticket-info[n].authtinme = tickets[n].authtine;
body.ticket-info[n].starttime = tickets[n].starttine;
body.ticket-info[n].endtine = tickets[n].endtine;
body.ticket-info[n].renewtill = tickets[n].renewtill;

& Neuman [Page 110]

RFC 1510 Ker ber os Sept ember 1993

body.ticket-info[n].srealm= tickets[n].srealm
body. ticket-info[n].snane tickets[n].snaneg;
body. ticket-info[n].caddr tickets[n].caddr

done

get systemtine;
body. ti nest anp, body.usec := systemtine;

i f (using nonce) then

body. nonce : = nonce;
endi f
if (using s-address) then

body. s-address : = sender host addresses;
endi f
if (limted recipients) then

body. r-address : = recipient host address;
endi f

encode body into OCTET STRI NG

sel ect encryption type;
encrypt OCTET STRI NG i nt o packet. enc-part.cipher
usi ng negotiated encryption key;

A.19. KRB _CRED verification

recei ve packet;

i f (packet.pvno !'=5) then
ei ther process using other protocol spec
or error_out (KRB_AP_ERR BADVERSI ON) ;

endi f

i f (packet.nsg-type != KRB_CRED) then
error_out (KRB_AP_ERR MSG TYPE)

endi f

cleartext := decrypt(packet.enc-part) using negotiated key;
if (decryption_error()) then
error_out (KRB_AP_ERR BAD | NTEGRI TY)
endi f
if ((packet.r-address is present or required) and
(packet.s-address != O S_sender (packet)) then
/* O S report of sender not who clains to have sent it */
error_out (KRB_AP_ERR BADADDR) ;

endi f
if ((packet.r-address is present) and
(packet.r-address != local _host_address)) then

/* was not sent to proper place */
error_out (KRB_AP_ERR BADADDR) ;

Kohl & Neuman [Page 111]

RFC 1510 Ker ber os Sept ember 1993

endi f

if (not in_clock skew(packet.tinestanp, packet.usec)) then
error_out (KRB_AP_ERR SKEW ;

endi f

i f (repeated(packet.tinmestanp, packet. usec, packet. s-address))
then error_out (KRB_AP_ERR REPEAT);

endi f
i f (packet.nonce is required or present) and
(packet.nonce ! = expected-nonce) then
error_out (KRB_AP_ERR MODI FI ED) ;
endi f

for (ticket[n] in tickets that were forwarded) do
save_for_later(ticket[n], key[n], principal[n],
server[n],tinmes[n],flags[n]);
return

A. 20. KRB_ERROR generation

/* assenbl e packet: */
packet.pvno : = protocol version; /* 5 */
packet . nsg-type : = nmessage type; /* KRB_ERROR */

get systemti ne;
packet.stine, packet.susec := systemtineg;
packet.real m packet.snanme := server nane;

if (client time available) then
packet.ctine, packet.cusec := client_tine;
endi f
packet.error-code := error code
if (client name avail able) then
packet.cnane, packet.crealm:= client name
endi f
if (error text available) then
packet.e-text := error text;
endi f
if (error data available) then
packet.e-data : = error data;
endi f

Kohl & Neuman [Page 112]

