
Network Working Group J. Franks
Request for Comments: 2069 Northwestern University
Category: Standards Track P. Hallam-Baker
 CERN
 J. Hostetler
 Spyglass, Inc.
 P. Leach
 Microsoft Corporation
 A. Luotonen
 Netscape Communications Corporation
 E. Sink
 Spyglass, Inc.
 L. Stewart
 Open Market, Inc.
 January 1997

 An Extension to HTTP : Digest Access Authentication

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 The protocol referred to as "HTTP/1.0" includes the specification for
 a Basic Access Authentication scheme. This scheme is not considered
 to be a secure method of user authentication, as the user name and
 password are passed over the network as clear text. A specification
 for a different authentication scheme is needed to address this
 severe limitation. This document provides specification for such a
 scheme, referred to as "Digest Access Authentication". Like Basic,
 Digest access authentication verifies that both parties to a
 communication know a shared secret (a password); unlike Basic, this
 verification can be done without sending the password in the clear,
 which is Basic’s biggest weakness. As with most other authentication
 protocols, the greatest sources of risks are usually found not in the
 core protocol itself but in policies and procedures surrounding its
 use.

Franks, et. al. Standards Track [Page 1]

RFC 2069 Digest Access Authentication January 1997

Table of Contents

 INTRODUCTION.. 2
 1.1 PURPOSE .. 2
 1.2 OVERALL OPERATION .. 3
 1.3 REPRESENTATION OF DIGEST VALUES 3
 1.4 LIMITATIONS .. 3
 2. DIGEST ACCESS AUTHENTICATION SCHEME............................ 3
 2.1 SPECIFICATION OF DIGEST HEADERS 3
 2.1.1 THE WWW-AUTHENTICATE RESPONSE HEADER 4
 2.1.2 THE AUTHORIZATION REQUEST HEADER 6
 2.1.3 THE AUTHENTICATION-INFO HEADER 9
 2.2 DIGEST OPERATION .. 10
 2.3 SECURITY PROTOCOL NEGOTIATION 10
 2.4 EXAMPLE ... 11
 2.5 PROXY-AUTHENTICATION AND PROXY-AUTHORIZATION 11
 3. SECURITY CONSIDERATIONS.. 12
 3.1 COMPARISON WITH BASIC AUTHENTICATION 13
 3.2 REPLAY ATTACKS .. 13
 3.3 MAN IN THE MIDDLE ... 14
 3.4 SPOOFING BY COUNTERFEIT SERVERS 15
 3.5 STORING PASSWORDS ... 15
 3.6 SUMMARY ... 16
 4. ACKNOWLEDGMENTS... 16
 5. REFERENCES... 16
 6. AUTHORS’ ADDRESSES... 17

Introduction

1.1 Purpose

 The protocol referred to as "HTTP/1.0" includes specification for a
 Basic Access Authentication scheme[1]. This scheme is not considered
 to be a secure method of user authentication, as the user name and
 password are passed over the network in an unencrypted form. A
 specification for a new authentication scheme is needed for future
 versions of the HTTP protocol. This document provides specification
 for such a scheme, referred to as "Digest Access Authentication".

 The Digest Access Authentication scheme is not intended to be a
 complete answer to the need for security in the World Wide Web. This
 scheme provides no encryption of object content. The intent is simply
 to create a weak access authentication method which avoids the most
 serious flaws of Basic authentication.

 It is proposed that this access authentication scheme be included in
 the proposed HTTP/1.1 specification.

Franks, et. al. Standards Track [Page 2]

RFC 2069 Digest Access Authentication January 1997

1.2 Overall Operation

 Like Basic Access Authentication, the Digest scheme is based on a
 simple challenge-response paradigm. The Digest scheme challenges
 using a nonce value. A valid response contains a checksum (by
 default the MD5 checksum) of the username, the password, the given
 nonce value, the HTTP method, and the requested URI. In this way,
 the password is never sent in the clear. Just as with the Basic
 scheme, the username and password must be prearranged in some fashion
 which is not addressed by this document.

