
Network Working Group A. Bierman
Request for Comments: 2074 Cisco Systems
Category: Standards Track R. Iddon
 AXON Networks,Inc.
 January 1997

 Remote Network Monitoring MIB Protocol Identifiers

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Table of Contents

1 Introduction .. 3
2 The SNMP Network Management Framework 3
2.1 Object Definitions .. 3
3 Overview .. 3
3.1 Terms ... 4
3.2 Relationship to the Remote Network Monitoring MIB 6
3.3 Relationship to the Other MIBs 6
4 Protocol Identifier Encoding 7
4.1 ProtocolDirTable INDEX Format Examples 9
4.2 Protocol Identifier Macro Format 10
4.2.1 Mapping of the Protocol Name 12
4.2.2 Mapping of the VARIANT-OF Clause 13
4.2.3 Mapping of the PARAMETERS Clause 13
4.2.3.1 Mapping of the ’countsFragments(0)’ BIT 14
4.2.3.2 Mapping of the ’tracksSessions(1)’ BIT 15
4.2.4 Mapping of the ATTRIBUTES Clause 15
4.2.5 Mapping of the DESCRIPTION Clause 15
4.2.6 Mapping of the CHILDREN Clause 16
4.2.7 Mapping of the ADDRESS-FORMAT Clause 16
4.2.8 Mapping of the DECODING Clause 16
4.2.9 Mapping of the REFERENCE Clause 17
4.2.10 Evaluating a Protocol-Identifier INDEX 17
5 Protocol Identifier Macros 18
5.1 Base Identifier Encoding 18
5.1.1 Protocol Identifier Functions 19
5.1.1.1 Function 0: No-op ... 19
5.1.1.2 Function 1: Protocol Wildcard Function 19
5.2 Base Layer Protocol Identifiers 20
5.2.1 Ether2 Encapsulation .. 21

Bierman & Iddon Standards Track [Page 1]

RFC 2074 RMON Protocol Identifiers January 1997

5.2.2 LLC Encapsulation ... 22
5.2.3 SNAP over LLC (OUI=000) Encapsulation 23
5.2.4 SNAP over LLC (OUI != 000) Encapsulation 24
5.2.5 IANA Assigned Protocols 25
5.2.5.1 IANA Assigned Protocol Identifiers 27
5.3 L3: Children of Base Protocol Identifiers 27
5.3.1 IP .. 28
5.3.2 IPX ... 29
5.3.3 ARP ... 30
5.3.4 IDP ... 30
5.3.5 AppleTalk ARP ... 31
5.3.6 AppleTalk ... 31
5.4 L4: Children of L3 Protocols 32
5.4.1 ICMP .. 32
5.4.2 TCP ... 32
5.4.3 UDP ... 33
5.5 L5: Application Layer Protocols 33
5.5.1 FTP ... 33
5.5.1.1 FTP-DATA .. 33
5.5.1.2 FTP Control ... 34
5.5.2 Telnet .. 34
5.5.3 SMTP .. 34
5.5.4 DNS ... 35
5.5.5 BOOTP ... 35
5.5.5.1 Bootstrap Server Protocol 35
5.5.5.2 Bootstrap Client Protocol 35
5.5.6 TFTP .. 36
5.5.7 HTTP .. 36
5.5.8 POP3 .. 36
5.5.9 SUNRPC .. 37
5.5.10 NFS .. 38
5.5.11 SNMP ... 38
5.5.11.1 SNMP Request/Response 38
5.5.11.2 SNMP Trap .. 39
6 Acknowledgements .. 39
7 References .. 40
8 Security Considerations ... 43
9 Authors’ Addresses .. 43

Bierman & Iddon Standards Track [Page 2]

RFC 2074 RMON Protocol Identifiers January 1997

1. Introduction

 This memo defines an experimental portion of the Management
 Information Base (MIB) for use with network management protocols in
 the Internet community. In particular, it describes the algorithms
 required to identify different protocol encapsulations managed with
 the Remote Network Monitoring MIB Version 2 [RMON2]. Although related
 to the original Remote Network Monitoring MIB [RFC1757], this
 document refers only to objects found in the RMON-2 MIB.

2. The SNMP Network Management Framework

 The SNMP Network Management Framework presently consists of three
 major components. They are:

o the SMI, described in RFC 1902 [RFC1902], - the mechanisms used for
 describing and naming objects for the purpose of management.

o the MIB-II, STD 17, RFC 1213 [RFC1213], - the core set of managed
 objects for the Internet suite of protocols.

o the protocol, STD 15, RFC 1157 [RFC1157] and/or RFC 1905 [RFC1905],
 - the protocol for accessing managed information.

 Textual conventions are defined in RFC 1903 [RFC1903], and
 conformance statements are defined in RFC 1904 [RFC1904].

 The Framework permits new objects to be defined for the purpose of
 experimentation and evaluation.

2.1. Object Definitions

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the subset of Abstract Syntax Notation One (ASN.1)
 defined in the SMI. In particular, each object type is named by an
 OBJECT IDENTIFIER, an administratively assigned name. The object
 type together with an object instance serves to uniquely identify a
 specific instantiation of the object. For human convenience, we
 often use a textual string, termed the descriptor, to refer to the
 object type.

3. Overview

 The RMON-2 MIB [RMON2] uses hierarchically formatted OCTET STRINGs to
 globally identify individual protocol encapsulations in the
 protocolDirTable.

Bierman & Iddon Standards Track [Page 3]

RFC 2074 RMON Protocol Identifiers January 1997

 This guide contains algorithms and examples of protocol identifier
 encapsulations for use as INDEX values in the protocolDirTable.

 This document is not intended to be an authoritative reference on the
 protocols described herein. Refer to the Official Internet Standards
 document [RFC1800], the Assigned Numbers document [RFC1700], or other
 appropriate RFCs, IEEE documents, etc. for complete and authoritative
 protocol information.

3.1. Terms

 Several terms are used throughout this document, as well as in the
 RMON-2 MIB [RMON2], that should be introduced:

layer-identifier:
 An octet string fragment representing a particular protocol
 encapsulation layer. A string fragment identifying a particular
 protocol encapsulation layer. This string is exactly four octets,
 (except for the ’vsnap’ base-layer identifier, which is exactly
 eight octets) encoded in network byte order. A particular protocol
 encapsulation can be identified by starting with a base layer
 encapsulation (see the ’Base Protocol Identifiers’ section for more
 detail), and following the encoding rules specified in the CHILDREN
 clause and assignment section for that layer. Then repeat for each
 identified layer in the encapsulation. (See section 4.2.10
 ’Evaluating a Protocol-Identifier INDEX’ for more detail.)

protocol:
 A particular protocol layer, as specified by encoding rules in this
 document. Usually refers to a single layer in a given
 encapsulation. Note that this term is sometimes used in the RMON-2
 MIB [RMON2] to name a fully-specified protocol-identifier string.
 In such a case, the protocol-identifier string is named for its
 upper-most layer. A named protocol may also refer to any
 encapsulation of that protocol.

protocol-identifier string:
 An octet string representing a particular protocol encapsulation,
 as specified by encoding rules in this document. This string is
 identified in the RMON-2 MIB [RMON2] as the protocolDirID object. A
 protocol-identifier string is composed of one or more layer-
 identifiers.

Bierman & Iddon Standards Track [Page 4]

RFC 2074 RMON Protocol Identifiers January 1997

protocol-identifier macro:
 A group of formatted text describing a particular protocol layer,
 as used within the RMON-2 MIB [RMON2]. The macro serves several
 purposes:

 - Name the protocol for use within the RMON-2 MIB [RMON2].
 - Describe how the protocol is encoded into an octet string.
 - Describe how child protocols are identified (if applicable),
 and encoded into an octet string.
 - Describe which protocolDirParameters are allowed for the protocol.
 - Describe how the associated protocolDirType object is encoded
 for the protocol.
 - Provide reference(s) to authoritative documentation for the
 protocol.

protocol-variant-identifier macro:
 A group of formatted text describing a particular protocol layer,
 as used within the RMON-2 MIB [RMON2]. This protocol is a variant
 of a well known encapsulation that may be present in the
 protocolDirTable. This macro is used to document the IANA
 assigned protocols, which are needed to identify protocols which
 cannot be practically identified by examination of ’appropriate
 network traffic’ (e.g. the packets which carry them). All other
 protocols (which can be identified by examination of appropriate
 network traffic) should be documented using the protocol-identifier
 macro. A protocol-variant-identifier is documented using the
 protocol-variant version of the protocol-identifier macro.

protocol-parameter:
 A single octet, corresponding to a specific layer-identifier in the
 protocol-identifier. This octet is a bit-mask indicating special
 functions or capabilities that this agent is providing for the
 corresponding protocol.

protocol-parameters string:
 An octet string, which contains one protocol-parameter for each
 layer-identifier in the protocol-identifier. See the section
 ’Mapping of the PARAMETERS Clause’ for more detail. This string is
 identified in the RMON-2 MIB [RMON2] as the protocolDirParameters
 object.

protocolDirTable INDEX:
 A protocol-identifier and protocol-parameters octet string pair
 that have been converted to an INDEX value, according to the
 encoding rules in in section 7.7 of RFC 1902 [RFC1902].

