Vint Cerf - UCLA

Eric Harslem - Rand

RFC 194 John Heafner - Rand
Nl C 7139
Category: D. 4 Bob Metcalfe - MT

Updat es: None
Obsol et es: None JimWite - UCSB

THE DATA RECONFI GURATI ON SERVI CE - -

COWPI LER/ | NTERPRETER | MPLEMENTATI ON NOTES

. NEW FEATURES OF THE LANGUAGE

The meaning of S(#,E ,I) is only find an arbitrary
nunber (<=256) of EBCDI C characters and store themin
identifier S. This descriptor is termnated only by
an invalid EBCDI C or by exceedi ng nmaxi num perm ssi bl e

character count (256).

2. The assignnent (S .<=. T) causes all attributes of
identifier Tto be givento S, i.e., length, type,
and contents.

3. (S .<=. T || X) concatenates X onto the right-hand
side of T and stores the result in S If T and X
are binary the resulting value has a | ength equal
to the sumL(T) + L(X).

4, T(X) joins L(X) and V(X) as a built-in identifier
function.

T(X) type of identifier X

L(X) | ength of contents of X

V(X) contents of X converted to binary
(decimal - binary is presently the only
transformation).

5. New types ED and AD are EBCDI C and ASCI| encoded
deci mal, respectively. These have been added to
conpl enent the V(X) function.

6. New type SB has been added as signed binary. Type B

is a logical binary string.
7. The syntactic notation for return-froma-form has
been changed. See new syntax.

[Page 1]

Dat a Reconfi guration

1. NEW SYNTAX

form
rul e
| abel
i nput stream
terns
out put st ream
term

identifier
descri ptor

conpar at or

replicati onexpr
dat at ype

val ueexpr

| engt hexpr
connective
concat expr

val ue

arithmeti cexpr
primary

oper at or
literal

literal type
string
control
options

SFUR

Servi ce

rule | form

| abel i nputstream out put stream

| NTEGER | NULL

terms | NULL

term| terns, term

cterns | NULL

identifier | identifier descriptor

descriptor | comparator

<al pha foll owed by 0-3 al phanuneri cs>
(replicationexpr, datatype, val ueexpr

| engt hexpr control)

(concat expr connective concatexpr control)
(identifier .<=. concatexpr control)

| arithmetricexpr | NULL

B| O]l X| E| A| ED| AD| SB
concat expr | NULL

arithnmeticexpr | NULL

.LE. | .LT. | .GT. | .GE. | .EQ | .NE

val ue | concat expr val ue

literal | arithneticexpr

primary | arithneticexpr operator prinmary

identifier | L(identifier) | V(identifier)
| NTEGER

-t

literaltype "string"

B| 0| X| E|] A| ED| AD| SB
<fromO to 256 chars>
;options | NULL

SFUR (arithneticexpr)
SFUR (arithmeticexpr)
S| F|] U] SR| FR| UR

SFUR (arithneticexpr),

[Page 2]

RFC 194

T (identifier)

Dat a Reconfiguration Service RFC 194

[11. THE FORM | NTERPRETER
Interpreter Overview

The interpreter is a sinple mnded machi ne having the virtue of
hel ping the conpiler witer by providing a rather powerful instruction
set for hard-to-conpile operations. Figure 1 shows the nachine
configuration:

B S + B TS +
| inputstream | | outputstream |
T + ook +
I\ /
\ /
\ /
\ \/
o e e e e e e oo +
| CPU |
Fom e e e a i oo +
| I\
| |
| |
\/ |
Fom e e i aaa o +
St or age: | I'nstruction |
| Sequence |
o e e e e e e e e oo +
| Label Table |
o e e e e e e oo +
| Literal/ldentifier |
| Pool |
Fmm e e a oo +

| Variable Iength |
| string area |

Fig. 1. FormlInterpreter

[Page 3]

Dat a Reconfiguration Service RFC 194

The CPU is a box full of miscellaneous parts, the nopst inportant
being the Arithnetic Logic Unit and the instruction decoding unit. The
CPU al so naintains a collection of state registers to keep track of what
it is doing. Figure 2 shows the rough | ayout.

