Net wor k Wor ki ng Group R Braden
Request for Comments: 205 UCLA/ CCN
NI C 7172 6 August 1971

NETCRT - A CHARACTER DI SPLAY PROTOCOL

At the May NWG neeting, CCN circulated dittoed copies of a proposed
character-di splay protocol NETCRT. Since that time, NETCRT has been
revised significantly; the current version is now being published as
an RFC, as prom sed | ast May.

NETCRT was devel oped because a particular site (RAND) requested

Net wor k access to URSA, CCN s display-based crje system The primary
use of URSA at UCLA is conversational renote job entry froma display
termnal: entering and editing programtext, subnmitting prograns for
bat ch execution, and exanining job output; URSA is not a general -

pur pose tine-sharing system

URSA's text editor is designed for a fast updating character display
and cannot be used in any reasonable way froma typewiter-Ilike
console. Therefore, a sinple TELNET protocol is not adequate for
using the crje function of URSA. Furthernore, we have assuned that
other ARPA sites will have their own text editors, well matched to
their own terminals and systens. Therefore, CCN has inplenented
NETRJS (see RFC #189), to provide renote job subm ssion and retrieva
services, before inplenenting NETCRT.

There are a nunber of other functions in URSA besides crje; sone of

t hese woul d probably be useful to renote users. URSA contains a
conpr ehensi ve STATus service, whose constantly-updating displays are
"wi ndows" into the operation of the machine and the operating system
allowing a user to watch the progress of his jobs through the system
URSA al so includes on-line data set (file) utilities, convenient for
a user with files stored at CCN. To obtain access to these
facilities, a few sites which use CCN heavily may want to inpl enent
NETCRT. The schedule for inplenmentation of NETCRT at CCN to all ow
Net wor k access to URSA will depend upon the existence of a user site
that wants the service and that will wite a suitable NETCRT user
process. Interested sites are urged to contact the CCN Technica

Li ai son, Bob Braden

Even though the inplenentati on schedul e for NETCRT is nebul ous, we
are publishing the specs now for several reasons. First, we would
like comrents and criticisns. Furthernore, NETCRT contains sone
features which nmay be useful in the protocol (s) now bei ng devel oped
for full graphical displays.

Br aden [Page 1]

RFC 205 NETCRT - A CHARACTER DI SPLAY PROTOCOL 6 August 1971

NETCRT PROTOCOL - VERSI ON 3

A

I NTRODUCT! ON

The UCLA Canpus Conputing Network (CCN) node intends to provide

Net work access to its conversational renpte job entry system URSA
The URSA systemis display-oriented, supporting only character

di splays with local buffers (originally |IBM 2260 displays, now CCl
301 TV di splay consoles). This docunent defines a third-Ieve
protocol called NETCRT which allows a Network user in a renote Host
to look like a CCl console to URSA. NETCRT is defined in terns of a
virtual character display ("VCD') terminal, sinulated by a process in
t he user host.

URSA, |like many on-line console systens, attenpts to provide a good
man/ machi ne interaction by keeping tight control over the state of
the termnal. On the other hand, the Network Wrking G oup has
deliberately built sone "squishiness" into the standard Network
protocols. W believe this squishiness is a conceptual m stake when
dealing with renote man/ machi ne interaction, and we woul d support
protocol revisions to allow control over the effective conmunication
conpl i ance between processes in different hosts. However, this
NETCRT protocol attenpts to cope with the present squi shiness, which
is apparently built into a nunber of host’s NCPs. |In fact, we have
arranged things so a host can inprove response tine and reduce
Network traffic with NETCRT by using the message buffering inherent
in his NCP

THE VI RTUAL CHARACTER DI SPLAY
A VCD consists of the following virtual hardware (see Figure 1):

1. A rectangular _display screen_ capable of displaying Nlines of M
characters.

2. A local buffer_ of Mx N characters used to refresh the display.

3. A _cursor register_ which addresses the characters in the buffer
(and hence on the screen). This register controls the witing of
text into the local buffer fromeither the keyboard or the server,
and the reading of the |l ocal buffer by the server.

