
Network Working Group H. Harney
Request for Comments: 2093 C. Muckenhirn
Category: Experimental SPARTA, Inc.
 July 1997

 Group Key Management Protocol (GKMP) Specification

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. This memo does not specify an Internet standard of any
 kind. Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Table of Contents

 1. Background... 1
 2. Overview: GKMP Roles.. 3
 3. Data Item primitives... 4
 4. Message definitions.. 6
 5. State definitions.. 9
 6. Functional Definitions--Group Key Management Protocol.......... 13
 7. Security Considerations.. 23
 8. Author’s Address... 23

Abstract

 This specification proposes a protocol to create grouped symmetric
 keys and distribute them amongst communicating peers. This protocol
 has the following advantages: 1) virtually invisible to operator, 2)
 no central key distribution site is needed, 3) only group members
 have the key, 4) sender or receiver oriented operation, 5) can make
 use of multicast communications protocols.

1 Background

 Traditional key management distribution has mimicked the military
 paper based key accounting system. Key was distributed, ordered, and
 accounted physically leading to large lead times and expensive
 operations.

 Cooperative key management algorithms exist that allow pairwise keys
 to be generated between two equipment’s. This gives the a quicker
 more reliable key management structure capable of supporting large
 numbers of secure communications. Unfortunately, only pairwise keys
 are supported using these methods today.

Harney & Muckenhirn Experimental [Page 1]

RFC 2093 GKMP Specification July 1997

 This document describes a protocol for establishing and rekeying
 groups of cryptographic keys (more than two) on the internet. We
 refer to the approach as the Group Key Management Protocol (GKMP).

1.1 Protocol Overview

 The GKMP creates key for cryptographic groups, distributes key to the
 group members, ensures (via peer to peer reviews) rule based access
 control of keys, denies access to known compromised hosts, and allow
 hierarchical control of group actions.

 The key generation concept used by the GKMP is cooperative generation
 between two protocol entities. There are several key generation
 algorithms viable for use in the GKMP (i.e., RSA, Diffe-Hellman,
 elliptic curves). All these algorithms use asymmetric key technology
 to pass information between two entities to create a single
 cryptographic key.

 The GKMP then distributes the group keys to qualified GKMP entities.
 This distribution process is a mutually suspicious process (all
 actions and identities must be verified).

 The GKMP provides a peer to peer review process. Protocol entities
 pass permission certificates (PC) as part of the group key
 distribution process. The PCs contain access control information
 about a particular site. This access control information is assigned
 by a higher authority which then signs the PC. Therefor each entity
 can verify the permissions of any other GKMP entity but can modify
 none. Each protocol entity checks the permissions and compares them
 the level of service requested. If the permissions do not exceed or
 equal the request, the service is denied.

 The GKMP supports compromise recovery. A list of compromised GKMP
 entities is distributed to group members during key management
 actions. In essence, a Compromise Recovery List (CRL) allows group
 members to drop connections with compromised entities. The GKMP
 delegates control of groups to specific group controllers so it will
 be somewhat easier to distribute the CRL to the most important GKMP
 entities. During each key management action the CRL version number
 is passed, when a CRL update is detected it is downloaded and
 verified (it is signed by a higher authority).

 The GKMP allows control of group actions. In certain networks it is
 desirable for a higher authority to strictly control the generation
 of groups. These networks usually have a central network operations
 authority. The GKMP allows these authorities to remotely order group
 actions. These orders are signed by that authority and verified by
 all entities involved with the group.

Harney & Muckenhirn Experimental [Page 2]

RFC 2093 GKMP Specification July 1997

 The GKMP is an application layer protocol. It’s independent of the
 underlying communication protocol. However, if multicast service is
 available it will speed the rekey of the cryptographic groups.
 Hence, the GKMP does use multicast services if they are available.

2 Overview: GKMP Roles

 Creation and distribution of grouped key require assignment of roles.
 These identify what functions the individual hosts perform in the
 protocol. The two primary roles are those of key distributor and
 member. The controller initiates the creation of the key, forms the
 key distribution messages, and collects acknowledgment of key receipt
 from the receivers. The members wait for a distribution message,
 decrypt, validate, and acknowledge the receipt of new key.