. + . +
| I'nstruction | | I'nstruction |
| Counter | | Register |
B + Fom e e e e e oo oo +
|
|
\Y
S +
| Operation Code |
| Decodi ng |
Run Tinme Stack LT +
e T + / | \
| Oper ands | / | \
R R R + \/ \Y \/
| | tmmmmmm e mm e aeeaaa +
R L + / I nstruction \
| | | Interpreter |
e R T + | Rout i nes |
| | \ /
T + I +
| | | I\
Fmm e oo - + | |
| | | |
Fom e e e oo oo + \V |
| | S +
T S | Arithmetic |
| I > | Logic Unit |
e + Fom e e e e e oo oo +
| |
Fom e e e oo oo +
| |
T +
Fom e e e e e o + Fom e e e e e o +
[Initial Input Ptr.| | Qutput pointer |
. + . +
T + T +
| Current I nput Ptr.| | True/False Flag |
Fom e e e e e o + Fom e e e e e o +

[Page 4]

Dat a Reconfiguration Service RFC 194

Fig. 2. The Central Processor

The CPU is a stack machine driven by a Polish postfix instruction
sequence. Operands placed on the Run Time Stack are used for arithnetic
expression evaluation and for paraneter passing between the interpreter
and the built-in functions.

The Current | nput Pointer and the Qutput Pointer keep track of the
two data streans. Two input pointers are needed because of the backup
requi renent in the event of rule failure. Al of these pointers are bit
pointers into the two streans.

Various inplenmentations of the Run Tine Stack are independent of
the interpretation of the DRS machine’'s instruction set. It is
suggested that the stack will contain instruction operands fromthe
i nstruction stream

The format of a conpiled instruction sequence for a formis shown
in Fig. 3.

16 bits

Fommemm e JV\ == +
/ \
o e e e e e e e ea oo +

| length nin bytes
B T T T S iy +
	conpi	l ed
	16-bi t	

n < | i nstructions

o e ee e +

Fig. 3. Conpiled Instruction Sequence Format

[Page 5]

Dat a Reconfiguration Service RFC 194

The format of the conpiled Label Table is shown in Fig. 4.

16 bits

+----- [\ - +

/ \
. +
| length n |
| in bytes |
+- - B S B +
| | nuneric value of | byte offset |

| | statement nunber | in inst. seq.
| o e e e ee e ae e aaaaa S U +
| | |
n < |

+- - Y +

\ /

Y
32 bits

Fig. 4. Conpiled Label Table

[Page 6]

Dat a Reconfiguration Service

RFC 194

Literals and Identifiers are conpiled as shown in fig. 5.

+

I
||
|

| +

5%*n <

|
|
|
vV

+

I
|
(.

m < |
|
|

\ 4+
Lege
Type

2 2
R AL R AL
/ \ \
- oo +
1 1 | length n | length n
A Y /\ | in bytes | in bytes
--------- T S
[11111111 | |
Type [/7771117711 bit length | byte offset
[1117111 | |
--------- e
|
|
| Identifiers
|
|
___ +
|
literals are
byt e-al i gned | Literals
|
|
|
... +
nd:
0 = undefined
1 = B (binary)
2 =0 (octal)
3 = X (hexadeci nal)
4 = E (EBCDI O
5 = A (ASC)
6 = ED (EBCDI C encoded deci nal)
7 = AD (ASCI |1 encoded deci nal)
8 = SB (signed binary, two' s conpl enent)
Fig. 5. Conpiled Literals and Identifiers

[Page 7]

Dat a Reconfiguration Service RFC 194

Types B, 0, X, AD, ED, and SB point to 32-bit word- aligned data
shown bel ow.

b S +o---- - + R T T + wor d- al i gned,
| T /17 L | s > | 32-bit right-
S R e + o + justified

Types E and A point to byte-aligned synmbol streans
as shown bel ow.

byte-aligned, L <= 256

S Fomem - + oo +
| T /771 L | B g > |
i S T + oo +

[Page 8]

Dat a Reconfiguration Service RFC 194

I nstruction Fornat

Since literals and identifiers will be stored in the sane data
area, nore than 256 literals plus identifiers mght be encountered so
nmore than 8 bits are needed to reference literal/id pool. Furthernore,
such references nmust be distinguished fromoperators in the instruction
stream so a 16-bit instruction will be used, as shown bel ow

E R o e e e e e oo +
| 4 | 12 |
Fom e e e - o e e e e e e e e e e e e m o +
|
/
/
/
|
Y
LD=0 literal or identifier reference (12-bit positive integer)
IC=1 12-bit tw' s conpl enment integer constant
OP = 2 operator
AD = 3 address (12-bit positive integer)
ARB = 4 indefinite replication factor
NULL = 5 missing attribute of term

The operation code decoder picks up types 0, 1, 3, 4,
and 5 and deposits themon top of the stack (TCS). LD is an
index into the literal/identifier table, and AD is an index
into the instruction sequence.

