Net wor k Wor ki ng Group C. Weider

Request for Comments: 1913 Bunyi p
Cat egory: Standards Track J. Fullton
CNI DR

S. Spero

BEIT

February 1996

Architecture of the Wois++ | ndex Service
Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Abstract

The aut hors describe an architecture for indexing in distributed
dat abases, and apply this to the WHO S++ protocol .

1. Purpose:

The WHO S++ directory service [Deutsch, et al, 1995] is intended to
provide a sinple, extensible directory service predicated on a

tenpl at e-based infornmati on nodel and a flexible query |anguage. This
document describes a general architecture designed for indexing

di stributed databases, and then applys that architecture to |ink

t oget her many of these WHO S++ servers into a distributed, searchable
wi de area directory service.

2. Scope:

This docunent details a distributed, easily maintained architecture
for providing a unified index to a | arge number of distributed

WHO S++ servers. This architecture can be used with systens ot her
than WHO S++ to provide a distributed directory service which is al so
sear chabl e.

3. Mdtivation and Introduction:
It seenms clear that with the vast anount of directory information
potentially available on the Internet, it is sinply not feasible to

build a centralized directory to serve all this information. If we
are to distribute the directory service, the easiest (although not

Wei der, et al St andards Track [Page 1]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

necessarily the best) way of building the directory service is to
build a hierarchy of directory information collection agents. In this
architecture, a directory query is delivered to a certain agent in
the tree, and then handed up or down, as appropriate, so that the
query is delivered to the agent which holds the information which
fills the query. This approach has been tried before, nost notably
in sone inplenentations of the X 500 standard. However, there are
nunber of najor flaws with the approach as it has been taken. This
new I ndex Service is designed to fix these flaws.

3.1. The search problem

One of the primary assunptions nmade by recent inplenentations of
distributed directory services is that every entry resides in sone
location in a hierarchical name space. VWile this arrangenment is

i deal for reading the entry once one knows its location, it is not as
good when one is searching for the location in the nanespace of those
entries which neet sone set of criteria. If the only criteria we know
about a desired entry are items which do not appear in the nanespace,
we are forced to do a gl obal query. Wienever we issue a gl obal query
(at the root of the namespace), or a query at the top of a given
subtree in the nanespace, that query is replicated to "all" subtrees
of the starting point. The replication of the query to all subtrees
is not necessarily a problem queries are cheap. However, every
server to which the query has been replicated nust process that

query, even if it has no entries which match the specified criteria.
This part of the global query processing is quite expensive. A poorly
desi gned namespace or a thin namespace can cause the vast majority of
queries to be replicated globally, but a very broad nanespace can
cause its own navigation problens. Because of these problens, search
has been turned off at high levels of the X 500 nanmespace.

3.2. The location problem

Wth gl obal search turned off, one nust know in advance how t he nane
space is laid out so that one can guide a query to a proper |ocation
Al so, the layout of the nanespace then becones critical to a user’s
ability to find the desired informati on. Thus there are endl ess
battl es about how to lay out the name space to best serve a given set
of users, and enornous headaches whenever it becones apparent that
the current nanmespace is unsuited to the current usages and nust be
changed (as recently happened in X 500). Also, assum ng one does

i mpose nultiple hierarchies on the entries through use of the
namespace, the nechanisns to maintain these nultiple hierarchies in
X. 500 do not exist yet, and it is possible to nove entries out from
under their pointers. Also, there is as yet no agreement on how the
X. 500 nanespace should | ook even for the Wite Pages types of
information that is currently installed in the X 500 pilot project.

Wei der, et al St andards Track [Page 2]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

3.3. The Yel | ow Pages probl em

Current inplenmentations of this hierarchical architecture have also
been unsuited to solving the Yell ow Pages problem that is, the
probl em of easily and flexibly building special-purpose directories
(say of nol ecul ar biol ogists) and of autonatically maintaining these
directories once they have been built. In particular, the attributes
appropriate to the new directory nust be built into the nanespace
because that is the only way to segregate related entries into a

pl ace where they can be found without a gl obal search. Also, there is
a classification problem how does one adequately specify the proper
categories so that people other than the creator of the directory can
find the correct subtree? Additionally, there is the probl em of
actually finding the data to put into the subtree; if one nust
traverse the hierarchy to find the data, we have to | ook globally for
the proper entries.

3.4. Sol utions

The problens examined in this section can be addressed by a
conbi nati on of two new techni ques: directory meshes and forward
know edge.