1.3 Representation of digest values

 An optional header allows the server to specify the algorithm used to
 create the checksum or digest. By default the MD5 algorithm is used
 and that is the only algorithm described in this document.

 For the purposes of this document, an MD5 digest of 128 bits is
 represented as 32 ASCII printable characters. The bits in the 128
 bit digest are converted from most significant to least significant
 bit, four bits at a time to their ASCII presentation as follows.
 Each four bits is represented by its familiar hexadecimal notation
 from the characters 0123456789abcdef. That is, binary 0000 gets
 represented by the character ’0’, 0001, by ’1’, and so on up to the
 representation of 1111 as ’f’.

1.4 Limitations

 The digest authentication scheme described in this document suffers
 from many known limitations. It is intended as a replacement for
 basic authentication and nothing more. It is a password-based system
 and (on the server side) suffers from all the same problems of any
 password system. In particular, no provision is made in this
 protocol for the initial secure arrangement between user and server
 to establish the user’s password.

 Users and implementors should be aware that this protocol is not as
 secure as kerberos, and not as secure as any client-side private-key
 scheme. Nevertheless it is better than nothing, better than what is
 commonly used with telnet and ftp, and better than Basic
 authentication.

2. Digest Access Authentication Scheme

2.1 Specification of Digest Headers

 The Digest Access Authentication scheme is conceptually similar to
 the Basic scheme. The formats of the modified WWW-Authenticate

Franks, et. al. Standards Track [Page 3]

RFC 2069 Digest Access Authentication January 1997

 header line and the Authorization header line are specified below,
 using the extended BNF defined in the HTTP/1.1 specification, section
 2.1. In addition, a new header, Authentication-info, is specified.

2.1.1 The WWW-Authenticate Response Header

 If a server receives a request for an access-protected object, and an
 acceptable Authorization header is not sent, the server responds with
 a "401 Unauthorized" status code, and a WWW-Authenticate header,
 which is defined as follows:

 WWW-Authenticate = "WWW-Authenticate" ":" "Digest"
 digest-challenge

 digest-challenge = 1#(realm | [domain] | nonce |
 [digest-opaque] |[stale] | [algorithm])

 realm = "realm" "=" realm-value
 realm-value = quoted-string
 domain = "domain" "=" <"> 1#URI <">
 nonce = "nonce" "=" nonce-value
 nonce-value = quoted-string
 opaque = "opaque" "=" quoted-string
 stale = "stale" "=" ("true" | "false")
 algorithm = "algorithm" "=" ("MD5" | token)

 The meanings of the values of the parameters used above are as
 follows:

 realm
 A string to be displayed to users so they know which username and
 password to use. This string should contain at least the name of
 the host performing the authentication and might additionally
 indicate the collection of users who might have access. An example
 might be "registered_users@gotham.news.com". The realm is a
 "quoted-string" as specified in section 2.2 of the HTTP/1.1
 specification [2].

 domain
 A comma-separated list of URIs, as specified for HTTP/1.0. The
 intent is that the client could use this information to know the
 set of URIs for which the same authentication information should be
 sent. The URIs in this list may exist on different servers. If
 this keyword is omitted or empty, the client should assume that the
 domain consists of all URIs on the responding server.

Franks, et. al. Standards Track [Page 4]

RFC 2069 Digest Access Authentication January 1997

 nonce
 A server-specified data string which may be uniquely generated each
 time a 401 response is made. It is recommended that this string be
 base64 or hexadecimal data. Specifically, since the string is
 passed in the header lines as a quoted string, the double-quote
 character is not allowed.

 The contents of the nonce are implementation dependent. The
 quality of the implementation depends on a good choice. A
 recommended nonce would include

 H(client-IP ":" time-stamp ":" private-key)

 Where client-IP is the dotted quad IP address of the client making
 the request, time-stamp is a server-generated time value, private-
 key is data known only to the server. With a nonce of this form a
 server would normally recalculate the nonce after receiving the
 client authentication header and reject the request if it did not
 match the nonce from that header. In this way the server can limit
 the reuse of a nonce to the IP address to which it was issued and
 limit the time of the nonce’s validity. Further discussion of the
 rationale for nonce construction is in section 3.2 below.

