
Network Working Group J. Touch
Request for Comments: 1810 ISI
Category: Informational June 1995

 Report on MD5 Performance

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 MD5 is an authentication algorithm, which has been proposed as the
 default authentication option in IPv6. When enabled, the MD5
 algorithm operates over the entire data packet, including header.
 This RFC addresses how fast MD5 can be implemented in software and
 hardware, and whether it supports currently available IP bandwidth.
 MD5 can be implemented in existing hardware technology at 256 Mbps,
 and in software at 87 Mbps. These rates cannot support current IP
 rates, e.g., 100 Mbps TCP and 130 Mbps UDP over ATM. If MD5 cannot
 support existing network bandwidth using existing technology, it will
 not scale as network speeds increase in the future. This RFC is
 intended to alert the IP community about the performance limitations
 of MD5, and to suggest that alternatives be considered for use in
 high speed IP implementations.

Introduction

 MD5 is an authentication algorithm, which has been proposed as one
 authentication option in IPv6 [1]. RFC 1321 describes the MD5
 algorithm and gives a reference implementation [3]. When enabled,
 the MD5 algorithm operates over the entire data packet, including
 header (with dummy values for volatile fields). This RFC addresses
 how fast MD5 can be implemented in software and hardware, and whether
 it supports currently available IP bandwidth.

 This RFC considers the general issue of checksumming and security at
 high speed in IPv6. IPv6 has no header checksum (which IPv4 has
 [5]), but proposes an authentication digest over the entire body of
 the packet (including header where volatile fields are zeroed) [1].
 This RFC specifically addresses the performance of that
 authentication mechanism.

Touch Informational [Page 1]

RFC 1810 Report on MD5 Performance June 1995

Measurements

 The performance of MD5 was measured. The code was an optimized
 version of the MD5 reference implementation from the RFC [3], and is
 available for anonymous FTP [7]. The following are the results of
 the performance test "md5 -t", modified to prohibit on-chip caching
 of the data block:

 87 Mbps DEC Alpha (190 Mhz)
 33 Mbps HP 9000/720
 48 Mbps IBM RS/6000 7006 (PPC 601 @80 Mhz)
 31 Mbps Intel i486/66 NetBSD
 44 Mbps Intel Pentium/90 NeXTStep
 52 Mbps SGI/IP-20 IRIX 5.2
 37 Mbps Sun SPARC-10/51, SPARC-20/50 SunOS 4.1.3
 57 Mbps Sun SPARC-20/71 SunOS 4.1.3

 These rates do not keep up with currently available IP bandwidth,
 e.g., 100 Mbps TCP and 130 Mbps UDP over a Fore SBA-200 ATM host
 interface in a Sun SPARC-20/71.

 Values as high as 100 Mbps have been reported for the DEC Alpha (190
 Mhz). These values reflect on-chip caching of the data. It is not
 clear at this time whether in-memory, off-chip cache, or on-chip
 cache performance measures are more relevant to IP performance.

Analysis of the MD5 Algorithm

 The MD5 algorithm is a block-chained hashing algorithm. The first
 block is hashed with an initial seed, resulting in a hash. The hash
 is summed with the seed, and that result becomes the seed for the
 next block. When the last block is computed, it’s "next-seed’ value
 becomes the hash for the entire stream. Thus, the seed for block
 depends on both the hash and the seed of its preceding block. As a
 result, blocks cannot be hashed in parallel.

 Each 16-word (64-byte) block is hashed via 64 basic steps, using a
 4-word intermediate hash, and collapsing the intermediate hash at the
 end. The 64 steps are 16 groups of 4 steps, one step per
 intermediate hash word. This RFC uses the following notation (as
 from RFC-1321 [3]):

 A,B,C,D intermediate hash words
 X[i] input data block
 T[i] sine table lookup
 << i rotate i bits
 F logical functions of 3 args

Touch Informational [Page 2]

RFC 1810 Report on MD5 Performance June 1995

 The subscripts to X, I, and << are fixed for each step, and are
 omitted here. There are four different logical functions, also
 omitted. Each 4-step group looks like:

 A = B + ((A + F(B,C,D) + X[i] + T[i]) << i)
 D = A + ((D + F(A,B,C) + X[i] + T[i]) << i)
 C = D + ((C + F(D,A,B) + X[i] + T[i]) << i)
 B = C + ((B + F(C,D,A) + X[i] + T[i]) << i)

 Note that this has the general form shown below. Due to the
 complexity of the function ’f’, these equations cannot be transformed
 into a less serial set.

 A = f(D); B = f(A); C = f(B); D = f(C)

 Each steps is composed of two table lookups, one rotation, a 3-
 component logical operation, and 4 additions. The best
 parallelization possible leaves F(x,y,z) to the last step, waiting as
 long as possible for the result from the previous step. The
 resulting tree is shown below.

