Net wor k Wor ki ng Group
Request for Comments: 166

NI C 6780

DATA

Ander son,

u.

Bob Ander son
Rand

Vint Cerf
UCLA

Eric Harslem
John Haef ner
Rand

Ji m Madden
of Illinois
Bob Metcal fe
MT

Ari e Shoshani

SDC
JimWite
UCSB

Davi d Wod
Mtre

25 May 1971

RECONFI GURATI ON SERVI CE -- AN | MPLEMENTATI ON SPECI FI CATI ON

CONTENTS

Purpose of this RFC,
Motivation

OVERVI EW OF THE DATA RECONFI GURATI ON SERVI CE . ..

El ements of the Data Reconfiguration SERVICE ...
Conceptual Network Connections
Conception Protocols and Message Formats
Exanpl e Connection Configurations

THE FORM MACHI NE e

Input/Qutput Streans and Forms
Form Machine BNF Syntax
Al ternate Specification of Form Machi ne Syntax .
FOrms ...

Term Format 1
Term Format 2
TermFormat 3 e
Term Format 4

et al.

[Page 1]

RFC 166 Dat a Reconfiguration Service May 1971

The Application of a Term.................... 14
Restrictions and Interpretations of Term
Functions 15
Termand Rule Sequencing 16
V. EXAMPLES . .. 17
Remar ks 17
Field Insertion 17
Deletion 17
Variable Length Records 18
String Length Conmputation 18
Transposi tion 18
Character Packing and Unpacking 18
. | NTRODUCTI ON

PURPCSE OF THI S RFC

The Purpose of this RFC is to specify the Data Reconfiguration
Service (DRS.)

The DRS experinent involves a software nmechanismto refornmat Network
data streans. The nechani sm can be adapted to numerous Network
application progranms. W hope that the result of the experinment wll
lead to a future standard service that enbodies the principles
described in this RFC

MOT1 VATI ON

Application prograns require specific data I/O formats yet the
formats are different fromprogramto program W take the position
that the Network should adapt to the individual programrequirenents
rat her than changi ng each programto conply with a standard. This
position doesn't preclude the use of standards that describe the
formats of regular nessage contents; it is nerely an interpretation
of a standard as being a desirable node of operation but not a
necessary one.

In addition to differing programrequirenents, a fornat mismatch
probl em occurs where users wish to enploy many different kinds of
consoles to attach to a single service program It is desirable to
have the Network adapt to individual consol e configurations rather
than requiring uni que software packages for each consol e
transformation.

Ander son, et al. [Page 2]

RFC 166 Dat a Reconfiguration Service May 1971

One approach to providing adaptation is for those sites with
substantial conputing power to offer a data reconfiguration service
this docunent is a specification of such a service

The envi si oned nodus operandi of the service is that an applications
programer defines forns_ that describe data reconfigurations. The
service stores the forns by nane. At a later tine, a user (perhaps a
non- programer) enploys the service to acconplish a particul ar
transformati on of a Network data stream sinply by calling the form
by nane.

We have attenpted to provide a notation tailored to sone specifically
needed i nstances of data reformatting while keeping the notation and
its underlying inplenentation within sone utility range that is
bounded on the | ower end by a notation expressive enough to make the
experinental service useful, and that is bounded on the upper end by
a notation short of a general purpose programm ng | anguage.

1. OVERVI EW OF THE DATA RECONFI GURATI ON SERVI CE
ELEMENTS OF THE DATA RECONFI GURATI ON SERVI CE

An i npl enentation of the Data Reconfiguration Service (DRS) includes
nodul es for connection protocols, a handler of sone requests that can
be nade of the service, a conpiler and/or interpreter (called the
Form Machine) to act on those requests, and a file storage nodul e for
saving and retrieving definitions of data reconfigurations (forns).

This section describes connection protocols and requests. The next
section covers the Form Machi ne | anguage in sone detail. File
storage is not described in this document because it is transparent
to the use of the service an its inplenentation is different at each
DRS host.

CONCEPTUAL NETWORK CONNECTI ONS

There are three conceptual Network connections to the DRS, see Fig.
1

1) The control connection (CC) is between an originating user
and the DRS. Forns specifying data reconfigurations are
defined over this connection. The user indicates (once)
forns to be applied to data passing over the two
connections descri bed bel ow

2) The user connection (UC) is between a user process and the
DRS.