2.1 Group controller

 The group controller (GC) is the a group member with authority to
 perform critical protocol actions (i.e., create key, distribute key,
 create group rekey messages, and report on the progress of these
 actions). All group members have the capability to be a GC and could
 assume this duty upon assignment.

 The GC helps the cryptographic group reach and maintain key
 synchronization. A group must operate on the same symmetric
 cryptographic key. If part of the group loses or inappropriately
 changes it’s key, it will not be able to send or receive data to
 another host operating on the correct key. Therefor, it is important
 that those operations that create or change key are unambiguous and
 controlled (i.e., it would not be appropriate for multiple hosts to
 try to rekey a net simultaneously). Hence, someone has to be in
 charge -- that is the controller.

2.2 Group member

 Simply stated a group member is any group host who is not acting as
 the controller. The group members will: assist the controller in
 creating key, validate the controller authorization to perform
 actions, accept key from the controller, request key from the
 controller, maintain local CRL lists, perform peer review of key
 management actions, and manage local key.

Harney & Muckenhirn Experimental [Page 3]

RFC 2093 GKMP Specification July 1997

3 Data Item primitives

3.1 Group members list:

 In a sender oriented group, the GC must be given a list of net
 members. The controller will then initiate contact with these net
 members and create the group.

3.2 Group Token:

 The group token is created by the authority which commands a group.
 The Token contains information the net members need to ensure a
 controller is authorized to create a group and exactly what
 constrains are intended to be places on the group. The group token
 contains the following fields: Group identification,

 o GC ID,

 o Group action (create, rekey, delete),

 o Group permissions (rules to guide access control),

 o Rekey interval (life span of group key),

 o Token version (identifier to identify current token),

 o Token signature (asymmetric signature using the group
 commanders private key),

 o Group commanders public key (this public key is itself signed by
 the network security manager to bind the public to a specific net
 member ID).

3.3 Grp ID:

 The group must be uniquely identified to allow for several different
 groups to coexist on a network.

3.4 GTEK ID:

 Unique identifier of GTEK (can include state information).

3.5 GKEK ID:

 Unique identifier of GKEK (can include state information).

Harney & Muckenhirn Experimental [Page 4]

RFC 2093 GKMP Specification July 1997

3.6 GTEK creation field:

 In a cooperative key creation protocol each party contributes some
 field used to create the key.

3.7 GKEK creation field:

 In a cooperative key creation protocol each party contributes some
 field used to create the key.

3.8 Distributor signature:

 Asymmetric signature using the GCs private key.

3.9 Distributor public key:

 Public half of the GCs signature key pair. (this public key is
 itself signed by the network security manager to bind the public to a
 specific net member ID.

3.10 Member signature:

 Asymmetric signature using the selected members private key.

3.11 Member public:

 Public half of the selected members signature key pair. (this public
 key is itself signed by the network security manager to bind the
 public to a specific net member ID.

3.12 Controller permissions:

 Controller permissions are assigned by the security manager. The
 security managers signature will bind the permissions to the
 controller ID.

3.13 SKEK ID:

 This field identifies exactly which SKEK is being created. This
 allows multiple groups to interoperate on a net simultaneously.

3.14 SKEK creation field:

 This field contains the information contributed for use in the KEK
 creation process.

Harney & Muckenhirn Experimental [Page 5]

RFC 2093 GKMP Specification July 1997

3.15 Member permissions:

 Member permissions are assigned by the security manager. The
 security managers signature will bind the permissions to the
 controller ID.

3.16 Encrypted Grp Keys:

 This data item is encrypted in the KEK (session or group) created for
 the download of keys. It is the GTEK and GKEK created for a group.
 A checksum is also encrypted. This ensures the confidentiality and
 data integrity of the GTEK and GKEK.

3.17 Confirmation of decryption:

 This is a short (byte) field indicating decryption of the message and
 exactly what type of message was decrypted.

3.18 Request:

 A request field contains the specific request one net member may make
 to another. The requests range from (group join, CRL update,
 pairwise TEK generation, detection, group creation, status).

 Member delete list:

 A list of group members being administratively deleted from the
 group.

