Net wor k Wor ki ng Group N. Chi appa
Request for Comments: 1753 Decenber 1994
Cat egory: Informationa

| Png Techni cal Requirenents
O the Ninrod Routing and Addressing Architecture

Status of this Meno

This meno provides information for the Internet comunity. This neno
does not specify an Internet standard of any kind. Distribution of
this meno is unlinted.

Abstract

This docunent was subnitted to the IETF IPng area in response to RFC
1550. Publication of this docunent does not inply acceptance by the
| Png area of any ideas expressed within. Conments should be
submitted to the big-internet@unnari.oz.au mailing list.

This docunent presents the requirenents that the Ninrod routing and
addressing architecture has upon the internetwork |layer protocol. To
be nost useful to Ninrod, any protocol selected as the | Png should
satisfy these requirenents. Al so presented is sone background

i nformation, consisting of i) information about architectural and
design principles which mght apply to the design of a new
internetworking layer, and ii) sone details of the |ogic and
reasoni ng behi nd particul ar requirenments.

1. Introduction

It is inmportant to note that this docunment is not "IPng Requirenents
for Routing", as other proposed routing and addressi ng desi gns may
need different support; this docunent is specific to Ninrod, and
doesn’'t claimto speak for other efforts.

However, although I don’t wi sh to assunme that the particul ar designs
bei ng worked on by the Nintod Ws will be wi dely adopted by the
Internet (if for no other reason, they have not yet been depl oyed and
tried and tested in practise, to see if they really work, an

absol utely necessary hurdle for any protocol), there are reasons to
bel i eve that any routing architecture for a large, ubiquitous gl oba
Internet will have many of the sanme basic fundanental principles as
the Ninrod architecture, and the requirenents that these generate.

Chi appa [Page 1]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

2.

Whil e current day routing technol ogi es do not yet have the
characteristics and capabilities that generate these requirenents,
they also do not seemto be conpletely suited to routing in the

next - generation Internet. As routing technol ogy noves towards what is
needed for the next generation Internet, the underlying fundanental
laws and principles of routing will alnost inevitably drive the
design, and hence the requirenments, toward things which ook |ike the
mat eri al presented here.

Therefore, even if Nintrod is not the routing architecture of the
next - generation Internet, the basic routing architecture of that
Internet will have requirenents that, while differing in detail, wll
al nrost inevitably be simlar to these.

In a simlar, but nore general, context, note that, by and large, the
general analysis of sections 3.1 ("Interaction Architectural I|ssues")
and 3.2 ("State and Flows in the Internetwork Layer”) will apply to
other areas of a new internetwork |layer, not just routing.

I will tackle the internetwork packet format first (which is
sinpler), and then the whole issue of the interaction with the rest
of the internetwork [ayer (which is a nuch nore subtle topic).

Packet For mat

2.1 Packet Format | ssues

As a general rule, the design philosophy of Ninrod is "maximnze the
lifetime (and flexibility) of the architecture”. Design tradeoffs
(i.e., optimzations) that will adversely affect the flexibility,
adaptability and lifetime of the design are not not necessarily wi se
choi ces; they may cost nore than they save. Such optim zations m ght
be the correct choices in a stand-al one system where the replacenent
costs are relatively small; in the global communication network, the
repl acenent costs are very nuch hi gher

Providing the Ninrod functionality requires the carrying of certain
information in the packets. The design principle noted above has a
nunber of corollaries in specifying the fields to contain that

i nformation.

First, the design should be "sinple and straightforward", which nmeans
that various functions should be handl ed by conpletely separate
nmechani snms, and fields in the packets. It may seemthat an
opportunity exists to save space by overloading two functions onto
one nechanismor field, but general experience is that, over ting,
this attenpt at optimzation costs nore, by restricting flexibility
and adaptability.

Chi appa [Page 2]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

Second, field lengths should be specified to be sonmewhat |arger than
can conceivably be used; the history of systemarchitecture is
replete with exanples (processor address size being the nost

not ori ous) where fields becane too short over the lifetime of the
system The docunent indicates what the small est reasonabl e
"adequate" lengths are, but this is nore of a "critical floor" than a
recomendation. A "reconmended" length is also given, which is the

I ength which corresponds to the application of this principle. The

wi se designer would pick this |ength.