Ander son, et al. [Page 3]

RFC 166 Dat a Reconfiguration Service May 1971
3) The server connection (SC) is between the DRS and the
serving process.

Since the goal is to adapt the Network to user and server processes,
a mninum of requirenments are inmposed on the UC and SC

. + Foomonn + Fommemana +
| ORI G NATING CcC | DRS | SC | SERVER |
| USER [-=--cmmemeeme- | [--=------- | PROCESS
Fomm e e e o - + N [+ N f S +
| / |
| ucd <----- \
| / \
| Fommee - + \
TELNET --------- + | USER | +-- Sinplex or Duplex
Pr ot ocol | PROCESS | Connecti ons
Connecti on R +

Figure 1. DRS Network Connections

CONNECTI ON PROTOCOLS AND MESSAGE FORMATS

Over a control connection the dialog is directly between an
originating user and the DRS. Here the user is defining forns or
assigning predefined forms to connections for reformatting.

The user connects to the DRS via the standard initial connection
protocol (1CP). Rather than going through a | ogger, the user calls
on a particular socket on which the DRS alway |istens. (Experinental
socket nunbers will be published later.) DRS switches the user to
anot her socket pair.

Messages sent over a control connection are of the types and formats
specified for TELNET. (The data type code should specify ASCII --
the default.) Thus, a user at a terninal should be able to connect
to a DRS via his local TELNET, for exanple, as shown in Fig. 2.

Fommm - + CC +----mm-- +
Fomm e - | TELNET |[------- | DRS |
| Fomm e e o + Fomm e e o +
Fommmmmeeaaaaaaaaa e +
USER
| (TERM NAL OR PROGRAM |
e +

Figure 2. A TELNET Connection to DRS

Ander son, et al. [Page 4]

RFC 166

Dat a Reconfiguration Service May 1971

When a user connects to DRS he supplies a six-character user ID (U D)
as a qualifier to guarantee the uni queness of his formnanmes. He

will initially have the follow ng conmands:

1. DEFFORM (form

2. ENDFORM (form
These two commands define a form the text of which is
chronol ogically entered between them The formis stored
in the DRS local file system

3. PURGE (form
The naned form as qualified by the current U D, is purged
fromthe DRS file system

4. LI STNAMES (Ul D)

The unqualified names of all forns assigned to U D are
ret ur ned.

5. LISTFORM (form
The source text of a named formis returned.

6. DUPLEXCONNECT (user site, user receive socket, user nethod,
server site, server receive socket, server nethod, user-
to-server form name, server-to-user form nane)

A dupl ex connection is nade between two processes using the
recei ve sockets and the sockets one greater. Method is
defined below. The forns define the transformations on

t hese connecti ons.

7. S| MPLEXCONNECT (user site, user socket, user method, server
site, server socket, server nethod, form
A sinpl ex connection is made between the two sockets as
speci fied by method.

8. ABORT (site, receive socket)

The reconfiguration of data is term nated by cl osing both
the UC and SC specified in part in the conmmand.

Ei ther one, both, or neither of the two parties specified in 6 or 7
may be at the same host as the party issuing the request. Sites and
sockets specify user and server for the connection. Method indicates

Ander son,

et al. [Page 5]

RFC 166 Dat a Reconfiguration Service May 1971

the way in which the connection is established.
The following rules apply to these conmands:

1) Commands may be abbreviated to the m ni mum nunber of
characters to identify them uniquely.

2) Al conmmands should be at the start of a line.

3) Paraneters are enclosed in parentheses and separated by
conmas.

4) | nbedded bl anks are ignored.

5) The paraneters are:

f orm nane 1-6 characters
u D 1-6 characters
Site 1-2 characters specifying
t he hexadeci mal host nunber
Socket 1-8 characters specifying the
hexadeci nal socket nunber
Met hod A single character

6) Method has the follow ng val ues:

C The site/socket is already connected
to the DRS as a dummy control connection
(should not be the real control connection).
I Connect via the standard | CP (does not
apply to SI MPLEXCONNECT) .
D Connect directly via STR RTS.

