
Network Working Group B. Callaghan
Request for Comments: 2054 Sun Microsystems, Inc.
Category: Informational October 1996

 WebNFS Client Specification

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 This document describes a lightweight binding mechanism that allows
 NFS clients to obtain service from WebNFS-enabled servers with a
 minimum of protocol overhead. In removing this overhead, WebNFS
 clients see benefits in faster response to requests, easy transit of
 packet filter firewalls and TCP-based proxies, and better server
 scalability.

Table of Contents

 1. Introduction . 2
 2. TCP vs UDP . 2
 3. Well-known Port . 2
 4. NFS Version 3 . 3
 4.1 Transfer Size . 3
 4.2 Fast Writes . 4
 4.3 READDIRPLUS . 4
 5. Public Filehandle . 5
 5.1 NFS Version 2 Public Filehandle 5
 5.2 NFS Version 3 Public Filehandle 5
 6. Multi-component Lookup 6
 6.1 Canonical Path vs. Native Path 6
 6.2 Symbolic Links . 7
 6.2.1 Absolute Link . 8
 6.2.2 Relative Link . 8
 6.3 Filesystem Spanning Pathnames 9
 7. Contacting the Server 9
 8. Mount Protocol . 11
 9. Exploiting Concurrency 12
 9.1 Read-ahead . 12
 9.2 Concurrent File Download 13
 10. Timeout and Retransmission 13
 11. Bibliography . 15
 12. Security Considerations 16

Callaghan Informational [Page 1]

RFC 2054 WebNFS Client Specification October 1996

 13. Acknowledgements . 16
 14. Author’s Address . 16

1. Introduction

 The NFS protocol provides access to shared filesystems across
 networks. It is designed to be machine, operating system, network
 architecture, and transport protocol independent. The protocol
 currently exists in two versions: version 2 [RFC1094] and version 3
 [RFC1813], both built on Sun RPC [RFC1831] at its associated eXternal
 Data Representation (XDR) [RFC1832] and Binding Protocol [RFC1833].

 WebNFS provides additional semantics that can be applied to NFS
 version 2 and 3 to eliminate the overhead of PORTMAP and MOUNT
 protocols, make the protocol easier to use where firewall transit is
 required, and reduce the number of LOOKUP requests required to
 identify a particular file on the server. WebNFS server requirements
 are described in RFC 2055.

2. TCP vs UDP

 The NFS protocol is most well known for its use of UDP which performs
 acceptably on local area networks. However, on wide area networks
 with error prone, high-latency connections and bandwidth contention,
 TCP is well respected for its congestion control and superior error
 handling. A growing number of NFS implementations now support the
 NFS protocol over TCP connections.

 Use of NFS version 3 is particularly well matched to the use of TCP
 as a transport protocol. Version 3 removes the arbitrary 8k transfer
 size limit of version 2, allowing the READ or WRITE of very large
 streams of data over a TCP connection. Note that NFS version 2 is
 also supported on TCP connections, though the benefits of TCP data
 streaming will not be as great.

 A WebNFS client must first attempt to connect to its server with a
 TCP connection. If the server refuses the connection, the client
 should attempt to use UDP.

3. Well-known Port

 While Internet protocols are generally identified by registered port
 number assignments, RPC based protocols register a 32 bit program
 number and a dynamically assigned port with the portmap service which
 is registered on the well-known port 111. Since the NFS protocol is
 RPC-based, NFS servers register their port assignment with the
 portmap service.

Callaghan Informational [Page 2]

RFC 2054 WebNFS Client Specification October 1996

 NFS servers are constrained by a requirement to re-register at the
 same port after a server crash and recovery so that clients can
 recover simply by retransmitting an RPC request until a response is
 received. This is simpler than the alternative of having the client
 repeatedly check with the portmap service for a new port assignment.
 NFS servers typically achieve this port invariance by registering a
 constant port assignment, 2049, for both UDP and TCP.

 To avoid the overhead of contacting the server’s portmap service, and
 to facilitate transit through packet filtering firewalls, WebNFS
 clients optimistically assume that WebNFS servers register on port
 2049. Most NFS servers use this port assignment already, so this
 client optimism is well justified. Refer to section 8 for further
 details on port binding.