 An implementation might choose not to accept a previously used
 nonce or a previously used digest to protect against a replay
 attack. Or, an implementation might choose to use one-time nonces
 or digests for POST or PUT requests and a time-stamp for GET
 requests. For more details on the issues involved see section 3.
 of this document.

 The nonce is opaque to the client.

 opaque
 A string of data, specified by the server, which should be
 returned by the client unchanged. It is recommended that this
 string be base64 or hexadecimal data. This field is a
 "quoted-string" as specified in section 2.2 of the HTTP/1.1
 specification [2].

 stale
 A flag, indicating that the previous request from the client was
 rejected because the nonce value was stale. If stale is TRUE (in
 upper or lower case), the client may wish to simply retry the
 request with a new encrypted response, without reprompting the
 user for a new username and password. The server should only set
 stale to true if it receives a request for which the nonce is
 invalid but with a valid digest for that nonce (indicating that
 the client knows the correct username/password).

Franks, et. al. Standards Track [Page 5]

RFC 2069 Digest Access Authentication January 1997

 algorithm
 A string indicating a pair of algorithms used to produce the
 digest and a checksum. If this not present it is assumed to be
 "MD5". In this document the string obtained by applying the
 digest algorithm to the data "data" with secret "secret" will be
 denoted by KD(secret, data), and the string obtained by applying
 the checksum algorithm to the data "data" will be denoted
 H(data).

 For the "MD5" algorithm

 H(data) = MD5(data)

 and

 KD(secret, data) = H(concat(secret, ":", data))

 i.e., the digest is the MD5 of the secret concatenated with a colon
 concatenated with the data.

2.1.2 The Authorization Request Header

 The client is expected to retry the request, passing an Authorization
 header line, which is defined as follows.

Authorization = "Authorization" ":" "Digest" digest-response

digest-response = 1#(username | realm | nonce | digest-uri |
 response | [digest] | [algorithm] |
 opaque)

username = "username" "=" username-value
username-value = quoted-string
digest-uri = "uri" "=" digest-uri-value
digest-uri-value = request-uri ; As specified by HTTP/1.1
response = "response" "=" response-digest
digest = "digest" "=" entity-digest

response-digest = <"> *LHEX <">
entity-digest = <"> *LHEX <">
LHEX = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
 "8" | "9" | "a" | "b" | "c" | "d" | "e" | "f"

 The definitions of response-digest and entity-digest above indicate
 the encoding for their values. The following definitions show how the
 value is computed:

Franks, et. al. Standards Track [Page 6]

RFC 2069 Digest Access Authentication January 1997

 response-digest =
 <"> < KD (H(A1), unquoted nonce-value ":" H(A2) > <">

 A1 = unquoted username-value ":" unquoted realm-value
 ":" password
 password = < user’s password >
 A2 = Method ":" digest-uri-value

 The "username-value" field is a "quoted-string" as specified in
 section 2.2 of the HTTP/1.1 specification [2]. However, the
 surrounding quotation marks are removed in forming the string A1.
 Thus if the Authorization header includes the fields

 username="Mufasa", realm="myhost@testrealm.com"

 and the user Mufasa has password "CircleOfLife" then H(A1) would be
 H(Mufasa:myhost@testrealm.com:CircleOfLife) with no quotation marks
 in the digested string.

 No white space is allowed in any of the strings to which the digest
 function H() is applied unless that white space exists in the quoted
 strings or entity body whose contents make up the string to be
 digested. For example, the string A1 in the illustrated above must
 be Mufasa:myhost@testrealm.com:CircleOfLife with no white space on
 either side of the colons. Likewise, the other strings digested by
 H() must not have white space on either side of the colons which
 delimit their fields unless that white space was in the quoted
 strings or entity body being digested.