The DRS will make at |east the follow ng mninal
responses to the user:

1) A positive or negative acknow edgenent after
each line (CR/LF)
2) If aformfails or term nates
TERM NATE, ASCI| Host # as hex, ASCI| Socket # as hex,
ASCI1 Return Code as deci mal
thus identifying at |east one end of the connection

Ander son, et al. [Page 6]

RFC 166 Dat a Reconfiguration Service May 1971

EXAMPLE CONNECTI ON CONFI GURATI ONS

There are basically two nodes of DRS operation: 1) the user wi shes to
establish a DRS UC/ SC connection(s) between the prograns and 2) the
user wants to establish the sanme connection(s) where he (his
termnal) is at the end of the UC or the SC. The latter case is
appropriate when the user wishes to interact fromhis ternminal with
the serving process (e.g., a |logger).

In the first case (Fig. 1, where the originating user is either a
term nal or a program the user issues the appropriate CONNECT
command. The UC/ SC can be sinpl ex or dupl ex.

The second case has two possible configurations, shown in Figs. 3 and

Figure 3. Use of Dumy Control Connection

e +
S + /] USER | CC 4----- +
| |---/ | SIDE |--=----- SC 4----+
| USER PO + UC | DRS |-------- | SP |
| |-=-\ | SERVING |-------- | | oot
tomoo-- + \| SIDE | +ooo-- +

Fome e +

Figure 4. Use of Server TELNET

In Fig. 3 the user instructs his TELNET to nake two dupl ex
connections to DRS. One is used for control information (the CC and
the other is a dummy. Wen he issues the CONNECT he references the
dummy dupl ex connection (UC) using the "already connected" option

In Fig. 4 the user has his TELNET (user side) call the DRS. Wen he
i ssues the CONNECT the DRS calls the TELNET (server side) which
accepts the call on behalf of the console. This distinction is known
only to the user since to the DRS the configuration Fig. 4 appears
identical to that in Fig. 1. Two points shoul d be noted:

1) TELNET protocol is needed only to define fornms and direct
connections. It is not required for the using and serving

Ander son, et al. [Page 7]

RFC 166 Dat a Reconfiguration Service May 1971

processes.
2) The using and serving processes need only a m ni mum of
nmodi fication for Network use, i.e., an NCP interface.

1. THE FORM MACH NE
| NPUT/ QUTPUT STREAMS AND FORMS

This section describes the syntax and semantics of fornms that specify
the data reconfigurations. The Form Machi ne gets an input stream
reformats the input stream according to a form describing the
reconfiguration, and emits the refornmatted data as an output stream

In reading this section it will be helpful to envision the
application of a formto the data streamas depicted in Fig. 5. An
i nput stream pointer identifies the position of data (in the input
stream) that is being analyzed at any given tinme by a part of the
form Likewi se, an output stream pointer |ocates data being enitted
in the output stream

AYA AYA
A || FORM [
I I TP PP L PP o
o o ssesiiioiosoos -+ .
| | | CURRENT PART OF | I
INPUT | |<= CURRENT < =ccommmmcoomanan- > CURRENT => | | OUTPUT
STREAM| | PONTER | FORMBEING APPLIED | PONTER | | STREAM
| SNECEEETRFRFEEERREE -+ |
R |
[TP TP PEPE RS |
[TP TP PEPEPEPE |
VAV VAV

Figure 5. Application of Formto Data Streans

Ander son, et al. [Page 8]

RFC 166 Dat a Reconfiguration Service May 1971
FORM MACHI NE BNF SYNTAX
form = rule | rule form
rule = label inputstream outputstream;
| abel = |INTEGER | <null >
i nput stream = terns | <null>
terns = term| ternms , term
out put st ream = terns | <null>
term = identifier | identifier descriptor
descriptor | comparator
identifier = an al pha character followed by 0 to 3
al phanuneri cs
descri ptor = (replicationexpression , datatype
val ueexpressi on , |engthexpression control)
conpar at or = (value connective value control)
(identifier *<=* control)
replicationexpression ::= # | arithmeticexpression | <null>
dat at ype = B|] O| X| E| A

val ueexpressi on

| engt hexpr essi on

connective

val ue

arithmeti cexpression ::=

primary

oper at or

literal

Ander son, et al

;.= value | <null>
= arithmeti cexpression | <null>
.LE. | .LT. | .GE. | .GI. | .EQ | .NE
literal | arithneticexpression
primary | primry operator
arithmeti cexpression
identifier | L(identifier) | V(identifier)
| NTEGER
L I R

literaltype "string"