4 Message definitions

4.1 Command_Create Group:

 This message contains the following data item primitives (Group
 members, Grp ID, Grp controller ID, Grp action, Grp permissions,
 Rekey interval, Token version, Token signature, Token public key).
 This message may be confidential due to the group permissions field.
 In sensitive systems it will need encryption prior to transmission.

4.2 Create Grp Keys_1:

 This message passes the information needed to create the group keys
 from the GC to the selected net member. This message contains (Grp
 ID, Request, GTEK ID, GKEK ID, GTEK creation field, GKEK creation
 field, Grp token, Controller signature, Controller public)

Harney & Muckenhirn Experimental [Page 6]

RFC 2093 GKMP Specification July 1997

4.3 Create Grp Keys_2:

 This message passes the information needed to create the group keys
 from the selected net member to the GC. This message contains: (Grp
 ID, GTEK ID, GKEK ID, GTEK creation field, GKEK creation field,
 member signature, member public)

4.4 Negotiate Grp Keys_1:

 This message passes the group token and GCs permissions to the
 selected net member. This information can be sensitive and needs to
 be protected. Therefor, this message is encrypted in the GTEK just
 created. This encryption includes the appropriate data integrity
 checks. This message1 contains: (Grp ID, TEK ID, KEK ID, Group
 token, Controller permissions)

4.5 Negotiate Grp Keys_2:

 This message passes the selected net members permissions to the GC.
 This message1 contains: (Grp ID, GTEK ID, GKEK ID, Member
 permissions). This information can be sensitive and needs to be
 protected. Therefor, this message is encrypted in the GTEK just
 created. This encryption includes the appropriate data integrity
 checks.

4.6 Create Session KEK_1:

 This message sends information to create a KEK for one time use
 between the GC and selected net member.

4.7 Create Session KEK_2:

 This message sends information to create a KEK for one time use
 between the selected net member and GC.

4.8 Negotiate Session Keys_1:

 This message passes the group ID, SKEK ID, CRL version number, Group
 token and GCs permissions to the selected net member. This
 information can be sensitive and needs to be protected. Therefor,
 this message is encrypted. If an appropriate pairwise key is
 available then that key should be used. If not the KEK just created
 could be used to encrypt the message.

Harney & Muckenhirn Experimental [Page 7]

RFC 2093 GKMP Specification July 1997

4.9 Negotiate Session Keys_2:

 This message identifies the group, SKEK, CRL version number and the
 member permissions. This information can also be sensitive and needs
 protection.

4.10 Download Grp Keys:

 This message includes a GRP ID and Encrypted Grp Keys data items.

4.11 Key download ack:

 This message contains the GRP ID and Confirmation_decryption data
 items. It confirms the receipt and verified decryption of the GTEK
 and GKEK.

4.12 Rekey _Multicast:

 This message contains: Grp ID, GTEK ID, GKEK ID, Group token,
 Controller permissions. The rekey message is encrypted in the GKEK
 already resident in all the group member sites. This leads to a
 single message capable of being accepted by all group members.

4.13 Request_Group_Join:

 This message contains Request, Grp ID, Member Signature, Member
 Public.

4.14 Delete_Group_Keys:

 This message contains: grp ID, Request, Member delete list,
 Controller signature, Controllers public.

4.15 Grp_Keys_Deleted_Ack:

 This message contains (grp ID, member ID, member signature, member
 public.

4.16 Delete_Group_Keys:

 This message contains (grp ID, request, member delete list,
 controller signature, controller public).

4.17 Grp_Keys_Deleted_Ack:

 This message contains (grp ID, member ID, member signature, member
 public)

Harney & Muckenhirn Experimental [Page 8]

RFC 2093 GKMP Specification July 1997

5 State definitions

 There are thirteen separate states the in the protocol. They are
 described below:

5.1 State 1:

 The source address is checked to ensure it is not on the CRL.

 The token field is validated with the public key of the source.

 The token version number is checked to ensure this token is current.

 The group ID is checked to see if this group exists.

 The controller ID field is then read. If the receiver is listed as
 the GC, the receiver assumes the role of controller. If not, the
 role assumed is that of receiver.

 The GC reads the group permission field in the group token. It then
 verifies that its’ personnel permissions exceed or equal those of the
 group.

 The GC will creates its’ portion of the key creation message.

 The Create Grp Keys_1 message is completed and transmitted.