 "Method" is the HTTP request method as specified in section 5.1 of
 [2]. The "request-uri" value is the Request-URI from the request
 line as specified in section 5.1 of [2]. This may be "*", an
 "absoluteURL" or an "abs_path" as specified in section 5.1.2 of [2],
 but it MUST agree with the Request-URI. In particular, it MUST be an
 "absoluteURL" if the Request-URI is an "absoluteURL".

 The authenticating server must assure that the document designated by
 the "uri" parameter is the same as the document served. The purpose
 of duplicating information from the request URL in this field is to
 deal with the possibility that an intermediate proxy may alter the
 client’s request. This altered (but presumably semantically
 equivalent) request would not result in the same digest as that
 calculated by the client.

 The optional "digest" field contains a digest of the entity body and
 some of the associated entity headers. This digest can be useful in
 both request and response transactions. In a request it can insure
 the integrity of POST data or data being PUT to the server. In a

Franks, et. al. Standards Track [Page 7]

RFC 2069 Digest Access Authentication January 1997

 response it insures the integrity of the served document. The value
 of the "digest" field is an <entity-digest> which is defined as
 follows.

entity-digest = <"> KD (H(A1), unquoted nonce-value ":" Method ":"
 date ":" entity-info ":" H(entity-body)) <">
 ; format is <"> *LHEX <">

date = = rfc1123-date ; see section 3.3.1 of [2]
entity-info = H(
 digest-uri-value ":"
 media-type ":" ; Content-type, see section 3.7 of [2]
 *DIGIT ":" ; Content length, see 10.12 of [2]
 content-coding ":" ; Content-encoding, see 3.5 of [2]
 last-modified ":" ; last modified date, see 10.25 of [2]
 expires ; expiration date; see 10.19 of [2]
)

last-modified = rfc1123-date ; see section 3.3.1 of [2]
expires = rfc1123-date

 The entity-info elements incorporate the values of the URI used to
 request the entity as well as the associated entity headers Content-
 type, Content-length, Content-encoding, Last-modified, and Expires.
 These headers are all end-to-end headers (see section 13.5.1 of [2])
 which must not be modified by proxy caches. The "entity-body" is as
 specified by section 10.13 of [2] or RFC 1864.

 Note that not all entities will have an associated URI or all of
 these headers. For example, an entity which is the data of a POST
 request will typically not have a digest-uri-value or Last-modified
 or Expires headers. If an entity does not have a digest-uri-value or
 a header corresponding to one of the entity-info fields, then that
 field is left empty in the computation of entity-info. All the
 colons specified above are present, however. For example the value
 of the entity-info associated with POST data which has content-type
 "text/plain", no content-encoding and a length of 255 bytes would be
 H(:text/plain:255:::). Similarly a request may not have a "Date"
 header. In this case the date field of the entity-digest should be
 empty.

 In the entity-info and entity-digest computations, except for the
 blank after the comma in "rfc1123-date", there must be no white space
 between "words" and "tspecials", and exactly one blank between
 "words" (see section 2.2 of [2]).

Franks, et. al. Standards Track [Page 8]

RFC 2069 Digest Access Authentication January 1997

 Implementors should be aware of how authenticated transactions
 interact with proxy caches. The HTTP/1.1 protocol specifies that
 when a shared cache (see section 13.10 of [2]) has received a request
 containing an Authorization header and a response from relaying that
 request, it MUST NOT return that response as a reply to any other
 request, unless one of two Cache-control (see section 14.9 of [2])
 directives was present in the response. If the original response
 included the "must-revalidate" Cache-control directive, the cache MAY
 use the entity of that response in replying to a subsequent request,
 but MUST first revalidate it with the origin server, using the
 request headers from the new request to allow the origin server to
 authenticate the new request. Alternatively, if the original
 response included the "public" Cache-control directive, the response
 entity MAY be returned in reply to any subsequent request.

