
Network Working Group C. Weider
Request for Comments: 1913 Bunyip
Category: Standards Track J. Fullton
 CNIDR
 S. Spero
 EIT
 February 1996

 Architecture of the Whois++ Index Service

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 The authors describe an architecture for indexing in distributed
 databases, and apply this to the WHOIS++ protocol.

1. Purpose:

 The WHOIS++ directory service [Deutsch, et al, 1995] is intended to
 provide a simple, extensible directory service predicated on a
 template-based information model and a flexible query language. This
 document describes a general architecture designed for indexing
 distributed databases, and then applys that architecture to link
 together many of these WHOIS++ servers into a distributed, searchable
 wide area directory service.

2. Scope:

 This document details a distributed, easily maintained architecture
 for providing a unified index to a large number of distributed
 WHOIS++ servers. This architecture can be used with systems other
 than WHOIS++ to provide a distributed directory service which is also
 searchable.

3. Motivation and Introduction:

 It seems clear that with the vast amount of directory information
 potentially available on the Internet, it is simply not feasible to
 build a centralized directory to serve all this information. If we
 are to distribute the directory service, the easiest (although not

Weider, et al Standards Track [Page 1]

RFC 1913 Architecture of the Whois++ Index Service February 1996

 necessarily the best) way of building the directory service is to
 build a hierarchy of directory information collection agents. In this
 architecture, a directory query is delivered to a certain agent in
 the tree, and then handed up or down, as appropriate, so that the
 query is delivered to the agent which holds the information which
 fills the query. This approach has been tried before, most notably
 in some implementations of the X.500 standard. However, there are
 number of major flaws with the approach as it has been taken. This
 new Index Service is designed to fix these flaws.

3.1. The search problem

 One of the primary assumptions made by recent implementations of
 distributed directory services is that every entry resides in some
 location in a hierarchical name space. While this arrangement is
 ideal for reading the entry once one knows its location, it is not as
 good when one is searching for the location in the namespace of those
 entries which meet some set of criteria. If the only criteria we know
 about a desired entry are items which do not appear in the namespace,
 we are forced to do a global query. Whenever we issue a global query
 (at the root of the namespace), or a query at the top of a given
 subtree in the namespace, that query is replicated to "all" subtrees
 of the starting point. The replication of the query to all subtrees
 is not necessarily a problem; queries are cheap. However, every
 server to which the query has been replicated must process that
 query, even if it has no entries which match the specified criteria.
 This part of the global query processing is quite expensive. A poorly
 designed namespace or a thin namespace can cause the vast majority of
 queries to be replicated globally, but a very broad namespace can
 cause its own navigation problems. Because of these problems, search
 has been turned off at high levels of the X.500 namespace.

3.2. The location problem

 With global search turned off, one must know in advance how the name
 space is laid out so that one can guide a query to a proper location.
 Also, the layout of the namespace then becomes critical to a user’s
 ability to find the desired information. Thus there are endless
 battles about how to lay out the name space to best serve a given set
 of users, and enormous headaches whenever it becomes apparent that
 the current namespace is unsuited to the current usages and must be
 changed (as recently happened in X.500). Also, assuming one does
 impose multiple hierarchies on the entries through use of the
 namespace, the mechanisms to maintain these multiple hierarchies in
 X.500 do not exist yet, and it is possible to move entries out from
 under their pointers. Also, there is as yet no agreement on how the
 X.500 namespace should look even for the White Pages types of
 information that is currently installed in the X.500 pilot project.

Weider, et al Standards Track [Page 2]

RFC 1913 Architecture of the Whois++ Index Service February 1996

3.3. The Yellow Pages problem

 Current implementations of this hierarchical architecture have also
 been unsuited to solving the Yellow Pages problem; that is, the
 problem of easily and flexibly building special-purpose directories
 (say of molecular biologists) and of automatically maintaining these
 directories once they have been built. In particular, the attributes
 appropriate to the new directory must be built into the namespace
 because that is the only way to segregate related entries into a
 place where they can be found without a global search. Also, there is
 a classification problem; how does one adequately specify the proper
 categories so that people other than the creator of the directory can
 find the correct subtree? Additionally, there is the problem of
 actually finding the data to put into the subtree; if one must
 traverse the hierarchy to find the data, we have to look globally for
 the proper entries.

3.4. Solutions

 The problems examined in this section can be addressed by a
 combination of two new techniques: directory meshes and forward
 knowledge.