It is inportant to now that this does *not* nean that inplenentations
nmust support the maxi num val ue possible in a field of that size.

i magi ne that systemw de administrative linmits will be placed on the
maxi mum val ues whi ch nmust be supported. Then, as the need arises, we
can increase the admnistrative linmt. This allows an easy, and
conpletely interoperable (with no special mechanisns) path to upgrade
the capability of the network. If the maxi mum supported val ue of a
field needs to be increased fromMto N, an announcenent is nade that
this is coming; during the interimperiod, the systemcontinues to
operate with M but new inplenmentations are deployed; while this is
happeni ng, interoperation is automatic, with no transition nechanisns
of any kind needed. Wen things are "ready" (i.e., the proportion of
ol d equi pnent is small enough), use of the |arger val ue comences.

Al so, in speaking of the packet format, you first need to distinguish
bet ween the host-router part of the path, and the router-router part;
a format that works OK for one may not do for another.

The issue is conplicated by the fact that Ninmrod can be made to work,
albeit not in optimal form with information/fields mssing fromthe
packet in the host to "first hop router" section of the packet's
path. The nissing fields and informati on can then be added by the
first hop router. (This capability will be used to all ow depl oynent
and operation with unnodified | Pv4 hosts, although simlar techniques
could be used with other internetworking protocols.) Access to the
full range of Ninrod capabilities will require upgrading of hosts to
i nclude the necessary information in the packets they exchange with
the routers.

Second, Ninrod currently has three planned forwardi ng nodes (fl ows,
dat agram and source-routed packets), and a format that works for one
may not work for another; sone nodes use fields that are not used by
other nodes. The presence or absence of these fields will nmake a

di fference.

Chi appa [Page 3]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

2.2 Packet Fornmat Fields

What Ninrod would Iike to see in the internetworking packet is:

Source and destination endpoint identification. There are severa
possibilities here.

One is "UD's, which are "shortish", fixed Iength fields which
appear in each packet, in the internetwork header, which contain
gl obal Iy uni que, topologically insensitive identifiers for either
i) endpoints (if you aren’t famliar with endpoints, think of them
as hosts), or ii) nmulticast groups. (In the forner instance, the
UDis an EID, inthe latter, a "set ID', or SID. An SIDis an
identifier which looks just like an EID, but it refers to a group
of endpoints. The semantics of SID s are not conpletely defined.)
For each of these 48 bits is adequate, but we would recomend 64
bits. (IPv4 will be able to operate with smaller ones for a while,
but eventually either need a new packet format, or the difficult
and not wholly satisfactory techni que known as Network Address
Transl ators, which allows the contents of these fields to be only
| ocal Iy unique.)

Anot her possibility is some shorter field, naned an "endpoi nt
selector", or ESEL, which contains a value which is not globally
uni que, but only unique in mapping tables on each end, tables which
map fromthe snmall value to a globally unique value, such as a DNS
namne.

Finally, it is possible to conceive of overall networking designs
whi ch do not include any endpoint identification in the packet at
all, but transfer it at the start of a comunication, and fromthen
on infer it. This alternative would have to have some other means
of telling which endpoint a given packet is for, if there are
several endpoints at a given destination. Some coordi hati on on

al l ocation of flowids, or higher |evel port numbers, etc., mght
do this.

Flow identification. There are two basi c approaches here, depending
on whether flows are aggregated (in internediate switches) or not.
It should be enphasized at this point that it is not yet known

whet her fl ow aggregation will be needed. The only reason to do it
is to control the growh of state in intermediate routers, but
there is no hard case nade that either this growth will be
unnanageabl e, or that aggregating flows will be feasible
practically.

Chi appa [Page 4]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

For the non-aggregated case, a single "flowid" field will suffice.
This *nust not* use one of the two previous UDfields, as in

dat agram node (and probably source-routed node as well) the flowid
will be over-written during transit of the network. It could nost
easily be constructed by adding a U Dto a locally unique flowid,
which will provide a globally unique flowid. It is possible to use
non- gl obal Iy unique flowids, (which would allow a shorter |ength
to this field), although this would nmean that collisions would
result, and have to be dealt with. An adequate length for the |oca
part of a globally unique flowid would be 12 bits (which would be
my "out of thin air" guess), but we recommend 32. For a non-
globally unique flowid, 24 bits would be adequate, but | recommend
32.

For the aggregated case, three broad classes of mechanismare
possi bl e.

- Option 1. The packet contains a sequence (sort of like a source
route) of flowids. Wienever you aggregate or deaggregate, you
nove along the list to the next one. This takes the nobst space,
but is otherwise the | east work for the routers.