Bierman & Iddon Standards Track [Page 5]

RFC 2074 RMON Protocol Identifiers January 1997

pseudo-protocol:
 A convention or algorithm used only within this document for the
 purpose of encoding protocol-identifier strings.

3.2. Relationship to the Remote Network Monitoring MIB

 This document is intended to identify possible string values for the
 OCTET STRING objects protocolDirID and protocolDirParameters. Tables
 in the new Protocol Distribution, Host, and Matrix groups use a local
 INTEGER INDEX, in order to remain unaffected by changes in this
 document. Only the protocolDirTable uses the strings (protocolDirID
 and protocolDirParameters) described in this document.

 This document is not intended to limit the protocols that may be
 identified for counting in the RMON-2 MIB. Many protocol
 encapsulations, not explicitly identified in this document, may be
 present in an actual implementation of the protocolDirTable. Also,
 implementations of the protocolDirTable may not include all the
 protocols identified in the example section below.

 This document is intentionally separated from the MIB objects to
 allow frequent updates to this document without any republication of
 MIB objects. Protocol Identifier macros submitted from the RMON
 working group and community at large (to the RMONMIB WG mailing list
 at ’rmonmib@cisco.com’) will be collected and added to this document.

 Macros submissions will be collected in the IANA’s MIB files under
 the directory "ftp://ftp.isi.edu/mib/rmonmib/rmon2_pi_macros/" and in
 the RMONMIB working group mailing list message archive file
 "ftp://ftp.cisco.com/ftp/rmonmib/rmonmib".

 This document does not discuss auto-discovery and auto-population of
 the protocolDirTable. This functionality is not explicitly defined by
 the RMON standard. An agent should populate the directory with
 ’interesting’ protocols--depending on the intended applications.

3.3. Relationship to the Other MIBs

 The RMON Protocol Identifiers document is intended for use with the
 protocolDirTable within the RMON MIB. It is not relevant to any other
 MIB, or intended for use with any other MIB.

Bierman & Iddon Standards Track [Page 6]

RFC 2074 RMON Protocol Identifiers January 1997

4. Protocol Identifier Encoding

 The protocolDirTable is indexed by two OCTET STRINGs, protocolDirID
 and protocolDirParameters. To encode the table index, each variable-
 length string is converted to an OBJECT IDENTIFIER fragment,
 according to the encoding rules in section 7.7 of RFC 1902 [RFC1902].
 Then the index fragments are simply concatenated. (Refer to figures
 1a - 1d below for more detail.)

 The first OCTET STRING (protocolDirID) is composed of one or more 4-
 octet "layer-identifiers". The entire string uniquely identifies a
 particular protocol encapsulation tree. The second OCTET STRING,
 (protocolDirParameters) which contains a corresponding number of 1-
 octet protocol-specific parameters, one for each 4-octet layer-
 identifier in the first string.

 A protocol layer is normally identified by a single 32-bit value.
 Each layer-identifier is encoded in the ProtocolDirID OCTET STRING
 INDEX as four sub-components [a.b.c.d], where ’a’ - ’d’ represent
 each byte of the 32-bit value in network byte order. If a particular
 protocol layer cannot be encoded into 32 bits, (except for the
 ’vsnap’ base layer) then it must be defined as a ’ianaAssigned’
 protocol (see below for details on IANA assigned protocols).

 The following figures show the differences between the OBJECT
 IDENTIFIER and OCTET STRING encoding of the protocol identifier
 string.

 Fig. 1a
 protocolDirTable INDEX Format

 +---+--------------------------+---+---------------+
 | c ! | c ! protocolDir |
 | n ! protocolDirID | n ! Parameters |
 | t ! | t ! |
 +---+--------------------------+---+---------------+

Bierman & Iddon Standards Track [Page 7]

RFC 2074 RMON Protocol Identifiers January 1997

 Fig. 1b
 protocolDirTable OCTET STRING Format

 protocolDirID
 +--+
 | |
 | 4 * N octets |
 | |
 +--+

 protocolDirParameters
 +----------+
 | |
 | N octets |
 | |
 +----------+

 Fig. 1c
 protocolDirTable INDEX Format Example

 protocolDirID protocolDirParameters
 +---+--------+--------+--------+--------+---+---+---+---+---+
 | c | proto | proto | proto | proto | c |par|par|par|par|
 | n | base | L3 | L4 | L5 | n |ba-| L3| L4| L5|
 | t |(+flags)| | | | t |se | | | |
 +---+--------+--------+--------+--------+---+---+---+---+---+ subOID
 | 1 | 4 or 8 | 4 | 4 | 4 | 1 |1/2| 1 | 1 | 1 | count

 where N is the number of protocol-layer-identifiers required
 for the entire encapsulation of the named protocol. Note that
 the ’vsnap’ base layer identifier is encoded into 8 sub-identifiers,
 All other protocol layers are either encoded into 4 sub-identifiers
 or encoded as a ’ianaAssigned’ protocol.

Bierman & Iddon Standards Track [Page 8]

RFC 2074 RMON Protocol Identifiers January 1997

 Fig. 1d
 protocolDirTable OCTET STRING Format Example
 --

 protocolDirID
 +--------+--------+--------+--------+
 | proto | proto | proto | proto |
 | base | L3 | L4 | L5 |
 | | | | |
 +--------+--------+--------+--------+ octet
 | 4 or 8 | 4 | 4 | 4 | count

 protocolDirParameters
 +---+---+---+---+
 |par|par|par|par|
 |ba-| L3| L4| L5|
 |se | | | |
 +---+---+---+---+ octet
 |1/2| 1 | 1 | 1 | count

 where N is the number of protocol-layer-identifiers required
 for the entire encapsulation of the named protocol. Note that
 the ’vsnap’ base layer identifier is encoded into 8
 protocolDirID sub-identifiers and 2 protocolDirParameters
 sub-identifiers.

 Although this example indicates four encapsulated protocols, in
 practice, any non-zero number of layer-identifiers may be present,
 theoretically limited only by OBJECT IDENTIFIER length restrictions,
 as specified in section 3.5 of RFC 1902 [RFC1902].

 Note that these two strings would not be concatenated together if
 ever returned in a GetResponse PDU, since they are different MIB
 objects. However, protocolDirID and protocolDirParameters are not
 currently readable MIB objects.

4.1. ProtocolDirTable INDEX Format Examples

 -- HTTP; fragments counted from IP and above
 ether2.ip.tcp.www-http =
 16.0.0.0.1.0.0.8.0.0.0.0.6.0.0.0.80.4.0.1.0.0

 -- SNMP over UDP/IP over SNAP
 snap.ip.udp.snmp =
 16.0.0.0.3.0.0.8.0.0.0.0.17.0.0.0.161.4.0.0.0.0

Bierman & Iddon Standards Track [Page 9]

RFC 2074 RMON Protocol Identifiers January 1997

 -- SNMP over IPX over SNAP
 snap.ipx.snmp =
 12.0.0.0.3.0.0.129.55.0.0.144.15.3.0.0.0

 -- SNMP over IPX over raw8023
 -- ianaAssigned(ipxOverRaw8023(1)).snmp =
 12.0.0.0.5.0.0.0.1.0.0.155.15.3.0.0.0

 -- IPX over LLC
 llc.ipx =
 8.0.0.0.2.0.224.224.3.2.0.0

 -- SNMP over UDP/IP over any link layer
 -- wildcard-ether2.ip.udp.snmp
 16.1.0.0.1.0.0.8.0.0.0.0.17.0.0.0.161.4.0.0.0.0

 -- IP over any link layer; base encoding is IP over ether2
 -- wildcard-ether2.ip
 8.1.0.0.1.0.0.8.0.2.0.0

 -- AppleTalk Phase 2 over ether2
 -- ether2.atalk
 8.0.0.0.1.0.0.128.155.2.0.0

 -- AppleTalk Phase 2 over vsnap
 -- vsnap(apple).atalk
 12.0.0.0.4.0.8.0.7.0.0.128.155.3.0.0.0

4.2. Protocol Identifier Macro Format

 The following example is meant to introduce the protocol-identifier
 macro. (The syntax is not quite ASN.1.) This macro is used to
 represent both protocols and protocol-variants.

