
Network Working Group N. Borenstein
Request for Comments: 1523 Bellcore
Category: Informational September 1993

 The text/enriched MIME Content-type

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard. Distribution of this memo is
 unlimited.

Abstract

 MIME [RFC-1341, RFC-1521] defines a format and general framework for
 the representation of a wide variety of data types in Internet mail.
 This document defines one particular type of MIME data, the
 text/enriched type, a refinement of the "text/richtext" type defined
 in RFC 1341. The text/enriched MIME type is intended to facilitate
 the wider interoperation of simple enriched text across a wide
 variety of hardware and software platforms.

The Text/enriched MIME type

 In order to promote the wider interoperability of simple formatted
 text, this document defines an extremely simple subtype of the MIME
 content-type "text", the "text/enriched" subtype. This subtype was
 designed to meet the following criteria:

 1. The syntax must be extremely simple to parse, so that even
 teletype-oriented mail systems can easily strip away the
 formatting information and leave only the readable text.

 2. The syntax must be extensible to allow for new formatting
 commands that are deemed essential for some application.

 3. If the character set in use is ASCII or an 8- bit ASCII
 superset, then the raw form of the data must be readable enough
 to be largely unobjectionable in the event that it is displayed
 on the screen of the user of a non-MIME-conformant mail reader.

 4. The capabilities must be extremely limited, to ensure that
 it can represent no more than is likely to be representable by
 the user’s primary word processor. While this limits what can
 be sent, it increases the likelihood that what is sent can be
 properly displayed.

Borenstein [Page 1]

RFC 1523 A text/enriched MIME Content-type September 1993

 This document defines a new MIME content-type, "text/enriched". The
 content-type line for this type may have one optional parameter, the
 "charset" parameter, with the same values permitted for the
 "text/plain" MIME content-type.

 The syntax of "text/enriched" is very simple. It represents text in
 a single character set -- US-ASCII by default, although a different
 character set can be specified by the use of the "charset" parameter.
 (The semantics of text/enriched in non-ASCII character sets are
 discussed later in this document.) All characters represent
 themselves, with the exception of the "<" character (ASCII 60), which
 is used to mark the beginning of a formatting command. Formatting
 instructions consist of formatting commands surrounded by angle
 brackets ("<>", ASCII 60 and 62). Each formatting command may be no
 more than 60 characters in length, all in US-ASCII, restricted to the
 alphanumeric and hyphen ("-") characters. Formatting commands may be
 preceded by a solidus ("/", ASCII 47), making them negations, and
 such negations must always exist to balance the initial opening
 commands. Thus, if the formatting command "<bold>" appears at some
 point, there must later be a "</bold>" to balance it. (NOTE: The 60
 character limit on formatting commands does NOT include the "<", ">",
 or "/" characters that might be attached to such commands.)

 Formatting commands are always case-insensitive. That is, "bold" and
 "BoLd" are equivalent in effect, if not in good taste.

 Beyond tokens delimited by "<" and ">", there are two other special
 processing rules. First, a literal less-than sign ("<") can be
 represented by a sequence of two such characters, "<<". Second, line
 breaks (CRLF pairs in standard network representation) are handled
 specially. In particular, isolated CRLF pairs are translated into a
 single SPACE character. Sequences of N consecutive CRLF pairs,
 however, are translated into N-1 actual line breaks. This permits
 long lines of data to be represented in a natural- looking manner
 despite the frequency of line-wrapping in Internet mailers. When
 preparing the data for mail transport, isolated line breaks should be
 inserted wherever necessary to keep each line shorter than 80
 characters. When preparing such data for presentation to the user,
 isolated line breaks should be replaced by a single SPACE character,
 and N consecutive CRLF pairs should be presented to the user as N-1
 line breaks.

Borenstein [Page 2]

RFC 1523 A text/enriched MIME Content-type September 1993

 Thus text/enriched data that looks like this:

 This is
 a single
 line

 This is the
 next line.

 This is the
 next paragraph.

 should be displayed by a text/enriched interpreter as follows:

 This is a single line
 This is the next line.

 This is the next paragraph.