4. Directory meshes and forward knowledge

 We’ll hold off for a moment on describing the actual architecture
 used in our solution to these problems and concentrate on a high
 level description of what solutions are provided by our conceptual
 approach. To begin with, although every entry in WHOIS++ does indeed
 have a unique identifier (resides in a specific location in the
 namespace) the navigational algorithms to reach a specific entry do
 not necessarily depend on the identifier the entry has been assigned.
 The Index Service gets around the namespace and hierarchy problems by
 creating a directory mesh on top of the entries. Each layer of the
 mesh has a set of ’forward knowledge’ which indicates the contents of
 the various servers at the next lower layer of the mesh. Thus when a
 query is received by a server in a given layer of the mesh, it can
 prune the search tree and hand the query off to only those lower
 level servers which have indicated that they might be able to answer
 it. Thus search becomes feasible at all levels of the mesh. In the
 current version of this architecture, we have chosen a certain set of
 information to hand up the mesh as forward knowledge. This may or may
 not be exactly the set of information required to construct a truly
 searchable directory, but the protocol itself doesn’t restrict the
 types of information which can be handed around.

 In addition, the protocols designed to maintain the forward knowledge
 will also work perfectly well to provide replication of servers for

Weider, et al Standards Track [Page 3]

RFC 1913 Architecture of the Whois++ Index Service February 1996

 redundancy and robustness. In this case, the forward knowledge handed
 around by the protocols is the entire database of entries held by the
 replicated server.

 Another benefit provided by the mesh of index servers is that since
 the entry identification scheme has been decoupled from the
 navigation service, multiple hierarchies can be built and easily
 maintained on top of the existing data. Also, the user does not need
 to know in advance where in the mesh the entry is contained.

 Also, the Yellow Pages problem now becomes tractable, as the index
 servers can pick and choose between information proffered by a given
 server; because we have an architecture that allows for automatic
 polling of data, special purpose directories become easy to construct
 and to maintain.

5. Components of the Index Service:

5.1. WHOIS++ servers

 The whois++ service is described in [Deutsch, et al, 1995]. As that
 service specifies only the query language, the information model, and
 the server responses, whois++ services can be provided by a wide
 variety of databases and directory services. However, to participate
 in the Index Service, that underlying database must also be able to
 generate a ’centroid’, or some other type of forward knowledge, for
 the data it serves.

5.2. Centroids as forward knowledge

 The centroid of a server is comprised of a list of the templates and
 attributes used by that server, and a word list for each attribute.
 The word list for a given attribute contains one occurrence of every
 word which appears at least once in that attribute in some record in
 that server’s data, and nothing else.

 A word is any token delimited by blank spaces, newlines, or the ’@’
 character, in the value of an attribute.

 For example, if a whois++ server contains exactly three records, as
 follows:

 Record 1 Record 2
 Template: User Template: User
 First Name: John First Name: Joe
 Last Name: Smith Last Name: Smith
 Favourite Drink: Labatt Beer Favourite Drink: Molson Beer

Weider, et al Standards Track [Page 4]

RFC 1913 Architecture of the Whois++ Index Service February 1996

 Record 3
 Template: Domain
 Domain Name: foo.edu
 Contact Name: Mike Foobar

 the centroid for this server would be

 Template: User
 First Name: Joe
 John
 Last Name: Smith
 Favourite Drink: Beer
 Labatt
 Molson

 Template: Domain
 Domain Name: foo.edu
 Contact Name: Mike
 Foobar

 It is this information which is handed up the tree to provide forward
 knowledge. As we mention above, this may not turn out to be the
 ideal solution for forward knowledge, and we suspect that there may
 be a number of different sets of forward knowledge used in the Index
 Service. However, the directory architecture is in a very real sense
 independent of what types of forward knowledge are handed around, and
 it is entirely possible to build a unified directory which uses many
 types of forward knowledge.

5.3. Index servers and Index server Architecture

 A whois++ index server collects and collates the centroids (or other
 forward knowledge) of either a number of whois++ servers or of a
 number of other index servers. An index server must be able to
 generate a centroid for the information it contains. In addition, an
 index server can index any other server it wishes, which allows one
 base level server (or index server) to participate in many
 hierarchies in the directory mesh.