4. Directory nmeshes and forward know edge

We'll hold off for a nonment on describing the actual architecture
used in our solution to these problens and concentrate on a high

| evel description of what solutions are provided by our conceptua
approach. To begin with, although every entry in WHO S++ does i ndeed
have a unique identifier (resides in a specific location in the
nanespace) the navigational algorithns to reach a specific entry do
not necessarily depend on the identifier the entry has been assigned.
The I ndex Service gets around the namespace and hi erarchy problens by
creating a directory nmesh on top of the entries. Each |layer of the
mesh has a set of ’'forward know edge’ which indicates the contents of
the various servers at the next |ower |layer of the nmesh. Thus when a
query is received by a server in a given layer of the nesh, it can
prune the search tree and hand the query off to only those | ower

| evel servers which have indicated that they might be able to answer
it. Thus search becones feasible at all levels of the nesh. In the
current version of this architecture, we have chosen a certain set of
information to hand up the nesh as forward knowl edge. This may or nay
not be exactly the set of infornmation required to construct a truly
searchabl e directory, but the protocol itself doesn't restrict the
types of information which can be handed around.

In addition, the protocols designed to maintain the forward know edge
will also work perfectly well to provide replication of servers for

Wei der, et al St andards Track [Page 3]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

5.

redundancy and robustness. In this case, the forward know edge handed
around by the protocols is the entire database of entries held by the
replicated server.

Anot her benefit provided by the nesh of index servers is that since
the entry identification schene has been decoupled fromthe

navi gation service, nultiple hierarchies can be built and easily

mai nt ai ned on top of the existing data. Also, the user does not need
to know i n advance where in the nesh the entry is contained.

Al so, the Yell ow Pages probl em now becones tractable, as the index
servers can pick and choose between information proffered by a given
server; because we have an architecture that allows for automatic

pol ling of data, special purpose directories beconme easy to construct
and to maintain.

Components of the Index Service:

5.1. WHO S++ servers

The whoi s++ service is described in [Deutsch, et al, 1995]. As that
service specifies only the query | anguage, the information nodel, and
the server responses, whois++ services can be provided by a w de

vari ety of databases and directory services. However, to participate
in the Index Service, that underlying database nust also be able to
generate a 'centroid’, or sone other type of forward know edge, for
the data it serves

5.2. Centroids as forward know edge

The centroid of a server is conprised of a list of the tenplates and
attributes used by that server, and a word list for each attribute.
The word list for a given attribute contains one occurrence of every
word whi ch appears at |east once in that attribute in some record in
that server’s data, and nothing el se

A word is any token delimted by blank spaces, newines, or the '@
character, in the value of an attribute.

For exanple, if a whois++ server contains exactly three records, as
fol | ows:

Record 1 Record 2

Tenpl ate: User Tenpl ate: User

First Nane: John First Nanme: Joe

Last Nane: Snith Last Nane: Snith

Favourite Drink: Labatt Beer Favourite Drink: Ml son Beer

Wei der, et al St andards Track [Page 4]

RFC 1913 Archi tecture of the Whoi s++ | ndex Service

Record 3

Tenpl at e: Donmi n

Domai n Nane: foo.edu
Cont act Nane: M ke Foobar

the centroid for this server would be

Tenpl at e:
First Nane:

Last Nane:
Favourite Drink:

Tenpl at e:
Domai n Nane:
Cont act Nane:

User
Joe
John
Smth
Beer
Labat t
Mol son

Donmai n
f 0o. edu
M ke
Foobar

February 1996

It is this information which is handed up the tree to provide forward

know edge. As we nention above,

i deal solution for forward know edge
be a nunber of different sets of forward know edge used in the |ndex
the directory architecture is in a very real sense
i ndependent of what types of forward know edge are handed around, and
it is entirely possible to build a unified directory which uses many
types of forward know edge.

Servi ce. However,

5.3. Index servers and | ndex server Architecture

this may not turn out to be the
and we suspect that there may

A whoi s++ index server collects and collates the centroids (or other
forward know edge) of either a nunber of whois++ servers or of a

nunber of other

i ndex servers

An index server
generate a centroid for the information it contains.
i ndex server can index any other server it wi shes,

nust be able to
In addition, an
whi ch al | ows one

base | evel server (or index server) to participate in nmany
hierarchies in the directory nesh.

5.3.1. Queries to index servers

An index server wll

take a query in standard whoi s++ fornmat, search

its collections of centroids and other forward infornation, determ ne

whi ch servers hold records which may fill

t hat query,

and t hen

notifies the user’s client of the next servers to contact to submt

the query (referra
contain primary data of
server.

and a base | evel

Wei der, et al

St andards Track

in the X 500 nodel).