[Page 9]

RFC 166 Dat a Reconfiguration Service May 1971

literal type = B|] O X| E| A
string ::= fromO to 256 characters
control = 1 options | <null>
options .= S(where) | F(where) | U(where) |
S(where) , F(where) |
F(where) , S(where)
wher e ::= arithneticexpression | R(arithneticexpression)

ALTERNATE SPECI FI CATI ON OF FORM MACHI NE SYNTAX

infinity
form = {rule}
1
1 1 1
rule ::= {I NTEGER} {terns} {:terns} ;
0 0 0
infinity
terns i= term{,ternm
0
1
term c:= identifier | {identifier} descri ptor
0
| conparat or
1
descri ptor ;.= ({arithneticexpression} , datatype
0
1 1 1
{value} , {lengthexpression} {:options}
0 0 0
1
conpar at or ::= (value connective value {:options})
0
1
(identifier .<=. value {:options})
0
connective = L.JLE. | .LT. | .GE | .GI. | .EQ | .NE

| engt hexpr essi on # | arithneticexpression
dat at ype = B| O| X| E| A

val ue ::= literal | arithneticexpression

Ander son, et al. [Page 10]

RFC 166 Dat a Reconfiguration Service May 1971

infinity
arithmeti cexpression = primary {operator prinmary}
0
oper at or M e
primary ::= identifier | L(identifier)
V(identifier) | INTEGER
256
literal c:= literaltype "{CHARACTER} "
0
literal type = B|] O] X| A| E
1
options .= S(where) {,F(where)} |
0
1
F(where) {,S(where)} | U(where)
0
wher e ;= arithmeticexpression
R(arithmeti cexpression)
3
identifier ::= ALPHABETI C {ALPHAMERI C}
0

FORMS
A formis an ordered set of rules.
form::= rule | rule form

The current rule is applied to the current position of the input
stream If the (input streampart of a) rule fails to correctly
describe the contents of the current input then another rule is nade
current and applied to the current position of the input stream The
next rule to be made current is either explicitly specified by the
current termin the current rule or it is the next sequential rule by
default. Flow of control is nmore fully described under TERM AND RULE
SEQUENCI NG

If the (input streampart of a) rule succeeds in correctly describing
the current input stream then some data may be enmitted at the
current position in the output streamaccording to the rule. The

i nput and output stream pointers are advanced over the described and
emtted data, respectively, and the next rule is applied to the now
current position of the input stream

Application of the formis term nated when an explicit return
(R(arithmeticexpression)) is encountered in a rule. The user and

Ander son, et al. [Page 11]

RFC 166 Dat a Reconfiguration Service May 1971

server connections are closed and the return code
(arithneticexpression) is sent to the originating user.

RULES

Arule is a replacenent, conparison, and/or an assi gnnent operation
of the form shown bel ow

rule ::= label inputstream outputstream

A label is the name of a rule and it exists so that the rule may be
referenced el sewhere in the formfor explicit rule transfer of
control. Labels are of the form bel ow.

label ::= INTEGER | <null>

The optional integer |labels are in the range 0 >= | NTEGER >= 9999.
The rul es need not be | abeled in ascendi ng nunerical order

TERVS

The i nputstream (describing the input streamto be matched) and the
out put stream (describing data to be emtted in the output stream
consi st of zero or nore ternms and are of the form shown bel ow.

i nput stream
out put st ream
terns

terms | <null>
cterns | <null>
term| terms , term

Terns are of one of four formats as indi cated bel ow.

term::= identifier | identifier descriptor
descriptor | conparator

Term Format 1
The first termformat is shown bel ow
identifier
The identifier is a synbolic reference to a previously identified
term(termformat 2) in the form It takes on the sane attributes
(value, length, type) as the termby that nanme. Termformat 1 is

normally used to enit data in the output stream

Identifiers are formed by an al pha character followed by 0 to 3
al phanuneric characters

Ander son, et al. [Page 12]

RFC 166 Dat a Reconfiguration Service May 1971

Term Format 2
The second termformat is shown bel ow.
identifier descriptor

Termformat 2 is generally used as an input streamtermbut can be
used as an output streamterm

A descriptor is defined as shown bel ow

descriptor ::= (replicationexpression, datatype,
val ueexpressi on, | engthexpression
control)