- Option 2: The packet contains a stack of flowids, with the
current one on the top. Wien you aggregate, you push a new one
on; when you de-aggregate, you take one off. This takes nore
wor k, but |ess space in the packet than the conplete "source-
route". Encapsul ating packets to do aggregation does basically
this, but you're stacking entire headers, not just flowids. The
clever way to do this flowid stacking, wthout doing
encapsul ation, is to find out fromfl ow setup how deep the stack
will get, and allocate the space in the packet when it’'s
created. That way, all you ever have to do is insert a new
flowid, or "renove" one; you never have to nake roomfor nore
flowids.

- Option 3: The packet contains only the "base" flowid (i.e., the
one with the finest granularity), and the current flowid. Wen
you aggregate, you just bash the current flowid. The tricky
part cones when you de-aggregate; you have to put the right
val ue back. To do this, you have to have state in the router at
the end of the aggregated flow, which tells you what the de-
aggregated flow for each base flowis. The downside here is
obvi ous: we get away w thout individual flow state for each of
the constituent flows in all the routers along the path of that
aggregated, flow, *except* for the |ast one.

Chi appa [Page 5]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

O her than encapsul ation, which has significant inefficiency in
space overhead fairly quickly, after just a few |layers of
aggregation, there appears to be no way to do it with just one
flowid in the packet header. Even if you don't touch the
packets, but do the aggregation by mappi ng some nunber of "base"
flowid s to a single aggregated flowin the routers along the
path of the aggregated flow, the table that does the mapping is

still going to have to have a nunber of entries directly
proportional to the nunmber of base flows going through the
swi tch.

- A looping packet detector. This is any nechanismthat will detect a
packet which is "stuck" in the network; a tinmeout value in packets,
together with a check in routers, is an exanple. If this is a hop-
count, it has to be nore than 8 bits; 12 bits would be adequate,
and | recomrend 16 (which also makes it easy to update). This is
not to say that | think networks with dianeters |arger than 256 are
good, or that we should design such nets, but | think Iimting the
maxi mum pat h through the network to 256 hops is likely to bite us
down the road the same way naking "infinity" 16 in RIP did (as it
did, eventually). Wien we hit that ceiling, it’'s going to hurt, and
there won’'t be an easy fix. | will note in passing that we are
al ready seeing paths |engths of over 30 hops.

- Optional source and destination |ocators. These are structured,
variable length itens which are topologically sensitive identifiers
for the place in the network fromwhich the traffic originates or
to which the traffic is destined. The | ocator will probably contain
internal separators which divide up the fields, so that a
particular field can be enlarged without creating a great deal of
upheaval . An adequate val ue for nmaxi num | ength supported woul d be
up to 32 bytes per locator, and |longer would be even better;
woul d recomend up to 256 bytes per |ocator

- Perhaps (paired with the above), an optional pointer into the
| ocators. This is optional "forwarding state" (i.e., state in the
packet which records sonething about its progress across the
networ k) which is used in the datagram forwardi ng node to help
ensure that the packet does not loop. It can also inprove the
forwardi ng processing efficiency. It is thus not absolutely
essential, but is very desirable froma real-world engineering view
point. It needs to be large enough to identify locations in either
| ocator; e.g., if locators can be up to 256 bytes, it would need to
be 9 bits.

- An optional source route. This is used to support the "source

rout ed packet" forwardi ng node. Although not designed in detai
yet, we can di scuss two possi bl e approaches.

Chi appa [Page 6]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

In one, used with "seni-strict" source routing (in which a
contiguous series of entities is named, al beit perhaps at a high

| ayer of abstraction), the syntax will likely |look nuch Iike source
routes in PIP, in Nintrod they will be a sequence of Nintrod entity
identifiers (i.e., locator elenents, not conplete |ocators), along

with clues as to the context in which each identifier is to be
interpreted (e.g., up, down, across, etc.). Since those identifiers
t hensel ves are variable | ength (although probably nost will be two
bytes or less, otherw se the routing overhead inside the naned

obj ect woul d be excessive), and the hop count above contenpl ates
the possibility of paths of over 256 hops, it would seemthat these
m ght possibly sone day exceed 512 bytes, if a lengthy path was
specified in terms of the actual physical assets used. An adequate
| ength woul d be 512 bytes; the recommended | ength would be 2716
bytes (al though this I ength woul d probably not be supported in
practise; rather, the field length would allow it).