 The formatting commands, not all of which will be implemented by all
 implementations, are described in the following sections.

 Formatting Commands

 The text/enriched formatting commands all begin with <commandname>
 and end with </commandname>, affecting the formatting of the text
 between those two tokens. The commands are described here, grouped
 according to type.

 Font-Alteration Commands

 The following formatting commands are intended to alter the font in
 which text is displayed, but not to alter the indentation or
 justification state of the text:

 Bold -- causes the affected text to be in a bold font. Nested
 bold commands have the same effect as a single bold
 command.

 Italic -- causes the affected text to be in an italic font.
 Nested italic commands have the same effect as a single
 italic command.

 Fixed -- causes the affected text to be in a fixed width font.
 Nested fixed commands have the same effect as a single
 fixed command.

Borenstein [Page 3]

RFC 1523 A text/enriched MIME Content-type September 1993

 Smaller -- causes the affected text to be in a smaller font.
 It is recommended that the font size be changed by two
 points, but other amounts may be more appropriate in some
 environments. Nested smaller commands produce ever-
 smaller fonts, to the limits of the implementation’s
 capacity to reasonably display them, after which further
 smaller commands have no incremental effect.

 Bigger -- causes the affected text to be in a bigger font. It
 is recommended that the font size be changed by two
 points, but other amounts may be more appropriate in some
 environments. Nested bigger commands produce ever-bigger
 fonts, to the limits of the implementation’s capacity to
 reasonably display them, after which further bigger
 commands have no incremental effect.

 Underline -- causes the affected text to be underlined. Nested
 underline commands have the same effect as a single
 underline command.

 While the "bigger" and "smaller" operators are effectively inverses,
 it is not recommended, for example, that "<smaller>" be used to end
 the effect of "<bigger>". This is properly done with "</bigger>".

 Justification Commands

 Initially, text/enriched text is intended to be displayed fully-
 justified with appropriate fill, kerning, and letter-tracking as
 suits the capabilities of the receiving user agent software. Actual
 line width is left to the discretion of the receiver, which is
 expected to fold lines intelligently (preferring soft line breaks) to
 the best of its ability.

 The following commands alter that state. Each of these commands
 force a line break before and after the formatting command if there
 is not otherwise a line break. For example, if one of these commands
 occurs anywhere other than the beginning of a line of text as
 presented, a new line is begun.

 Center -- causes the affected text to be centered.

 FlushLeft -- causes the affected text to be left-justified with a
 ragged right margin.

 FlushRight -- causes the affected text to be right-justified with
 a ragged left margin.

Borenstein [Page 4]

RFC 1523 A text/enriched MIME Content-type September 1993

 The center, flushleft, and flushright commands are mutually
 exclusive, and, when nested, the inner command takes precedence.

 Note that for some non-ASCII character sets, full justification may
 be inappropriate. In these cases, a user agent may choose not to
 justify such data.

 Indentation Commands

 Initially, text/enriched text is displayed using the maximum
 available margins. Two formatting commands may be used to affect the
 margins.

 Indent -- causes the running left margin to be moved to the
 right. The recommended indentation change is the width of
 four characters, but this may differ among
 implementations.

 IndentRight -- causes the running right margin to be moved to
 the left. The recommended indentation change is the width
 of four characters, but this may differ among
 implementations.

 A line break is NOT forced by a change of the margin, to permit the
 description of "hanging" text. Thus for example the following text:

 Now <indent> is the time for all good horses to come to the aid of
 their stable, assuming that </indent> any stable is really stable.

 would be displayed in a 40-character-wide window as follows:

 Now is the time for all good horses to
 come to the aid of their stable,
 assuming that any stable is
 really stable.

 Miscellaneous Commands

 Excerpt -- causes the affected text to be interpreted as a
 textual excerpt from another source, probably a message
 being responded to. Typically this will be displayed
 using indentation and an alternate font, or by indenting
 lines and preceding them with "> ", but such decisions are
 up to the implementation. (Note that this is the only
 truly declarative markup construct in text/enriched, and
 as such doesn’t fit very well with the other facilities,
 but it describes a type of markup that is very commonly
 used in email and has no procedural analogue.) Note that

Borenstein [Page 5]

RFC 1523 A text/enriched MIME Content-type September 1993

 as with the justification commands, the excerpt command
 implicitly begins and ends with a line break if one is not
 already there.