5.3.1. Queries to index servers

 An index server will take a query in standard whois++ format, search
 its collections of centroids and other forward information, determine
 which servers hold records which may fill that query, and then
 notifies the user’s client of the next servers to contact to submit
 the query (referral in the X.500 model). An index server can also
 contain primary data of its own; and thus act a both an index server
 and a base level server. In this case, the index server’s response to

Weider, et al Standards Track [Page 5]

RFC 1913 Architecture of the Whois++ Index Service February 1996

 a query may be a mix of records and referral pointers.

5.3.2. Index server distribution model and centroid propogation

 The diagram on the next page illustrates how a mesh of index servers
 might be created for a set of whois++ servers. Although it looks like
 a hierarchy, the protocols allow (for example) server A to be indexed
 by both server D and by server H.

 whois++ index index
 servers servers servers
 for for
 whois++ lower-level
 servers index servers

 | |
 | A |__
 |_______| \ _______
 \----------| |
 _______ | D |__ ______
 | | /----------|_______| \ | |
 | B |__/ \----------| |
 |_______| | F |
 /----------|______|
 /
 _______ _______ /
 | | | |-
 | C |--------------| E |
 |_______| |_______|-
 \
 \
 _______ \ ______
 | | \----------| |
 | G |--------------------------------------| H |
 |_______| |______|

 Figure 1: Sample layout of the Index Service mesh

 In the portion of the index tree shown above, whois++ servers A and B
 hand their centroids up to index server D, whois++ server C hands its
 centroid up to index server E, and index servers D and E hand their
 centroids up to index server F. Servers E and G also hand their
 centroids up to H.

 The number of levels of index servers, and the number of index
 servers at each level, will depend on the number of whois++ servers
 deployed, and the response time of individual layers of the server
 tree. These numbers will have to be determined in the field.

Weider, et al Standards Track [Page 6]

RFC 1913 Architecture of the Whois++ Index Service February 1996

5.3.3. Centroid propogation and changes to centroids

 Centroid propogation is initiated by an authenticated POLL command
 (sec. 5.2). The format of the POLL command allows the poller to
 request the centroid of any or all templates and attributes held by
 the polled server. After the polled server has authenticated the
 poller, it determines which of the requested centroids the poller is
 allowed to request, and then issues a CENTROID-CHANGES report (sec.
 5.3) to transmit the data. When the poller receives the CENTROID-
 CHANGES report, it can authenticate the pollee to determine whether
 to add the centroid changes to its data. Additionally, if a given
 pollee knows what pollers hold centroids from the pollee, it can
 signal to those pollers the fact that its centroid has changed by
 issuing a DATA-CHANGED command. The poller can then determine if and
 when to issue a new POLL request to get the updated information. The
 DATA-CHANGED command is included in this protocol to allow
 ’interactive’ updating of critical information.

5.3.4. Centroid propogation and mesh traversal

 When an index server issues a POLL request, it may indicate to the
 polled server what relationship it has to the polled. This
 information can be used to help traverse the directory mesh. Two
 fields are specified in the current proposal to transmit the
 relationship information, although it is expected that richer
 relationship information will be shared in future revisions of this
 protocol.

 One field used for this information is the Hierarchy field, and can
 take on three values. The first is ’topology’, which indicates that
 the indexing server is at a higher level in the network topology
 (e.g. indexes the whole regional ISP). The second is ’geographical’,
 which indicates that the polling server covers a geographical area
 subsuming the pollee. The third is ’administrative’, which indicates
 that the indexing server covers an administrative domain subsuming
 the pollee.

 The second field used for this information is the Description field,
 which contains the DESCRIBE record of the polling server. This allows
 users to obtain richer metainformation for the directory mesh,
 enabling them to expand queries more effectively.

5.3.5. Query handling and passing algorithms

 When an index server receives a query, it searches its collection of
 centroids and determines which servers hold records which may fill
 that query. As whois++ becomes widely deployed, it is expected that
 some index servers may specialize in indexing certain whois++

Weider, et al Standards Track [Page 7]

RFC 1913 Architecture of the Whois++ Index Service February 1996

 templates or perhaps even certain fields within those templates. If
 an index server obtains a match with the query "for those template
 fields and attributes the server indexes", it is to be considered a
 match for the purpose of forwarding the query.

5.3.5.1. Query referral

 Query referral is the process of informing a client which servers to
 contact next to resolve a query. The syntax for notifying a client
 is outlined in section 5.5.