5.2 State 2:

 The source signature field is validated using the public key of the
 source.

 The source ID field is compared against the local CRL. If the source
 is on the CRL the association is terminated.

 The request field is read. The local contributions to the group keys
 are created.

 The Group keys are created and stored pending negotiation.

 The key table is updated to show the group key pending negotiation.

5.3 State 3:

 The permission certificate is retrieved and validated using the
 security managers public key. The permissions of the message source
 are checked to verify they meet or exceed those of the group.

Harney & Muckenhirn Experimental [Page 9]

RFC 2093 GKMP Specification July 1997

 The group token is retrieved and validated using the appropriate
 public key.

 The token version number is checked to ensure the token is current.

 The group ID specified in the token is compared with the actual group
 ID. If they are different the exchange is terminated.

 The controller ID specified in the token is compared with the GC ID.
 If they do not match the exchange is terminated.

 The local permissions are compared to the permissions specified for
 the group. If they do not meet or exceed the group permissions the
 exchange is terminated and a report is generated.

 The rekey interval specified in the token is stored locally.

 The key table is updated to reflect the key permissions, rekey
 interval, group ID and current time.

5.4 State 4:

 The permission certificate is retrieved and validated using the
 security members public key. The permissions of the message source
 are checked to verify they meet or exceed those of the group.

 The key table is updated to reflect the key permissions, rekey
 interval, group ID and current time.

5.5 State 5:

 The source signature field is validated using the public key of the
 source.

 The source ID field is compared against the local CRL. If the source
 is on the CRL, the association is terminated.

 The request field is read. The local contribution to the SKEK are
 created. The SKEK is created and stored pending negotiation.

 The key table is updated to show the SKEK pending negotiation.

5.6 State 6:

 The permission certificate is retrieved and validated using the
 security managers public key. The permissions of the message source
 are checked to verify they meet or exceed those of the group.

Harney & Muckenhirn Experimental [Page 10]

RFC 2093 GKMP Specification July 1997

 The group token is retrieved and validated using the appropriate
 public key.

 The token version number is checked to ensure the token is current.

 The group ID specified in the token is stored.

 The controller ID specified in the token is compared with the GC ID.
 If they do not match the exchange is terminated.

 The local permissions are compared to the permissions specified for
 the group. If they do not meet or exceed the group permissions the
 exchange is terminated and a report is generated.

 The rekey interval specified in the token is stored locally.

 The key table is updated to reflect the key permissions, rekey
 interval, group ID and current time.

5.7 State 7:

 The permission certificate is retrieved and validated using the
 security managers public key. The permissions of the message source
 are checked to verify they meet or exceed those of the group.

 The key table is updated.

5.8 State 8:

 The group ID is checked.

 The group keys are decrypted using the SKEK. Data integrity checks
 are validated to ensure proper decryption.

 The key table is updated to reflect the new group keys, key
 permissions, rekey interval, group ID and current time.

5.9 State 9:

 Update group management log.

5.10 State 10:

 The permission certificate is retrieved and validated using the
 security managers public key. The permissions of the message source
 are checked to verify they meet or exceed those of the group.

Harney & Muckenhirn Experimental [Page 11]

RFC 2093 GKMP Specification July 1997

 The group token is retrieved and validated using the appropriate
 public key.

 The token version number is checked to ensure the token is current.

 The group ID specified in the token is checked.

 The controller ID specified in the token is compared with the GC ID.
 If they do not match the exchange is terminated.

 The local permissions are compared to the permissions specified for
 the group. If they do not meet or exceed the group permissions the
 exchange is terminated and a report is generated.

 The rekey interval specified in the token is stored locally.

 The new group keys are decrypted with the current GKEK. The data
 integrity field is checked to ensure proper decryption.

 The key table is updated to reflect the key permissions, rekey
 interval, group ID and current time.

5.11 State 11:

 Validate signature using sources public key.

 Check to see if member initiated group join is available. If not,
 ignore. If so begin distribution of group keys.

5.12 State 12:

 Validate signature using GCs public.

 Retrieve delete list. Check to see if on delete list, if so
 continue.

 Create Grp_Keys_Deleted_Ack

 Delete group keys

5.13 State 13:

 Validate signature using GCs public.

