
Network Working Group S. Bellovin
Request for Comments: 1948 AT&T Research
Category: Informational May 1996

 Defending Against Sequence Number Attacks

Status of This Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 IP spoofing attacks based on sequence number spoofing have become a
 serious threat on the Internet (CERT Advisory CA-95:01). While
 ubiquitous crypgraphic authentication is the right answer, we propose
 a simple modification to TCP implementations that should be a very
 substantial block to the current wave of attacks.

Overview and Rational

 In 1985, Morris [1] described a form of attack based on guessing what
 sequence numbers TCP [2] will use for new connections. Briefly, the
 attacker gags a host trusted by the target, impersonates the IP
 address of the trusted host when talking to the target, and completes
 the 3-way handshake based on its guess at the next initial sequence
 number to be used. An ordinary connection to the target is used to
 gather sequence number state information. This entire sequence,
 coupled with address-based authentication, allows the attacker to
 execute commands on the target host.

 Clearly, the proper solution is cryptographic authentication [3,4].
 But it will quite a long time before that is deployed. It has
 therefore been necessary for many sites to restrict use of protocols
 that rely on address-based authentication, such as rlogin and rsh.
 Unfortunately, the prevalence of "sniffer attacks" -- network
 eavesdropping (CERT Advisory CA-94:01) -- has rendered ordinary
 TELNET [5] very dangerous as well. The Internet is thus left without
 a safe, secure mechanism for remote login.

 We propose a simple change to TCP implementations that will block
 most sequence number guessing attacks. More precisely, such attacks
 will remain possible if and only if the Bad Guy already has the
 ability to launch even more devastating attacks.

Bellovin Informational [Page 1]

RFC 1948 Sequence Number Attacks May 1996

Details of the Attack

 In order to understand the particular case of sequence number
 guessing, one must look at the 3-way handshake used in the TCP open
 sequence [2]. Suppose client machine A wants to talk to rsh server
 B. It sends the following message:

 A->B: SYN, ISNa

 That is, it sends a packet with the SYN ("synchronize sequence
 number") bit set and an initial sequence number ISNa.

 B replies with

 B->A: SYN, ISNb, ACK(ISNa)

 In addition to sending its own initial sequence number, it
 acknowledges A’s. Note that the actual numeric value ISNa must
 appear in the message.

 A concludes the handshake by sending

 A->B: ACK(ISNb)

 The initial sequence numbers are intended to be more or less random.
 More precisely, RFC 793 specifies that the 32-bit counter be
 incremented by 1 in the low-order position about every 4
 microseconds. Instead, Berkeley-derived kernels increment it by a
 constant every second, and by another constant for each new
 connection. Thus, if you open a connection to a machine, you know to
 a very high degree of confidence what sequence number it will use for
 its next connection. And therein lies the attack.

 The attacker X first opens a real connection to its target B -- say,
 to the mail port or the TCP echo port. This gives ISNb. It then
 impersonates A and sends

 Ax->B: SYN, ISNx

 where "Ax" denotes a packet sent by X pretending to be A.

 B’s response to X’s original SYN (so to speak)

 B->A: SYN, ISNb’, ACK(ISNx)

Bellovin Informational [Page 2]

RFC 1948 Sequence Number Attacks May 1996

 goes to the legitimate A, about which more anon. X never sees that
 message but can still send

 Ax->B: ACK(ISNb’)

 using the predicted value for ISNb’. If the guess is right -- and
 usually it will be -- B’s rsh server thinks it has a legitimate
 connection with A, when in fact X is sending the packets. X can’t
 see the output from this session, but it can execute commands as more
 or less any user -- and in that case, the game is over and X has won.

 There is a minor difficulty here. If A sees B’s message, it will
 realize that B is acknowledging something it never sent, and will
 send a RST packet in response to tear down the connection. There are
 a variety of ways to prevent this; the easiest is to wait until the
 real A is down (possibly as a result of enemy action, of course). In
 actual practice, X can gag A by exploiting a very common
 implementation bug; this is described below.

The Fix

 The choice of initial sequence numbers for a connection is not
 random. Rather, it must be chosen so as to minimize the probability
 of old stale packets being accepted by new incarnations of the same
 connection [6, Appendix A]. Furthermore, implementations of TCP
 derived from 4.2BSD contain special code to deal with such
 reincarnations when the server end of the original connection is
 still in TIMEWAIT state [7, pp. 945]. Accordingly, simple
 randomization, as suggested in [8], will not work well.

 But duplicate packets, and hence the restrictions on the initial
 sequence number for reincarnations, are peculiar to individual
 connections. That is, there is no connection, syntactic or semantic,
 between the sequence numbers used for two different connections. We
 can prevent sequence number guessing attacks by giving each
 connection -- that is, each 4-tuple of <localhost, localport,
 remotehost, remoteport> -- a separate sequence number space. Within
 each space, the initial sequence number is incremented according to
 [2]; however, there is no obvious relationship between the numbering
 in different spaces.

 The obvious way to do this is to maintain state for dead connections,
 and the easiest way to do that is to change the TCP state transition
 diagram so that both ends of all connections go to TIMEWAIT state.
 That would work, but it’s inelegant and consumes storage space.
 Instead, we use the current 4 microsecond timer M and set

 ISN = M + F(localhost, localport, remotehost, remoteport).