2.1.3 The AuthenticationInfo Header

 When authentication succeeds, the Server may optionally provide a
 Authentication-info header indicating that the server wants to
 communicate some information regarding the successful authentication
 (such as an entity digest or a new nonce to be used for the next
 transaction). It has two fields, digest and nextnonce. Both are
 optional.

 AuthenticationInfo = "Authentication-info" ":"
 1#(digest | nextnonce)

 nextnonce = "nextnonce" "=" nonce-value

 digest = "digest" "=" entity-digest

 The optional digest allows the client to verify that the body of the
 response has not been changed en-route. The server would probably
 only send this when it has the document and can compute it. The
 server would probably not bother generating this header for CGI
 output. The value of the "digest" is an <entity-digest> which is
 computed as described above.

 The value of the nextnonce parameter is the nonce the server wishes
 the client to use for the next authentication response. Note that
 either field is optional. In particular the server may send the
 Authentication-info header with only the nextnonce field as a means
 of implementing one-time nonces. If the nextnonce field is present
 the client is strongly encouraged to use it for the next WWW-
 Authenticate header. Failure of the client to do so may result in a
 request to re-authenticate from the server with the "stale=TRUE."

Franks, et. al. Standards Track [Page 9]

RFC 2069 Digest Access Authentication January 1997

2.2 Digest Operation

 Upon receiving the Authorization header, the server may check its
 validity by looking up its known password which corresponds to the
 submitted username. Then, the server must perform the same MD5
 operation performed by the client, and compare the result to the
 given response-digest.

 Note that the HTTP server does not actually need to know the user’s
 clear text password. As long as H(A1) is available to the server,
 the validity of an Authorization header may be verified.

 A client may remember the username, password and nonce values, so
 that future requests within the specified <domain> may include the
 Authorization header preemptively. The server may choose to accept
 the old Authorization header information, even though the nonce value
 included might not be fresh. Alternatively, the server could return a
 401 response with a new nonce value, causing the client to retry the
 request. By specifying stale=TRUE with this response, the server
 hints to the client that the request should be retried with the new
 nonce, without reprompting the user for a new username and password.

 The opaque data is useful for transporting state information around.
 For example, a server could be responsible for authenticating content
 which actually sits on another server. The first 401 response would
 include a domain field which includes the URI on the second server,
 and the opaque field for specifying state information. The client
 will retry the request, at which time the server may respond with a
 301/302 redirection, pointing to the URI on the second server. The
 client will follow the redirection, and pass the same Authorization
 header, including the <opaque> data which the second server may
 require.

 As with the basic scheme, proxies must be completely transparent in
 the Digest access authentication scheme. That is, they must forward
 the WWW-Authenticate, Authentication-info and Authorization headers
 untouched. If a proxy wants to authenticate a client before a request
 is forwarded to the server, it can be done using the Proxy-
 Authenticate and Proxy-Authorization headers described in section 2.5
 below.

2.3 Security Protocol Negotiation

 It is useful for a server to be able to know which security schemes a
 client is capable of handling.

 If this proposal is accepted as a required part of the HTTP/1.1
 specification, then a server may assume Digest support when a client

Franks, et. al. Standards Track [Page 10]

RFC 2069 Digest Access Authentication January 1997

 identifies itself as HTTP/1.1 compliant.

 It is possible that a server may want to require Digest as its
 authentication method, even if the server does not know that the
 client supports it. A client is encouraged to fail gracefully if the
 server specifies any authentication scheme it cannot handle.

2.4 Example

 The following example assumes that an access-protected document is
 being requested from the server. The URI of the document is
 "http://www.nowhere.org/dir/index.html". Both client and server know
 that the username for this document is "Mufasa", and the password is
 "CircleOfLife".