4. NFS Version 3

 NFS version 3 corrects deficiencies in version 2 of the protocol as
 well as providing a number of features suitable to WebNFS clients
 accessing servers over high-latency, low-bandwidth connections.

4.1 Transfer Size

 NFS version 2 limited the amount of data in a single request or reply
 to 8 kilobytes. This limit was based on what was then considered a
 reasonable upper bound on the amount of data that could be
 transmitted in a UDP datagram across an Ethernet. The 8k transfer
 size limitation affects READ, WRITE, and READDIR requests. When using
 version 2, a WebNFS client must not transmit any request that exceeds
 the 8k transfer size. Additionally, the client must be able to
 adjust its requests to suit servers that limit transfer sizes to
 values smaller than 8k.

 NFS version 3 removes the 8k limit, allowing the client and server to
 negotiate whatever limit they choose. Larger transfer sizes are
 preferred since they require fewer READ or WRITE requests to transfer
 a given amount of data and utilize a TCP stream more efficiently.

 While the client can use the FSINFO procedure to request the server’s
 maximum and preferred transfer sizes, in the interests of keeping the
 number of NFS requests to a minimum, WebNFS clients should
 optimistically choose a transfer size and make corrections if
 necessary based on the server’s response.

 For instance, given that the file attributes returned with the
 filehandle from a LOOKUP request indicate that the file has a size of
 50k, the client might transmit a READ request for 50k. If the server
 returns only 32k, then the client can assume that the server’s

Callaghan Informational [Page 3]

RFC 2054 WebNFS Client Specification October 1996

 maximum transfer size is 32k and issue another read request for the
 remaining data. The server will indicate positively when the end of
 file is reached.

 A similar strategy can be used when writing to a file on the server,
 though the client should be more conservative in choosing write
 request sizes so as to avoid transmitting large amounts of data that
 the server cannot handle.

4.2 Fast Writes

 NFS version 2 requires the server to write client data to stable
 storage before responding to the client. This avoids the possibility
 of the the server crashing and losing the client’s data after a
 positive response. While this requirement protects the client from
 data loss, it requires that the server direct client write requests
 directly to the disk, or to buffer client data in expensive non-
 volatile memory (NVRAM). Either way, the effect is poor write
 performance, either through inefficient synchronous writes to the
 disk or through the limited buffering available in NVRAM.

 NFS version 3 provides clients with the option of having the server
 buffer a series of WRITE requests in unstable storage. A subsequent
 COMMIT request from the client will have the server flush the data to
 stable storage and have the client verify that the server lost none
 of the data. Since fast writes benefit both the client and the
 server, WebNFS clients should use WRITE/COMMIT when writing to the
 server.

4.3 READDIRPLUS

 The NFS version 2 READDIR procedure is also supported in version 3.
 READDIR returns the names of the entries in a directory along with
 their fileids. Browser programs that display directory contents as a
 list will usually display more than just the filename; a different
 icon may be displayed if the entry is a directory or a file.
 Similarly, the browser may display the file size, and date of last
 modification.

 Since this additional information is not returned by READDIR, version
 2 clients must issue a series of LOOKUP requests, one per directory
 member, to retrieve the attribute data. Clearly this is an expensive
 operation where the directory is large (perhaps several hundred
 entries) and the network latency is high.

 The version 3 READDIRPLUS request allows the client to retrieve not
 only the names of the directory entries, but also their file
 attributes and filehandles in a single call. WebNFS clients that

Callaghan Informational [Page 4]

RFC 2054 WebNFS Client Specification October 1996

 require attribute information for directory entries should use
 READDIRPLUS in preference to READDIR.

5. Public Filehandle

 NFS filehandles are normally created by the server and used to
 identify uniquely a particular file or directory on the server. The
 client does not normally create filehandles or have any knowledge of
 the contents of a filehandle.

 The public filehandle is an an exception. It is an NFS filehandle
 with a reserved value and special semantics that allow an initial
 filehandle to be obtained. A WebNFS client can use the public
 filehandle as an initial filehandle rather than using the MOUNT
 protocol. Since NFS version 2 and version 3 have different
 filehandle formats, the public filehandle is defined differently for
 each.