 (t0) B* C C D X T
 | | | | | |
 | | | | | |
 \/ \/ \ /
 t1 op op A + X T
 \ / \ / | |
 \ / \ / | |
 \/ \/ \ /
 t2 op + (t0) B* C C D A +
 \ / | | | | \ /
 \ / \ | | / \ /
 \ / \\// \/
 t3 + t1 op +
 | \ /
 | \ /
 | \ /
 t4 << B* t2 + B*
 \ / \ /
 \ / << /
 \ / \ /
 t5 + t3 +
 | |
 | |
 | |
 A** A**

 Binary operation tree Optimized hardware tree

Touch Informational [Page 3]

RFC 1810 Report on MD5 Performance June 1995

 This diagram assumes that each operation takes one unit time. The
 tree shows the items that depend on the previous step as B*, and the
 item that the next step depends on as A**. Sequences of the binary
 operation tree cannot be overlapped, but the optimized hardware tree
 can (by one time step).

 There are 4 steps processed per word of input, ignoring inter-block
 processing. The speed of the overall algorithm depends on how fast
 we can process these 4 steps, vs. the bandwidth of one word of input
 being processed.

 The binary tree takes 5 time units per step of the algorithm, and
 permits at best 3-way parallelism (at time t1). In software, this
 means it takes 5 * 4 = 20 instructions per word input. A computer
 capable of M MIPS can support a data bandwidth of M/20 * 32 Mbps,
 i.e., bits per second equal to 1.6x its MIPS rate. Therefore, a 100
 MIPS machine can support a 160 Mbps stream.

 Parallel software rate in Mbps = 1.6 * MIPS rate

 This assumes that register reads and writes are overlapped with
 computation entirely. Without any parallelism, there are 8
 operations per step, and 4 steps per word, so 32 operations per word,
 i.e., the data rate in Mbps would be identical to the MIPS rate:

 Serial software rate in Mbps = MIPS rate

 Predictions using SpecInt92 numbers as MIPS estimators can be
 compared with measured rates [2]:

 Spec- Predicted MD5
 Int92 Upper-Bound Measured Machine
 --
 122 122-195 87 Mbps DEC Alpha (190 Mhz)
 48 48- 77 33 Mbps HP 9000/720
 88 88-141 48 Mbps IBM RS/6000 7006 (PPC 601 @80 Mhz)
 32 32- 51 31 Mbps Intel i486/33 NetBSD
 90 90-144 44 Mbps Intel Pentium/90 NeXTStep
 90 90-144 52 Mbps SGI/IP-20 IRIX 5.2
 65 65-104 37 Mbps Sun SPARC-10/51 SunOS 4.1.3
 126 126-202 57 Mbps Sun SPARC-20/71 SunOS 4.1.3

 The hardware rate takes 3 time units per step, i.e. 3 * 4 = 12 time
 units per word of input. Hardware capable of doing an operation
 (e.g., 32-bit addition) in N nanoseconds can support a data bandwidth
 of 32/12/N bps, i.e., 2/3N bps.

 Hardware rate in Mbps = 8/3N * 1,000

Touch Informational [Page 4]

RFC 1810 Report on MD5 Performance June 1995

 For CMOS, an operation (32-bit addition, including register retrieval
 and storage) costs about 5.2 ns (2.6 ns per add, 2 ns for latching)
 [6]. There are 6 clocks through the most highly-parallelized
 implementation, resulting in 31.2 ns per 32-bit word, or 256 Mbps
 [6]. This will not keep pace with existing hardware, which is
 capable of link speeds in excess of 622 Mbps (ATM).

 By comparison, IPv4 uses the Internet Checksum [5]. This checksum
 can be performed in 32-bit-wide units in excess of 1 Gbps in an
 existing, low-cost PLD. The checksum can also be parallelized by
 computing partial sums and reducing the result.

One Proposed Solution

 There are several ways to increase the performance of the IPv6
 authentication mechanism. One is to increase the hardware
 performance of MD5 by slightly modifying the algorithm, the other is
 to propose a replacement algorithm. This RFC discusses briefly the
 modification of MD5 for high-speed hardware implementation.
 Alternate algorithms, capable of 3.5x the speed of MD5, have been
 discussed elsewhere [6].

 MD5 uses block chaining to ensure sensitivity to block order. Block
 chaining also prevents arbitrary parallelism, which can be as much a
 benefit to the spoofer as to the user. MD5 can be slightly altered
 to accommodate a higher bandwidth data rate. There should be a
 predetermined finite number of blocks processed from independent
 seeds, such that the I-th block is part of the "I mod K"-th chain.
 The resulting K digests themselves form a message, which can be MD5-
 encoded using a single-block algorithm. This idea was proposed
 independently by the author and by Burt Kaliski of RSA.