 If the ’VariantOfPart’ component of the macro is present, then the
 macro represents a protocol-variant instead of a protocol. A
 protocol- variant-identifier is used only for IANA assigned
 protocols, enumerated under the ’ianaAssigned’ base-layer.

Bierman & Iddon Standards Track [Page 10]

RFC 2074 RMON Protocol Identifiers January 1997

 RMON-PROTOCOL-IDENTIFIER MACRO ::=
 BEGIN
 PIMacroName "PROTOCOL-IDENTIFIER"
 VariantOfPart
 "PARAMETERS" ParamPart
 "ATTRIBUTES" AttrPart
 "DESCRIPTION" Text
 ChildDescrPart
 AddrDescrPart
 DecodeDescrPart
 ReferPart
 "::=" "{" EncapsPart "}"

 PIMacroName ::=
 identifier

 VariantOfPart ::=
 "VARIANT-OF" identifier | empty

 ParamPart ::=
 "{" ParamList "}"

 ParamList ::=
 Params | empty

 Params ::=
 Param | Params "," Param

 Param ::=
 identifier "(" nonNegativeNumber ")"

 AttrPart ::=
 "{" AttrList "}"

 AttrList ::=
 Attrs | empty

 Attrs ::=
 Attr | Attrs "," Attr

 Attr ::=
 identifier "(" nonNegativeNumber ")"

 ChildDescrPart ::=
 "CHILDREN" Text | empty

 AddrDescrPart ::=
 "ADDRESS-FORMAT" Text | empty

Bierman & Iddon Standards Track [Page 11]

RFC 2074 RMON Protocol Identifiers January 1997

 DecodeDescrPart ::=
 "DECODING" Text | empty

 ReferPart ::=
 "REFERENCE" Text | empty

 EncapsPart ::=
 "{" Encaps "}"

 Encaps ::=
 Encap | Encaps "," Encap

 Encap ::=
 BaseEncap | NormalEncap | VsnapEncap | IanaEncap

 BaseEncap ::=
 nonNegativeNumber

 NormalEncap ::=
 identifier nonNegativeNumber

 VsnapEncap ::=
 identifier "(" nonNegativeNumber ")" nonNegativeNumber

 IanaEncap ::=
 "ianaAssigned" nonNegativeNumber
 | "ianaAssigned" identifier
 | "ianaAssigned" identifier "(" nonNegativeNumber ")"

 Text ::=
 """" string """"
 END

4.2.1. Mapping of the Protocol Name

 The ’PIMacroName’ value should be a lower-case ASCII string, and
 contain the name or acronym identifying the protocol. NMS
 applications may treat protocol names as case-insensitive strings,
 and agent implementations must make sure the protocolDirTable does
 not contain any instances of the protocolDirDescr object which differ
 only in the case of one of more letters (if the identifiers are
 intended to represent different protocols).

 It is possible that different encapsulations of the same protocol
 (which are represented by different entries in the protocolDirTable)
 will be assigned the same protocol name.

Bierman & Iddon Standards Track [Page 12]

RFC 2074 RMON Protocol Identifiers January 1997

 A protocol name should match the "most well-known" name or acronym
 for the indicated protocol. For example, the document indicated by
 the URL:

 ftp://ftp.isi.edu/in-notes/iana/assignments/protocol-numbers

 defines IP Protocol field values, so protocol-identifier macros for
 children of IP should be given names consistent with the protocol
 names found in this authoritative document.

4.2.2. Mapping of the VARIANT-OF Clause

 This clause is present for IANA assigned protocols only. It
 identifies the protocol-identifier macro that most closely represents
 this particular protocol, and is known as the "reference protocol".
 (A protocol-identifier macro must exist for the reference protocol.)
 When this clause is present in a protocol-identifier macro, the macro
 is called a ’protocol-variant-identifier’.

 Any clause (e.g. CHILDREN, ADDRESS-FORMAT) in the reference protocol-
 identifier macro should not be duplicated in the protocol-variant-
 identifier macro, if the ’variant’ protocols’ semantics are identical
 for a given clause.

 Since the PARAMETERS and ATTRIBUTES clauses must be present in a
 protocol-identifier, an empty ’ParamPart’ and ’AttrPart’ (i.e.
 "PARAMETERS {}") must be present in a protocol-variant-identifier
 macro, and the ’ParamPart’ and ’AttrPart’ found in the reference
 protocol- identifier macro examined instead.

 Note that if a ’ianaAssigned’ protocol is defined that is not a
 variant of any other documented protocol, then the protocol-
 identifier macro should be used instead of the protocol-variant-
 identifier version of the macro.

4.2.3. Mapping of the PARAMETERS Clause

 The protocolDirParameters object provides an NMS the ability to turn
 on and off expensive probe resources. An agent may support a given
 parameter all the time, not at all, or subject to current resource
 load.

 The PARAMETERS clause is a list of bit definitions which can be
 directly encoded into the associated ProtocolDirParameters octet in
 network byte order. Zero or more bit definitions may be present. Only
 bits 0-7 are valid encoding values. This clause defines the entire
 BIT set allowed for a given protocol. A conforming agent may choose
 to implement a subset of zero or more of these PARAMETERS.

Bierman & Iddon Standards Track [Page 13]

RFC 2074 RMON Protocol Identifiers January 1997

 By convention, the following common bit definitions are used by
 different protocols. These bit positions must not be used for other
 parameters. They should be reserved if not used by a given protocol.
 Bits are encoded in network-byte order.

 Table 3.1 Reserved PARAMETERS Bits

Bit Name Description

0 countsFragments higher-layer protocols encapsulated within
 this protocol will be counted correctly even
 if this protocol fragments the upper layers
 into multiple packets.
1 tracksSessions correctly attributes all packets of a protocol
 which starts sessions on well known ports or
 sockets and then transfers them to dynamically
 assigned ports or sockets thereafter (e.g. TFTP).

 The PARAMETERS clause must be present in all protocol-identifier
 macro declarations, but may be equal to zero (empty). Note that an
 NMS must determine if a given PARAMETER bit is supported by
 attempting to create the desired protocolDirEntry The associated
 ATTRIBUTE bits for ’countsFragments’ and ’tracksSessions’ do not
 exist.

4.2.3.1. Mapping of the ’countsFragments(0)’ BIT

 This bit indicates whether the probe is correctly attributing all
 fragmented packets of the specified protocol, even if individual
 frames carrying this protocol cannot be identified as such. Note
 that the probe is not required to actually present any re-assembled
 datagrams (for address-analysis, filtering, or any other purpose) to
 the NMS.

 This bit may only be set in a protocolDirParameters octet which
 corresponds to a protocol that supports fragmentation and reassembly
 in some form. Note that TCP packets are not considered ’fragmented-
 streams’ and so TCP is not eligible.

 This bit may be set in at most one protocolDirParameters octet within
 a protocolDirTable INDEX.

Bierman & Iddon Standards Track [Page 14]

RFC 2074 RMON Protocol Identifiers January 1997

4.2.3.2. Mapping of the ’tracksSessions(1)’ BIT

 The ’tracksSessions(1)’ bit indicates whether frames which are part
 of remapped-sessions (e.g. TFTP download sessions) are correctly
 counted by the probe. For such a protocol, the probe must usually
 analyze all packets received on the indicated interface, and maintain
 some state information, (e.g. the remapped UDP port number for TFTP).

 The semantics of the ’tracksSessions’ parameter are independent of
 the other protocolDirParameters definitions, so this parameter may be
 combined with any other legal parameter configurations.

4.2.4. Mapping of the ATTRIBUTES Clause

 The protocolDirType object provides an NMS with an indication of a
 probe’s capabilities for decoding a given protocol, or the general
 attributes of the particular protocol.

 The ATTRIBUTES clause is a list of bit definitions which are encoded
 into the associated instance of ProtocolDirType. The BIT definitions
 are specified in the SYNTAX clause of the protocolDirType MIB object.

 Table 3.2 Reserved ATTRIBUTES Bits

 Bit Name Description

 0 hasChildren indicates that there may be children of
 this protocol defined in the protocolDirTable
 (by either the agent or the manager).
 1 addressRecognitionCapable
 indicates that this protocol can be used
 to generate host and matrix table entries.

 The ATTRIBUTES clause must be present in all protocol-identifier
 macro declarations, but may be empty.

4.2.5. Mapping of the DESCRIPTION Clause

 The DESCRIPTION clause provides a textual description of the protocol
 identified by this macro. Notice that it should not contain details
 about items covered by the CHILDREN, ADDRESS-FORMAT, DECODING and
 REFERENCE clauses.

 The DESCRIPTION clause must be present in all protocol-identifier
 macro declarations.