In the other, used with classical "loose" source routes, the source
consists of a nunmber of locators. It is not yet clear if this node
will be supported. If so, the header would need to be able to store
a sequence of locators (as descri bed above). Space m ght be saved
by not repeating |locator prefixes that match that of the previous

| ocator in the sequence; Ninrod will probably allow use of such
"locally useful" locators. It is hard to deternine what an adequate
| ength would be for this case; the recommended | ength would be 2716
bytes (again, with the previous caveat).

- Perhaps (paired with the above), an optional pointer into the

source route. This is also optional "forwarding state". It needs to
be large enough to identify |ocations anywhere in the source route;
e.g., if the source router can be up to 1024 bytes, it would need

to be 10 bits.

- An internetwork header length. | nention this since the above
fields could easily exceed 256 bytes, if they are to all be carried
in the internetwork header (see comments below as to where to carry
all this information), the header length field needs to be nore
than 8 bits; 12 bits would be adequate, and | reconmmend 16 bits.
The approach of putting some of the data itens above into an
interior header, to limt the size of the basic internetworking
header, does not really seemoptinmal, as this data is for use by
the internediate routers, and it needs to be easily accessible.

- Authentication of sone sort is needed. See the recent | AB docunent
whi ch was produced as a result of the |AB architecture retreat on
security (draft-iab-sec-arch-workshop-00.txt), section 4, and
especially section 4.3. There is currently no set way of doing
"denial/theft of service" in Nintrod, but this topic is well

Chi appa [Page 7]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

explored in that docunent; N nrod would use whatever nechanisn(s)
seem appropriate to those know edgeable in this area.

- A version nunber. Future forwardi ng nechani snms m ght need ot her
information (i.e., fields) in the packet header; use a version
number would allow it to be nmodified to contain what’'s needed.
(This woul d not necessarily be information that is visible to the
hosts, so this does not necessarily nean that the hosts would need
to know about this new format.) 4 bits is adequate; it’'s not clear
if a larger value needs to be recomended.

2.3 Field Requirenents and Addition Methods

As noted above, it’'s possible to use NNmrod in a limted node where
needed i nformation/fields are added by the first-hop router. It’'s
thus useful to ask "which of the fields nust be present in the host-
rout er header, and which could be added by the router?" The only ones
whi ch are absolutely necessary in all packets are the endpoint
identification (provided that sone neans is available to map them
into locators; this would obviously be nost useful on UD s which are
EID s).

As to the others, if the user wishes to use flows, and wants to
guarantee that their packets are assigned to the correct flows, the
flowid field is needed. If the user wi shes efficient use of the

dat agram node, it’'s probably necessary to include the | ocators in the
packet sent to the router. |If the user wishes to specify the route
for the packets, and does not wish to set up a flow, they need to

i nclude the source route.

How woul d additional information/fields be added to the packet, if
the packet is emtted fromthe host in inconplete forn? (By this, |
nmean the sinple question of how, mnechanically, not the nore conpl ex
i ssue of where any needed information conmes from)

This question is conplex, since all the IPng candidates (and in fact,
any reasonabl e inter-networking protocol) are extensible protocols;

t hose extensi on nechanisns could be used. Also, it would possible to
carry sonme of the required information as user data in the

i nternetwor ki ng packet, with the original user’s data encapsul ated
further inside. Finally, a private inter-router packet format could
be defi ned.

It’s not clear which path is best, but we can talk about which fields
the Ninrod routers need access to, and how often; |ess used ones
could be placed in harder-to-get-to locations (such as in an

encapsul ated header). The fields to which the routers need access on
every hop are the flowid and the | oopi ng packet detector. The

Chi appa [Page 8]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

| ocator/pointer fields are only needed at intervals (in what datagram
forwardi ng node calls "active" routers), as is the source route (the
latter at every object which is named in the source route).

Dependi ng on how access control is done, and which forwarding node is
used, the U D s and/or locators m ght be exam ned for access contro
pur poses, wherever that function is perforned.

This is not a conplete exploration of the topic, but should give a
rough i dea of what’'s going on.

3. Architectural |ssues
3.1 Interaction Architectural |ssues

The topic of the interaction with the rest of the internetwork |ayer
is more conplex. Ninrod springs in part froma design vision which
sees the entire internetwork layer, distributed across all the hosts
and routers of the internetwork, as a single system albeit a

di stributed system

Approached fromthat angle, one naturally falls into a typical system
desi gner point of view, where you start to think of the
nodul ari zati on of the system chosing the functional boundaries which
divide the systemup into functional units, and defining the

i nteractions between the functional units. As we all know, that
nodul ari zation is the key part of the system design process.