The decoder exanines OP el enents further

4 4 8

Fomm e Fomm e o - +

| 0010 | nnanm

o e o o e o o e ee oo +
oP |

0 = binary operator
1 = unary operator
2 = special operator

[Page 9]

Dat a Reconfiguration Service RFC 194

Bi nary Qperators (*)

Let the TOS contain y and the next level, x. The binary operators
compute x <bop> y, popping both x, y fromstack, and put the result
back on top of the stack.

+---+ <-- TOS +----- + <-- TGOS
|y | | x-y |
e. g. X-y => +---+ =_==> 4----- +
| x| [11111]
oo -+ oo +

Bi nary Operator Encoding

i nteger +

i nteger -

i nteger x

integer : (or /), no renainder
concat enate |

hAwWNEFO
I nn

Al'l binary operations except concatenate expect the top
two elenents on the stack to describe type B, 0, X, or SB. The
result is always a 32-bit type B elenent. The concatenate
operator fails unless both types are identical. For exanple:

(*) As suggested above, the stack really contains instruction
operands that describe data; for convenience in illustrations
the data rather than their descriptors are shown on the stack

[Page 10]

Dat a Reconfiguration Service RFC 194

type L val ue T L \%
Fooem - Fooem - Fooem - + Fooem - Fooem - Fooem - +
TGS ->| B | 32 | 4 | | B | 32 | 12 | < TOS
[[[+ ==> 4-c---- [Hom - - +
| B | 8 | 16 | [/10T g
Hom - - Hom - - Hom - - + Hom - - Hom - - Hom - - +
Bef or e- operati on after-operation
Hom - - Hom - - Hom - - + Hom - - Hom - - Hom - - +
TS -> | A | 2 | DE | | A | 5 | ABCDE | <- TOS
Fomam - Fomam - Fomam - + ==> 4o S Foonnnn +
| A | 3 | ABC | [1700 iy
Foeem - Foeem - Foeem - + Foeem - Foeem - Foeem - +
Before || operation after || operation

No bi nary operator has any effect on the TRUE/ FALSE fl ag.

Unary QOperators

4 4 4 4
E R E R E R E R +
| 0010 | 0001 | | |
E R E R E R E R +
| |
B + |
| |
\ |
0 = integer mnus \%
1 =1load identifier 0 = evaluated contents
(after dec - binary
conver si on)
1 =length field
2 =type field
2 = Label Table Reference

[Page 11]

Dat a Reconfiguration Service RFC 194

For the unary mnus operator the data described by the top of the
stack is replaced with its 2's conplenent. The formfails if the TGS
type is not SB, B, 0, or X

The Load identifier expects the TOS to describe an index into the
literal/identifier pool (that is, an LD instruction) . The TCS
described data is replaced by 32-bit type B values. The operation fails
if the contents cannot be converted from encoded decinmal to binary. B
0, and X types are treated as unsigned integers, SBis treated as 2's
conpl enment .

The Label Tabl e Reference operator expects a 32-bit type B val ue
described by TCS and searches for this label in the |abel Table. If
found, the TOS described data is replaced by the relative address in the
i nstruction sequence of the label (in the formof an AD instruction).

If not found, the formfails. No Unary operator has any effect on the
TRUE/ FALSE fl ag.

Speci al Qperators

4 4 4 4
E R E R E R E R +
| 0010 | 0010 | | |
[S [S [S [S +
| |
R T + /
| /
Y /
0 = store TOS |
1 =return Vv
2 = branch 0 =true, 1 =false, 2 = unconditiona
3 = conpare 0=.EQ 2 =.LE 4 = | CE
1=.NE 3=.LT 5 = .CI.
4 = nmove input ptr 0O = store current into initia
1 =store initial into current
5 = input call 0 = no conpare
1 = conpare

6 = output cal

[Page 12]

Dat a Reconfiguration Service RFC 194

Store TGS

The TGOS describes an index into the ID table and the next | ower
element in the stack describes a value to be stored. After execution
both el ements are popped off the stack

Ret urn

The TOS describes a value to be returned to the routine which
initiated the FORM MACHI NE. The actual mechanismw || be inplenentation
dependent, but the FORM MACHINE will relin- quish control after this
i nstruction conpl etes execution

Br anch

The TOS describes an index into the instruction sequence to be used
as the new instruction counter (IC) if the branch conditions are
satisfied. The branch instruction checks the state of the TRUE/ FALSE
flag register and either increments the IC by 1 or replaces it with the

TOS described elenent. In any case, the TOS is popped
Conpar e

The conpare operator takes the two el enents described by the two
top stack entries and conpares them (.EQ,.LT.,etc.). If nis at the
top of the stack, and mis just below, then mxx.n is perforned, and the
TRUE/ Fal se flag is set accordingly. For .xx. = .EQ or .NE we nust

have identical type, length, and content for equality to hold.