5.3.6 Loop control

 Since there are no a priori restrictions on which servers may poll
 which other servers, and since a given server may participate in many
 sub-meshes, mechanisms must be installed to allow the detection of
 cycles in the polling relationships. This is accomplished in the
 current protocol by including a hop-count on polling relationships.
 Each time a polled server generates forward information, it informs
 the polling server about its current hopcount, which is the maximum
 of the hopcounts of all the servers it polls, plus 1. A base level
 server (one which polls no other servers) will have a hopcount of 0.
 When a server decides to poll a new server, if its hopcount goes up,
 then it must information all the other servers which poll it about
 its new hopcount. A maximum hopcount (8 in the current version) will
 help the servers detect polling loops.

 A second approach to loop detection is to do all the work in the
 client; which would determine which new referrals have already
 appeared in the referral list, and then simply iterate the referral
 process until there are no new servers to ask. An algorithm to
 accomplish this in WHOIS++ is detailed in [Faltstrom 95].

6. Syntax for operations of the Index Service:

 The syntax for each protocol componenet is listed below. In addition,
 each section contains a listing of which of these attributes is
 required and optional for each of the componenet. All timestamps must
 be in the format YYYYMMDDHHMM and in GMT.

6.1. Data changed syntax

 The data changed template look like this:

DATA-CHANGED
 Version-number: // version number of index service software, used to
 // insure compatibility. Current value is 1.0
 Time-of-latest-centroid-change: // time stamp of latest centroid

Weider, et al Standards Track [Page 8]

RFC 1913 Architecture of the Whois++ Index Service February 1996

 // change, GMT
 Time-of-message-generation: // time when this message was generated,
 // GMT
 Server-handle: // IANA unique identifier for this server
 Host-Name: // Host name of this server (current name)
 Host-Port: // Port number of this server (current port)
 Best-time-to-poll: // For heavily used servers, this will identify
 // when the server is likely to be lightly
 // loaded so that response to the poll will be
 //speedy, GMT
 Authentication-type: // Type of authentication used by server, or NONE
 Authentication-data: // data for authentication
END // This line must be used to terminate the data changed
 // message

Required/optional table

Version-Number REQUIRED
Time-of-latest-centroid-change REQUIRED
Time-of-message-generation REQUIRED
Server-handle REQUIRED
Host-Name REQUIRED
Host-Port REQUIRED
Best-time-to-poll OPTIONAL
Authentication-type OPTIONAL
Authentication-data OPTIONAL

6.2. Polling syntax

POLL:
 Version-number: // version number of poller’s index software, used to
 // insure compatibility
 Type-of-poll: // type of forward data requested. CENTROID or QUERY
 // are the only one currently defined
 Poll-scope: // Selects bounds within which data will be returned.
 // See note.
 Start-time: // give me all the centroid changes starting at this
 // time, GMT
 End-time: // ending at this time, GMT
 Template: // a standard whois++ template name, or the keyword ALL,
 // for a full update.
 Field: // used to limit centroid update information to specific
 // fields, is either a specific field name, a list of field
 // names, or the keyword ALL
 Server-handle: // IANA unique identifier for the polling server.
 // this handle may optionally be cached by the polled
 // server to announce future changes
 Host-Name: // Host name of the polling server.

Weider, et al Standards Track [Page 9]

RFC 1913 Architecture of the Whois++ Index Service February 1996

 Host-Port: // Port number of the polling server.
 Hierarchy: // This field indicates the relationship which the poller
 // bears to the pollee. Typical values might include
 // ’Topology’, ’Geographical", or "Administrative"
 Description: // This field contains the DESCRIBE record of the
 // polling server
 Authentication-type: // Type of authentication used by poller, or NONE
 Authentication-data: // Data for authentication
END // This line must by used to terminate the poll message

 Note: For poll type CENTROID, the allowable values for Poll Scope are
 FULL and RELATIVE. Support of the FULL value is required, this
 provides a complete listing of the centroid or other forward
 information. RELATIVE indicates that these are the relative changes
 in the centroid since the last report to the polling server.

 For poll type QUERY, the allowable values for Poll Scope are a blank
 line, which indicates that all records are to be returned, or a valid
 WHOIS++ query, which indicates that just those records which satisfy
 the query are to be returned. N.B. Security considerations may
 require additional authentication for successful response to the
 Blank Line Poll Scope. This value has been included for server
 replication.