It’s rare that a group of conpletely independent nodules forma
system there's usually a fairly strong internal interaction. Those
i nteracti ons have to be thought about and understood as part of the
nodul ari zation process, since it effects the placenent of the
functional boundaries. Poor placenment |eads to conplex interactions,
or desired interactions which cannot be realized.

These are all nore inportant issues with a systemwhich is expected
to have a long lifetine; correct placenent of the functiona
boundaries, so as to clearly and sinply break up the systeminto
truly fundanental units, is a necessity is the systemis to endure
and serve well.

3.1.1 The Internetwork Layer Service Model

To return to the view of the internetwork |ayer as a system that
system provides certain services to its clients; i.e., it
instantiates a service nodel. To begin with, |acking a shared view of
the service nodel that the internetwork |ayer is supposed to provide,
it’s reasonable to suppose that it will prove inpossible to agree on

Chi appa [Page 9]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

mechani snms at the internetwork | evel to provide that service

To answer the question of what the service nodel ought to be, one can
view the internetwork layer itself as a subsystem of an even |arge
system the entire internetwork itself. (That systemis quite likely
the | argest and nost conplex systemwe will ever build, as it is the
| argest systemwe can possibly build; it is the systemwhich will
inevitably contain alnost all other systens.)

From that point of view, the issue of the service nodel of the
internetwork | ayer becones a little clearer. The services provided by
the internetwork | ayer are no | onger purely abstract, but can be

t hought about as the external nodule interface of the internetwork

| ayer nmodule. |f agreenment can be reached on where to put the
functional boundaries of the internetwork | ayer, and on what overal
service the internet as a whole should provide, the service nodel of
the internetwork | ayer should be easier to agree on

In general terns, it seens that the unreliable packet ought to renain
t he fundanental building block of the internetwork |ayer. The design
principle that says that we can take any packet and throw it away
with no warning or other action, or take any router and turn it off
with no warning, and have the systemstill work, seens very powerful.
The conponent design sinplicity (since routers don’'t have to stand on
their heads to retain a packet which they have the only copy of), and
overal|l systemrobustness, resulting fromthese two assunptions is
absolutely critical

In detail, however, particularly in areas which are still the subject
of research and experinentation (such as resource all ocation
security, etc.), it seens difficult to provide a finished definition
of exactly what the service nodel of the internetwork | ayer ought to
be.

3.1.2 The Subsystens of the Internetwork Layer

In any event, by viewing the internetwork layer as a |large system
one starts to think about what subsystens are needed, and what the

i nteractions anong them should ook like. Ninrod is sinply a nunber
of the subsystens of this larger system the internetwork |layer. It
is *not* intended to be a purely standal one set of subsystens, but to
work together in close concert with the other subsystens of the
internetwork | ayer (resource allocation, security, charging, etc.) to
provide the internetwork |ayer service nodel

One reason that Ninrod is not sinply a nonolithic subsystemis that

some of the interactions with the other subsystens of the
internetwork layer, for instance the resource allocation subsystem

Chi appa [Page 10]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

are nuch clearer and easier to manage if the routing is broken up
into several subsystens, with the interactions between them open

It is inmportant to realize that Nintrod was initially broken up into
separate subsystens for purely internal reasons. It so happens that,
considered as a separate problem the fundanental boundary |ines for
dividing routing up into subsystens are the sanme boundaries that nake
interaction with other subsystens cleaner; this provides added

evi dence that these boundaries are in fact the right ones.

The subsystens which conprise the functionality covered by Ninrod are
i) routing information distribution (in the case of Ninrod, topology
map distribution, along with the attributes [policy, Q0S, etc.] of

the topology elenents), ii) route selection (strictly speaking, not
part of the N nrod spec per se, but functional exanples will be
produced), and iii) user traffic handling.

The forner can fairly well be defined w thout reference to other
subsystens, but the second and third are necessarily nore invol ved.
For instance, route selection nmight involve finding out which Iinks
have the resources available to handle sone required |evel of

service. For user traffic handling, if a particular application needs
a resource reservation, getting that resource reservation to the
routers is as much a part of getting the routers ready as naking sure
they have the correct routing infornmation, so here too, routing is
tied in with other subsystens.