Bierman & Iddon Standards Track [Page 15]

RFC 2074 RMON Protocol Identifiers January 1997

4.2.6. Mapping of the CHILDREN Clause

 The CHILDREN clause provides a description of child protocols for
 protocols which support them. It has three sub-sections:

 - Details on the field(s)/value(s) used to select the child protocol,
 and how that selection process is performed

 - Details on how the value(s) are encoded in the protocol identifier
 octet string

 - Details on how child protocols are named with respect to their
 parent protocol label(s)

 The CHILDREN clause must be present in all protocol-identifier macro
 declarations in which the ’hasChildren(0)’ BIT is set in the
 ATTRIBUTES clause.

4.2.7. Mapping of the ADDRESS-FORMAT Clause

 The ADDRESS-FORMAT clause provides a description of the OCTET-STRING
 format(s) used when encoding addresses.

 This clause must be present in all protocol-identifier macro
 declarations in which the ’addressRecognitionCapable(1)’ BIT is set
 in the ATTRIBUTES clause.

4.2.8. Mapping of the DECODING Clause

 The DECODING clause provides a description of the decoding procedure
 for the specified protocol. It contains useful decoding hints for the
 implementor, but should not over-replicate information in documents
 cited in the REFERENCE clause. It might contain a complete
 description of any decoding information required.

 For ’extensible’ protocols (’hasChildren(0)’ BIT set) this includes
 offset and type information for the field(s) used for child selection
 as well as information on determining the start of the child
 protocol.

 For ’addressRecognitionCapable’ protocols this includes offset and
 type information for the field(s) used to generate addresses.

 The DECODING clause is optional, and may be omitted if the REFERENCE
 clause contains pointers to decoding information for the specified
 protocol.

Bierman & Iddon Standards Track [Page 16]

RFC 2074 RMON Protocol Identifiers January 1997

4.2.9. Mapping of the REFERENCE Clause

 If a publicly available reference document exists for this protocol
 it should be listed here. Typically this will be a URL if possible;
 if not then it will be the name and address of the controlling body.

 The CHILDREN, ADDRESS-FORMAT, and DECODING clauses should limit the
 amount of information which may currently be obtained from an
 ’authoritative’ document, such as the Assigned Numbers document
 [RFC1700]. Any duplication or paraphrasing of information should be
 brief and consistent with the authoritative document.

 The REFERENCE clause is optional, but should be implemented if an
 authoritative reference exists for the protocol (especially for
 standard protocols).

4.2.10. Evaluating a Protocol-Identifier INDEX

 The following evaluation is done after protocolDirTable INDEX value
 has been converted into two OCTET STRINGs according to the INDEX
 encoding rules specified in the SMI [RFC1902].

 Protocol-identifiers are evaluated left to right, starting with the
 protocolDirID, which length should be evenly divisible by four. The
 protocolDirParameters length should be exactly one quarter of the
 protocolDirID string length.

 Protocol-identifier parsing starts with the base layer identifier,
 which must be present, and continues for one or more upper layer
 identifiers, until all OCTETs of the protocolDirID have been used.
 Layers may not be skipped, so identifiers such as ’SNMP over IP’ or
 ’TCP over anylink’ can not exist.

 The base-layer-identifier also contains a ’special function
 identifier’ which may apply to the rest of the protocol identifier.

 Wild-carding at the base layer within a protocol encapsulation is the
 only supported special function at this time. Refer to the ’Base
 Protocol Identifiers’ section for wildcard encoding rules.

 After the protocol-tree identified in protocolDirID has been parsed,
 each parameter bit-mask (one octet for each 4-octet layer-identifier)
 is evaluated, and applied to the corresponding protocol layer.

 A protocol-identifier label may map to more than one value. For
 instance, ’ip’ maps to 5 distinct values, one for each supported
 encapsulation. (see the ’IP’ section under ’L3 Protocol
 Identifiers’),

Bierman & Iddon Standards Track [Page 17]

RFC 2074 RMON Protocol Identifiers January 1997

 It is important to note that these macros are conceptually expanded
 at implementation time, not at run time.

 If all the macros are expanded completely by substituting all
 possible values of each label for each child protocol, a list of all
 possible protocol-identifiers is produced. So ’ip’ would result in 5
 distinct protocol-identifiers. Likewise each child of ’ip’ would map
 to at least 5 protocol-identifiers, one for each encapsulation (e.g.
 ip over ether2, ip over LLC, etc.).

5. Protocol Identifier Macros

 The following PROTOCOL IDENTIFIER macros can be used to construct
 protocolDirID and protocolDirParameters strings.

 The sections defining protocol examples are intended to grow over
 subsequent releases. Minimal protocol support is included at this
 time. (Refer to section 3.2 for details on the protocol macro update
 procedure.)

 An identifier is encoded by constructing the base-identifier, then
 adding one layer-identifier for each encapsulated protocol.

5.1. Base Identifier Encoding

 The first layer encapsulation is called the base identifier and it
 contains optional protocol-function information and the base layer
 (e.g. MAC layer) enumeration value used in this protocol identifier.

 The base identifier is encoded as four octets as shown in figure 2.

 Fig. 2
 base-identifier format
 +---+---+---+---+
 | | | | |
 | f |op1|op2| m |
 | | | | |
 +---+---+---+---+ octet
 | 1 | 1 | 1 | 1 | count

 The first octet (’f’) is the special function code, found in table
 4.1. The next two octets (’op1’ and ’op2’) are operands for the
 indicated function. If not used, an operand must be set to zero. The
 last octet, ’m’, is the enumerated value for a particular base layer
 encapsulation, found in table 4.2. All four octets are encoded in
 network-byte-order.

Bierman & Iddon Standards Track [Page 18]

RFC 2074 RMON Protocol Identifiers January 1997

5.1.1. Protocol Identifier Functions

 The base layer identifier contains information about any special
 functions to perform during collections of this protocol, as well as
 the base layer encapsulation identifier.

 The first three octets of the identifier contain the function code
 and two optional operands. The fourth octet contains the particular
 base layer encapsulation used in this protocol (fig. 2).

 Table 4.1 Assigned Protocol Identifier Functions

 Function ID Param1 Param2
 --
 none 0 not used (0) not used (0)
 wildcard 1 not used (0) not used (0)

5.1.1.1. Function 0: No-op

 If the function ID field (1st octet) is equal to zero, the the ’op1’
 and ’op2’ fields (2nd and 3rd octets) must also be equal to zero.
 This special value indicates that no functions are applied to the
 protocol identifier encoded in the remaining octets. The identifier
 represents a normal protocol encapsulation.

5.1.1.2. Function 1: Protocol Wildcard Function

 The wildcard function (function-ID = 1), is used to aggregate
 counters, by using a single protocol value to indicate potentially
 many base layer encapsulations of a particular network layer
 protocol. A protocolDirEntry of this type will match any base-layer
 encapsulation of the same protocol.

 The ’op1’ field (2nd octet) is not used and must be set to zero.

 The ’op2’ field (3rd octet) is not used and must be set to zero.

 Each wildcard protocol identifier must be defined in terms of a ’base
 encapsulation’. This should be as ’standard’ as possible for
 interoperability purposes. If an encapsulation over ’ether2’ is
 permitted, than this should be used as the base encapsulation.

Bierman & Iddon Standards Track [Page 19]

RFC 2074 RMON Protocol Identifiers January 1997

 The agent may also be requested to count some or all of the
 individual encapsulations for the same protocols, in addition to
 wildcard counting. Note that the RMON-2 MIB [RMON2] does not require
 that agents maintain counters for multiple encapsulations of the same
 protocol. It is an implementation-specific matter as to how an agent
 determines which protocol combinations to allow in the
 protocolDirTable at any given time.

5.2. Base Layer Protocol Identifiers

 The base layer is mandatory, and defines the base encapsulation of
 the packet and any special functions for this identifier.

 There are no suggested protocolDirParameters bits for the base layer.

 The suggested ProtocolDirDescr field for the base layer is given by
 the corresponding "Name" field in the table 4.1 below. However,
 implementations are only required to use the appropriate integer
 identifier values.

 For most base layer protocols, the protocolDirType field should
 contain bits set for the ’hasChildren(0)’ and
 ’addressRecognitionCapable(1)’ attributes. However, the special
 ’ianaAssigned’ base layer should have no parameter or attribute bits
 set.

 By design, only 255 different base layer encapsulations are
 supported. There are five base encapsulation values defined at this
 time. New base encapsulations (e.g. for new media types) are expected
 to be added over time.