The ot her bool ean conparators will not be attenpted if types are
different (i.e., formfails), but for sane types, B, 0, X cause binary-
justified conpares, and A, E, AD, ED cause left-justified string
conpares with the shorter string padded w th bl anks.

Move | nput Pointer

This operator (no operands) replaces the Current Input Pointer with
the Initial Input Pointer (back-up), or the Initial Input Pointer wth
the current one (entry to rule).

I nput Call

This is the nost conpl ex operator thus far encountered. It requires
four operands fromthe run-tine stack

[Page 13]

Dat a Reconfiguration Service RFC 194

O < S +
| binary or null | length to find
' +
| LDto literal or null | value (literal)
o e e e e e e e e e e e a o +
| binary code | input data type
e +
| binary, arbitrary, or null | replication count
N ' +

The input call operator can be invoked with the "no conpare"” flag
set, in which case the val ue expression paraneter is ignored and only

the input type and | ength expressions are used. |In this case, the input
routine tries to find in the input streamas many characters of the
required type (bits, digits, etc.) as needed to fill the length
expression requirement. |f successful, the TRUE/ FALSE flag is set TRUE
the stack is popped to renmove the input paraneters, and the string
obtained is described by the TCS. If the input stream cannot be matched

then the paraneters are popped off the stack, and the TRUE/ FALSE flag is
set FALSE.

If the "conpare" flag is set, the input stream nust be searched for
the val ue expression. However, we nust take sonme care here to be sure
we know what to |ook for. There are several cases:

a) The length expression paraneter is greater than the

I ength of the value expression but the type of input de-

sired is the same as the val ue expression type. For B, O

and X types, right-justify value expression in |ength-

expression field, sign bit is extended left if type BS.

If type A, E, AD, or ED pad on the right with blanks. b) Sanme as
a) but length is too small. B, 0, and X type strings

are truncated on the left. A E AD and ED are truncated

on the right. «¢) The type of the val ue expression and the type
par anet er

differ. This case is deferred for discussion and pre-

sently is considered an error causing formfailure.

If the input string matches, then the TRUE/ FALSE flag is set true,
the paraneters are popped fromthe stack, and the resulting string is
described by the TOS. Oherwi se, the FALSE flag is set and the
paraneters are popped.

When a successful match is found the input subroutine always
advances the Current | nput Pointer by the appropriate amount. Since we
are dealing at the bit level this pointer nust be maintained as a bit
poi nter!

[Page 14]

Dat a Reconfiguration Service RFC 194

Qut put Cal |

This routine utilizes the sane paraneters as the input call, but
operates on the output stream The TRUE/ FALSE flag is not distributed
by this operator. As for input, there are four paraneters on top of the
stack, the length expression value, the value expression value, the
desired output type, and the replication expression value. Wen there
is a nms- nmatch between the output type and the val ue expression type, a
conversion nmust take place. The value expression is trans- formed into
the desired output type and fitted into the field | ength specified by
the I ength expression

Truncati on and Paddi ng Rul es

a) Character -> character (A E AD ED -> A E, AD, ED) conversion

is left-justified and truncated or padded w th bl anks

on the right. b) Character -> nuneric and nuneric -> character
conversion is

right-justified and truncated or padded on the left wth

zeros. Beware! Two's conpl enment nunbers nmay be bollixed

by this. «¢) Nuneric -> character conversion is right-justified and

| eft padded with blanks or left-truncated. As for the unary
operators, a nuneric bit-string is treated as unsi gned, except SB which
is treated as two’s conplenent. Thus we have

(1, ED, X"FF",3) = E 255’
(1, ED, X"100",3) = E 256’
but (1, ED, SB'10000000",4) = E - 256’

If the output routine is able to performthe desired action, it
advances the Qutput Stream Pointer, and pops all paraneters fromthe
run-time stack.

[Page 15]

Dat a Reconfiguration Service

V. I NSTRUCTI ON SET

it/id ref LD <nun»

i nt const | C <nun®

addr ess AD <nun®

nul | paraneter NULL

add ADD

subtr act SUB

mul tiply MUL

di vi de Dl V

concat enat e CON

unary mnus UNI N

|l oad id val ue LIV

load id length LIL

load id type LIT

| ook up | abel LVL

sto STO

return RET

branch true BT

branch fal se BF

br anch BU

conpar e equal CEQ

conpare not equal CNE

conpare <= CLE

call out put aut

call input IN (INC
I NN

current -> initial SCP

initial -> current SICP

comnpar e
no conpare)