 Verbatim -- causes the affected text to be displayed without
 filling, justification, any interpretation of embedded
 formatting commands, or the usual special rules for CRLF
 handling. Note, however, that the end token </verbatim>
 must still be recognized.

 Nofill -- causes the affected text to be displayed without
 filling or justification, and hence without any special
 handling of CRLFs, but with all remaining text/enriched
 features continuing to apply.

 Param -- Marks the affected text as command parameters, to be
 interpreted or ignored by the text/enriched interpreter,
 but NOT to be shown to the reader.

 Note that while the absence of a quoting mechanism makes it slightly
 challenging to include the literal string "<verbatim>" inside of a
 verbatim environment, it can be done by breaking up the verbatim
 segment into two verbatim segments as follows:

 <verbatim>
 ...slightly challenging to include the literal string
 "</</verbatim><verbatim>verbatim>" inside of a verbatim
 environment...
 </verbatim>

 Note that the above example demonstrates that it is not desirable for
 an implementation to break lines between tokens. In particular,
 there should not be a line break inserted between the "</verbatim>"
 and the "<verbatim>" that follows it.

 Balancing and Nesting of Formatting Commands

 Pairs of formatting commands must be properly balanced and nested.
 Thus, a proper way to describe text in bold italics is:

 <bold><italic>the-text</italic></bold>

 or, alternately,

 <italic><bold>the-text</bold></italic>

 but, in particular, the following is illegal
 text/enriched:

Borenstein [Page 6]

RFC 1523 A text/enriched MIME Content-type September 1993

 <bold><italic>the-text</bold></italic>

 The nesting requirement for formatting commands imposes a slightly
 higher burden upon the composers of text/enriched bodies, but
 potentially simplifies text/enriched displayers by allowing them to
 be stack-based. The main goal of text/enriched is to be simple
 enough to make multifont, formatted email widely readable, so that
 those with the capability of sending it will be able to do so with
 confidence. Thus slightly increased complexity in the composing
 software was deemed a reasonable tradeoff for simplified reading
 software. Nonetheless, implementors of text/enriched readers are
 encouraged to follow the general Internet guidelines of being
 conservative in what you send and liberal in what you accept. Those
 implementations that can do so are encouraged to deal reasonably with
 improperly nested text/enriched data.

 Unrecognized formatting commands

 Implementations must regard any unrecognized formatting command as
 "no-op" commands, that is, as commands having no effect, thus
 facilitating future extensions to "text/enriched". Private
 extensions may be defined using formatting commands that begin with
 "X-", by analogy to Internet mail header field names.

 In order to formally define extended commands, a new Internet
 document should be published.

 "White Space" in text/enriched Data

 No special behavior is required for the SPACE or TAB (HT) character.
 It is recommended, however, that, at least when fixed-width fonts are
 in use, the common semantics of the TAB (HT) character should be
 observed, namely that it moves to the next column position that is a
 multiple of 8. (In other words, if a TAB (HT) occurs in column n,
 where the leftmost column is column 0, then that TAB (HT) should be
 replaced by 8-(n mod 8) SPACE characters.) It should also be noted
 that some mail gateways are notorious for losing (or, less commonly,
 adding) white space at the end of lines, so reliance on SPACE or TAB
 characters at the end of a line is not recommended.

Initial State of a text/enriched interpreter

 Text/enriched is assumed to begin with filled, fully justified text
 in a variable-width font in a normal typeface and a size that is
 average for the current display and user. The left and right margins
 are assumed to be maximal, that is, at the leftmost and rightmost
 acceptable positions.