In this case

An i ndex server can al so
its own; and thus act a both an index server
the index server’s response to

[Page 5]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

a query may be a nix of records and referral pointers.
5.3.2. Index server distribution nodel and centroid propogation

The di agram on the next page illustrates how a nesh of index servers
m ght be created for a set of whois++ servers. Although it |ooks |ike
a hierarchy, the protocols allow (for exanple) server A to be indexed
by both server D and by server H

whoi s++ i ndex i ndex
servers servers servers
for for
whoi s++ | oner -1 evel
servers i ndex servers
| |
| A |
| [
\-mmeee - | |
_______ | D |__ -
	[=mmmmmmn--		\	
B	__/ \ e			
		F		
[=mmmmmmae-				
/				
______________ /				
			-	
C	---r----mm---	E		
			-	
\				
\				
_______ \ -				
	\ - -			
G	-mrrmrmrr e	H		

Figure 1: Sanple layout of the Index Service nesh

In the portion of the index tree shown above, whoi s++ servers A and B
hand their centroids up to index server D, whois++ server C hands its
centroid up to index server E, and index servers D and E hand their
centroids up to index server F. Servers E and G al so hand their
centroids up to H

The nunber of levels of index servers, and the nunber of index
servers at each level, will depend on the nunmber of whois++ servers
depl oyed, and the response tinme of individual |ayers of the server
tree. These nunmbers will have to be deternmined in the field

Wei der, et al St andards Track [Page 6]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

5.3.3. Centroid propogation and changes to centroids

Centroid propogation is initiated by an authenticated POLL comand
(sec. 5.2). The format of the POLL command allows the poller to
request the centroid of any or all tenplates and attributes held by
the polled server. After the polled server has authenticated the
poller, it determi nes which of the requested centroids the poller is
all oned to request, and then issues a CENTRO D- CHANGES report (sec
5.3) to transnit the data. Wen the poller receives the CENTRO D
CHANGES report, it can authenticate the pollee to determn ne whether
to add the centroid changes to its data. Additionally, if a given
pol | ee knows what pollers hold centroids fromthe pollee, it can
signal to those pollers the fact that its centroid has changed by

i ssui ng a DATA- CHANGED comrand. The poller can then deternine if and
when to issue a new POLL request to get the updated information. The
DATA- CHANGED comand is included in this protocol to all ow
“interactive’ updating of critical information

5.3.4. Centroid propogation and nesh traversa

When an index server issues a POLL request, it may indicate to the
poll ed server what relationship it has to the polled. This

i nformati on can be used to help traverse the directory nmesh. Two
fields are specified in the current proposal to transnit the
relationship infornmation, although it is expected that richer
relationship information will be shared in future revisions of this
pr ot ocol

One field used for this information is the Hierarchy field, and can
take on three values. The first is 'topology' , which indicates that
the indexing server is at a higher level in the network topol ogy
(e.g. indexes the whole regional |ISP). The second is ’'geographical’
whi ch indicates that the polling server covers a geographical area
subsum ng the pollee. The third is "adninistrative' , which indicates
that the indexing server covers an adm nistrative domai n subsum ng

t he pol |l ee.

The second field used for this information is the Description field,
whi ch contains the DESCRIBE record of the polling server. This allows
users to obtain richer netainformation for the directory nesh,
enabling themto expand queries nore effectively.

5.3.5. Query handling and passing al gorithns
When an index server receives a query, it searches its collection of
centroids and determ nes which servers hold records which rmay fil

that query. As whoi s++ becones w dely depl oyed, it is expected that
sone i ndex servers may specialize in indexing certain whois++

Wei der, et al St andards Track [Page 7]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

tenpl ates or perhaps even certain fields within those tenplates. |f
an index server obtains a match with the query "for those tenplate

fields and attributes the server indexes", it is to be considered a
mat ch for the purpose of forwarding the query.

5.3.5.1. Query referra

Query referral is the process of informing a client which servers to
contact next to resolve a query. The syntax for notifying a client
is outlined in section 5.5.