The identifier is the synbolic name of the termin the usua
progranmm ng | anguage sense. It takes on the type, |length, value, and
replication attributes of the termand it nmay be referenced el sewhere
in the form

The replication expression, if specified, causes the unit val ue of
the termto be generated the nunmber of tinmes indicated by the val ue
of the replication expression. The unit value of the term (quantity
to be replicated) is determined fromthe data type, val ue expression
and | ength expression attributes. The data type defines the kind of
data being specified. The value expression specifies a nonminal val ue
that is augnented by the other termattributes. The length
expression determnes the unit length of the term (See the IBM SRL
Form C28-6514 for a simlar interpretation of the pseudo instruction
defined constant, after which the descriptor was nodel ed.)

The replication expression is defined bel ow

replicationexpression ::=# | arithmeticexpression | <null>
arithmeticexpression ::= primary | primary operator
arithneti cexpression
operator ::=+| - | * | [/
primary ::=identifier | L(identifier) | V(identifier)
| NTEGER

The replication expression is a repeat function applied to the
conbi ned data type value, and |l ength expressions. It expresses the
nunber of tines that the nonminal value is to be repeated.

The ternminal synbol # means an arbitrary replication factor. |t nust

be explicitly termnated by a match or non-match to the input stream
This termination may result fromthe sane or the followng term

Ander son, et al. [Page 13]

RFC 166 Dat a Reconfiguration Service May 1971

A null replication expression has the value of one. Arithnetic
expressions are evaluated fromleft-to-right with no precedence.

The L(identifier) is a length operator that generates a 32-bit binary
i nteger corresponding to the length of the termnamed. The
V(identifier) is a value operator that generates a 32-bit binary

i nteger corresponding to the value of the termnaned. (See
Restrictions and Interpretations of Term Functions.) The val ue
operator is intended to convert character strings to their numerica
correspondents.

The data type is defined bel ow
datatype ::=B| O] X| E| A
The data type describes the kind of data that the termrepresents.

(It is expected that additional data types, such as floating point
and user-defined types, will be added as needed.)

Data Type Meani ng Unit Length

B Bit string 1 bit

0] Bit string 3 bits

X Bit string 4 bits

E EBCDI C char act er 8 bits

A Network ASCI| character 8 bits
The val ue expression is defined bel ow.

val ueexpression ::= value | <null>

value ::=literal | arithmeticexpression

literal ::=1literaltype "string"

literaltype ::=B| O| X| E| A

The val ue expression is the nom nal value of a termexpressed in the
format indicated by the data type. It is repeated according to the
replication expression.

A null value expression in the input streamdefaults to the data
present in the input stream The data must conply with the datatype
attribute, however.

A null val ue expressi on generates paddi ng according to Restrictions
and Interpretations of Term Functi ons.

The | ength expression is defined bel ow

| engt hexpression ::= arithmeticexpression | <null>

Ander son, et al. [Page 14]

RFC 166 Dat a Reconfiguration Service May 1971
The | ength expression states the length of the field containing the
val ue expression.

If the length expression is less than or equal to zero, the term
succeeds but the appropriate stream pointer is not advanced.
Positive |l engths cause the appropriate stream pointer to be advanced
if the termotherw se succeeds.

Control is defined under TERM AND RULE SEQUENCI NG

Term Format 3

Term format 3 is shown bel ow.

descri ptor
It is identical totermformat 2 with the om ssion of the identifier
Termformat 3 is generally used in the output stream It is used in
the input stream where input data is to be passed over but not
retained for emission or later reference.

Term Fornat 4

The fourth termformat is shown bel ow.

conpar at or = (val ue connective val ue control)
(identifier *<=* value control)

val ue = literal | arithneticexpression

literal =literaltype "string"

literal type =B]|] O] X|] E|] A

string = fromO to 256 characters

connective .LE. | .LT. | .CGE. | .GI. | .EQ | .NE
The fourth termformat is used for assignment and conparison
The assi gnnent operator *<=* assigns the value to the identifier
The connectives have their usual neaning. Values to be conpared nust
have the sane type and length attributes or an error condition arises
and the formfails.

The Application of a Term

The elenents of a termare applied by the foll owi ng sequence of
st eps.

1. The data type, value expression, and | ength expression
toget her specify a unit value, call it x.

Ander son, et al. [Page 15]

RFC 166

In an

Dat a Reconfiguration Service May 1971

2. The replication expression specifies the nunber of tinmes x
is to be repeated. The value of the concatenated xs
beconmes y of length L.