 The first time the client requests the document, no Authorization
 header is sent, so the server responds with:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="testrealm@host.com",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

 The client may prompt the user for the username and password, after
 which it will respond with a new request, including the following
 Authorization header:

Authorization: Digest username="Mufasa",
 realm="testrealm@host.com",
 nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
 uri="/dir/index.html",
 response="e966c932a9242554e42c8ee200cec7f6",
 opaque="5ccc069c403ebaf9f0171e9517f40e41"

2.5 Proxy-Authentication and Proxy-Authorization

 The digest authentication scheme may also be used for authenticating
 users to proxies, proxies to proxies, or proxies to end servers by
 use of the Proxy-Authenticate and Proxy-Authorization headers. These
 headers are instances of the general Proxy-Authenticate and Proxy-
 Authorization headers specified in sections 10.30 and 10.31 of the
 HTTP/1.1 specification [2] and their behavior is subject to
 restrictions described there. The transactions for proxy
 authentication are very similar to those already described. Upon
 receiving a request which requires authentication, the proxy/server
 must issue the "HTTP/1.1 401 Unauthorized" header followed by a
 "Proxy-Authenticate" header of the form

Franks, et. al. Standards Track [Page 11]

RFC 2069 Digest Access Authentication January 1997

 Proxy-Authentication = "Proxy-Authentication" ":" "Digest"
 digest-challenge

 where digest-challenge is as defined above in section 2.1. The
 client/proxy must then re-issue the request with a Proxy-Authenticate
 header of the form

 Proxy-Authorization = "Proxy-Authorization" ":"
 digest-response

 where digest-response is as defined above in section 2.1. When
 authentication succeeds, the Server may optionally provide a Proxy-
 Authentication-info header of the form

Proxy-Authentication-info = "Proxy-Authentication-info" ":" nextnonce

 where nextnonce has the same semantics as the nextnonce field in the
 Authentication-info header described above in section 2.1.

 Note that in principle a client could be asked to authenticate itself
 to both a proxy and an end-server. It might receive an "HTTP/1.1 401
 Unauthorized" header followed by both a WWW-Authenticate and a
 Proxy-Authenticate header. However, it can never receive more than
 one Proxy-Authenticate header since such headers are only for
 immediate connections and must not be passed on by proxies. If the
 client receives both headers, it must respond with both the
 Authorization and Proxy-Authorization headers as described above,
 which will likely involve different combinations of username,
 password, nonce, etc.

3. Security Considerations

 Digest Authentication does not provide a strong authentication
 mechanism. That is not its intent. It is intended solely to replace
 a much weaker and even more dangerous authentication mechanism: Basic
 Authentication. An important design constraint is that the new
 authentication scheme be free of patent and export restrictions.

 Most needs for secure HTTP transactions cannot be met by Digest
 Authentication. For those needs SSL or SHTTP are more appropriate
 protocols. In particular digest authentication cannot be used for
 any transaction requiring encrypted content. Nevertheless many
 functions remain for which digest authentication is both useful and
 appropriate.

Franks, et. al. Standards Track [Page 12]

RFC 2069 Digest Access Authentication January 1997

3.1 Comparison with Basic Authentication

 Both Digest and Basic Authentication are very much on the weak end of
 the security strength spectrum. But a comparison between the two
 points out the utility, even necessity, of replacing Basic by Digest.

 The greatest threat to the type of transactions for which these
 protocols are used is network snooping. This kind of transaction
 might involve, for example, online access to a database whose use is
 restricted to paying subscribers. With Basic authentication an
 eavesdropper can obtain the password of the user. This not only
 permits him to access anything in the database, but, often worse,
 will permit access to anything else the user protects with the same
 password.

 By contrast, with Digest Authentication the eavesdropper only gets
 access to the transaction in question and not to the user’s password.
 The information gained by the eavesdropper would permit a replay
 attack, but only with a request for the same document, and even that
 might be difficult.

3.2 Replay Attacks

 A replay attack against digest authentication would usually be
 pointless for a simple GET request since an eavesdropper would
 already have seen the only document he could obtain with a replay.
 This is because the URI of the requested document is digested in the
 client response and the server will only deliver that document. By
 contrast under Basic Authentication once the eavesdropper has the
 user’s password, any document protected by that password is open to
 him. A GET request containing form data could only be "replayed"
 with the identical data. However, this could be problematic if it
 caused a CGI script to take some action on the server.