 A polling server may wish to index different types of information
 than the polled server has collected. The POLLED-FOR command will
 indicate which servers the polled server has contacted.

Required/Optional Table

Version-Number REQUIRED, value is 1.0
Type-Of-Poll REQUIRED, values CENTROID and QUERY are required
Poll-scope REQUIRED If Type-of-poll is CENTROID, FULL is required,
 RELATIVE is optional
 If Type-of-poll is QUERY, Blank line is
 required, and WHOIS++-type queries are
 required
Start-time OPTIONAL
End-Time OPTIONAL
Template REQUIRED
Field REQUIRED
Server-handle REQUIRED
Host-Name REQUIRED
Host-Port REQUIRED
Hierarchy OPTIONAL
Description OPTIONAL
Authentication-Type: OPTIONAL
Authentication-data: OPTIONAL

Weider, et al Standards Track [Page 10]

RFC 1913 Architecture of the Whois++ Index Service February 1996

Example of a POLL command:
POLL:
 Version-number: 1.0
 Type-of-poll: CENTROID
 Poll-scope: FULL
 Start-time: 199501281030+0100
 Template: ALL
 Field: ALL
 Server-handle: BUNYIP01
 Host-Name: services.bunyip.com
 Host-Port: 7070
 Hierarchy: Geographical
 # END

6.3. Centroid change report

 As the centroid change report contains nested multiply-occuring
 blocks, each multiply occurring block is surrounded *in this paper*
 by curly braces ’{’, ’}’. These curly braces are NOT part of the
 syntax, they are for identification purposes only.

 The syntax of a Data: item is either a list of words, one word per
 line, or the keyword:

 ANY

 The keyword ANY as the only item of a Data: list means that any value
 for this field should be treated as a hit by the indexing server.

 The field Any-field: needs more explanation than can be given in the
 body of the syntax description below. It can take two values, True or
 False. If the value is True, the pollee is indicating that there are
 fields in this template which are not being exported to the polling
 server, but wishes to treat as a hit. Thus, when the polling server
 gets a query which has a term requesting a field not in this list for
 this template, the polling server will treat that term as a ’hit’.
 If the value is False, the pollee is indicating that there are no
 other fields for this template which should be treated as a hit. This
 field is required because the basic model for the WHOIS++ query
 syntax requires that the results of each search term be ’and’ed
 together. This field allows polled servers to export data only for
 non-sensitive fields, yet still get referrals of queries which
 contain sensitive terms.

 IMPORTANT: The data listed in the centroid must be in the ISO-8859-1
 character set in this version of the indexing protocol. Use of any
 other character set is a violation of the protocol. Note that the
 base-level server is also specified to use ISO-8859-1 [Deutsch, et

Weider, et al Standards Track [Page 11]

RFC 1913 Architecture of the Whois++ Index Service February 1996

 al, 1995].

CENTROID-CHANGES
 Version-number: // version number of pollee’s index software, used to
 // insure compatibility
 Start-time: // change list starting time, GMT
 End-time: // change list ending time, GMT
 Server-handle: // IANA unique identifier of the responding server
 Case-sensitive: // states whether data is case sensitive or case
 // insensitive. values are TRUE or FALSE
 Authentication-type: // Type of authentication used by pollee, or NONE
 Authentication-data: // Data for authentication
 Compression-type: // Type of compression used on the data, or NONE
 Size-of-compressed-data: // size of compressed data if compression
 // is used
 Operation: // One of 3 keywords: ADD, DELETE, FULL
 // ADD - add these entries to the centroid for this server
 // DELETE - delete these entries from the centroid of this
 // server
 // FULL - the full centroid as of end-time follows
{ // The multiply occurring template block starts here
BEGIN TEMPLATE
 Template: // a standard whois++ template name
 Any-field: // TRUE or FALSE. See beginning of 6.3 for explanation.
 { // the template contains multiple field blocks
BEGIN FIELD
 Field: // a field name within that template
 Data: // Either the keyword *ANY*, or
 // the word list itself, one per line, cr/lf terminated,
 // each line starting with a dash character (’-’).
END FIELD
 } // the field ends with END FIELD
END TEMPLATE
} // the template block ends with END TEMPLATE
END CENTROID-CHANGES // This line must be used to terminate the
 // centroid change report

 For each template, all fields must be listed, or queries will not be
 referred correctly.