Borenstein [Page 7]

RFC 1523 A text/enriched MIME Content-type September 1993

 Non-ASCII character sets

 If the character set specified by the charset parameter on the
 Content-type line is anything other than "US-ASCII", this means that
 the text being described by text/enriched formatting commands is in a
 non-ASCII character set. However, the commands themselves are still
 the same ASCII commands that are defined in this document. This
 creates an ambiguity only with reference to the "<" character, the
 octet with numeric value 60. In single byte character sets, such as
 the ISO-8859 family, this is not a problem; the octet 60 can be
 quoted by including it twice, just as for ASCII. The problem is more
 complicated, however, in the case of multi-byte character sets, where
 the octet 60 might appear at any point in the byte sequence for any
 of several characters.

 In practice, however, most multibyte character sets address this
 problem internally. For example, the ISO-2022 family of character
 sets can switch back into ASCII at any moment. Therefore it is
 specified that, before text/enriched formatting commands, the
 prevailing character set should be "switched back" into ASCII, and
 that only those characters which would be interpreted as "<" in plain
 text should be interpreted as token delimiters in text/enriched.

 The question of what to do for hypothetical future character sets
 that do NOT subsume ASCII is not addressed in this memo.

 Minimal text/enriched conformance

 A minimal text/enriched implementation is one that simply recognizes
 the beginning and ending of "verbatim" environments and, outside of
 them, converts "<<" to "<", removes everything between a <param>
 command and the next balancing </param> command, removes all other
 formatting commands (all text enclosed in angle brackets), converts
 any series of n CRLFs to n-1 CRLFs, and converts any lone CRLF pairs
 to SPACE.

 Notes for Implementors

 It is recognized that implementors of future mail systems will want
 rich text functionality far beyond that currently defined for
 text/enriched. The intent of text/enriched is to provide a common
 format for expressing that functionality in a form in which much of
 it, at least, will be understood by interoperating software. Thus,
 in particular, software with a richer notion of formatted text than
 text/enriched can still use text/enriched as its basic
 representation, but can extend it with new formatting commands and by
 hiding information specific to that software system in text/enriched
 <param> constructs. As such systems evolve, it is expected that the

Borenstein [Page 8]

RFC 1523 A text/enriched MIME Content-type September 1993

 definition of text/enriched will be further refined by future
 published specifications, but text/enriched as defined here provides
 a platform on which evolutionary refinements can be based.

 An expected common way that sophisticated mail programs will generate
 text/enriched data is as part of a multipart/alternative construct.
 For example, a mail agent that can generate enriched mail in ODA
 format can generate that mail in a more widely interoperable form by
 generating both text/enriched and ODA versions of the same data,
 e.g.:

 Content-type: multipart/alternative; boundary=foo

 --foo
 Content-type: text/enriched

 [text/enriched version of data]
 --foo
 Content-type: application/oda

 [ODA version of data]
 --foo--

 If such a message is read using a MIME-conformant mail reader that
 understands ODA, the ODA version will be displayed; otherwise, the
 text/enriched version will be shown.

 In some environments, it might be impossible to combine certain
 text/enriched formatting commands, whereas in others they might be
 combined easily. For example, the combination of <bold> and <italic>
 might produce bold italics on systems that support such fonts, but
 there exist systems that can make text bold or italicized, but not
 both. In such cases, the most recently issued (innermost) recognized
 formatting command should be preferred.

 One of the major goals in the design of text/enriched was to make it
 so simple that even text-only mailers will implement enriched-to-
 plain-text translators, thus increasing the likelihood that enriched
 text will become "safe" to use very widely. To demonstrate this
 simplicity, an extremely simple C program that converts text/enriched
 input into plain text output is included in Appendix A.

 Extensions to text/enriched

 It is expected that various mail system authors will desire
 extensions to text/enriched. The simple syntax of text/enriched, and
 the specification that unrecognized formatting commands should simply
 be ignored, are intend to promote such extensions.

Borenstein [Page 9]

RFC 1523 A text/enriched MIME Content-type September 1993

 Beyond simply defining new formatting commands, however, it may
 sometimes be necessary to define formatting commands that can take
 arguments. This is the intended use of the <param> construct. In
 particular, software that wished to extend text/enriched to include
 colored text might define an "x-color" environment which always began
 with a color name parameter, to indicate the desired color for the
 affected text.