4. A keyboard_containing text keys and control keys. Each text key
enters a character into local buffer at the current cursor address
and steps the cursor register by 1.

Br aden [Page 2]

RFC 205 NETCRT - A CHARACTER DI SPLAY PROTOCOL 6 August 1971

5. A _comunication interface_ through which the server CPU can send
a streamof _command_ segnents to the VCD and receive a stream of
response segnments fromthe VCD. The conmand segnents incl ude
control commands to the VCD and text to be witten into the |oca
buffer. Response segnments contain status indicators and text read
fromthe buffer. |In addition, both VCD and server may send break
si gnal s.

The current address in the cursor register, an integer between 0 and
Mx N1, is displayed as a blitch, underscore, or other visual

i ndi cation at the corresponding point on the screen; this indication
is called the _cursor . Position O is the upper left corner of the
screen.

The screen is addressed in line ("row') order, and read and wite
operations by the server overflow automatically fromone line to the
next. The cursor register is not assuned to operate nodulo M x Nxsy.
It is possible for a server command to set the cursor register to Mx
N, one position beyond the | ast screen position; however, the server
shoul d never set the register to an address beyond Mx N, and it
shoul d not | eave the cursor at M x N when the keyboard is unl ocked.

The application program or conversational system using the VCD may
format each display screen in a variety of ways, and nay use a nunber
of styles of interaction. One consequence is that the application
program ni ght have to | ook anywhere on the screen (i.e., in the loca
buffer) to find the input information it requires. W nay consider
three alternative mechanisnms for transmtting i nformation fromthe
VCD to the serving CPU

Mechani sm 1 Whenever the user presses a "Transnit" control key,
the entire Mx N characters in the buffer are
transmitted to the server CPU

Mechani sm 2 When the user presses "Transnmit", the string of text
between a "start" control character and the cursor is
transmtted to the server

Mechani sm 3 The server nust send a read command segnent to the VCD
before the "Transmit" key will have an effect. The
read conmmand segment determn nes which parts of the
buffer are to be transmitted to the server

Mechanism 1 may be faulted as too costly in transnission time and
channel capacity, while Mechanism2 is too restrictive. The schene
whi ch we propose here is based on Mechani sm 3, which subsunes the
ot her two.

Br aden [Page 3]

RFC 205 NETCRT - A CHARACTER DI SPLAY PROTOCOL 6 August 1971

The VCD is assuned to include the follow ng control keys

Er ase Clears the display buffer to all blanks and resets the
cursor to position O (the upper left corner of the
screen).

Transm t Locks the keyboard and places the VCD under control of

the server CPU. Typically, the server will read
specified areas of the screen and perhaps wite out
new data before unl ocking the keyboard agai n.

Br eak Has the sane effect as _Transnmit_, and in addition
sends an interrupt nessage to the server CPU. The
Break key always sends the interrupt, regardl ess of
the state of the VCD

Reset May be used to unlock the VCD keyboard in case the
server CPU fails to respond i medi ately and the user
wi shes to enter new or different information.

These nmay be called pure control keys, since they do not correspond
to any text characters. The follow ng control key does store a
character into the display buffer

Newl i ne Enter a Newine (NL) character into the display buffer
and reset the cursor to the beginning of the next
line. |If this character is encountered during a read
or wite operation, it is executed (i.e., the cursor
is moved to the beginning of the next line) and the NL
is counted as _one_ character

Finally, there are assuned to be keys for nanually positioning the
cursor to any address on the screen. Cursor positioning keys may

i nclude: cursor right, cursor up, cursor left (BS), cursor down (LF),
and cursor return (CR). A tab (HT) mechanismcould al so be defi ned,
al t hough none is included here.

C. VCD STATES

The VCD has two internal states, _Local_ and _Control _ (see Figure
2).

Local State: The keyboard is unlocked and all keys are active. The

VCD does not accept or recogni ze any comands from
server except (reverse) Break.