 Retrieve delete list. If list is global delete, verify alternative
 key.

 Switch group operations to alternative key.

Harney & Muckenhirn Experimental [Page 12]

RFC 2093 GKMP Specification July 1997

 Create Grp_Keys_Deleted_Ack.

 Delete group keys.

6 Functional Definitions--Group Key Management Protocol

 The GKMP consists of multiple functions necessary to create,
 distribute, rekey and manage groups of symmetric keys. These
 functions are:

 o Group creation (sender initiated group)

 -- Create Group keys

 -- Distribute Group keys

 o Group rekey

 -- Create Group keys

 -- Rekey Group

 o Member initiated join

 o Group member delete

 The following sections will describe each function, including data
 primitives and message constructs. The associated diagrams will
 represent the specifics (sequence, location and communications
 sources and destinations) of the messages and processes necessary.

6.1 Group creation

 Member initialization is a three-step function that involves
 commanding the creation of the group, creation of the group keys and
 then distribution of those keys to "other" group members. Messages
 between the GC and the first member generate two keys for future
 group actions: the group traffic encryption key (GTEK) and the group
 key encryption key (GKEK). Messages between the GC and the other
 members are for the purpose of distributing the keys. These
 functions are described in the following sections.

Harney & Muckenhirn Experimental [Page 13]

RFC 2093 GKMP Specification July 1997

6.1.1 Group command

 The very first action is for some entity to command the group. This
 command is sent to the GC.

6.1.2 Create group keys

 The first member must cooperate with the GC to create future group
 keys. Reliance on two separate hosts to create group keys maximizes
 the probability that the resulting key will have the appropriate
 cryptographic properties. A single host could create the key if the
 randomization function were robust and trusted. Unfortunately this
 usually requires specialized hardware not available at most host
 sites. The intent of this protocol was to utilize generic hardware
 to enhance the extendibility of the GKMP. Hence, cooperative key
 generation mechanisms are used.

 To facilitate a well ordered group creation, management information
 must be passed between the controller and the group members. This
 information uniquely identifies the GC identity, it’s permissions,
 authorization to create keys, the future groups permissions, current
 state of the compromise list, and management information pertaining
 to the keys being created. All this information is protected from
 forgery by asymmetric signature technologies. The public key used to
 verify net wide parameters (e.g., individual host permissions) are
 widely held. The public key to verify locally generated information,
 like peer identity, is sent with the messages. This alleviates the
 hosts public key storage requirements.

 The goals of the key creation process are:

 o cooperatively generate a GTEK and GKEK,

 o allow the key creators to verify the identity of the key
 creation partner by verifying the messages signatures.

 o share public keys

 o allow validation of the GC, by signing the group
 identification, GC identification, and group permissions.

 o send the group identity, GC identity, group member identities,
 group permissions, and group rekey interval to the first member,
 signed by the group commander (when the group was remotely
 commanded).

Harney & Muckenhirn Experimental [Page 14]

RFC 2093 GKMP Specification July 1997

 This function consists of four messages between the GC and the first
 member. The initial messages are for the establishment of the GTEK
 and GKEK. This is accomplished by the GC sending a signed
 Create_Group_Keys_1 message to the first member. This message
 contains two random values necessary to generate the GTEK and GKEK.
 This message also contains the public key of the GC.

 The first member validates the signed Create_Group_Keys_1 message,
 builds and sends a signed Create_Group_Keys_2 message to the GC. He
 generates the GTEK and GKEK, and stores the received public key. The
 Create_Group_Keys_2 message contains the random values necessary for
 the GC to generate the GTEK and GKEK. This message also contains the
 public key of the first member.

 The GC validates the signed Create_Group_Keys_2 message, generates
 the GTEK and GKEK, builds the Negotiate_Group_Keys_1 message for
 transmission to the first member, and stores the received public key.

 The GC sends the Negotiate_Group_Keys_1 message to the first member
 encrypted in the GTEK that was just generated.