 Thus, for some purposes, it is necessary to protect against replay
 attacks. A good digest implementation can do this in various ways.
 The server created "nonce" value is implementation dependent, but if
 it contains a digest of the client IP, a time-stamp, and a private
 server key (as recommended above) then a replay attack is not simple.
 An attacker must convince the server that the request is coming from
 a false IP address and must cause the server to deliver the document
 to an IP address different from the address to which it believes it
 is sending the document. An attack can only succeed in the period
 before the time-stamp expires. Digesting the client IP and time-
 stamp in the nonce permits an implementation which does not maintain
 state between transactions.

Franks, et. al. Standards Track [Page 13]

RFC 2069 Digest Access Authentication January 1997

 For applications where no possibility of replay attack can be
 tolerated the server can use one-time response digests which will not
 be honored for a second use. This requires the overhead of the
 server remembering which digests have been used until the nonce
 time-stamp (and hence the digest built with it) has expired, but it
 effectively protects against replay attacks. Instead of maintaining a
 list of the values of used digests, a server would hash these values
 and require re-authentication whenever a hash collision occurs.

 An implementation must give special attention to the possibility of
 replay attacks with POST and PUT requests. A successful replay
 attack could result in counterfeit form data or a counterfeit version
 of a PUT file. The use of one-time digests or one-time nonces is
 recommended. It is also recommended that the optional <digest> be
 implemented for use with POST or PUT requests to assure the integrity
 of the posted data. Alternatively, a server may choose to allow
 digest authentication only with GET requests. Responsible server
 implementors will document the risks described here as they pertain
 to a given implementation.

3.3 Man in the Middle

 Both Basic and Digest authentication are vulnerable to "man in the
 middle" attacks, for example, from a hostile or compromised proxy.
 Clearly, this would present all the problems of eavesdropping. But
 it could also offer some additional threats.

 A simple but effective attack would be to replace the Digest
 challenge with a Basic challenge, to spoof the client into revealing
 their password. To protect against this attack, clients should
 remember if a site has used Digest authentication in the past, and
 warn the user if the site stops using it. It might also be a good
 idea for the browser to be configured to demand Digest authentication
 in general, or from specific sites.

 Or, a hostile proxy might spoof the client into making a request the
 attacker wanted rather than one the client wanted. Of course, this
 is still much harder than a comparable attack against Basic
 Authentication.

 There are several attacks on the "digest" field in the
 Authentication-info header. A simple but effective attack is just to
 remove the field, so that the client will not be able to use it to
 detect modifications to the response entity. Sensitive applications
 may wish to allow configuration to require that the digest field be
 present when appropriate. More subtly, the attacker can alter any of
 the entity-headers not incorporated in the computation of the digest,
 The attacker can alter most of the request headers in the client’s

Franks, et. al. Standards Track [Page 14]

RFC 2069 Digest Access Authentication January 1997

 request, and can alter any response header in the origin-server’s
 reply, except those headers whose values are incorporated into the
 "digest" field.

 Alteration of Accept* or User-Agent request headers can only result
 in a denial of service attack that returns content in an unacceptable
 media type or language. Alteration of cache control headers also can
 only result in denial of service. Alteration of Host will be
 detected, if the full URL is in the response-digest. Alteration of
 Referer or From is not important, as these are only hints.

3.4 Spoofing by Counterfeit Servers

 Basic Authentication is vulnerable to spoofing by counterfeit
 servers. If a user can be led to believe that she is connecting to a
 host containing information protected by a password she knows, when
 in fact she is connecting to a hostile server, then the hostile
 server can request a password, store it away for later use, and feign
 an error. This type of attack is more difficult with Digest
 Authentication -- but the client must know to demand that Digest
 authentication be used, perhaps using some of the techniques
 described above to counter "man-in-the-middle" attacks.

3.5 Storing passwords

 Digest authentication requires that the authenticating agent (usually
 the server) store some data derived from the user’s name and password
 in a "password file" associated with a given realm. Normally this
 might contain pairs consisting of username and H(A1), where H(A1) is
 the digested value of the username, realm, and password as described
 above.