RFC 194

Literal or identifier
reference -> TGS
small 2’ s conp.
constant -> TOS
Address -> TGOS
mssing termattribute

i nt eger

TOS = X,y X +y ->TOS
TGS = X,y X -y ->TG0S
TGS = X,y X *y ->TG0S
TGS = X,y xly -> TCS
TCS = X,y X| |y -> TGS
TCS = x -x -> TGOS
TOS = LD x V(LD x) -> TGS
TOS = LD x V(LD x) -> TOS
TOS = LD x V(LD x) -> TOS
TOS = X AD x -> TOS
TOS = X,y y -> X
TGS = x return to
caller with x
TOS = AD x AD x -> Instr.
count er
TGS = AD X AD x -> Instr.
count er
TOS = AD X AD x -> Instr.
count er
TOS = X,y (y.EQXx) ->
TRUE/ FALSE
flag
TCS = X,y (y.NE. x) -> T/FF
TOS = X,y (y.LE. x) -> T/FF
TGS =r,t, v, (r,t,v,I)
TGS =r,t, v, (r,t,v,I) -> TCS
CIP->11P (store current
ptr - initial
P ->CP (store initial
ptr - CIP)

[Page 16]

-> out put

Dat a Reconfiguration Service RFC 194

VI. EXAMPLE COWPI LATI ON

FORM SOURCE GENERATED POLI SH | NSTRUCTI ON SEQUENCE
ADDR. | NSTR. COVMVENTS
(NUMB. <=. 1) ; 0 sl cpP RULE PRELUDE
1 Ic 1
2 LD 0 REFERENCE TO NUMB
3 STO STORE | N NUMB
4 SCl P RULE POSTLUDE
1 CC(,E ,1:FR(99)), 5 sl cpP RULE PRELUDE
6 NULL NO REPLI CATI ON EXPRESSI ON
7 IC 4 TYPE EBCDIC
8 NULL NO VALUE EXPRESSI ON
9 IC 1 LENGTH
10 INN I NPUT CALL W TH NO COMPARE
11 AD 15
12 BT SKI P RETURN | F | NN SUCCEEDS
13 IC 99 RETURN CODE
14 RET RETURN TO CALLER | F FAI LED
15 LD 1 REFERENCE TO CC
16 STO STORE | NPUT DATA IN CC
LI NE(, E, , 121: 17 NULL NO REPLI CATI ON EXPRESSI ON
FR(99)), 18 IC 4 TYPEIS EBCDIC
19 NULL NO VALUE EXPRESSI ON
20 IC 121 LENGTH
21 INN I NPUT W TH NO COMPARE
22 AD 26
23 BT SKI P RETURN | F OK
24 IC 98 RETURN CODE
25 RET RETURN TO CALLER | F FAI LED
26 LD 2 REFERENCE TO LINE
27 STO STORE | NPUT I N LI NE
. CC, 28 SCIP SUCCESSFUL | NPUT
29 NULL NO REPLI CATI ON FACTOR
30 LD 1 REFERENCE TO CC
31 LIT TYPE OF CC

32 LD 1 REFERENCE TO VALUE COF CC
33 LD 1 CC AGAI N

34 LIL LENGTH OF CC

35 aur QUTPUT CC
(, ED, NUMB, 2), 36 NULL NO REPLI CATI ON

37 IC 6 TYPE IS ED

38 LD O REFERENCE TO VALUE COF NUMB

39 IC 2 LENGTH OF OQUTPUT FI ELD

40 aut QUTPUT NUMB AS EBCDI C DEC.
(,E E.", 1), 41 NULL NO REPLI CATI ON

42 IC 4 TYPE IS EBCDI C

[Page 17]

Dat a Reconfiguration Service

43

44

45

(, E LINE, 117), 46
47

48

49

50

(NUMB. <=. NUVB+1: 51
Uu(1)); 52

53

54

55

56

57

REFERENCE TO E"."

LENGTH TO OUTPUT

OQUTPUT THE PERI OD

NO REPLI CATI ON

TYPE | S EBCDI C

REFERENCE TO LI NE

LENGTH TO OQUTPUT

PUT OUT CONTENTS OF LI NE
REFERENCE TO NUMB

AMOUNT TO ADD

ADD TO NuwmB

REFERENCE TO NUMVB

STORE BACK | NTO NUMB
PLACE TO GO

UNCONDI TI ONAL BRANCH BACK

LI TERAL/ | DENTI FI ER TABLE

0
1
2
3

NUVB

cCc

LI NE

E"."

LABEL TABLE

LABEL
1

[This RFC was put
[into the online RFC archives by Sinone Denmel

OFFSET

5

RFC 194

into nmachi ne readable formfor entry]
6/ 97]

[Page 18]