Br aden [Page 4]

RFC 205 NETCRT - A CHARACTER DI SPLAY PROTOCOL 6 August 1971

Control State: The keyboard is |ocked, and only the Break_ and
_Reset _ keys are active. The VCD accepts and executes
conmand segnents fromthe server, and returns response
segnments as the result of read commands.

The VCD changes from Local to Control state if either
(1) The user presses the Transnit_ key; or
(2) the user presses the _Break_ key; or
(3) the server sends a reverse Break request.

Transmit’s only effect is to enter Control State; _Break_enters
Control State and al so sends a break request (INS and X 80’) to the
server.

The VCD returns to Local State when either
1. The user presses the Reset_ key; or

2. the VCD encounters a LOCAL command fromthe server and is not in
the process of synchronizing a reverse break (see section E
bel ow) .

W should note that CCl and | BM 2260 character display consol es
actually have only one control key ("Interrupt" on CCl, "Enter" on
2260) to performthe functions of both Break_ and _Transmit_; this
one key in fact has the function of the _Break_ key of the VCD. W
have included both Break and _Transmit_keys in the VCD for
generality, but the URSA-NETCRT interface will be programed to all ow
a Network user of URSA to either (1) enploy the _Break_ key
exclusively, or (2) use either _Break_ or _Transnit_ as appropriate.
This will be achieved by URSA sinply by ignoring those break requests
(I'NS nmessages) which occur while there are outstandi ng read conmands.

D. VCD COMVANDS
The server sends the VCD a string of comand segnents. These are of

varying length, consisting of an op code and none or nore paraneters.
The conmands recogni zed by the VCD are as fol |l ows:

Br aden [Page 5]

RFC 205

1. Display & Keyboard Contro

UNBLANK

LOCAL

SYNC

NETCRT - A CHARACTER DI SPLAY PROTOCOL 6 August 1971

Par anet er (s)

none

none

none

none

2. Cursor Control Commmands

CURSOR

FI ND

SAVE

RESTORE

Br aden

16 bit integer P

X 0001’ foll owed
by one character
c

none

none

Conmands:

Functi on

Erase di splay and reset cursor to O.
i.e, clear the local buffer.

Di sabl e display refresh (i.e., blank
the screen but do not clear the | oca
buffer).

Enabl e di splay refresh.

Put VCD in _local__ state. The result
is to suspend command interpretation
and unl ock the keyboard.

Used to synchroni ze reverse Break
fromserver. SYNC (X 80) is placed
in stream by server at sanme tinme that
it sends an INS. VCD enters Control
State, synchronizes INS with BREAK
command (see next section), and
continues conmand interpretation.

Set cursor register to P, where
0 <= P<=Mx N

Move the cursor to point to an
occurrence of the character c.
Specifically, search backwards
toward | ower addresses) fromthe
current cursor position and take
the first occurrences of c (i.e.
the one with the | argest address).
If no occurrence is found, |eave
cursor at position O.

Save a copy of the current cursor
address in local register S.

Repl ace cursor register contents by
val ue S.

[Page 6]

RFC 205

I/ O Conmands:

WRI TE n, t ext

READ n

SREAD

AWRI TE n, t ext

NETCRT -

16 bit integer
n, followed by
n text bytes.

16 bit integer
n

none

16 bit integer
n, followed by
n text bytes.

A CHARACTER DI SPLAY PROTOCCL

6 August 1971

Wite n bytes of text into display
buffer starting at current cursor
position and advancing cursor by 1
for each byte (except NL character
advances to begi nning of next |ine).
Here [sigma] + n <= Mx N

Read n bytes starting at the cursor
[sigma] and advanci ng cursor by one
for each byte (except NL advances
cursor to beginning of next line).

NL counts as one character. Send the
text to the server as a response
segnment. Must have n + [sigma]

<= Mx N

Read S - [sigma] bytes starting from
the current cursor position [signmg]
up to (but not including) the cursor
address stored in register S. The
cursor is left in position S as a
result. Send the text to the server
as a response segnent.