 The public filehandle is a zero filehandle. For NFS version 2 this
 is a filehandle with 32 zero octets. A version 3 public filehandle
 has zero length.

5.1 NFS Version 2 Public Filehandle

 A version 2 filehandle is defined in RFC 1094 as an opaque value
 occupying 32 octets. A version 2 public filehandle has a zero in
 each octet, i.e. all zeros.

 1 32
 +-+
 |0|
 +-+

5.2 NFS Version 3 Public Filehandle

 A version 3 filehandle is defined in RFC 1813 as a variable length
 opaque value occupying up to 64 octets. The length of the filehandle
 is indicated by an integer value contained in a 4 octet value which
 describes the number of valid octets that follow. A version 3 public
 filehandle has a length of zero.

 +-+-+-+-+
 | 0 |
 +-+-+-+-+

Callaghan Informational [Page 5]

RFC 2054 WebNFS Client Specification October 1996

6. Multi-component Lookup

 Normally the NFS LOOKUP request (version 2 or 3) takes a directory
 filehandle along with the name of a directory member, and returns the
 filehandle of the directory member. If a client needs to evaluate a
 pathname that contains a sequence of components, then beginning with
 the directory filehandle of the first component it must issue a
 series of LOOKUP requests one component at a time. For instance,
 evaluation of the Unix path "a/b/c" will generate separate LOOKUP
 requests for each component of the pathname "a", "b", and "c".

 A LOOKUP request that uses the public filehandle can provide a
 pathname containing multiple components. The server is expected to
 evaluate the entire pathname and return a filehandle for the final
 component. Both canonical (slash-separated) and server native
 pathnames are supported.

 For example, rather than evaluate the path "a/b/c" as:

 LOOKUP FH=0x0 "a" --->
 <--- FH=0x1
 LOOKUP FH=0x1 "b" --->
 <--- FH=0x2
 LOOKUP FH=0x2 "c" --->
 <--- FH=0x3

 Relative to the public filehandle these three LOOKUP requests can be
 replaced by a single multi-component lookup:

 LOOKUP FH=0x0 "a/b/c" --->
 <--- FH=0x3

 Multi-component lookup is supported only for LOOKUP requests relative
 to the public filehandle.

6.1 Canonical Path vs. Native Path

 If the pathname in a multi-component LOOKUP request begins with an
 ASCII character, then it must be a canonical path. A canonical path
 is a hierarchically-related, slash-separated sequence of components,
 <directory>/<directory>/.../<name>. Occurrences of the "/" character
 within a component must be escaped using the escape code %2f. Non-
 ascii characters within components must also be escaped using the "%"
 character to introduce a two digit hexadecimal code. Occurrences of
 the "%" character that do not introduce an encoded character must
 themselves be encoded with %25.

Callaghan Informational [Page 6]

RFC 2054 WebNFS Client Specification October 1996

 If the first character of the path is a slash, then the canonical
 path will be evaluated relative to the server’s root directory. If
 the first character is not a slash, then the path will be evaluated
 relative to the directory with which the public filehandle is
 associated.

 Not all WebNFS servers can support arbitrary use of absolute paths.
 Clearly, the server cannot return a filehandle if the path identifies
 a file or directory that is not exported by the server. In addition,
 some servers will not return a filehandle if the path names a file or
 directory in an exported filesystem different from the one that is
 associated with the public filehandle.

 If the first character of the path is 0x80 (non-ascii) then the
 following character is the first in a native path. A native path
 conforms to the normal pathname syntax of the server. For example:

 Lookup for Canonical Path:

 LOOKUP FH=0x0 "/a/b/c"

 Lookup for Native Path:

 LOOKUP FH=0x0 0x80 "a:b:c"

6.2 Symbolic Links

 On Unix servers, components within a pathname may be symbolic links.
 The server will evaluate these symbolic links as a part of the normal
 pathname evaluation process. If the final component is a symbolic
 link, the server will return its filehandle, rather than evaluate it.