In any event, although we can tal k about the rel ationship between the
Ni nrod subsystens, and the other functional subsystens of the
internetwork | ayer, until the service nodel of the internetwork |ayer
is nore clearly visible, along with the functional boundaries within
that |ayer, such a discussion is necessarily rather nebul ous.

3.2 State and Flows in the Internetwork Layer

The internetwork | ayer as whole contains a variety of infornmation, of
varying lifetimes. This information we can refer to as the
internetwork layer’s "state". Sone of this state is stored in the
routers, and sone is stored in the packets.

In the packet, | distinguish between what | call "forwarding state"
whi ch records sonethi ng about the progress of this individual packet
t hrough the network (such as the hop count, or the pointer into a
source route), and other state, which is information about what
service the user wants fromthe network (such as the destination of
t he packet), etc.

Chi appa [Page 11]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

3.2.1 User and Service State

| call state which reflects the desires and service requests of the
user "user state". This is infornmation which could be sent in each
packet, or which can be stored in the router and applied to nmultiple
packets (depending on which nakes the nobst engineering sense). It is
still called user state, even when a copy is stored in the routers.

User state can be divided into two classes; "critical" (such as
destination addresses), wi thout which the packets cannot be forwarded
at all, and "non-critical" (such as a resource allocation class),

wi t hout which the packets can still be forwarded, just not quite in
the way the user woul d nost prefer

There are a range of possible nechanisns for getting this user state
to the routers; it may be put in every packet, or placed there by a
setup. In the latter case, you have a whole range of possibilities
for howto get it back when you lose it, such as placing a copy in
every Nth packet.

However, other state is needed which cannot be stored in each packet;
it's state about the longer-term(i.e., across the life of many
packets) situation; i.e., state which is inherently associated with a
nunber of packets over sone tinme-frane (e.g., a resource allocation).
| call this state "server state"

Thi s apparently changes the "statel ess" nodel of routers somewhat,
but this change is nore apparent than real. The routers already
contain state, such as routing table entries; state without which is
it virtually inpossible to handle user traffic. Al that is being
changed is the amount, granularity, and lifetine, of state in the
routers.

Some of this service state may need to be installed in a fairly
reliable fashion; e.g., if there is service state related to billing,
or allocation of resources for a critical application, one nore or

| ess needs to be guaranteed that this service state has been
correctly installed.

To the extent that you have state in the routers (either service
state, or user state), you have to be able to associate that state
with the packets it goes with. The fields in the packets that allow
you to do this are "tags"

Chi appa [Page 12]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

3.2.2 Flows
It is useful to step back for a bit here, and think about the traffic
in the network. Some of it will be fromapplications with are
basically transactions; i.e., they require only a single packet, or a

very snmall nunber. (I tend to use the term"datagram to refer to
such applications, and use the term "packet" to describe the unit of
transm ssion through the network.) However, other packets are part of
| onger-1lived conmuni cations, which have been termed "fl ows".

A flow, fromthe user’s point of view, is a sequence of packets which
are associated, usually by being froma single application instance.
In an internetwork | ayer which has a nore conpl ex service node

(e.g., supports resource allocation, etc.), the flow would have
service requirenents to pass on to sonme or all of the subsystens

whi ch provi de those services.

To the internetworking layer, a flowis a sequence of packets that
share all the attributes that the internetworking |ayer cares about.
This includes, but is not linmted to: source/destination, path,
resource allocation, accounting/authorization

aut henti cation/security, etc., etc.

There isn't necessarily a one-one mapping fromflows to *anythi ng*

el se, be it a TCP connection, or an application instance, or

what ever. A single flow might contain several TCP connections (e.qg.
with FTP, where you have the control connection, and a nunber of data
connections), or a single application night have several flows (e.qg.
mul ti-nmedi a conferencing, where you' d have one flow for the audio,
anot her for a graphic window, etc., with different resource
requirenents in terns of bandw dth, delay, etc., for each.)

Fl ows may al so be nulticast constructs, i.e., nultiple sources and
destinations; they are not inherently unicast. Milticast flows are
nmore conpl ex than unicast (there is a |arge pool of state which nust
be nmade coherent), but the concepts are sinlar.

There's an interesting architectural issue here. Let’s assunme we have
all these different internetwork | evel subsystens (routing, resource
al I ocation, security/access-control, accounting), etc. Now, we have
two choi ces

First, we could allow each individual subsystem which uses the
concept of flows to define itself what it thinks a "flow' is, and
define which values in which fields in the packet define a given
"flow' for it. Now, presunmably, we have to allow 2 flows for
subsystem X to map onto 1 flow for subsystemY to map onto 3 fl ows
for subsystemZ; i.e., you can mix and match to your heart’s content.