3. If the termis an input streamtermthen the value of y of
length L is tested with the input val ue begi nning at the
current input pointer position

4. If the input value satisfies the constraints of y over
length L then the input value of length L becones the val ue
of the term

output streamterm the procedure is the sane except that the

source of input is the value of the tern(s) naned in the val ue
expression and the data is enitted in the output stream

The above procedure is nodified to include a one term | ook-ahead

wher e

replicated values are of indefinite | ength because of the

arbitrary synbol, #.

Restricti

1

Ander son,

ons and Interpretations of Term Functions

Terns having indefinite | engths because their values are
repeated according to the # synbol, nust be separated by sone
type-specific data such as a literal. (Aliteral isn't
specifically required, however. An arbitrary nunber of ASCI
characters could be ternminated by a non-ASCI| character.)

Truncation and padding is as foll ows:

a) Character to character (A <-> E) conversion is left-
justified and truncated or padded on the right wth bl anks.

b) Character to nunmeric and nuneric to numeric conversions are
right-justified and truncated or padded on the left with
zer os.

c) MNuneric to character conversions is right-justified and
| eft - padded wi th bl anks.

The following are ignored in a formdefinition over the control
connecti on.

a) TELNET control characters

b) Bl anks except w thin quotes.

c) [/* string */ is treated as comments except w thin quotes.

The following defaults prevail where the termpart is onmtted
a) The replication expression defaults to one.

b) # in an output streamtermdefaults to one.
c) The value expression of an input streamtermdefaults to

et al. [Page 16]

RFC 166 Dat a Reconfiguration Service May 1971

the value found in the input stream but the input stream
nmust conformto the data type and | ength expression. The
val ue expression of an output streamtermdefaults to
paddi ng only.

e) The length expression defaults to the size of the quantity
deternm ned by the data type and val ue expression

f) Control defaults to the next sequential termif a termis
successfully applied; else control defaults to the next
sequential rule. |If _where_ evaluates to an undefined
_label the formfails.

5. Arithmetic expressions are evaluated left-to-right with no
pr ecedence.

6. The following limits prevail

a) Binary lengths are <= 32 bhits
b) Character strings are <= 256 8-bit characters
c) ldentifier nanes are <= 4 characters
d) Maxi mum nunber of identifiers is <= 256
e) Label integers are >= 0 and <= 9999

7. Val ue and length operators product 32-bit binary integers. The
val ue operator is currently intended for converting A or E type
deci nal character strings to their binary correspondents. For
exanpl e, the value of E12° would be 0...... 01100. The val ue
of E AB" would cause the formto fail

TERM AND RULE SEQUENCI NG

Sequenci ng may be explicitly controlled by including control in a

term
control = :options | <null>
options ::= S(where) | F(where) | U(where)
S(where) , F(where) |
F(where) , S(where)
wher e ::= arithneticexpression | R(arithneticexpression)
S, F, and U denote success, fail, and unconditional transfers,
respectively. _Were_ evaluates to a _rule_ label, thus transfer can

be effected fromwithin a rule (at the end of a term) to the

begi nning of another rule. R neans ternminate the formand return the
eval uated expression to the initiator over the control connection (if
still open).

If terms are not explicitly sequenced, the follow ng defaults
prevail .

Ander son, et al. [Page 17]

RFC 166 Dat a Reconfiguration Service May 1971

1) Wien a termfails go to the next sequential rule.

2) Wen a term succeeds go to the next sequentia
termwithin the rule.

3) At the end of a rule, go to the next sequenti al
rul e.

Note in the follow ng exanple, the correlation between transfer of
control and nmovement of the input pointer

1 XYZ(,B,,8:5(2),F(3)) : XYZ;
2 G e e
3
The value of XYZ will never be enitted in the output stream since
control is transferred out of the rule upon either success or
failure. |If the termsucceeds, the 8 bits of input will be assigned
as the value of XYZ and rule 2 will then be applied to the sane input
streamdata. That is, since the conplete left hand side of rule 1

was not successfully applied, the input stream pointer is not
advanced.

I'V. EXAWVPLES
REMARKS

The foll owi ng exanples (fornms and also single rules) are sinple
representative uses of the Form Machine. The exanples are expressed
inatermper-line format only to aid the explanation. Typically, a
single rule mght be witten as a single |ine.

