
Network Working Group T. Brisco
Request for Comments: 1794 Rutgers University
Category: Informational April 1995

 DNS Support for Load Balancing

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

1. Introduction

 This RFC is meant to first chronicle a foray into the IETF DNS
 Working Group, discuss other possible alternatives to
 provide/simulate load balancing support for DNS, and to provide an
 ultimate, flexible solution for providing DNS support for balancing
 loads of many types.

2. History

 The history of this probably dates back well before my own time - so
 undoubtedly some holes are here. Hopefully they can be filled in by
 other authors.

 Initially; "load balancing" was intended to permit the Domain Name
 System (DNS) [1] agents to support the concept of "clusters" (derived
 from the VMS usage) of machines - where all machines were
 functionally similar or the same, and it didn’t particularly matter
 which machine was picked - as long as the load of the processing was
 reasonably well distributed across a series of actual different
 hosts. Around 1986 a number of different schemes started surfacing
 as hacks to the Berkeley Internet Name Domain server (BIND)
 distribution. Probably the most widely distributed of these were the
 "Shuffle Address" (SA) modifications by Bryan Beecher, or possibly
 Marshall Rose’s "Round Robin" code.

 The SA records, however, did a round-robin ordering of the Address
 resource records, and didn’t do much with regard to the particular
 loads on the target machines. Matt Madison (of TGV) implemented some
 changes that used VMS facilities to review the system loads, and
 return A RRs in the order of least-loaded to most loaded.

 The problem was with SAs was that load was not actually a factor, and
 TGV’s relied on VMS specific facilities to order the records. The SA
 RRs required changes to the DNS specification (in file syntax and in

Brisco [Page 1]

RFC 1794 DNS Support for Load Balancing April 1995

 record processing). These were both viewed as drawbacks and not as
 general solutions.

 Most of the Internet waited in anticipation of an IETF approved
 method for simulating "clusters".

 Through a few IETF DNS Working Group sessions (Chaired by Rob Austein
 of Epilogue), it was collectively agreed upon that a number of
 criteria must be met:

 A) Backwards compatibility with the existing DNS RFC.

 B) Information changes frequently.

 C) Multiple addresses should be sent out.

 D) Must interact with other RRs appropriately.

 E) Must be able to represent many types of "loads"

 F) Must be fast.

 (A) would ensure that the installed base of BIND and other DNS
 implementations would continue to operate and interoperate properly.

 (B) would permit very fast update times - to enable modeling of
 real-time data. Five minutes was thought as a normal interval,
 though changes as fast as every sixty seconds could be imagined.

 (C) would cover the possibility of a host’s address being advertised
 as optimal, yet the machine crashed during the period within the TTL
 of the RR. The second-most preferable address would be advertised
 second, the third-most preferable third, and so on. This would allow
 a reasonable stab at recovery during machine failures.

 (D) would ensure correct handling of all ancillary information - such
 as MX, RP, and TXT information, as well as reverse lookup
 information. It needed to be ensured that such processes as mail
 handling continued to work in an unsurprising and predictable manner.

 (E) would ensure the flexibility that everyone wished. A breadth of
 "loads" were wished to be represented by various members of the DNS
 Working Group. Some "loads" were fairly eclectic - such as the
 address ordering by the RTT to the host, some were pragmatic - such
 as balancing the CPU load evenly across a series of hosts. All
 represented valid concerns within their own context, and the idea of
 having separate RR types for each was unthinkable (primarily; it
 would violate goal A).

Brisco [Page 2]

RFC 1794 DNS Support for Load Balancing April 1995

 (F) needed to ensure a few things. Primarily that the time to
 calculate the information to order the addressing information did not
 exceed the TTL of the information distributed - i.e., that elements
 with a TTL of five minutes didn’t take six minutes to calculate.
 Similarly; it seems a fairly clear goal in the DNS RFC that clients
 should not be kept waiting - that request processing should continue
 regardless of the state of any other processing occurring.