Bellovin Informational [Page 3]

RFC 1948 Sequence Number Attacks May 1996

 It is vital that F not be computable from the outside, or an attacker
 could still guess at sequence numbers from the initial sequence
 number used for some other connection. We therefore suggest that F
 be a cryptographic hash function of the connection-id and some secret
 data. MD5 [9] is a good choice, since the code is widely available.
 The secret data can either be a true random number [10], or it can be
 the combination of some per-host secret and the boot time of the
 machine. The boot time is included to ensure that the secret is
 changed on occasion. Other data, such as the host’s IP address and
 name, may be included in the hash as well; this eases administration
 by permitting a network of workstations to share the same secret data
 while still giving them separate sequence number spaces. Our
 recommendation, in fact, is to use all three of these items: as
 random a number as the hardware can generate, an administratively-
 installed pass phrase, and the machine’s IP address. This allows for
 local choice on how secure the secret is.

 Note that the secret cannot easily be changed on a live machine.
 Doing so would change the initial sequence numbers used for
 reincarnated connections; to maintain safety, either dead connection
 state must be kept or a quiet time observed for two maximum segment
 lifetimes after such a change.

A Common TCP Bug

 As mentioned earlier, attackers using sequence number guessing have
 to "gag" the trusted machine first. While a number of strategies are
 possible, most of the attacks detected thus far rely on an
 implementation bug.

 When SYN packets are received for a connection, the receiving system
 creates a new TCB in SYN-RCVD state. To avoid overconsumption of
 resources, 4.2BSD-derived systems permit only a limited number of
 TCBs in this state per connection. Once this limit is reached,
 future SYN packets for new connections are discarded; it is assumed
 that the client will retransmit them as needed.

 When a packet is received, the first thing that must be done is a
 search for the TCB for that connection. If no TCB is found, the
 kernel searches for a "wild card" TCB used by servers to accept
 connections from all clients. Unfortunately, in many kernels this
 code is invoked for any incoming packets, not just for initial SYN
 packets. If the SYN-RCVD queue is full for the wildcard TCB, any new
 packets specifying just that host and port number will be discarded,
 even if they aren’t SYN packets.

Bellovin Informational [Page 4]

RFC 1948 Sequence Number Attacks May 1996

 To gag a host, then, the attacker sends a few dozen SYN packets to
 the rlogin port from different port numbers on some non-existent
 machine. This fills up the SYN-RCVD queue, while the SYN+ACK packets
 go off to the bit bucket. The attack on the target machine then
 appears to come from the rlogin port on the trusted machine. The
 replies -- the SYN+ACKs from the target -- will be perceived as
 packets belonging to a full queue, and will be dropped silently.
 This could be avoided if the full queue code checked for the ACK bit,
 which cannot legally be on for legitimate open requests. If it is
 on, RST should be sent in reply.

Security Considerations

 Good sequence numbers are not a replacement for cryptographic
 authentication. At best, they’re a palliative measure.

 An eavesdropper who can observe the initial messages for a connection
 can determine its sequence number state, and may still be able to
 launch sequence number guessing attacks by impersonating that
 connection. However, such an eavesdropper can also hijack existing
 connections [11], so the incremental threat isn’t that high. Still,
 since the offset between a fake connection and a given real
 connection will be more or less constant for the lifetime of the
 secret, it is important to ensure that attackers can never capture
 such packets. Typical attacks that could disclose them include both
 eavesdropping and the variety of routing attacks discussed in [8].

 If random numbers are used as the sole source of the secret, they
 MUST be chosen in accordance with the recommendations given in [10].

Acknowledgments

 Matt Blaze and Jim Ellis contributed some crucial ideas to this RFC.
 Frank Kastenholz contributed constructive comments to this memo.

References

 [1] R.T. Morris, "A Weakness in the 4.2BSD UNIX TCP/IP Software",
 CSTR 117, 1985, AT&T Bell Laboratories, Murray Hill, NJ.

 [2] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

 [3] Kohl, J., and C. Neuman, "The Kerberos Network Authentication
 Service (V5)", RFC 1510, September 1993.

 [4] Atkinson, R., "Security Architecture for the Internet
 Protocol", RFC 1825, August 1995.

Bellovin Informational [Page 5]

RFC 1948 Sequence Number Attacks May 1996

 [5] Postel, J., and J. Reynolds, "Telnet Protocol Specification",
 STD 8, RFC 854, May 1983.

 [6] Jacobson, V., Braden, R., and L. Zhang, "TCP Extension for
 High-Speed Paths", RFC 1885, October 1990.

 [7] G.R. Wright, W. R. Stevens, "TCP/IP Illustrated, Volume 2",
 1995. Addison-Wesley.

 [8] S. Bellovin, "Security Problems in the TCP/IP Protocol Suite",
 April 1989, Computer Communications Review, vol. 19, no. 2, pp.
 32-48.

 [9] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [10] Eastlake, D., Crocker, S., and J. Schiller, "Randomness
 Recommendations for Security", RFC 1750, December 1994.

 [11] L. Joncheray, "A Simple Active Attack Against TCP, 1995, Proc.
 Fifth Usenix UNIX Security Symposium.

Author’s Address

 Steven M. Bellovin
 AT&T Research
 600 Mountain Avenue
 Murray Hill, NJ 07974

 Phone: (908) 582-5886
 EMail: smb@research.att.com

Bellovin Informational [Page 6]