___Net_Controller___	__________Messages__________	____Net_Member_B____
The Create Group	<---- Command-Create Group	
command is		
received by net		
member A.		
State 1		
	Create Grp Keys_1---->	
		State 2
	<-----Create Grp Keys_2	
State 2		
	Negotiate Grp Keys_1------>	
		State 3
	<-----Negotiate Grp Keys_2	
State 4		
 Figure 1: State Diagram: Create Group Keys

 The first member decrypts the Negotiate_Group_Keys_1 message and
 extracts the group identification, GC identification, group members,
 group permissions, key rekey interval, CRL version number, and
 certifying authority signature. The group identification, GC
 identification, and group permissions fields are validated based on
 the extracted group commanders signature (if this is a remotely
 commanded group this signature identifies the remote host). If these
 fields validate, the first members internal structures are updated.

Harney & Muckenhirn Experimental [Page 15]

RFC 2093 GKMP Specification July 1997

6.1.3 Distributing Group Keys to Other Members

 The other group members must get the group keys before the group is
 fully operational. The purpose of other group member initialization
 is as follows:

 o cooperatively generate a session key encryption key (SKEK) for the
 transmission of the GTEK and GKEK from the GC,

 o allow each member to verify the identify of the controller and
 visa versa,

 o allow each member to verify the controllers authorization to
 create the group,

 o send the key packet (KP) (consisting of the GTEK, GKEK), group
 identity, GC identity, group member identities, group permissions,
 and group rekey interval to the other members,

 This function consists of six messages between the GC and the other
 members. The initial messages are for the establishment of a SKEK.
 This is accomplished by the GC sending a signed Create_Session_KEK_1
 message to the other member. This message contains the random value
 necessary for the other member to generate the SKEK. This message
 also contains the public key of the GC.

 The other member validates the Create_Session_KEK_1 message, builds
 and sends a Create_Session_KEK_2 message to the GC, generates the
 SKEK, and stores the received public key. The Create_Session_KEK_2
 message contains the random value necessary for the GC to generate
 the SKEK. This message also contains the public key of the other
 member.

 The GC validates the Create_Session_KEK_2 message, generates the
 SKEK, builds the Negotiate_Session_ KEK_1 message for transmission to
 the other member, and stores the received public key.

 The GC sends the Negotiate_Session_KEK_1 message to the other member
 encrypted in the SKEK that was just generated. The
 Negotiate_Session_KEK_1 message includes the group ID, group token,
 controller permissions, and CRL version number.

 The other member decrypts the Negotiate_Session_KEK_1 message,
 verifies the authority and identification of the controller, ensures
 the local CRL is up to date, and builds a Negotiate_Session_KEK_2
 message for transmission to the GC.

Harney & Muckenhirn Experimental [Page 16]

RFC 2093 GKMP Specification July 1997

 The GC receives the Negotiate_Session_KEK_2 message and builds a
 Download_Grp_Keys message for transmission to the other member.

 The GC sends the Download_Grp_Keys message to the other member
 encrypted in the SKEK that was just generated. (note: the key used
 to encrypt the negotiation messages can be combined differently to
 create the KEK.)

 The other members decrypts the Download_Grp_Keys message and extracts
 the KP, group identification, GC identification, group members, group
 permissions, key rekey interval, and group commanders signature. The
 group identification, GC identification, and group permissions fields
 are validated based on the signature. If these fields validate, the
 other members internal key storage tables are updated with the new
 keys.

6.2 Group Rekey

 Rekey is a two-step function that involves message exchange between
 the GC and a "first member" and "other members." Messages between the
 GC and the first member are exactly as described for group creation.
 Messages between the GC and the other members are for the purpose of
 distributing the new GTEK and the new GKEK. These functions are

___Net_Controller___	__________Messages________	Net_members,individual
	Create Session KEK_1---->	
		State 5
	<-----Create Session KEK_2	
State 5		
	Negotiate ess. Keys_1----->	
		State 6
	<-----NegotiateSess. Keys_2	
State 7		
	Download Grp Keys-------->	
		State 8
	<----- Key download ack	
State 9		
 Figure 2: State Diagram: Distribute Keys

 described in the following sections.

6.2.1 Create Group Keys

 The first member function for a rekey operation is the same as that
 for key initialization. Please refer to the group creation section
 entitled "2.1 Create group keys".