3. Possible Alternatives

 During various discussions with the DNS Working Group and with the
 Load Balancing Committee, it was noted that no existing solution
 dealt with all wishes appropriately. One of the major successes of
 the DNS is its flexibility - and it was felt that this needed to be
 retained in all aspects. It was conceived that perhaps not only
 address information would need to be changed rapidly, but other
 records may also need to change rapidly (at least this could not be
 ruled out - who knows what technologies lurk in the future).

 Of primary concern to many was the ability to interact with older
 implementations of DNS. The DNS is implemented widely now, and
 changes to critical portions of the protocol could cause havoc for
 years. It became rapidly apparent through conversations with Jon
 Postel and Dave Crocker (Area Director) that modifications to the
 protocol would be viewed dimly.

4. A Flexible Model

 During many hours of discussions, it arose upon suggestion from Rob
 Austein that the changes could be implemented without changes to the
 protocol; if zone transfer behavior could be subtly changed, then the
 zone transfer process could accommodate the changing of various RR
 information. What was needed was a smarter program to do the zone
 transfers. Pursuant to this, changes were made to BIND that would
 permit the specification of the program to do the zone transfers for
 particular zones.

 There is no specification that a secondary has to receive updates
 from its primary server in any specific manner - only that it needs
 to check periodically, and obtain new zone copies when changes have
 been made. Conceivably the zone transfer agent could obtain the
 information from any number of sources (e.g., a load average daemon,
 a round-robin sorter) and present the information back to the
 nameserver for distribution.

 A number of questions arose from this concept, and all seem to have
 been dealt with accordingly. Primarily, the DNS protocol doesn’t
 guarantee ordering. While the DNS protocol doesn’t guarantee

Brisco [Page 3]

RFC 1794 DNS Support for Load Balancing April 1995

 ordering, it is clear that the ordering is predictive - that
 information read in twice in the same order will be presented twice
 in the same order to clients. Clients, of course, may reorder this
 information, but that is deemed as a "local issue" as it is
 configurable by the remote systems administrators (e.g., sortlists,
 etc). The zone transfer agent would have to account for any "mis-
 ordering" that may occur locally, but remote reordering (e.g., client
 side sortlists) of RRs is is impossible to predict. Since local
 mis-ordering is consistent, the zone transfer agents could easily
 account for this.

 Secondarily, but perhaps more subtly, the problem arises that zone
 transfers aren’t used by primary nameservers, only by secondary
 nameservers. To clarify this, the idea of "fast" or "volatile"
 subzones must be dealt with. In a volatile environment (where
 address or other RR ordering changes rapidly), the refresh rate of a
 zone must be set very low, and the TTL of the RRs handed out must
 similarly be very low. There is no use in handing out information
 with TTLs of an hour, when the conditions for ordering the RRs
 changes minutely. There must be a relatively close relationship
 between the refresh rates and TTLs of the information. Of course,
 with very low refresh rates, zone transfers between the primary and
 secondary would have to occur frequently. Given that primary and
 secondary nameservers should be topologically and geographically far
 apart, moving that much data that frequently is seen as prohibitive.
 Also; the longer the propagation time between the primary and
 secondary, the larger the window in which circumstances can change -
 thus invalidating the secondary’s information. It is generally
 thought that passing volatile information on to a secondary is fairly
 useless - if secondaries want accurate information, then they should
 calculate it themselves and not obtain it via zone transfers. This
 avoids the problem with secondaries losing contact with the primaries
 (but access to the targets of the volatile domain are still
 reachable), but the secondary has information that is growing stale.

 What is essentially necessary is a secondary (with no primary) which
 can calculate the necessary ordering of the RR data for itself (which
 also avoids the problem of different versions of domain servers
 predictively ordering RR information in different predictive
 fashions). For a volatile zone, there is no primary DNS agent, but
 rather a series of autonomous secondary agents. Each autonomous
 secondary agent is, of course, capable of calculating the ordering or
 content of the volatile RRs itself.