 The security implications of this are that if this password file is
 compromised, then an attacker gains immediate access to documents on
 the server using this realm. Unlike, say a standard UNIX password
 file, this information need not be decrypted in order to access
 documents in the server realm associated with this file. On the
 other hand, decryption, or more likely a brute force attack, would be
 necessary to obtain the user’s password. This is the reason that the
 realm is part of the digested data stored in the password file. It
 means that if one digest authentication password file is compromised,
 it does not automatically compromise others with the same username
 and password (though it does expose them to brute force attack).

 There are two important security consequences of this. First the
 password file must be protected as if it contained unencrypted
 passwords, because for the purpose of accessing documents in its
 realm, it effectively does.

Franks, et. al. Standards Track [Page 15]

RFC 2069 Digest Access Authentication January 1997

 A second consequence of this is that the realm string should be
 unique among all realms which any single user is likely to use. In
 particular a realm string should include the name of the host doing
 the authentication. The inability of the client to authenticate the
 server is a weakness of Digest Authentication.

3.6 Summary

 By modern cryptographic standards Digest Authentication is weak. But
 for a large range of purposes it is valuable as a replacement for
 Basic Authentication. It remedies many, but not all, weaknesses of
 Basic Authentication. Its strength may vary depending on the
 implementation. In particular the structure of the nonce (which is
 dependent on the server implementation) may affect the ease of
 mounting a replay attack. A range of server options is appropriate
 since, for example, some implementations may be willing to accept the
 server overhead of one-time nonces or digests to eliminate the
 possibility of replay while others may satisfied with a nonce like
 the one recommended above restricted to a single IP address and with
 a limited lifetime.

 The bottom line is that *any* compliant implementation will be
 relatively weak by cryptographic standards, but *any* compliant
 implementation will be far superior to Basic Authentication.

4. Acknowledgments

 In addition to the authors, valuable discussion instrumental in
 creating this document has come from Peter J. Churchyard, Ned Freed,
 and David M. Kristol.

5. References

 [1] Berners-Lee, T., Fielding, R., and H. Frystyk,
 "Hypertext Transfer Protocol -- HTTP/1.0",
 RFC 1945, May 1996.

 [2] Berners-Lee, T., Fielding, R., and H. Frystyk,
 "Hypertext Transfer Protocol -- HTTP/1.1"
 RFC 2068, January 1997.

 [3] Rivest, R., "The MD5 Message-Digest Algorithm",
 RFC 1321, April 1992.

Franks, et. al. Standards Track [Page 16]

RFC 2069 Digest Access Authentication January 1997

6. Authors’ Addresses

 John Franks
 Professor of Mathematics
 Department of Mathematics
 Northwestern University
 Evanston, IL 60208-2730, USA

 EMail: john@math.nwu.edu

 Phillip M. Hallam-Baker
 European Union Fellow
 CERN
 Geneva
 Switzerland

 EMail: hallam@w3.org

 Jeffery L. Hostetler
 Senior Software Engineer
 Spyglass, Inc.
 3200 Farber Drive
 Champaign, IL 61821, USA

 EMail: jeff@spyglass.com

 Paul J. Leach
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052, USA

 EMail: paulle@microsoft.com

 Ari Luotonen
 Member of Technical Staff
 Netscape Communications Corporation
 501 East Middlefield Road
 Mountain View, CA 94043, USA

 EMail: luotonen@netscape.com

Franks, et. al. Standards Track [Page 17]

RFC 2069 Digest Access Authentication January 1997

 Eric W. Sink
 Senior Software Engineer
 Spyglass, Inc.
 3200 Farber Drive
 Champaign, IL 61821, USA

 EMail: eric@spyglass.com

 Lawrence C. Stewart
 Open Market, Inc.
 215 First Street
 Cambridge, MA 02142, USA

 EMail: stewart@OpenMarket.com

Franks, et. al. Standards Track [Page 18]