 Table 4.2 Base Layer Encoding Values

 Name ID

 ether2 1
 llc 2
 snap 3
 vsnap 4
 ianaAssigned 5

Bierman & Iddon Standards Track [Page 20]

RFC 2074 RMON Protocol Identifiers January 1997

5.2.1. Ether2 Encapsulation

ether2 PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "DIX Ethernet, also called Ethernet-II."
 CHILDREN
 "The Ethernet-II type field is used to select child protocols.
 This is a 16-bit field. Child protocols are deemed to start at
 the first octet after this type field.

 Children of this protocol are encoded as [0.0.0.1], the
 protocol identifier for ’ether2’ followed by [0.0.a.b] where
 ’a’ and ’b’ are the network byte order encodings of the MSB and
 LSB of the Ethernet-II type value.

 For example, a protocolDirID-fragment value of:
 0.0.0.1.0.0.8.0 defines IP encapsulated in ether2.

 Children of are named as ’ether2’ followed by the type field
 value in hexadecimal. The above example would be declared as:
 ether2 0x0800"
 ADDRESS-FORMAT
 "Ethernet addresses are 6 octets in network order."
 DECODING
 "Only type values greater than or equal to 1500 decimal indicate
 Ethernet-II frames; lower values indicate 802.3 encapsulation
 (see below)."
 REFERENCE
 "A Standard for the Transmission of IP Datagrams over Ethernet
 Networks; RFC 894 [RFC894].

 The authoritative list of Ether Type values is identified by the
 URL:

 ftp://ftp.isi.edu/in-notes/iana/assignments/ethernet-numbers"
 ::= { 1 }

Bierman & Iddon Standards Track [Page 21]

RFC 2074 RMON Protocol Identifiers January 1997

5.2.2. LLC Encapsulation

llc PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "The LLC (802.2) protocol."
 CHILDREN
 "The LLC SSAP and DSAP (Source/Dest Service Access Points) are
 used to select child protocols. Each of these is one octet long,
 although the least significant bit is a control bit and should be
 masked out in most situations. Typically SSAP and DSAP (once
 masked) are the same for a given protocol - each end implicitly
 knows whether it is the server or client in a client/server
 protocol. This is only a convention, however, and it is possible
 for them to be different. The SSAP is matched against child
 protocols first. If none is found then the DSAP is matched
 instead. The child protocol is deemed to start at the first
 octet after the LLC control field(s).

 Children of ’llc’ are encoded as [0.0.0.2], the protocol
 identifier component for LLC followed by [0.0.0.a] where ’a’ is
 the SAP value which maps to the child protocol. For example, a
 protocolDirID-fragment value of:
 0.0.0.2.0.0.0.240

 defines NetBios over LLC.

 Children are named as ’llc’ followed by the SAP value in
 hexadecimal. So the above example would have been named:
 llc 0xf0"
 ADDRESS-FORMAT
 "The address consists of 6 octets of MAC address in network
 order. Source routing bits should be stripped out of the address
 if present."
 DECODING
 "Notice that LLC has a variable length protocol header; there are
 always three octets (DSAP, SSAP, control). Depending on the
 value of the control bits in the DSAP, SSAP and control fields
 there may be an additional octet of control information.

 LLC can be present on several different media. For 802.3 and
 802.5 its presence is mandated (but see ether2 and raw802.3
 encapsulations). For 802.5 there is no other link layer
 protocol.

Bierman & Iddon Standards Track [Page 22]

RFC 2074 RMON Protocol Identifiers January 1997

 Notice also that the raw802.3 link layer protocol may take
 precedence over this one in a protocol specific manner such that
 it may not be possible to utilize all LSAP values if raw802.3 is
 also present."
 REFERENCE
 "The authoritative list of LLC LSAP values is controlled by the
 IEEE Registration Authority:
 IEEE Registration Authority
 c/o Iris Ringel
 IEEE Standards Dept
 445 Hoes Lane, P.O. Box 1331
 Piscataway, NJ 08855-1331
 Phone +1 908 562 3813
 Fax: +1 908 562 1571"
 ::= { 2 }

5.2.3. SNAP over LLC (OUI=000) Encapsulation

snap PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "The Sub-Network Access Protocol (SNAP) is layered on top of LLC
 protocol, allowing Ethernet-II protocols to be run over a media
 restricted to LLC."
 CHILDREN
 "Children of ’snap’ are identified by Ethernet-II type values;
 the SNAP PID (Protocol Identifier) field is used to select the
 appropriate child. The entire SNAP protocol header is consumed;
 the child protocol is assumed to start at the next octet after
 the PID.

 Children of ’snap’ are encoded as [0.0.0.3], the protocol
 identifier for ’snap’, followed by [0.0.a.b] where ’a’ and ’b’
 are the MSB and LSB of the Ethernet-II type value. For example,
 a protocolDirID-fragment value of:
 0.0.0.3.0.0.8.0

 defines the IP/SNAP protocol.

 Children of this protocol are named ’snap’ followed by the
 Ethernet-II type value in hexadecimal. The above example would
 be named:

 snap 0x0800"

Bierman & Iddon Standards Track [Page 23]

RFC 2074 RMON Protocol Identifiers January 1997

 ADDRESS-FORMAT
 "The address format for SNAP is the same as that for LLC"
 DECODING
 "SNAP is only present over LLC. Both SSAP and DSAP will be 0xAA
 and a single control octet will be present. There are then three
 octets of OUI and two octets of PID. For this encapsulation the
 OUI must be 0x000000 (see ’vsnap’ below for non-zero OUIs)."
 REFERENCE
 "SNAP Identifier values are assigned by the IEEE Standards
 Office. The address is:
 IEEE Registration Authority
 c/o Iris Ringel
 IEEE Standards Dept
 445 Hoes Lane, P.O. Box 1331
 Piscataway, NJ 08855-1331
 Phone +1 908 562 3813
 Fax: +1 908 562 1571"
 ::= { 3 }

5.2.4. SNAP over LLC (OUI != 000) Encapsulation

vsnap PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "This pseudo-protocol handles all SNAP packets which do not have
 a zero OUI. See ’snap’ above for details of those that do."
 CHILDREN
 "Children of ’vsnap’ are selected by the 3 octet OUI; the PID is
 not parsed; child protocols are deemed to start with the first
 octet of the SNAP PID field, and continue to the end of the
 packet.

 Children of ’vsnap’ are encoded as [0.0.0.4], the protocol
 identifier for ’vsnap’, followed by [0.a.b.c.0.0.d.e] where
 ’a’, ’b’ and ’c’ are the 3 octets of the OUI field in network
 byte order. This is in turn followed by the 16-bit EtherType
 value, where the ’d’ and ’e’ represent the MSB and LSB of the
 EtherType, respectively.

 For example, a protocolDirID-fragment value of:
 0.0.0.4.0.8.0.7.0.0.128.155
 defines the AppleTalk Phase 2 protocol over vsnap.

Bierman & Iddon Standards Track [Page 24]

RFC 2074 RMON Protocol Identifiers January 1997

 Note that two protocolDirParameters octets must be present in
 protocolDirTable INDEX values for ’vsnap’ protocols. The first
 protocolDirParameters octet defines the actual parameters. The
 second protocolDirParameters octet is not used and must be set to
 zero.

 Children are named as ’vsnap(<OUI>) <ethertype>’, where the
 ’<OUI>’ field is represented as 3 octets in hexadecimal notation
 or the ASCII string associated with the OUI value. The
 <ethertype> field is represented by the 2 byte EtherType value in
 hexadecimal notation. So the above example would be named:

 ’vsnap(0x080007) 0x809b’ or ’vsnap(apple) 0x809b’"
 ADDRESS-FORMAT
 "The LLC address format is inherited by ’vsnap’. See the ’llc’
 protocol identifier for more details."
 DECODING
 "Same as for ’snap’ except the OUI is non-zero."
 REFERENCE
 "SNAP Identifier values are assigned by the IEEE Standards
 Office. The address is:
 IEEE Registration Authority
 c/o Iris Ringel
 IEEE Standards Dept
 445 Hoes Lane, P.O. Box 1331
 Piscataway, NJ 08855-1331
 Phone +1 908 562 3813
 Fax: +1 908 562 1571"
 ::= { 4 }

5.2.5. IANA Assigned Protocols

ianaAssigned PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "This branch contains protocols which do not conform easily to
 the hierarchical format utilized in the other link layer
 branches. Usually, such a protocol ’almost’ conforms to a
 particular ’well-known’ identifier format, but additional
 criteria are used (e.g. configuration-based), making protocol
 identification difficult or impossible by examination of
 appropriate network traffic. preventing the any ’well-known’
 protocol-identifier macro from being used.

Bierman & Iddon Standards Track [Page 25]

RFC 2074 RMON Protocol Identifiers January 1997

 Sometimes well-known protocols are simply remapped to a different
 port number by one or more venders (e.g. SNMP). These protocols
 can be identified with the ’user-extensibility’ feature of the
 protocolDirTable, and do not need special IANA
 assignments.