5.3.6 Loop contro

Since there are no a priori restrictions on which servers may pol

whi ch other servers, and since a given server nmay participate in nmany
sub- neshes, nechani sns nmust be installed to allow the detection of
cycles in the polling relationships. This is acconmplished in the
current protocol by including a hop-count on polling relationships.
Each time a polled server generates forward information, it inforns
the polling server about its current hopcount, which is the nmaxi num
of the hopcounts of all the servers it polls, plus 1. A base leve

server (one which polls no other servers) will have a hopcount of 0
When a server decides to poll a new server, if its hopcount goes up
then it nust information all the other servers which poll it about

its new hopcount. A maxi num hopcount (8 in the current version) wll
hel p the servers detect polling | oops.

A second approach to | oop detection is to do all the work in the
client; which would deternine which new referrals have al ready
appeared in the referral list, and then sinply iterate the referra
process until there are no new servers to ask. An algorithmto
acconmplish this in WHO S++ is detailed in [Faltstrom 95].

6. Syntax for operations of the |Index Service:
The syntax for each protocol conponenet is listed below. In addition
each section contains a listing of which of these attributes is
requi red and optional for each of the conponenet. Al timestanps nust
be in the format YYYYMVDDHHW and in GMI

6. 1. Data changed synt ax
The data changed tenplate | ook like this:

DATA- CHANGED

Ver si on-nunber: // version nunber of index service software, used to

/] insure conpatibility. Current value is 1.0
Ti me-of -l atest-centroi d-change: // tine stanp of latest centroid

Wei der, et al St andards Track [Page 8]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

/1l change, GMVI
Ti me- of - message-generation: // tine when this message was generat ed,
Il GMT
Server-handl e: // |1 ANA unique identifier for this server
Host - Nanme: // Host nane of this server (current nane)
Host-Port: // Port nunber of this server (current port)
Best-time-to-poll: // For heavily used servers, this will identify
/'l when the server is likely to be lightly
/'l 1 oaded so that response to the poll wll be
/| speedy, GMI
Aut henti cation-type: // Type of authentication used by server, or NONE
Aut hentication-data: // data for authentication
END // This line nmust be used to terninate the data changed
/'l nmessage

Requi red/ optional table

Ver si on- Nunber REQUI RED
Ti me- of - | at est - centroi d-change REQUI RED

Ti me- of - nessage- generati on REQUI RED
Server - handl e REQUI RED

Host - Nane REQUI RED

Host - Por t REQUI RED

Best -ti me-to- pol | OPTI ONAL

Aut hent i cati on-type OPTI ONAL

Aut hent i cati on-dat a OPTI ONAL

6.2. Polling syntax

POLL:
Ver si on-nunber: // version nunber of poller’s index software, used to
/1 insure conpatibility
Type-of-poll: // type of forward data requested. CENTRO D or QUERY
/1l are the only one currently defined
Pol | -scope: // Selects bounds within which data will be returned.
/'l See note.
Start-tinme: // give nme all the centroid changes starting at this
Il time, GMTI
End-time: // ending at this tinme, GV
Tenpl ate: // a standard whoi s++ tenplate nanme, or the keyword ALL,
// for a full update.
Fi el d: /1 used to linmt centroid update information to specific
/1 fields, is either a specific field nanme, a list of field
/'l nanes, or the keyword ALL
Server-handle: // | ANA unique identifier for the polling server.
/1 this handle may optionally be cached by the polled
/'l server to announce future changes
Host - Nanme: // Host nane of the polling server

Wei der, et al St andards Track [Page 9]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

Host-Port: // Port nunber of the polling server
Hi erarchy: // This field indicates the relationship which the poller
/'l bears to the pollee. Typical values mght include
/1l *Topol ogy’, ’'Geographical", or "Adm nistrative"
Description: // This field contains the DESCRI BE record of the
/1 polling server
Aut hentication-type: // Type of authentication used by poller, or NONE
Aut hentication-data: // Data for authentication
END // This line nmust by used to term nate the poll nessage

Note: For poll type CENTRO D, the all owable values for Poll Scope are
FULL and RELATIVE. Support of the FULL value is required, this
provides a conplete listing of the centroid or other forward

i nformati on. RELATIVE indicates that these are the relative changes
in the centroid since the last report to the polling server

For poll type QUERY, the all owable values for Poll Scope are a blank
line, which indicates that all records are to be returned, or a valid
WHO S++ query, which indicates that just those records which satisfy
the query are to be returned. N. B. Security considerations may
requi re additional authentication for successful response to the

Bl ank Line Poll Scope. This value has been included for server
replication.

A polling server may wish to index different types of information
than the polled server has collected. The POLLED- FOR comand wil |
i ndi cate which servers the polled server has contacted.