 If the attributes returned with a filehandle indicate that it refers
 to a symbolic link, then it is the client’s responsibility to deal
 with the link by fetching the contents of the link using the READLINK
 procedure. What follows is determined by the contents of the link.

 Evaluation of symbolic links by the client is defined only if the
 symbolic link is retrieved via the multi-component lookup of a
 canonical path.

Callaghan Informational [Page 7]

RFC 2054 WebNFS Client Specification October 1996

6.2.1 Absolute Link

 If the first character of the link text is a slash "/", then the
 following path can be assumed to be absolute. The entire path must
 be evaluated by the server relative to the public filehandle:

 LOOKUP FH=0x0 "a/b" --->
 <--- FH=0x1 (symbolic link)
 READLINK FH=0x1 --->
 <--- "/x/y"
 LOOKUP FH=0x0 "/x/y"
 <--- FH=0x2

 So in this case the client just passes the link text back to the
 server for evaluation.

6.2.2 Relative Link

 If the first character of the link text is not a slash, then the
 following path can be assumed to be relative to the location of the
 symbolic link. To evaluate this correctly, the client must
 substitute the link text in place of the final pathname component
 that named the link and issue a another LOOKUP relative to the public
 filehandle.

 LOOKUP FH=0x0 "a/b" --->
 <--- FH=0x1 (symbolic link)
 READLINK FH=0x1 --->
 <--- "x/y"
 LOOKUP FH=0x0 "a/x/y"
 <--- FH=0x2

 By substituting the link text in the link path and having the server
 evaluate the new path, the server effectively gets to evaluate the
 link relative to the link’s location.

 The client may also "clean up" the resulting pathname by removing
 redundant components as described in Section 4. of RFC 1808.

Callaghan Informational [Page 8]

RFC 2054 WebNFS Client Specification October 1996

6.3 Filesystem Spanning Pathnames

 NFS LOOKUP requests normally do not cross from one filesystem to
 another on the server. For instance if the server has the following
 export and mounts:

 /export (exported)

 /export/bigdata (mountpoint)

 then an NFS LOOKUP for "bigdata" using the filehandle for "/export"
 will return a "no file" error because the LOOKUP request did not
 cross the mountpoint on the server. There is a practical reason for
 this limitation: if the server permitted the mountpoint crossing to
 occur, then a Unix client might receive ambiguous fileid information
 inconsistent with it’s view of a single remote mount for "/export".
 It is expected that the client resolve this by mirroring the
 additional server mount, e.g.

 Client Server

 /mnt <--- mounted on --- /export

 /mnt/bigdata <--- mounted on --- /export/bigdata

 However, this semantic changes if the client issues the filesystem
 spanning LOOKUP relative to the public filehandle. If the following
 filesystems are exported:

 /export (exported public)

 /export/bigdata (exported mountpoint)

 then an NFS LOOKUP for "bigdata" relative to the public filehandle
 will cross the mountpoint - just as if the client had issued a MOUNT
 request - but only if the new filesystem is exported, and only if the
 server supports Export Spanning Pathnames described in Section 6.3 of
 RFC 2055 [RFC2055].

7. Contacting the Server

 WebNFS clients should be optimistic in assuming that the server
 supports WebNFS, but should be capable of fallback to conventional
 methods for server access if the server does not support WebNFS.

Callaghan Informational [Page 9]

RFC 2054 WebNFS Client Specification October 1996

 The client should start with the assumption that the server supports:

 - NFS version 3.

 - NFS TCP connections.

 - Public Filehandles.

 If these assumptions are not met, the client should fall back
 gracefully with a minimum number of messages. The following steps are
 recommended:

 1. Attempt to create a TCP connection to the server’s
 port 2049.

 If the connection fails then assume that a request
 sent over UDP will work. Use UDP port 2049.

 Do not use the PORTMAP protocol to determine the
 server’s port unless the server does not respond to
 port 2049 for both TCP and UDP.

 2. Assume WebNFS and V3 are supported.
 Send an NFS version 3 LOOKUP with the public filehandle
 for the requested pathname.

 If the server returns an RPC PROG_MISMATCH error then
 assume that NFS version 3 is not supported. Retry
 the LOOKUP with an NFS version 2 public filehandle.