 A centrally located list of these enumerated protocols must be
 maintained to insure interoperability.
 (See section 3.2 for details on the document update procedure.)
 Support for new link-layers will be added explicitly, and only
 protocols which cannot possibly be represented in a better way
 will be considered as ’ianaEnumerated’ protocols.

 IANA assigned protocols are identified by the base-layer-selector
 value [0.0.0.5], followed by the four octets [a.b.c.d] of the
 integer value corresponding to the particular IANA protocol.

 Do not create children of this protocol unless you are sure that
 they cannot be handled by the more conventional link layers
 above."
 CHILDREN
 "Children of this protocol are identified by implementation-
 specific means, described (as best as possible) in the ’DECODING’
 clause within the protocol-variant-identifier macro for each
 enumerated protocol.

 For example, a protocolDirID-fragment value of:
 0.0.0.5.0.0.0.1

 defines the IPX protocol encapsulated directly in 802.3

 Children are named ’ianaAssigned’ followed by the name or numeric
 of the particular IANA assigned protocol. The above
 example would be named:

 ’ianaAssigned 1’ or ’ianaAssigned ipxOverRaw8023’"

 DECODING
 "The ’ianaAssigned’ base layer is a pseudo-protocol and is not
 decoded."
 REFERENCE
 "Refer to individual PROTOCOL-IDENTIFIER macros for information
 on each child of the IANA assigned protocol."
 ::= { 5 }

Bierman & Iddon Standards Track [Page 26]

RFC 2074 RMON Protocol Identifiers January 1997

5.2.5.1. IANA Assigned Protocol Identifiers

 The following protocol-variant-identifier macro declarations are used
 to identify the RMONMIB IANA assigned protocols in a proprietary way,
 by simple enumeration. Note that an additional four-octet layer
 identifier may be used for some enumerations (as with the ’vsnap’
 base-layer identifier). Refer to the ’CHILDREN’ clause in the
 protocol-identifier macro for a particular protocol to determine the
 number of octets in the ’ianaAssigned’ layer-identifier.

ipxOverRaw8023 PROTOCOL-IDENTIFIER
 VARIANT-OF "ipx"
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "This pseudo-protocol describes an encapsulation of IPX over
 802.3, without a type field.

 Refer to the macro for IPX for additional information about this
 protocol."
 DECODING
 "Whenever the 802.3 header indicates LLC a set of protocol
 specific tests needs to be applied to determine whether this is a
 ’raw8023’ packet or a true 802.2 packet. The nature of these
 tests depends on the active child protocols for ’raw8023’ and is
 beyond the scope of this document."
 ::= { ianaAssigned 1 }

5.3. L3: Children of Base Protocol Identifiers

 Network layer protocol identifier macros contain additional
 information about the network layer, and is found immediately
 following a base layer-identifier in a protocol identifier.

 The ProtocolDirParameters supported at the network layer are
 ’countsFragments(0)’, and ’tracksSessions(1). An agent may choose to
 implement a subset of these parameters.

 The protocol-name should be used for the ProtocolDirDescr field. The
 ProtocolDirType ATTRIBUTES used at the network layer are
 ’hasChildren(0)’ and ’addressRecognitionCapable(1)’. Agents may
 choose to implement a subset of these attributes for each protocol,
 and therefore limit which tables the indicated protocol can be
 present (e.g. protocol distribution, host, and matrix tables)..

 The following protocol-identifier macro declarations are given for
 example purposes only. They are not intended to constitute an
 exhaustive list or an authoritative source for any of the protocol

Bierman & Iddon Standards Track [Page 27]

RFC 2074 RMON Protocol Identifiers January 1997

 information given. However, any protocol that can encapsulate other
 protocols must be documented here in order to encode the children
 identifiers into protocolDirID strings. Leaf protocols should be
 documented as well, but an implementation can identify a leaf
 protocol even if it isn’t listed here (as long as the parent is
 documented).

5.3.1. IP

ip PROTOCOL-IDENTIFIER
 PARAMETERS {
 countsFragments(0) -- This parameter applies to all child
 -- protocols.
 }
 ATTRIBUTES {
 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "The protocol identifiers for the Internet Protocol (IP). Note
 that IP may be encapsulated within itself, so more than one of
 the following identifiers may be present in a particular
 protocolDirID string."
 CHILDREN
 "Children of ’ip’ are selected by the value in the Protocol field
 (one octet), as defined in the PROTOCOL NUMBERS table within the
 Assigned Numbers Document.

 The value of the Protocol field is encoded in an octet string as
 [0.0.0.a], where ’a’ is the protocol field .

 Children of ’ip’ are encoded as [0.0.0.a], and named as ’ip a’
 where ’a’ is the protocol field value. For example, a
 protocolDirID-fragment value of:
 0.0.0.1.0.0.8.0.0.0.0.1

 defines an encapsulation of ICMP (ether2.ip.icmp)"
 ADDRESS-FORMAT
 "4 octets of the IP address, in network byte order. Each ip
 packet contains two addresses, the source address and the
 destination address."
 DECODING
 "Note: ether2/ip/ipip4/udp is a different protocolDirID than
 ether2/ip/udp, as identified in the protocolDirTable. As such,
 two different local protocol index values will be assigned by the
 agent. E.g. (full INDEX values shown):
 ether2/ip/ipip4/udp 16.0.0.0.1.0.0.8.0.0.0.0.4.0.0.0.17.4.0.0.0.0
 ether2/ip/udp 12.0.0.0.1.0.0.8.0.0.0.0.17.3.0.0.0 "

Bierman & Iddon Standards Track [Page 28]

RFC 2074 RMON Protocol Identifiers January 1997

 REFERENCE
 "RFC 791 [RFC791] defines the Internet Protocol; The following
 URL defines the authoritative repository for the PROTOCOL NUMBERS
 Table:

 ftp://ftp.isi.edu/in-notes/iana/assignments/protocol-numbers"
 ::= {
 ether2 0x0800,
 llc 0x06,
 snap 0x0800,
 ip 4,
 ip 94
 }

5.3.2. IPX

ipx PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "Novell IPX"
 CHILDREN
 "Children of IPX are defined by the 16 bit value of the
 Destination Socket field. The value is encoded into an octet
 string as [0.0.a.b], where ’a’ and ’b’ are the network byte
 order encodings of the MSB and LSB of the destination socket
 field."
 ADDRESS-FORMAT
 "4 bytes of Network number followed by the 6 bytes Host address
 each in network byte order".
 REFERENCE
 "The IPX protocol is defined by the Novell Corporation

Bierman & Iddon Standards Track [Page 29]

RFC 2074 RMON Protocol Identifiers January 1997

 A complete description of IPX may be secured at the following
 address:
 Novell, Inc.
 122 East 1700 South
 P. O. Box 5900
 Provo, Utah 84601 USA
 800 526 5463
 Novell Part # 883-000780-001"
 ::= {
 ether2 0x8137, -- 0.0.129.55
 llc 0xe0e003, -- 0.224.224.3
 snap 0x8137, -- 0.0.129.55
 ianaAssigned 0x1 -- 0.0.0.1 (ipxOverRaw8023)
 }

5.3.3. ARP

arp PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "An Address Resolution Protocol message (request or response).
 This protocol does not include Reverse ARP (RARP) packets, which
 are counted separately."
 REFERENCE
 "RFC 826 [RFC826] defines the Address Resolution Protocol."
 ::= {
 ether2 0x806, -- [0.0.8.6]
 snap 0x806
 }

5.3.4. IDP

idp PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "Xerox IDP"
 CHILDREN
 "Children of IDP are defined by the 8 bit value of the Packet
 type field. The value is encoded into an octet string as [
 0.0.0.a], where ’a’ is the value of the packet type field in
 network byte order."

Bierman & Iddon Standards Track [Page 30]

RFC 2074 RMON Protocol Identifiers January 1997

 ADDRESS-FORMAT
 "4 bytes of Network number followed by the 6 bytes Host address
 each in network byte order".
 REFERENCE
 "Xerox Corporation, Document XNSS 028112, 1981"
 ::= {
 ether2 0x600, -- [0.0.6.0]
 snap 0x600
 }

5.3.5. AppleTalk ARP

atalkarp PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "AppleTalk Address Resolution Protocol."
 REFERENCE
 "AppleTalk Phase 2 Protocol Specification, document ADPA
 #C0144LL/A."
 ::= {
 ether2 0x80f3, -- [0.0.128.243]
 vsnap(0x080007) 0x80f3
 }

5.3.6. AppleTalk

atalk PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0),
 addressRecognitionCapable(1)
 }
 DESCRIPTION
 "AppleTalk Protocol."
 CHILDREN
 "Children of ATALK are defined by the 8 bit value of the DDP type
 field. The value is encoded into an octet string as [0.0.0.a],
 where ’a’ is the value of the DDP type field in network byte
 order."
 ADDRESS-FORMAT
 "2 bytes of Network number followed by 1 byte of node id each in
 network byte order".