Brisco [Page 4]

RFC 1794 DNS Support for Load Balancing April 1995

5. Implementation

 With some help from Masataka Ohta (Tokyo Institute of Technology), I
 implemented modifications to BIND to permit the specification of the
 zone transfer program (zone transfer agent) for particular domains:

 transfer <domain-name> <program-name>

 Currently I define a separate subdomain that has a few hosts defined
 in it - all volatile information. The zone has a refresh rate of
 300, and a minimum TTL of 300 indicated. The configuration file is
 indicated as "volatile.hosts". Every 300 seconds a program "doAxfer"
 is run to do the zone transfer. The program "doAxfer" reads the file
 "volatile.hosts.template" and the file "volatile.hosts.list". The
 addresses specified in volatile.hosts.list are rotated a random
 number of times, and then substituted (in order) into
 volatile.hosts.template to generate the file volatile.hosts. The
 program "doAxfer" then exits with a value of 1 - to indicate to the
 nameserver that the zone transfer was successful, and that the file
 should be read in, and the information distributed. This results in
 a host having multiple addresses, and the addresses are randomized
 every five minutes (300 seconds).

 Two bugs continue to plague us in this endeavor. BIND currently
 considers any TTL under 300 seconds as "irrational", and substitutes
 in the value of 300 instead. This greatly hampers the functionality
 of volatile zones. In the fastest of all cases - a 0 TTL -
 information would be used once, and then thrown away. Presumably the
 new RR information could be calculated every 5 seconds, and the RRs
 handed out with a TTL of 0. It must be considered that one
 limitation of the speed of a zone is going to be the ability of a
 machine to calculate new information fast enough.

 The other bug that also effects this is that, as with TTLs, BIND
 considers any zone refresh rate under 15 minutes to be similarly
 irrational. Obviously zone refresh rates of 15 minutes is
 unacceptable for this sort of applications.

 For a work-around, the current code sets these same hard-coded values
 to 60 seconds. Sixty seconds is still large enough to avoid any
 residual bugs associated with small timer values, but is also short
 enough to allow fast subzones to be of use.

 This version of BIND is currently in release within Rutgers
 University, operating in both "fast" and normal zones.

Brisco [Page 5]

RFC 1794 DNS Support for Load Balancing April 1995

6. Performance

 While the performance of fast zones isn’t exactly stellar, it is not
 much more than the normal CPU loads induced by BIND. Testing was
 performed on a Sun Sparc-2 being used as a normal workstation, but no
 resolvers were using the name server - essentially the nameserver was
 idle. For a configuration with no fast subzones, BIND accrued 11 CPU
 seconds in 24 hours. For a configuration with one fast zone, six
 address records, and being refreshed every 300 seconds (5 minutes),
 BIND accrued 1 minute 4 seconds CPU time. For the same previous
 configuration, but being refreshed every sixty seconds, BIND accrued
 5 minutes and 38 seconds of CPU time.

 As is no great surprise, the CPU load on the serving machine was
 linear to the frequency of the refresh time. The sixty second
 refresh configuration used approximately five times as much CPU time
 as did the 300 second refresh configuration. One can easily
 extrapolate that the overall CPU utilization would be linear to the
 number of zones and the frequency of the refresh period. All of this
 is based on a shell script that always indicated that a zone update
 was necessary, a more intelligent program should realize when the
 reordering of the RRs was unnecessary and avoid such periodic zone
 reloads.

7. Acknowledgments

 Most of the ideas in this document are the results of conversations
 and proposals from many, many people - including, but not limited to,
 Robert Austein, Stuart Vance, Masataka Ohta, Marshall Rose, and the
 members of the IETF DNS Working Group.

8. References

 [1] Mockapetris, P., "Domain Names - Implementation and
 Specification", STD 13, RFC 1035, USC/Information Sciences
 Institute, November 1987.

Brisco [Page 6]

RFC 1794 DNS Support for Load Balancing April 1995

9. Security Considerations

 Security issues are not discussed in this memo.

10. Author’s Address

 Thomas P. Brisco
 Associate Director for Network Operations
 Rutgers University
 Computing Services, Telecommunications Division
 Hill Center for the Mathematical Sciences
 Busch Campus
 Piscataway, New Jersey 08855-0879
 USA

 Phone: +1-908-445-2351
 EMail: brisco@rutgers.edu

Brisco [Page 7]