Requi red/ Opti onal Tabl e

Ver si on- Nunber REQUI RED, value is 1.0

Type- O - Pol | REQUI RED, val ues CENTRO D and QUERY are required

Pol | - scope REQUI RED |f Type-of-poll is CENTROD, FULL is required
RELATI VE i s optiona
If Type-of-poll is QUERY, Blank line is
requi red, and WHO S++-type queries are

required
Start-tinme OPTI ONAL
End- Ti me OPTI ONAL
Tenpl at e REQUI RED
Field REQUI RED
Server - handl e REQUI RED
Host - Nane REQUI RED
Host - Por t REQUI RED
Hi erar chy OPTI ONAL
Description OPTI ONAL
Aut hent i cati on- Type: OPTI ONAL
Aut henti cati on- dat a: OPTI ONAL

Wei der, et al St andards Track [Page 10]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

Exanpl e of a POLL comand:
POLL:

Ver si on- nunber: 1.0
Type-of - pol | : CENTRO D

Pol | - scope: FULL

Start-tinme: 199501281030+0100
Tenpl ate: ALL

Field: ALL

Server - handl e: BUNYI PO1
Host - Name: servi ces. bunyi p. com
Host-Port: 7070

Hi erarchy: Geographica

END

6.3. Centroid change report

As the centroid change report contains nested multiply-occuring

bl ocks, each multiply occurring block is surrounded *in this paper*
by curly braces "{', '}’'. These curly braces are NOT part of the
syntax, they are for identification purposes only.

The syntax of a Data: itemis either a list of words, one word per
line, or the keyword:

ANY

The keyword ANY as the only itemof a Data: l|ist nmeans that any val ue
for this field should be treated as a hit by the indexing server.

The field Any-field: needs nore explanation than can be given in the
body of the syntax description below It can take two val ues, True or
False. If the value is True, the pollee is indicating that there are
fields in this tenplate which are not being exported to the polling
server, but wishes to treat as a hit. Thus, when the polling server
gets a query which has a termrequesting a field not in this list for
this tenplate, the polling server will treat that termas a "hit’.

If the value is False, the pollee is indicating that there are no
other fields for this tenplate which should be treated as a hit. This
field is required because the basic nodel for the WHO S++ query
syntax requires that the results of each search termbe ’"and ed
together. This field allows polled servers to export data only for
non-sensitive fields, yet still get referrals of queries which
contain sensitive terns.

| MPORTANT: The data listed in the centroid nmust be in the | SO 8859-1
character set in this version of the indexing protocol. Use of any
other character set is a violation of the protocol. Note that the
base-l evel server is also specified to use | SO 8859-1 [Deutsch, et

Wei der, et al St andards Track [Page 11]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

al, 1995].

CENTRO D- CHANGES
Ver si on-nunber: // version nunber of pollee’s index software, used to
/1 insure conpatibility
Start-tinme: // change list starting tine, GMI
End-time: // change list ending tine, GMI
Server-handle: // | ANA unique identifier of the respondi ng server
Case-sensitive: // states whether data is case sensitive or case
/1 insensitive. values are TRUE or FALSE
Aut henti cation-type: // Type of authentication used by pollee, or NONE
Aut hentication-data: // Data for authentication
Conpression-type: // Type of conpression used on the data, or NONE
Si ze-of -conpressed-data: // size of conpressed data if conpression
/Il is used
Qperation: // One of 3 keywords: ADD, DELETE, FULL
// ADD - add these entries to the centroid for this server
/| DELETE - delete these entries fromthe centroid of this
/'l server
/1 FULL - the full centroid as of end-tine foll ows
{ // The multiply occurring tenplate bl ock starts here
BEGA N TEMPLATE
Tenpl ate: // a standard whoi s++ tenpl ate name
Any-field: // TRUE or FALSE. See beginning of 6.3 for explanation
{ // the tenplate contains nultiple field bl ocks
BEG N FI ELD
Field: // a field name within that tenpl ate
Data: // Either the keyword *ANY*, or
/1 the word list itself, one per line, cr/lf term nated,
/1 each line starting with a dash character ('-').
END FI ELD
} // the field ends with END FI ELD
END TEMPLATE
} // the tenplate block ends with END TEMPLATE
END CENTRO D- CHANGES // This line nust be used to term nate the
/1 centroid change report

For each tenplate, all fields nust be listed, or queries will not be
referred correctly.