Bierman & Iddon Standards Track [Page 31]

RFC 2074 RMON Protocol Identifiers January 1997

 REFERENCE
 "AppleTalk Phase 2 Protocol Specification, document ADPA
 #C0144LL/A."
 ::= {
 ether2 0x809b, -- [0.0.128.155]
 vsnap(0x080007) 0x809b
 }

5.4. L4: Children of L3 Protocols

5.4.1. ICMP

icmp PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "Internet Message Control Protocol."
 REFERENCE
 "RFC 792 [RFC792] defines the Internet Control Message Protocol."
 ::= { ip 1 }

5.4.2. TCP

tcp PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0)
 }
 DESCRIPTION
 "Transmission Control Protocol."
 CHILDREN
 "Children of TCP are identified by the 16 bit Destination Port
 value as specified in RFC 793. They are encoded as [0.0.a.b],
 where ’a’ is the MSB and ’b’ is the LSB of the Destination Port
 value. Both bytes are encoded in network byte order. For
 example, a protocolDirId-fragment of:
 0.0.0.1.0.0.8.0.0.0.0.6.0.0.0.23

 identifies an encapsulation of the telnet protocol
 (ether2.ip.tcp.telnet)"
 REFERENCE
 "RFC 793 [RFC793] defines the Transmission Control Protocol.

 The following URL defines the authoritative repository for
 reserved and registered TCP port values:

 ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers"
 ::= { ip 6 }

Bierman & Iddon Standards Track [Page 32]

RFC 2074 RMON Protocol Identifiers January 1997

5.4.3. UDP

udp PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0)
 }
 DESCRIPTION
 "User Datagram Protocol."
 CHILDREN
 "Children of UDP are identified by the 16 bit Destination Port
 value as specified in RFC 768. They are encoded as [0.0.a.b],
 where ’a’ is the MSB and ’b’ is the LSB of the Destination Port
 value. Both bytes are encoded in network byte order. For
 example, a protocolDirId-fragment of:
 0.0.0.1.0.0.8.0.0.0.0.17.0.0.0.161

 identifies an encapsulation of SNMP (ether2.ip.udp.snmp)"
 REFERENCE
 "RFC 768 [RFC768] defines the User Datagram Protocol.

 The following URL defines the authoritative repository for
 reserved and registered UDP port values:

 ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers"
 ::= { ip 17 }

5.5. L5: Application Layer Protocols

5.5.1. FTP

5.5.1.1. FTP-DATA

ftp-data PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "The File Transfer Protocol Data Port; the FTP Server process
 default data-connection port. "
 REFERENCE
 "RFC 959 [RFC959] defines the File Transfer Protocol. Refer to
 section 3.2 of [RFC959] for details on FTP data connections."
 ::= { tcp 20 }

Bierman & Iddon Standards Track [Page 33]

RFC 2074 RMON Protocol Identifiers January 1997

5.5.1.2. FTP Control

ftp PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "The File Transfer Protocol Control Port; An FTP client initiates
 an FTP control connection by sending FTP commands from user port
 (U) to this port."
 REFERENCE
 "RFC 959 [RFC959] defines the File Transfer Protocol."
 ::= { tcp 21 }

5.5.2. Telnet

telnet PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "The Telnet Protocol; The purpose of the TELNET Protocol is to
 provide a fairly general, bi-directional, eight-bit byte oriented
 communications facility. Its primary goal is to allow a standard
 method of interfacing terminal devices and terminal-oriented
 processes to each other. "
 REFERENCE
 "RFC 854 [RFC854] defines the basic Telnet Protocol."
 ::= { tcp 23 }

5.5.3. SMTP

smtp PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "The Simple Mail Transfer Protocol; SMTP control and data
 messages are sent on this port."
 REFERENCE
 "RFC 821 [RFC821] defines the basic Simple Mail Transfer
 Protocol."
 ::= { tcp 25 }

Bierman & Iddon Standards Track [Page 34]

RFC 2074 RMON Protocol Identifiers January 1997

5.5.4. DNS

domain PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "Domain Name Service Protocol; DNS may be transported by either
 UDP [RFC768] or TCP [RFC793]. If the transport is UDP, DNS
 requests restricted to 512 bytes in length may be sent to this
 port."
 REFERENCE
 "RFC 1035 [RFC1035] defines the Bootstrap Protocol."
 ::= { udp 53,
 tcp 53 }

5.5.5. BOOTP

5.5.5.1. Bootstrap Server Protocol

bootps PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "Bootstrap Protocol Server Protocol; BOOTP Clients send requests
 (usually broadcast) to the bootps port."
 REFERENCE
 "RFC 951 [RFC951] defines the Bootstrap Protocol."
 ::= { udp 67 }

5.5.5.2. Bootstrap Client Protocol

bootpc PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "Bootstrap Protocol Client Protocol; BOOTP Server replies are
 sent to the BOOTP Client using this destination port."
 REFERENCE
 "RFC 951 [RFC951] defines the Bootstrap Protocol."
 ::= { udp 68 }

Bierman & Iddon Standards Track [Page 35]

RFC 2074 RMON Protocol Identifiers January 1997

5.5.6. TFTP

tftp PROTOCOL-IDENTIFIER
 PARAMETERS {
 tracksSessions(1)
 }
 ATTRIBUTES { }
 DESCRIPTION
 "Trivial File Transfer Protocol; Only the first packet of each
 TFTP transaction will be sent to port 69. If the tracksSessions
 attribute is set, then packets for each TFTP transaction will be
 attributed to tftp, instead of the unregistered port numbers that
 will be encoded in subsequent packets."
 REFERENCE
 "RFC 1350 [RFC1350] defines the TFTP Protocol (revision 2); RFC
 1782 [RFC1782] defines TFTP Option Extensions; RFC 1783 [RFC1783]
 defines the TFTP Blocksize Option; RFC 1784 [RFC1784] defines
 TFTP Timeout Interval and Transfer Size Options."

 ::= { udp 69 }

5.5.7. HTTP

www-http PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "Hypertext Transfer Protocol; "
 REFERENCE
 "RFC 1945 [RFC1945] defines the Hypertext Transfer Protocol
 (HTTP/1.0)."
 ::= { tcp 80 }

5.5.8. POP3

pop3 PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "Post Office Protocol -- Version 3. Clients establish connections
 with POP3 servers by using this destination port number."
 REFERENCE
 "RFC 1725 [RFC1725] defines Version 3 of the Post Office
 Protocol."
 ::= { tcp 110 }

Bierman & Iddon Standards Track [Page 36]

RFC 2074 RMON Protocol Identifiers January 1997

5.5.9. SUNRPC

sunrpc PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES {
 hasChildren(0) -- port mapper function numbers
 }
 DESCRIPTION
 "SUN Remote Procedure Call Protocol. Port mapper function
 requests are sent to this destination port."
 CHILDREN
 Specific RPC functions are represented as children of the sunrpc
 protocol. Each ’RPC function protocol’ is identified by its
 function number assignment. RPC function number assignments are
 defined by different naming authorities, depending of the
 function identifier value.
 From [RFC1831]:

 Program numbers are given out in groups of hexadecimal 20000000
 (decimal 536870912) according to the following chart:

 0 - 1fffffff defined by rpc@sun.com
 20000000 - 3fffffff defined by user
 40000000 - 5fffffff transient
 60000000 - 7fffffff reserved
 80000000 - 9fffffff reserved
 a0000000 - bfffffff reserved
 c0000000 - dfffffff reserved
 e0000000 - ffffffff reserved

 Children of ’sunrpc’ are encoded as [0.0.0.111], the protocol
 identifier component for ’sunrpc’, followed by [a.b.c.d], where
 a.b.c.d is the 32 bit binary RPC program number encoded in
 network byte order. For example, a protocolDirID-fragment value
 of:
 0.0.0.111.0.1.134.163

 defines the NFS function (and protocol).