Harney & Muckenhirn Experimental [Page 17]

RFC 2093 GKMP Specification July 1997

6.2.2 Rekey

 The purpose of rekey is as follows:

 o send the new GTEK and new GKEK to the other members,

 o allow each member to verify the identify of the controller,

 o allow each member to verify the controllers authorization to
 rekey the group, group identification, and GC identification,

 o send the group identity, GC identity, group member identities,
 group permissions, and group rekey interval to the other members,

 The messages to create and negotiate the group keys are the same as
 stated during group creation. As such they have been omitted here.

 The rekey portion of this function consists of one message between
 the GC and the other members. The GC builds a signed Rekey_Multicast
 message for transmission to the other member. As the name implies
 this

___Net_Controller___	__________Messages________	Net_members,individual
The Create Group	<---- Command-Create Group	
command is		
received by net		
member A.		
State 1		
	Create Grp Keys_1---->	
		State 2
	<-----Create Grp Keys_2	
State 2		
	Negotiate Grp Keys_1------>	
		State 3
	<-----Negotiate Grp Keys_2	
State 4		
	Rekey _Multicast------->	
		State 10
 Figure 3: State Diagram: Rekey

 message can be multicast to the entire group. The GC sends the
 signed Rekey_Multicast message to the other members encrypted in the
 current GKEK.

 The other members decrypt and validate the signed Rekey_Multicast
 message and extract the new KP, group identification, GC
 identification, group members, group permissions, key rekey interval,
 and rekey command signature. The group identification, GC

Harney & Muckenhirn Experimental [Page 18]

RFC 2093 GKMP Specification July 1997

 identification, and group permissions fields are validated based on
 the extracted rekey command signature. If these fields validate, the
 key database tables are updated.

6.3 Member Initiated Join

 The GKMP will support member initiated joins to the group. This type
 of service is most attractive when the group initiator does not need
 to control group membership other than to verify that all members of
 the group conform to some previously agreed upon rules.

 One example of this type of group is corporations job vacancies. A
 corporation may want to keep its job vacancies confidential and may
 decide to encrypt the announcements. The group creator doesn’t care
 who gets the announcements as long as they are in the corporation.
 When an employee tries to access the information the GC looks at the
 employees permissions (signed by some higher authority). If they
 indicate the employee is part of the corporation the controller
 allows access to the group.

 Before a potential group member can join group operations, they must
 request the key from the GC, unambiguously identify themselves, pass
 their permissions, and receive the keys. These require several
 messages to pass between GC and the joining member. The purpose of
 these messages are as follows:

 o Request group join from controller

 o cooperatively generate a SKEK for the transmission of the group
 traffic encryption and GKEK from the GC,

 o allow each member to verify the identify of the controller and
 visa versa,

 o allow each member to verify the controllers authorization to
 create the group,

 o send the KP, group identity, GC identity, group member identities,
 group permissions, and group rekey interval to the other members,

 The series of messages for a member initiated join is very similar to
 the series of messages to distribute group keys during group
 creation. In fact, the series are identical except for the addition
 of a request to join message sent from the joining member to the
 controller when the join is member initiated. This message should
 not require encryption since it probably does not contain sensitive
 information. However, in some military systems the fact that a
 member wants to join a group maybe sensitive from a traffic analysis

Harney & Muckenhirn Experimental [Page 19]

RFC 2093 GKMP Specification July 1997

 viewpoint. In these specialized instances, a pairwise TEK may be
 created, if one does not already exist, to hide the service request.

 This function consists of seven messages between the GC and the
 joining member. The first message is created by the joining member
 and sent to the GC. It simply request membership in the group from
 the controller. The controller makes the decision whether to respond
 to the request based on the group parameters - membership limits,
 membership lists.

 The next messages are for the establishment of a SKEK. This is
 accomplished by the GC sending a signed Create_Session_KEK_1 message
 to the other member. This message contains the random value
 necessary for the other member to generate the SKEK. This message
 also contains the public key of the GC.

 The other member validates the Create_Session_KEK_1 message, builds
 and sends a Create_Session_KEK_2 message to the GC, generates the
 SKEK, and stores the received public key. The Create_Session_KEK_2
 message contains the random value necessary for the GC to generate
 the SKEK. This message also contains the public key of the other
 member.