Chi appa [Page 13]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

Second, we could define a standard "flow' nmechanismfor the
internetwork layer, along with a way of identifying the flowin the
packet, etc. Then, if you have two things which wish to differ in
any subsystem you have to have a separate flow for each

The forner has the advantages that it's a little easier to deploy
increnentally, since you don’t have to agree on a conmnon fl ow
mechanism It may save on replicated state (if | have 3 flows, and
they are the sane for subsystem X, and different for Y, | only need
one set of X state). It also has a lot nore flexibility. The latter
is sinple and straightforward, and given the conmplexity of what is
bei ng proposed, it seens that any place we can nake things sinpler,

we shoul d.

The choice is not trivial; it all depends on things |ike "what
percentage of flows will want to share the same state in certain
subsystens with other flows". | don’t know how to quantify those, but
as an architect, | prefer sinple, straightforward things. This system

is pretty conplex already, and |I'mnot sure the benefits of being
able to mix and match are worth the added conplexity. So, for the
monent |11 assume a single, systemw de, definition of flows.

The packets which belong to a flow could be identified by a tag

consi sting of a nunber of fields (such as addresses, ports, etc.), as
opposed to a specialized field. However, it nmay be nore
straightforward, and fool proof, to sinply identify the flow a packet
belongs to with by neans of a specialized tag field (the "flowid")
in the internetwork header. G ven that you can always find situations
where the existing fields alone don't do the job, and you *still*
need a separate field to do the job correctly, it seens best to take
the sinple, direct approach , and say "the flow a packet belongs to
is named by a flowid in the packet header".

The sinplicity of globally-unique flowid s (or at least a flowid
whi ch uni que along the path of the flow) is also desirable; they take
nore bits in the header, but then you don’t have to worry about all

t he mechani sm needed to remap |l ocally-unique flowid s, etc., etc.
From t he perspective of designing sonething with a long lifetinme, and
which is to be deployed widely, sinplicity and directness is the only
way to go. For ne, that translates into flows being named solely by
globally unique flowid s, rather than sonme conpl ex semantics on
existing fields.

However, the issue of how to recogni ze which packets belong to flows

i s sonewhat orthogonal to the issue of whether the internetwork |eve
recogni zes flows at all. Should it?

Chi appa [Page 14]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

3.2.3 Flows and State

To the extent that you have service state in the routers you have to
be able to associate that state with the packets it goes with. This
is a fundanental reason for flows. Access to service state is one
reason to explicitly recognize flows at the internetwork |ayer, but
it is not the only one.

If the user has requirenents in a nunber of areas (e.g., routing and
access control), they can theoretically comunicate these to the
routers by placing a copy of all the relevant information in each
packet (in the internetwork header). |If many subsystens of the
internetwork are involved, and the requirenents are conplex, this
could be a ot of bits.

(As a final aside, there's clearly no point in storing in the routers
any user state about packets which are providing datagram service;

t he datagram servi ce has usually cone and gone in the sane packet,
and this discussion is all about state retention.)

There are two schools of thought as to how to proceed. The first says
that for reasons of robustness and sinplicity, all user state ought
to be repeated in each packet. For efficiency reasons, the routers
may cache such user state, probably along with preconputed data
derived fromthe user state. (It nakes sense to store such cached
user state along with any applicable server state, of course.)

The second school says that if something is going to generate |lots of
packets, it nmakes engi neering sense to give all this information to
the routers once, and fromthen on have a tag (the flowid) in the
packet which tells the routers where to find that information. It's
sinply going to be too inefficient to carry all the user state around
all the time. This is purely an engineering efficiency reason, but
it’s a significant one.

There is a slightly deeper argunment, which says that the routers will
inevitably come to contain nore user state, and it's sinply a
guestion of whether that state is installed by an explicit nechani sm
or whether the routers infer that state fromwatching the packets

whi ch pass through them To the extent that it is inevitable anyway,
there are obvious benefits to be gained fromrecognizing that, and an
explicit design of the installation is nore likely to give
satisfactory results (as opposed to an ad-hoc nechanisnj.