 An Example

 Putting all this together, the following "text/enriched" body
 fragment:

 From: Nathaniel Borenstein <nsb@bellcore.com>
 To: Ned Freed <ned@innosoft.com>
 Content-type: text/enriched

 <bold>Now</bold> is the time for
 <italic>all</italic> good men
 <smaller>(and <<women>)</smaller> to
 <ignoreme>come</ignoreme>

 to the aid of their

 <x-color><param>red</param>beloved</x-color>country.
 <verbatim>
 By the way, I think that <smaller>
 should
 REALLY be called
 <tinier>
 and that I am always right.
 -- the end
 </verbatim>

 represents the following formatted text (which will, no doubt, look
 somewhat cryptic in the text-only version of this document):

 Now is the time for all good men (and <women>) to
 come
 to the aid of their

 beloved country.
 By the way, I think that <smaller>
 should
 REALLY be called
 <tinier>
 and that I am always right.
 -- the end

Borenstein [Page 10]

RFC 1523 A text/enriched MIME Content-type September 1993

 where the word "beloved" would be in red on a color display if the
 receiving software implemented the "x-color" extension.

Security Considerations

 Security issues are not discussed in this memo, as the mechanism
 raises no security issues.

Author’s Address

 For more information, the author of this document may be contacted
 via Internet mail:

 Nathaniel S. Borenstein
 MRE 2D-296, Bellcore
 445 South St.
 Morristown, NJ 07962-1910

 Phone: +1 201 829 4270
 Fax: +1 201 829 5963
 EMail: nsb@bellcore.com

Acknowledgements

 This document reflects the input of many contributors, readers, and
 implementors of the original MIME specification, RFC 1341. This memo
 also reflects particular contributions and comments from Terry
 Crowley and Rhys Weatherley.

Borenstein [Page 11]

RFC 1523 A text/enriched MIME Content-type September 1993

Appendix A -- A Simple enriched-to-plain Translator in C

 One of the major goals in the design of the text/enriched subtype of
 the text Content-Type is to make formatted text so simple that even
 text-only mailers will implement enriched-to-plain-text translators,
 thus increasing the likelihood that multifont text will become "safe"
 to use very widely. To demonstrate this simplicity, what follows is
 a simple C program that converts text/enriched input into plain text
 output. Note that the local newline convention (the single character
 represented by "\n") is assumed by this program, but that special
 CRLF handling might be necessary on some systems.

 #include <stdio.h>
 #include <ctype.h>

 main() {
 int c, i, paramct=0, newlinect=0, verbatim=0,
 nofill=0;
 char token[62], *p;

 while ((c=getc(stdin)) != EOF) {
 if (c == ’<’) {
 if (verbatim != 0) {
 for (i=0, p=token; (*p++ = getc(stdin))
 != EOF
 && !lc2strncmp(token, "/verbatim>",
 i+1) && i<9; i++) {}
 if (i==9) {
 verbatim = 0;
 } else {
 *p = ’\0’;
 putc(’<’, stdout);
 fputs(token, stdout);
 }
 continue;
 } else {
 newlinect=0;
 c = getc(stdin);
 if (c == ’<’) {
 if (paramct <= 0) putc(c, stdout);
 } else {
 ungetc(c, stdin);
 for (i=0, p=token; (c=getc(stdin))
 != EOF && c != ’>’; i++) {
 if (i < sizeof(token)-1) *p++ =
 isupper(c) ? tolower(c) : c;
 }

Borenstein [Page 12]

RFC 1523 A text/enriched MIME Content-type September 1993

 *p = ’\0’;
 if (c == EOF) break;
 if (strcmp(token, "param") == 0)
 paramct++;
 else if (strcmp(token, "verbatim")
 == 0)
 verbatim = 1;
 else if (strcmp(token, "nofill") ==
 0)
 nofill++;
 else if (strcmp(token, "/param") ==
 0)
 paramct--;
 else if (strcmp(token, "/nofill")
 == 0)

 nofill--;
 }
 }
 } else {
 if (paramct > 0)
 ; /* ignore params */
 else if (c == ’\n’ && verbatim == 0 &&
 nofill <= 0)
 if (++newlinect > 1) {
 putc(c, stdout);
 } else {
 putc(’ ’, stdout);
 }
 else {
 newlinect = 0;
 putc(c, stdout);
 }
 }
 }
 /* The following line is only needed with line-
 buffering */
 putc(’\n’, stdout);
 exit(0);
 }

 lc2strncmp(s1, s2, len)
 char *s1, *s2;
 int len;
 {
 if (!s1 || !s2) return (-1);
 while (*s1 && *s2 && len > 0) {
 if (*s1 != *s2 && (tolower(*s1) != *s2)) return(-