 Note: The first call may not necessarily be a LOOKUP
 if the operation is directed at the public filehandle
 itself, e.g. a READDIR or READDIRPLUS of the directory
 that is associated with the public filehandle.

 If the server returns an NFS3ERR_STALE, NFS3ERR_INVAL, or
 NFS3ERR_BADHANDLE error, then assume that the server does
 not support WebNFS since it does not recognize the public
 filehandle. The client must use the server’s portmap
 service to locate and use the MOUNT protocol to obtain an
 initial filehandle for the requested path.

 WebNFS clients can benefit by caching information about the server:
 whether the server supports TCP connections (if TCP is supported then
 the client should cache the TCP connection as well), which protocol
 the server supports and whether the server supports public
 filehandles. If the server does not support public filehandles, the
 client may choose to cache the port assignment of the MOUNT service

Callaghan Informational [Page 10]

RFC 2054 WebNFS Client Specification October 1996

 as well as previously used pathnames and their filehandles.

8. Mount Protocol

 If the server returns an error to the client that indicates no
 support for public filehandles, the client must use the MOUNT
 protocol to convert the given pathname to a filehandle. Version 1 of
 the MOUNT protocol is described in Appendix A of RFC 1094 and version
 3 in Appendix I of RFC 1813. Version 2 of the MOUNT protocol is
 identical to version 1 except for the addition of a procedure
 MOUNTPROC_PATHCONF which returns POSIX pathconf information from the
 server.

 At this point the client must already have some indication as to
 which version of the NFS protocol is supported on the server. Since
 the filehandle format differs between NFS versions 2 and 3, the
 client must select the appropriate version of the MOUNT protocol.
 MOUNT versions 1 and 2 return only NFS version 2 filehandles, whereas
 MOUNT version 3 returns NFS version 3 filehandles.

 Unlike the NFS service, the MOUNT service is not registered on a
 well-known port. The client must use the PORTMAP service to locate
 the server’s MOUNT port before it can transmit a MOUNTPROC_MNT
 request to retrieve the filehandle corresponding to the requested
 path.

 Client Server
 ------ ------

 -------------- MOUNT port ? --------------> Portmapper
 <-------------- Port=984 ------------------

 ------- Filehandle for /export/foo ? ----> Mountd @ port 984
 <--------- Filehandle=0xf82455ce0.. ------

 NFS servers commonly use a client’s successful MOUNTPROC_MNT request
 request as an indication that the client has "mounted" the filesystem
 and may maintain this information in a file that lists the
 filesystems that clients currently have mounted. This information is
 removed from the file when the client transmits an MOUNTPROC_UMNT
 request. Upon receiving a successful reply to a MOUNTPROC_MNT
 request, a WebNFS client should send a MOUNTPROC_UMNT request to
 prevent an accumulation of "mounted" records on the server.

 Note that the additional overhead of the PORTMAP and MOUNT protocols
 will have an effect on the client’s binding time to the server and
 the dynamic port assignment of the MOUNT protocol may preclude easy
 firewall or proxy server transit.

Callaghan Informational [Page 11]

RFC 2054 WebNFS Client Specification October 1996

 The client may regain some performance improvement by utilizing a
 pathname prefix cache. For instance, if the client already has a
 filehandle for the pathname "a/b" then there is a good chance that
 the filehandle for "a/b/c" can be recovered by by a lookup of "c"
 relative to the filehandle for "a/b", eliminating the need to have
 the MOUNT protocol translate the pathname. However, there are risks
 in doing this. Since the LOOKUP response provides no indication of
 filesystem mountpoint crossing on the server, the relative LOOKUP may
 fail, since NFS requests do not normally cross mountpoints on the
 server. The MOUNT service can be relied upon to evaluate the
 pathname correctly - including the crossing of mountpoints where
 necessary.

9. Exploiting Concurrency

 NFS servers are known for their high capacity and their
 responsiveness to clients transmitting multiple concurrent requests.
 For best performance, a WebNFS client should take advantage of server
 concurrency. The RPC protocol on which the NFS protocol is based,
 provides transport-independent support for this concurrency via a
 unique transaction ID (XID) in every NFS request.