It is worth noting that although the term"flow' is often used to

refer to this state in the routers along the path of the flow, it is
i mportant to distinguish between i) a flow as a sequence of packets
(i.e., the definition given in 3.2.2 above), and ii) a flow, as the

Chi appa [Page 15]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

thing which is set up in the routers. They are different, and
al though the particular nmeaning is usually clear fromthe context,
they are not the same thing at all

I’ mnot sure how nmuch use there is to any internediate position, in
whi ch one subsysteminstalls user state in the routers, and anot her
carries a copy of its user state in each packet.

(There are other intermediate positions. First, one flow might use a
given technique for all its subsystenms, and another flow mi ght use a
different technique for its; there is potentially sonme use to this,
al though I"'mnot sure the cost in conplexity of supporting both
mechani snms is worth the benefits. Second, one flow m ght use one
nmechanismwith one router along its path, and another for a different
router. A nunber of different reasons exist as to why one night do
this, including the fact that not all routers may support the same
mechani sms si nmul t aneousl y.)

It seens to ne that to have one internetwork | ayer subsystem (e.g.
resource allocation) carry user state in all the packets (perhaps
with use of a "hint" in the packets to find potentially cached copies
in the router), and have a second (e.g., routing) use a direct
installation, and use a tag in the packets to find it, makes little
sense. W should do one or the other, based on a consideration of the
ef fici ency/robustness tradeoff.

Also, if there is a way of installing such flow associated state, it
makes sense to have only one, which all subsystenms use, instead of
buil ding a separate one for each fl ow

Ilt’s alittle difficult to nmake the choi ce between installation, and
carrying a copy in each packet, w thout nore information of exactly
how nmuch user state the network is likely to have in the future. (For
i nstance, we nmight wind up with 500 byte headers if we include the
full source route, resource reservation, etc., in every header.)

It’s also difficult without consideration of the actual nechanisns

i nvol ved. As a general principle, we wish to nmake recovery froma

| oss of state as local as possible, to limt the nunber of entities
whi ch have to becone involved. (For instance, when a router crashes,
traffic is rerouted around it wthout needing to open a new TCP
connection.) The option of the "installation" |ooks a |lot nore
attractive if it's sinple, and relatively cheap, to reinstall the
user state when a router crashes, w thout otherw se causing a |lot of
hassl e.

Chi appa [Page 16]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

However, given the likely growth in user state, the necessity for
service state, the requirenent for reliable installation, and a
number of similar considerations, it seens that direct installation
of user state, and explicit recognition of flows, through a unified
definition and tag mechanismin the packets, is the way to go, and
this is the path that Ninrod has chosen

3.3 Specific Interaction |ssues

Chi

Here is a very inconplete list of the things which Ninrod would Iike
to see fromthe internetwork | ayer as a whol e:

- Aunified definition of flows in the internetwork |ayer, and a
uni fied way of identifying, through a separate flowid field, which
packets belong to a given flow

- Aunified nechanism (potentially distributed) for installing state
about flows (including nmulticast flows) in routers.

- A method for getting information about whether a given resource
al l ocation request has failed along a given path; this mght be
part of the unified fl ow setup nmechani sm

- An interface to (potentially distributed) nmechani smfor naintaining
the menbership in a nmulti-cast group

- Support for nultiple interfaces; i.e., multi-homnm ng. N nrod does
this by decoupling transport identification (done via EID s) from
interface identification (done via locators). E.g., a packet with
any valid destination |ocator should be accepted by the TCP of an
endpoint, if the destination EID is the one assigned to that
endpoi nt .

- Support for nultiple | ocators ("addresses") per network interface.
This is needed for a nunber of reasons, anmong themto allow for
| ess painful transitions in the locator abstraction hierarchy as
t he t opol ogy changes.

- Support for nultiple UD s ("addresses") per endpoint (roughly, per
host). This would definitely include both multiple nulticast SID s,
and at | east one unicast EID (the need for nultiple unicast EID s
per endpoint is not obvious).

- Support for distinction between a nulticast group as a naned
entity, and a nulticast flow which may not reach all the nmenbers.

- Adistributed, replicated, user name translation system (DNS?) that
maps such user nanes into (EID, locator0, ... locatorN) bindings.

appa [Page 17]

RFC 1753 Ni nmrod Techni cal Requirenments for |Png Decenber 1994

Security Considerations

Security issues are discussed in section 2.2.
Aut hor’ s Address

J. Noel Chiappa

Phone: (804) 898-8183
EMail: jnc@cs.mt.edu

Chi appa [Page 18]