Requi red/ Optional table

Ver si on- nunber REQUI RED, value is 1.0

Start-tinme REQUI RED (even if the centroid type is FULL)
End-tinme REQUI RED (even if the centroid type is FULL)
Server - handl e REQUI RED

Case-Sensitive OPTI ONAL

Aut hent i cati on- Type OPTI ONAL

Wei der, et al St andards Track [Page 12]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

Aut hent i cati on-Dat a OPTI ONAL

Conpr essi on-type OPTI ONAL

Si ze- of - conpressed-data OPTI ONAL (even if conpression is used)
Qper ati on OPTI ONAL, if used, upport for all three values is required
Tokeni zati on-type OPTI ONAL

#BEG N TEMPLATE REQUI RED

Tenpl at e REQUI RED

Any-field REQUI RED

#BEG N FI ELD REQUI RED

Field REQUI RED

Dat a REQUI RED

#END FI ELD REQUI RED

#END TEMPLATE REQUI RED
#END CENTRO D- CHANGES REQUI RED

Exanpl e:

CENTRO D- CHANGES
Ver si on-nunber: 1.0
Start-tine: 197001010000
End-tinme: 199503012336
Ser ver - handl e: BUNYI PO1
BEG N TEMPLATE
Tenpl at e: USER
Any-field: TRUE
BEA N FI ELD
Fi el d: Nane
Data: Patrik
-Fal tstrom
-Malin
- Li nnerborg
#END FI ELD
#BEGQ N FlI ELD
Field: Email
Dat a: paf @unyi p. com
-malin.linnerborg@af.se
END FI ELD
END TEMPLATE
END CENTRO D- CHANGES

6.4 QUERY and POLLEES responses

The response to a QUERY comand is done in WHO S++ fornat.

Wei der, et al St andards Track [Page 13]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996

6.5. Query referral

Wien referrals are included in the body of a response to a query,
each referral is listed in a separate SERVER-TO ASK bl ock as shown
bel ow.

SERVER- TO- ASK

Ver si on-nunber: // version nunber of index software, used to insure
/] conpatibility

Body- of -Query: // the original query goes here

Server-Handl e: // WHO S++ handl e of the referred server

Host - Nanme: // DNS nane or | P address of the referred server

Port-Nunber: // Port nunber to which to connect, if different fromthe
/1 WHO S++ port nunber

END
Requi red/ Optional table

Ver si on- nunber REQUI RED, val ue should be 1.0

Body- of - query OPTI ONAL

Server - Handl e REQUI RED

Host - Name REQUI RED

Port - Number OPTIONAL, nust be used if different fromport 63

Exanpl e:

SERVER- TO- ASK
Ver si on- Nunber: 1.0
Server - Handl e: SUNETSEO1
Host - Name: suni c. sunet. se
Port - Nunber: 63

END

7: Reply Codes

In addition to the reply codes listed in [Deutsch 95] for the basic
WHO S++ client/server interaction, the following reply codes are used
in version 1.0 of this protocol.

113 Requested nethod not avail abl e Unabl e to provide a requested
conpressi on nethod. Contacted
server will send requested
data in different fornat.

227 Update request acknow edged A DATA- CHANGED t r ansmi ssi on

has been accepted and | ogged
for further action.

Wei der, et al St andards Track [Page 14]

RFC 1913 Architecture of the Wois++ | ndex Service February 1996
503 Required attribute m ssing A REQUI RED attribute is
mssing in an interaction.

504 Desired server unreachabl e The desired server is
unr eachabl e.

505 Desired server unavail abl e The desired server fails to
respond to requests, but host
is still reachable.

8. References
[Deutsch 95] Deutsch, et al., "Architecture of the WHO S++ service"
RFC 1835, August 1995.
[Faltstrom 95] Faltstrom P., et al., "Howto Interact with a WHO S++
Mesh, RFC 1914, February 1996.

9. Security Considerations

Security issues are not discussed in this nmeno.

Wei der, et al St andards Track [Page 15]

RFC 1913

10. Authors’ Addresses

Chris Wi der

Bunyi p I nformation Systenms, Inc.

310 St. Catherine St. West
Montreal , PQ H2X 2Al1
CANADA

Phone: +1-514-875-8611
Fax: +1-514-875-6134
EMai | : cl w@unyi p. com

JimFullton

MCNC Center for Conmuni cations
Post Office Box 12889

3021 Cornwal Ii s Road

Research Triangle Park

North Carolina 27709- 2889

Phone: 410-795-5422
Fax: 410- 795-5422
EMail: fullton@nidr.org

Si ron Spero
EMail: ses@it.com

Wei der, et al St andards Track

Archi tecture of the Whoi s++ | ndex Service

February 1996

[Page 16]