 There is no need for a client to open multiple TCP connections to
 transmit concurrent requests. The RPC record marking protocol allows
 the client to transmit and receive a stream of NFS requests and
 replies over a single connection.

9.1 Read-ahead

 To keep the number of READ requests to a minimum, a WebNFS client
 should use the maximum transfer size that it and the server can
 support. The client can often optimize utilization of the link
 bandwidth by transmitting concurrent READ requests. The optimum
 number of READ requests needs to be determined dynamically taking
 into account the available bandwidth, link latency, and I/O bandwidth
 of the client and server, e.g. the following series of READ requests
 show a client using a single read-ahead to transfer a 128k file from
 the server with 32k READ requests:

 READ XID=77 offset=0 for 32k -->
 READ XID=78 offset=32k for 32k -->
 <-- Data for XID 77
 READ XID=79 offset=64k for 32k -->
 <-- Data for XID 78
 READ XID=80 offset=96k for 32k -->
 <-- Data for XID 79
 <-- Data for XID 80

Callaghan Informational [Page 12]

RFC 2054 WebNFS Client Specification October 1996

 The client must be able to handle the return of data out of order.
 For instance, in the above example the data for XID 78 may be
 received before the data for XID 77.

 The client should be careful not to use read-ahead beyond the
 capacity of the server, network, or client, to handle the data. This
 might be determined by a heuristic that measures throughput as the
 download proceeds.

9.2 Concurrent File Download

 A client may combine read-ahead with concurrent download of multiple
 files. A practical example is that of Web pages that contain
 multiple images, or a Java Applet that imports multiple class files
 from the server.

 Omitting read-ahead for clarity, the download of multiple files,
 "file1", "file2", and "file3" might look something like this:

 LOOKUP XID=77 0x0 "file1" -->
 LOOKUP XID=78 0x0 "file2" -->
 LOOKUP XID=79 0x0 "file3" -->
 <-- FH=0x01 for XID 77
 READ XID=80 0x01 offset=0 for 32k -->
 <-- FH=0x02 for XID 78
 READ XID=81 0x02 offset=0 for 32k -->
 <-- FH=0x03 for XID 79
 READ XID=82 0x03 offset=0 for 32k -->
 <-- Data for XID 80
 <-- Data for XID 81
 <-- Data for XID 82

 Note that the replies may be received in a different order from the
 order in which the requests were transmitted. This is not a problem,
 since RPC uses the XID to match requests with replies. A benefit of
 the request/reply multiplexing provided by the RPC protocol is that
 the download of a large file that requires many READ requests will
 not delay the concurrent download of smaller files.

 Again, the client must be careful not to drown the server with
 download requests.

10.0 Timeout and Retransmission

 A WebNFS client should follow the example of conventional NFS clients
 and handle server or network outages gracefully. If a reply is not
 received within a given timeout, the client should retransmit the
 request with its original XID (described in Section 8 of RFC 1831).

Callaghan Informational [Page 13]

RFC 2054 WebNFS Client Specification October 1996

 The XID can be used by the server to detect duplicate requests and
 avoid unnecessary work.

 While it would seem that retransmission over a TCP connection is
 unnecessary (since TCP is responsible for detecting and
 retransmitting lost data), at the RPC layer retransmission is still
 required for recovery from a lost TCP connection, perhaps due to a
 server crash or, because of resource limitations, the server has
 closed the connection. When the TCP connection is lost, the client
 must re-establish the connection and retransmit pending requests.

 The client should set the request timeout according to the following
 guidelines:

 - A timeout that is too small may result in the
 wasteful transmission of duplicate requests.
 The server may be just slow to respond, either because
 it is heavily loaded, or because the link latency is high.

 - A timeout that is too large may harm throughput if
 the request is lost and the connection is idle waiting
 for the retransmission to occur.

 - The optimum timeout may vary with the server’s
 responsiveness over time, and with the congestion
 and latency of the network.

 - The optimum timeout will vary with the type of NFS
 request. For instance, the response to a LOOKUP
 request will be received more quickly than the response
 to a READ request.