 Children are named as ’sunrpc’ followed by the RPC function
 number in base 10 format. For example, NFS would be named:
 ’sunrpc 100003’.
 REFERENCE
 "RFC 1831 [RFC1831] defines the Remote Procedure Call Protocol
 Version 2. The authoritative list of RPC Functions is identified
 by the URL:
 ftp://ftp.isi.edu/in-notes/iana/assignments/sun-rpc-numbers"
 ::= { udp 111 }

Bierman & Iddon Standards Track [Page 37]

RFC 2074 RMON Protocol Identifiers January 1997

5.5.10. NFS

nfs PROTOCOL-IDENTIFIER
 PARAMETERS {
 countsFragments(0)
 }
 ATTRIBUTES { }
 DESCRIPTION
 "Sun Network File System (NFS);"
 DECODING
 "The first packet in an NFS transaction is sent to the port-
 mapper, and therefore decoded statically by monitoring RFC
 portmap requests [RFC1831]. Any subsequent NFS fragments must be
 decoded and correctly identified by ’remembering’ the port
 assignments used in each RPC function call (as identified
 according to the procedures in the RPC Specification Version 2
 [RFC1831]).

 The ’countsFragments(0)’ PARAMETER bit is used to indicate
 whether the probe can (and should) monitor portmapper activity to
 correctly attribute all NFS packets."
 REFERENCE
 "The NFS Version 3 Protocol Specification is defined in RFC 1813
 [RFC1813]."
 ::= {
 sunrpc 100003 -- [0.1.134.163]
 }

5.5.11. SNMP

5.5.11.1. SNMP Request/Response

snmp PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "Simple Network Management Protocol. Includes SNMPv1 and SNMPv2
 protocol versions. Does not include SNMP trap packets."
 REFERENCE
 "The SNMP SMI is defined in RFC 1902 [RFC1902]. The SNMP
 protocol is defined in RFC 1905 [RFC1905]. Transport mappings
 are defined in RFC 1906 [RFC1906]; RFC 1420 (SNMP over IPX)
 [RFC1420]; RFC 1419 (SNMP over AppleTalk) [RFC1419]."
 ::= {
 udp 161,
 ipx 0x900f, -- [0.0.144.15]
 atalk 8
 }

Bierman & Iddon Standards Track [Page 38]

RFC 2074 RMON Protocol Identifiers January 1997

5.5.11.2. SNMP Trap

snmptrap PROTOCOL-IDENTIFIER
 PARAMETERS { }
 ATTRIBUTES { }
 DESCRIPTION
 "Simple Network Management Protocol Trap Port."
 REFERENCE
 "The SNMP SMI is defined in RFC 1902 [RFC1902]. The SNMP
 protocol is defined in RFC 1905 [RFC1905]. Transport mappings
 are defined in RFC 1906 [RFC1906]; RFC 1420 (SNMP over IPX)
 [RFC1420]; RFC 1419 (SNMP over AppleTalk) [RFC1419]."
 ::= {
 udp 162,
 ipx 0x9010,
 atalk 9
 }

6. Acknowledgements

 This document was produced by the IETF RMONMIB Working Group.

 The authors wish to thank the following people for their
 contributions to this document:

 Anil Singhal
 Frontier Software Development, Inc.

 Jeanne Haney
 Bay Networks

 Dan Hansen
 Network General Corp.

Bierman & Iddon Standards Track [Page 39]

RFC 2074 RMON Protocol Identifiers January 1997

7. References

[RFC768]
 Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 USC/Information Sciences Institute, August 1980.

[RFC791]
 Postel, J., ed., "Internet Protocol - DARPA Internet Program
 Protocol Specification", STD 5, RFC 791, USC/Information Sciences
 Institute, September 1981.

[RFC792]
 Postel, J., "Internet Control Message Protocol - DARPA Internet
 Program Protocol Specification", STD 5, RFC 792, USC/Information
 Sciences Institute, September 1981.

[RFC793]
 Postel, J., "Transmission Control Protocol - DARPA Internet Program
 Protocol Specification", STD 5, RFC 793, USC/Information Sciences
 Institute, September 1981.

[RFC821]
 Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821,
 USC/Information Sciences Institute, August 1982.

[RFC826]
 Plummer, D., "An Ethernet Address Resolution Protocol or
 "Converting Network Protocol Addresses to 48-bit Ethernet Addresses
 for Transmission on Ethernet Hardware", STD 37, RFC 826, MIT-LCS,
 November 1982.

[RFC854]
 Postel, J. and J. Reynolds, "Telnet Protocol Specification",
 STD 8, RFC 854, ISI, May 1983.

[RFC894]
 Hornig, C., "A Standard for the Transmission of IP Datagrams over
 Ethernet Networks", RFC 894, Symbolics, April 1984.

[RFC951]
 Croft, B., and J. Gilmore, "BOOTSTRAP Protocol (BOOTP)", RFC 951,
 Stanford and SUN Microsytems, September 1985.

[RFC959]
 Postel, J., and J. Reynolds, "File Transfer Protocol", STD 8,
 RFC 959, USC/Information Sciences Institute, October 1985.

Bierman & Iddon Standards Track [Page 40]

RFC 2074 RMON Protocol Identifiers January 1997

[RFC1035]
 Mockapetris, P., "Domain Names - Implementation and Specification",
 STD 13, RFC 1035, USC/Information Sciences Institute, November
 1987.

[RFC1157]
 Case, J., M. Fedor, M. Schoffstall, J. Davin, "Simple Network
 Management Protocol", STD 15, RFC 1157, SNMP Research,
 Performance Systems International, MIT Laboratory for Computer
 Science, May 1990.

[RFC1213]
 McCloghrie, K., and M. Rose, Editors, "Management Information Base
 for Network Management of TCP/IP-based internets: MIB-II", STD 17,
 RFC 1213, Hughes LAN Systems, Performance Systems International,
 March 1991.

[RFC1350]
 Sollins, K., "TFTP Protocol (revision 2)", RFC 1350, MIT, July
 1992.

[RFC1419]
 Minshall, G., and M. Ritter, "SNMP over AppleTalk", RFC 1419,
 Novell, Inc., Apple Computer, Inc., March 1993.

[RFC1420]
 Bostock, S., "SNMP over IPX", RFC 1420, Novell, Inc., March 1993.

[RFC1700]
 Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC 1700,
 USC/Information Sciences Institute, October 1994.

[RFC1725]
 Myers, J., and M. Rose, "Post Office Protocol - Version 3", RFC
 1725, Carnegie Mellon, Dover Beach Consulting, November 1994.

[RFC1757]
 S. Waldbusser, "Remote Network Monitoring MIB", RFC 1757, Carnegie
 Mellon University, February 1995.

[RFC1782]
 Malkin, G., and A. Harkin, T "TFTP Option Extension", RFC 1782,
 Xylogics, Inc., Hewlett Packard Co., March 1995.

[RFC1783]
 Malkin, G., and A. Harkin, T "TFTP BlockOption Option", RFC 1783,
 Xylogics, Inc., Hewlett Packard Co., March 1995.

Bierman & Iddon Standards Track [Page 41]

RFC 2074 RMON Protocol Identifiers January 1997

[RFC1784]
 Malkin, G., and A. Harkin, "TFTP Timeout Interval and Transfer Size
 Options", RFC 1784, Xylogics, Inc., Hewlett Packard Co., March
 1995.

[RFC1800]
 Postel, J., Editor, "Internet Official Protocol Standards", STD 1,
 RFC 1920, IAB, March 1996.

[RFC1831]
 Srinivasan, R., "Remote Procedure Call Protocol Version 2", RFC
 1831, Sun Microsystems, Inc., August 1995.

[RFC1902]
 SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Structure of Management Information for version 2
 of the Simple Network Management Protocol (SNMPv2)", RFC 1902,
 January 1996.

[RFC1903]
 SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Textual Conventions for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1903, January 1996.

[RFC1904]
 SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Conformance Statements for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1904, January 1996.

[RFC1905]
 SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
 S. Waldbusser, "Protocol Operations for version 2 of the Simple
 Network Management Protocol (SNMPv2)", RFC 1905, January 1996.

[RFC1906]
 SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S.
 Waldbusser, "Transport Mappings for Version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1906, January 1996.

[RFC1945]
 Berners-Lee, T., and R. Fielding, "Hypertext Transfer Protocol --
 HTTP/1.0", RFC 1945, MIT/UC-Irvine, November 1995.

[RMON2]
 S. Waldbusser, "Remote Network Monitoring MIB (RMON-2)", draft-
 ietf-rmonmib-rmon2-03.txt, International Network Services, January
 1996.

Bierman & Iddon Standards Track [Page 42]

RFC 2074 RMON Protocol Identifiers January 1997

8. Security Considerations

 Security issues are not discussed in this memo.

9. Authors’ Addresses

 Andy Bierman
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134

 Phone: 408-527-3711
 EMail: abierman@cisco.com

 Robin Iddon
 3Com/AXON
 40/50 Blackfrias Street
 Edinburgh, UK

 Phone: +44 131.558.3888
 EMail: robin_iddon@3mail.3com.com

Bierman & Iddon Standards Track [Page 43]