FI ELD | NSERTI ON

To insert a field, separate the input into the two ternms to allow the
inserted field between them For exanple, to do line nunbering for a
121 character/line printer with a | eading carriage control character
use the following form

(NUMB* <=*1) ; /*initialize line nunmber counter to one*/
1 CC(,E ,1:F(R(99))), [/*pick up control character and save
as /

/*return a code of 99 upon exhaustion*/
LINE(, E,, 121 : F(R(98))) [/*save text as LINE*/

: CC, /*emt control character*/

(, E, NUVB, 2), /*emt counter in first two col ums*/

(,E E".", 1), /*emt period after |ine nunber*/

(, E LINE 117), /*emt text, truncated in 117 byte field*/
(NUMB* <=* NUMB+1: U(1)) ; /*increment line counter and go to

rul e one*/;;

Ander son, et al. [Page 18]

RFC 166 Dat a Reconfiguration Service May 1971

DELETI ON

Data to be del eted should be isolated as separate terns on the left,
so they may be omitted (by not emitting then) on the right.

(,8B,,8), /*isolate 8 bits to ignore*/
SAVE(, A, , 10) /*extract 10 ASCI| characters from
i nput streant/
1 (, E, SAVE,); /*emt the characters in SAVE as EBCDI C

characters whose length defaults to the
I ength of SAVE, i.e., 10, and advance to
the next rul e*/

In the above exanple, if either input streamtermfails,
the next sequential rule is applied.

VARI ABLE LENGTH RECORDS
Sonme devices, termi nals and prograns generate variabl e

I ength records. The following rule picks up variable |ength
EBCDI C records and translates themto ASClI.

CHAR(#, E, , 1), /*pick up all (an arbitrary nunber of)
EBCDI C characters in the input streant/
(, X, X*FF", 2) /*foll owed by a hexadecimal literal
FF (terminal signal)*/
:(, A CHAR)), /*emt themas ASClI|*/
(, X, X*25",2); /*emt an ASClI| carriage return*/

STRI NG LENGTH COVPUTATI ON

It is often necessary to prefix a length field to an arbitrarily |ong
character string. The following rule prefixes an EBCDIC string with
a one-byte length field.

Q#,E,1), /*pick up all EBCDIC characters*/
TS(, X, X"FF", 2) /*foll owed by a hexadecinal literal, FF*/
(,B L(Q+2,8), /*emt the length of the characters

plus the length of the literal plus
the length of the count field itself,
inan 8-bit field*/

Q /*emt the characters*/

TS, /*emt the term nal */

Ander son, et al. [Page 19]

RFC 166 Dat a Reconfiguration Service May 1971

TRANSPGOSI TI ON

It is often desirable to reorder fields, such as the follow ng
exanpl e.

q;E!!ZO)! R(!Eaalo) il S(!E!!15)! T(!E!!S) - R! T! S! QJ
The terns are emtted in a different order.
CHARACTER PACKI NG AND UNPACKI NG

In systens such as HASP, repeated sequences of characters are packed
into a count followed by the character, for nore efficient storage
and transm ssion. The first form packs nmultiple characters and the
second unpacks them

/*formto pack EBCDI C streans*/
/*returns 99 if OK, input exhausted*/
/*returns 98 if illegal EBCDIC*/
/*look for terminal signal FF which is not a | egal EBCDI C*/
/*duplication count nust be 0-254*/
1 (,XX'FF',2: S(R(99))) ;

/*pick up an EBCDI C char/*

CHAR(, E, , 1) ;

/*get identical EBCDIC chars/*
LEN(#, E, CHAR, 1)

/*emt the count and the char/*

: (,B,L(LEN)+1,8), CHAR, (:U(1));
/*end of form/;;

/*formto unpack EBCDI C streans*/

/*1 ook for term nal*/

1 (,XX'FF',2: S(R(99))) ;

[*emt character the nunber of tines indicated*/
/*by the count, in a field the length indicated*/
/*by the counter contents*/

CNT(,B,,8), CHAR(,E ,1) : (CNT,E CHAR 1:U(1));
[*failure of fornt/

(1 U(R(98))) ;;

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Sinone Demel 03/98]

Ander son, et al. [Page 20]