Borenstein [Page 13]

RFC 1523 A text/enriched MIME Content-type September 1993

 1);
 ++s1; ++s2; --len;
 }
 if (len <= 0) return(0);
 return((*s1 == *s2) ? 0 : -1);
 }

 It should be noted that one can do considerably better than this in
 displaying text/enriched data on a dumb terminal. In particular, one
 can replace font information such as "bold" with textual emphasis
 (like *this* or _T_H_I_S_). One can also properly handle the
 text/enriched formatting commands regarding indentation,
 justification, and others. However, the above program is all that is
 necessary in order to present text/enriched on a dumb terminal
 without showing the user any formatting artifacts.

Appendix B -- Differences from RFC 1341 text/richtext

 Text/enriched is a clarification, simplification, and refinement of
 the type defined as text/richtext in RFC 1341. For the benefit of
 those who are already familiar with text/richtext, or for those who
 want to exploit the similarities to be able to display text/richtext
 data with their text/enriched software, the differences between the
 two are summarized here. Note, however, that text/enriched is
 intended to make text/richtext obsolete, so it is not recommended
 that new software generate text/richtext.

 0. The name "richtext" was changed to "enriched", both to
 differentiate the two versions and because "richtext" created
 widespread confusion with Microsoft’s Rich Text Format (RTF).

 1. Clarifications. Many things were ambiguous or unspecified in the
 text/richtext definition, particularly the initial state and the
 semantics of richtext with multibyte character sets. However, such
 differences are OPERATIONALLY irrelevant, since the clarifications
 offered in this document are at least reasonable interpretations of
 the text/richtext specification.

 2. Newline semantics have changed. In text/richtext, all CRLFs were
 mapped to spaces, and line breaks were indicated by "<nl>". This has
 been replaced by the "n-1" rule for CRLFs.

 3. The representation of a literal "<" character was "<lt>" in
 text/richtext, but is "<<" in text/enriched.

 4. The "verbatim" and "nofill" commands did not exist in
 text/richtext.

Borenstein [Page 14]

RFC 1523 A text/enriched MIME Content-type September 1993

 5. The "param" command did not exist in text/richtext.

 6. The following commands from text/richtext have been REMOVED from
 text/enriched: <COMMENT>, <OUTDENT>, <OUTDENTRIGHT>, <SAMEPAGE>,
 <SUBSCRIPT>, <SUPERSCRIPT>, <HEADING>, <FOOTING>, <ISO-8859-[1-9]>,
 <US-ASCII>, <PARAGRAPH>, <SIGNATURE>, <NO-OP>, <LT>, <NL>, and <NP>.

 7. All claims of SGML compatibility have been dropped. However,
 with the possible exceptions of the new semantics for CRLF and "<<"
 can be implemented, text/enriched should be no less SGML-friendly
 than text/richtext was.

 8. In text/richtext, there were three commands (<NL>, <NP>, and
 <LT>) that did not use balanced closing delimiters. Since all of
 these have been eliminated, there are NO exceptions to the
 nesting/balancing rules in text/enriched.

 9. The limit on the size of formatting tokens has been increased
 from 40 to 60 characters.

 References

 [RFC-1341] Borenstein, N., and N. Freed, "MIME (Multipurpose Internet
 Mail Extensions): Mechanisms for Specifying and Describing the Format
 of Internet Message Bodies", RFC 1341, Bellcore, Innosoft, June 1992.

 [RFC-1521] Borenstein, N., and N. Freed, "MIME (Multipurpose Internet
 Mail Extensions) Part One: Mechanisms for Specifying and Describing
 the Format of Internet Message Bodies", RFC 1521, September 1993.

Borenstein [Page 15]