 - The timeout should be increased according to an
 exponential backoff until a limit is reached.
 For instance, if the timeout is 1 second, the
 first retransmitted request should have a timeout of
 two seconds, the second retransmission 4 seconds, and
 so on until the timeout reaches a limit, say 30 seconds.
 This avoids flooding the network with retransmission
 requests when the server is down, or overloaded.

 As a general rule of thumb, the client should start with a long
 timeout until the server’s responsiveness is determined. The timeout
 can then be set to a value that reflects the server’s responsiveness
 to previous requests.

Callaghan Informational [Page 14]

RFC 2054 WebNFS Client Specification October 1996

11.0 Bibliography

 [RFC1808] Fielding, R.,
 "Relative Uniform Resource Locators", RFC 1808,
 June 1995.
 http://www.internic.net/rfc/rfc1808.txt

 [RFC1831] Srinivasan, R., "RPC: Remote Procedure Call
 Protocol Specification Version 2", RFC 1831,
 August 1995.
 http://www.internic.net/rfc/rfc1831.txt

 [RFC1832] Srinivasan, R, "XDR: External Data Representation
 Standard", RFC 1832, August 1995.
 http://www.internic.net/rfc/rfc1832.txt

 [RFC1833] Srinivasan, R., "Binding Protocols for ONC RPC
 Version 2", RFC 1833, August 1995.
 http://www.internic.net/rfc/rfc1833.txt

 [RFC1094] Sun Microsystems, Inc., "Network Filesystem
 Specification", RFC 1094, March 1989. NFS
 version 2 protocol specification.
 http://www.internic.net/rfc/rfc1094.txt

 [RFC1813] Sun Microsystems, Inc., "NFS Version 3 Protocol
 Specification," RFC 1813, June 1995. NFS version
 3 protocol specification.
 http://www.internic.net/rfc/rfc1813.txt

 [RFC2055] Callaghan, B., "WebNFS Server Specification",
 RFC 2055, October 1996.
 http://www.internic.net/rfc/rfc2055.txt

 [Sandberg] Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh,
 B. Lyon, "Design and Implementation of the Sun
 Network Filesystem," USENIX Conference
 Proceedings, USENIX Association, Berkeley, CA,
 Summer 1985. The basic paper describing the
 SunOS implementation of the NFS version 2
 protocol, and discusses the goals, protocol
 specification and trade-offs.

 [X/OpenNFS] X/Open Company, Ltd., X/Open CAE Specification:
 Protocols for X/Open Internetworking: XNFS,
 X/Open Company, Ltd., Apex Plaza, Forbury Road,
 Reading Berkshire, RG1 1AX, United Kingdom,
 1991. This is an indispensable reference for

Callaghan Informational [Page 15]

RFC 2054 WebNFS Client Specification October 1996

 NFS version 2 protocol and accompanying
 protocols, including the Lock Manager and the
 Portmapper.

 [X/OpenPCNFS] X/Open Company, Ltd., X/Open CAE Specification:
 Protocols for X/Open Internetworking: (PC)NFS,
 Developer’s Specification, X/Open Company, Ltd.,
 Apex Plaza, Forbury Road, Reading Berkshire, RG1
 1AX, United Kingdom, 1991. This is an
 indispensable reference for NFS version 2
 protocol and accompanying protocols, including
 the Lock Manager and the Portmapper.

12. Security Considerations

 Since the WebNFS server features are based on NFS protocol versions 2
 and 3, the RPC based security considerations described in RFC 1094,
 RFC 1831, and RFC 1832 apply here also.

 Clients and servers may separately negotiate secure connection
 schemes for authentication, data integrity, and privacy.

13. Acknowledgements

 This specification was extensively reviewed by the NFS group at
 SunSoft and brainstormed by Michael Eisler.

14. Author’s Address

 Address comments related to this document to:

 nfs@eng.sun.com

 Brent Callaghan
 Sun Microsystems, Inc.
 2550 Garcia Avenue
 Mailstop Mpk17-201
 Mountain View, CA 94043-1100

 Phone: 1-415-786-5067
 Fax: 1-415-786-5896
 EMail: brent.callaghan@eng.sun.com

Callaghan Informational [Page 16]