Sane as WRI TE n, except characters
are not stored in buffer if they
have a | ower cursor address than
the value in S

Here are sone applications of these commands in URSA:

1. One elenentary URSA term nal
position x up to (but not

operation reads the screen from

i ncluding) the current cursor position

This could be done with the sequence of VCD conmand segnents:

2. Anot her common operation in URSA is to renmenber the cursor
specific information on the screen

SAVE
CURSOR X
SREAD

updat e

and replace the cursor. This

can be done by the following 8 + n byte sequence of conmand

segnents:

Br aden

[Page 7]

RFC 205 NETCRT - A CHARACTER DI SPLAY PROTOCOL 6 August 1971

3.

Br aden

SAVE

CURSOR X

WRI TE n, text
RESTORE

In URSA, the area in which a user is to type his response is
usually delimted on the left by a "Start Synbol" (graphic '[1]").
This is a historical remant of the | BM 2260, which has only two
hardware read operators: read the full screen, and read fromthe
Start Mnual | nput Synbol ("SM") to the cursor. The SM read
operation can be sinulated easily on the VCD as foll ows:

SAVE
FIND ' [1]°
SREAD

The Break_(or _Transmit_) key on the VCD may serve the function
of the INTerrupt key on a CCl console (or ENTer on an |BM 2260).
URSA will often attenpt to minimze Network traffic by sending a
sequence of commands (one nessage if allocation allows) |ike the
fol | owi ng:

CURSOR m
WRI TE n, text
LOCAL

URSA wites a request

User types response

+
|

- -User Presses | _TRANSMT_ |key - - -
+

—+ 4+ 4+ +—

SAVE
CURSCR p
SREAD |

URSA reads response

At other tines, URSA m ght send the sequence:

CURSOR m

VWRI TE n, TEXT
LOCAL

READ O

and wait for the INS fromthe user pressing _Break_ (or the
response segnent triggered by the zero-length read if he presses
Transmt); then URSA will send the appropriate read comand
sequence.

[Page 8]

RFC 205 NETCRT - A CHARACTER DI SPLAY PROTOCOL 6 August 1971

F. NETWORK MESSAGE FORMATS

The VCD connects the server through ICP to a standard socket,
establishing thereby a pair of connections between the VCD and the
server. Command segnents (server-to-VCD) and response segnents
(VCD-to-server) are sent over these connections, without regard to
physi cal nmessage boundaries, using byte size 8 The VCD is defined
to operate in a segnent-at-a-tinme node (rather than character-at-a-
time), with local echo. Therefore, the server never echoes under
NETCRT.

In many cases URSA will send a sequence of conmmand segnents (as in

t he exanpl es of the preceding section) at once; if there is
sufficient allcocation they will be sent in the sane nessage.
Response time may be inproved, therefore, if the user site is able to
buf f er ahead on command segnments. This buffering does raise break
synchroni zati on probl ens, which are solved in the foll ow ng manner
for reverse (server-to-user) break

The server sends an INS on the control link and al so a SYNC
command (X 80) on the data link to the VCD. On receiving either
the VCD enters Control State and then achi eves synchroni zation
between the INS and BREAK; if the INS arrives first, the VCD
executes nornally all comands buffered in his host, _except_ it
i gnores LOCAL conmands, until the SYNC appears. Having achieved
synchroni zati on, the VCD continues nornmal conmmand interpretation
(wi thout ignoring ensuring LOCAL conmands).

By this neans the server can regain control of the VCDto wite new
information at any tinme. For exanple, when URSA is used under

NETCRT, nobst WRI TE or AWRI TE sequences will be preceded by a BREAK
fromthe server, since URSA will not know the current state of the
VCD. Even if URSA left the VCD in Control State, the user mght have
manual |y returned his VCD to Local State by pressing _Reset_.

After receiving an INS, the VCD executes rather than ignores buffered
commands so that pending wites will not be lost in case that
processing at the user side has been held up tenmporarily. The read
commands executed after the server sent an INS might be irrelevant to
a server, which can ignore the correspondi ng response segnents. In
order to do so, the server sinply keeps matching counts of read
commands sent and correspondi ng response segnents received.