 The goal is to support finite parallelism to provide adequate
 bandwidth at current processing rates, without providing arbitrary
 power for spoofing. It would require further analysis to ensure that
 it provides an adequate level of security.

 For current technology and network bandwidth, a minimum of 4-way
 parallel chaining would suffice, and 16-way chaining would be
 preferable. This would support network bandwidth of 1 Gbps with 4-
 way chaining, in CMOS hardware. The chaining parallelism should be a
 multiple of 4-way, to generate a complete block of digests (4 words
 per digest, 16 words per block). This modification is believed to
 achieve the goals of MD5, without the penalties of implementation of
 the current MD5 algorithm.

Touch Informational [Page 5]

RFC 1810 Report on MD5 Performance June 1995

Security Considerations

 This entire document addresses a mechanism for providing security in
 IPv6. MD5 is the proposed default optional authentication mechanism
 for IPv6 traffic. This RFC specifically addresses the concern that
 security mechanisms such as MD5 that cannot support high bandwidth
 with available hardware will compromise their deployment, and
 ultimately, the security of the systems they are intended to
 maintain.

 The IPv6 requirements document emphasizes that IPv6 implementations
 should not compromise performance, compared to IPv4. This is
 presumably despite IPv6’s increased functionality. "Required
 optional" components of IPv6 should be held to this same standard.
 MD5 compromises performance, and so its use as a required default
 option in IPv6 should be reconsidered.

 The use of MD5 as the default to the required authentication option
 may compromise security in high-bandwidth systems, because enabling
 the option causes performance degradation, defeating its inclusion as
 an IPv6 option. As a result, the authentication option may be
 disabled entirely.

 It is important to the use of authentication in high-performance
 systems that an alternative mechanism be available in IPv6 from the
 outset. This may require the specification of multiple "required"
 authentication algorithms - one that’s slower but believed strong,
 and one that’s faster but may inspire somewhat less confidence.

Conclusions

 MD5 cannot be implemented in existing technology at rates in excess
 of 256 Mbps in hardware, or 86 Mbps in software. MD5 is a proposed
 authentication option in IPv6, a protocol that should support
 existing networking technology, which is capable of 130 Mbps UDP.

 As a result, MD5 cannot be used to support IP authentication in
 existing networks at existing rates. Although MD5 will support
 higher bandwidth in the future due to technological advances, these
 will be offset by similar advances in networking. If MD5 cannot
 support existing network bandwidth using existing technology, it will
 not be able to scale as network speeds increase in the future. This
 RFC proposes that MD5 be modified to support a 16-way block chaining,
 in order to allow existing technology (CMOS hardware) to support
 existing networking rates (1 Gbps). It further proposes that
 alternatives to MD5 be considered for use in high-speed networks.

Touch Informational [Page 6]

RFC 1810 Report on MD5 Performance June 1995

Acknowledgements

 The author would like to thank Steve Kent at BBN, Burt Kaliski,
 Victor Chang, and Steve Burnett at RSA, Ran Atkinson at the NRL, and
 the HPCC Division at ISI for reviewing the contents of this document.
 Burt independently suggested the block-parallel modification proposed
 here.

References

 [1] Atkinson, R., "IPv6 Authentication Header", Work in Progress,
 Naval Research Lab, February 1995.

 [2] DiMarco, J., "Spec Benchmark table, V. 4.12",
 <ftp://ftp.cfd.toronto.edu/pub/spectable>.

 [3] Rivest, R., "The MD5 Message-Digest Algorithm", RFC1321, MIT LCS
 & RSA Data Security, Inc., April 1992.

 [4] Partridge, C., and F. Kastenholz, "Technical Criteria for
 Choosing IP The Next Generation (IPng)", RFC 1726, BBN Systems
 and Technologies, FTP Software, December 1994.

 [5] Postel, J., "Internet Protocol - DARPA Internet Program Protocol
 Specification," STD 5, RFC 791, USC/Information Sciences
 Institute, September 1981.

 [6] Touch, J., "Performance Analysis fo MD5," to appear in ACM
 Sigcomm ’95, Boston.

 [7] Touch, J., Optimized MD5 software, <ftp://ftp.isi.edu/pub/hpcc-
 papers/touch/md5-opt.tar>.

Author’s Address

 Joe Touch
 Information Sciences Institute
 University of Southern California
 4676 Admiralty Way
 Marina del Rey, CA 90292-6695
 USA

 Phone: +1 310-822-1511 x151
 Fax: +1 310-823-6714
 URL: ftp://ftp.isi.edu/pub/hpcc-papers/touch
 EMail: touch@isi.edu

Touch Informational [Page 7]