Required/Optional table

Version-number REQUIRED, value is 1.0
Start-time REQUIRED (even if the centroid type is FULL)
End-time REQUIRED (even if the centroid type is FULL)
Server-handle REQUIRED
Case-Sensitive OPTIONAL
Authentication-Type OPTIONAL

Weider, et al Standards Track [Page 12]

RFC 1913 Architecture of the Whois++ Index Service February 1996

Authentication-Data OPTIONAL
Compression-type OPTIONAL
Size-of-compressed-data OPTIONAL (even if compression is used)
Operation OPTIONAL, if used, upport for all three values is required
Tokenization-type OPTIONAL
#BEGIN TEMPLATE REQUIRED
Template REQUIRED
Any-field REQUIRED
#BEGIN FIELD REQUIRED
Field REQUIRED
Data REQUIRED
#END FIELD REQUIRED
#END TEMPLATE REQUIRED
#END CENTROID-CHANGES REQUIRED

Example:

CENTROID-CHANGES
 Version-number: 1.0
 Start-time: 197001010000
 End-time: 199503012336
 Server-handle: BUNYIP01
BEGIN TEMPLATE
 Template: USER
 Any-field: TRUE
BEGIN FIELD
 Field: Name
 Data: Patrik
-Faltstrom
-Malin
-Linnerborg
#END FIELD
#BEGIN FIELD
 Field: Email
 Data: paf@bunyip.com
-malin.linnerborg@paf.se
END FIELD
END TEMPLATE
END CENTROID-CHANGES

6.4 QUERY and POLLEES responses

 The response to a QUERY command is done in WHOIS++ format.

Weider, et al Standards Track [Page 13]

RFC 1913 Architecture of the Whois++ Index Service February 1996

6.5. Query referral

 When referrals are included in the body of a response to a query,
 each referral is listed in a separate SERVER-TO-ASK block as shown
 below.

SERVER-TO-ASK
 Version-number: // version number of index software, used to insure
 // compatibility
 Body-of-Query: // the original query goes here
 Server-Handle: // WHOIS++ handle of the referred server
 Host-Name: // DNS name or IP address of the referred server
 Port-Number: // Port number to which to connect, if different from the
 // WHOIS++ port number

END

Required/Optional table

Version-number REQUIRED, value should be 1.0
Body-of-query OPTIONAL
Server-Handle REQUIRED
Host-Name REQUIRED
Port-Number OPTIONAL, must be used if different from port 63

Example:

SERVER-TO-ASK
 Version-Number: 1.0
 Server-Handle: SUNETSE01
 Host-Name: sunic.sunet.se
 Port-Number: 63
END

7: Reply Codes

 In addition to the reply codes listed in [Deutsch 95] for the basic
 WHOIS++ client/server interaction, the following reply codes are used
 in version 1.0 of this protocol.

113 Requested method not available Unable to provide a requested
 compression method. Contacted
 server will send requested
 data in different format.

227 Update request acknowledged A DATA-CHANGED transmission
 has been accepted and logged
 for further action.

Weider, et al Standards Track [Page 14]

RFC 1913 Architecture of the Whois++ Index Service February 1996

503 Required attribute missing A REQUIRED attribute is
 missing in an interaction.

504 Desired server unreachable The desired server is
 unreachable.

505 Desired server unavailable The desired server fails to
 respond to requests, but host
 is still reachable.

8. References

[Deutsch 95] Deutsch, et al., "Architecture of the WHOIS++ service",
 RFC 1835, August 1995.

[Faltstrom 95] Faltstrom, P., et al., "How to Interact with a WHOIS++
 Mesh, RFC 1914, February 1996.

9. Security Considerations

 Security issues are not discussed in this memo.

Weider, et al Standards Track [Page 15]

RFC 1913 Architecture of the Whois++ Index Service February 1996

10. Authors’ Addresses

 Chris Weider
 Bunyip Information Systems, Inc.
 310 St. Catherine St. West
 Montreal, PQ H2X 2A1
 CANADA

 Phone: +1-514-875-8611
 Fax: +1-514-875-6134
 EMail: clw@bunyip.com

 Jim Fullton
 MCNC Center for Communications
 Post Office Box 12889
 3021 Cornwallis Road
 Research Triangle Park
 North Carolina 27709-2889

 Phone: 410-795-5422
 Fax: 410-795-5422
 EMail: fullton@cnidr.org

 Simon Spero
 EMail: ses@eit.com

Weider, et al Standards Track [Page 16]