Conmmand segnents will use the follow ng formats:
Form 1 (No paraneters) q: OPCODE(8)

where g = X 80" neans SYNC

Br aden [Page 9]

RFC 205 NETCRT - A CHARACTER DI SPLAY PROTOCOL 6 August 1971

X 9l " LOCAL

X 92’ " ERASE

X 93’ " BLANK

X 94’ " UNBLANK

X 95’ " SAVE

X 96’ " RESTCRE

X 97 " SREAD

Form2 (16 bit integer) q: OPCODE(8) + n:|NTEGER(16)
where g = X 9E neans READ n
q = Xo9C " CURSOR n
In both cases, 0 <= n <= Mx N
Form 3 (count and text) q: OPCODE(8) + n:LENGTH(16) + (TEXT(8) = n)
where g = X 9D nmeans WRI TE

X 9A" neans AWRI TE

q
g = X 9F and n=1 neans FI ND

A response segnent, caused by a READ or SREAD conmand, has the
followi ng format:

RESPONSE <- - - - - X' Al + CURSOR(16) + n:LENGTH(16) + (TEXT(8) = n)

where n > 0 is the nunber of characters actually read. CURSOR(16) is
an integer giving the final cursor position after the correspondi ng
read conmmand. Note that the conmand READ 0 is pernissible and may be
used by the server to find the current cursor position, or to find
out when the user presses _Transmt_.

Br aden [Page 10]

RFC 205 NETCRT - A CHARACTER DI SPLAY PROTOCOL 6 August 1971

E. SCREEN Sl ZE
For sinmplicity and consistency with URSA, we have chosen to treat the
cursor as a single integer. This in turn nmeans that VCD and server
nmust agree upon the number of colums M it is also desirable for the
server to know N.
The agreenent on Mand N takes place through a one-sided negotiation.
The server is assunmed to know what M and N val ues he can handl e and
these are published for user sites. Wen the VCDis first connected
to the server, the VCD nust send an Open response segnent with the
val ues M and N

pen segnent <---- X' Bl' + M8) + N(8) + X 0000’

If the VCD fails to send this segnment or the server does not like the
val ues, the server closes the connections and the user is considered
| ogged off.

Endnot es

[1] Gaphic representation of start synbol: shaded triangle on its
si de.

Br aden [Page 11]

RFC 205

NETCRT - A CHARACTER DI SPLAY PROTOCOL

6 August 1971

Fom e e e e e oo oo +
N
|
| Refresh
|
oo +
| LOCAL | Addr ess
| BUFFER [<---mmmmee- - +
S + |
AN AN | |
Fommee - + text | | | |
/ S (. | |
| KEYBOARD | | WVRI TE | READ |
L + | AWRI TE | SREAD |
| | |
control | % |
oo S S ESp U R +
| VCD | CURSOR ADDRESS|
| CONTROL | <---> REG STER |
S + S +
N | N
	v
	S +
	S
	- +
v	
S +	
COwW	
	NTERFACE
oo +	
n	
v	
COMIVANDS RESPONSES
Net wor k Connecti ons
FIGURE 1. VI RTUAL CHARACTER DI SPLAY
Br aden [Page 12]

RFC 205 NETCRT - A CHARACTER DI SPLAY PROTOCOL 6 August 1971

Keyboard Unl ocked
No Commands Executed

o m e e e e e oo +
| |
+------ >| LOCAL [------ +
+--->] State			
	AR R R +		
		Br eak	
			INS recei ved
LOCAL		key	
	[send INS		
Command			and X 80"]
Execut ed			
	Reset		
		key	
	key		
	v v		
	AR R R +		
+---] Contr ol	<------ +		
	State		
Ho----- | |
oo +
N

|
| | Keyboard I ocked
| | Execute Conmands

After INS is

recei ved, LOCAL
conmmand i s ignored
until SYNC (X 80')
i's encountered

FI GURE 2. VCD STATES

is was put into nachine readable formfor entry
[This RFC i hi dabl e f f]
[into the online RFC archives by Lorrie Shiota, 2/02]

Br aden [Page 13]