 The GC validates the Create_Session_KEK_2 message, generates the
 SKEK,

___Net_Controller___	__________Messages________	Net_Members,individual
	<------ Request_Group_Join	
State 11		
	Create Session KEK_1---->	
		State 5
	<-----Create Session KEK_2	
State 5		
	NegotiateSess. Keys_1----->	
		State 6
	<-----NegotiateSess. Keys_2	
State 7		
	Download Grp Keys-------->	
		State 8
	<----- Key download ack	
State 9		
 Figure 4: State Diagram: Member Join

 builds the Negotiate_Session_ KEK_1 message for transmission to the
 other member, and stores the received public key.

 The GC sends the Negotiate_Session_KEK_1 message to the other member
 encrypted in the SKEK that was just generated.

Harney & Muckenhirn Experimental [Page 20]

RFC 2093 GKMP Specification July 1997

 The other member decrypts the Negotiate_Session_KEK_1 message and
 builds a Negotiate_Session_KEK_2 message for transmission to the GC.

 The GC receives the Negotiate_Session_KEK_2 message and builds a
 Download_Grp_Keys message for transmission to the other member.

 The GC sends theDownload_Grp_Keys message to the other member
 encrypted in the SKEK that was just generated. (note: the key used
 to encrypt the negotiation messages can be combined differently to
 create the KEK.)

 The other members decrypts theDownload_Grp_Keys message and extracts
 the KP, group identification, GC identification, group members, group
 permissions, key rekey interval, and group commanders signature. The
 group identification, GC identification, and group permissions fields
 are validated based on the signature. If these fields validate, the
 other members internal key storage tables are updated with the new
 keys.

6.4 Member Deletion

 There are two types of member deletion scenarios - cooperative and
 hostile. The cooperative deletion scenarios is the removal of a
 trusted group member for some management reason (i.e., reduce group
 size, prepare the member for a move). The hostile deletion usually
 results in

___Net_Controller___	__________Messages__________	_____Net_Members_____
	Delete_Group_Keys ------>	
		State 12
	<------ Grp_Keys_Deleted_Ack	
State 9		
 Figure 5: State Diagram: Cooperative Delete

 a loss of secure state at the members site (i.e., compromise,
 equipment breakage).

 The two scenarios present different challenges to the network.
 Minimization of network impact is paramount in the cooperative
 scenario. We would like to leave the key group intact and have
 confidence that removing the cooperative group member will have no
 impact on the security of future group operations. In the case of a
 hostile deletion, the goal is to return to a secure operating state
 as fast as possible. In fact there is a trade-off. We could
 eliminate the compromised group as soon as the compromise is
 discovered, but this may cripple an important asset. So security
 concerns need to be balanced with operational concerns.

Harney & Muckenhirn Experimental [Page 21]

RFC 2093 GKMP Specification July 1997

6.4.1 Cooperative Deletion

 The cooperative deletion function occurs between a trusted member and
 the GC. It results in a reliable deletion of the group key encryption
 and GTEKs at the deleted member. This deletion is intended to be an
 administrative function.

 This function consists of two messages between the GC and the member.
 The GC sends the Delete_Group_ Keys message to the group, encrypted
 in the GTEK. The message identifies the member(s) that need to delete
 the group keys. The member(s) decrypt the Delete_Group_Keys message,
 extract the group identification, check the deleted member list,
 deletes the group traffic and key encryption keys for that group, and
 build the Group_Keys_Deleted_Ack message for transmission to the GC.

 The Grp_Keys_Deleted_Ack message is encrypted in the group traffic
 key. The GC receives the Grp_Keys_Deleted_Ack message, decrypts it,
 and updates the group definition.

___Net_Controller___	__________Messages____________	_____Net_Members__
	Delete_Group_Keys ------>	
		State 13
 Figure 6: State Diagram: Hostile Delete

6.4.2 Hostile Deletion (Compromise)

 Hostile deletion occurs when a the group losses trust in a member.
 We assume that all keys resident at the members site have been lost.
 We also assume the member will not cooperate. Therefor, we must
 essentially create another group, minus the untrusted member, and
 transfer group operations to that new group. When the group losses
 trust in the controller, another controller must be appointed and
 then the hostile deletion process can proceed.

 There are some security and operational management issues surrounding
 compromise recovery. The essence of the issues involve a tradeoff
 between operational continuity and security vulnerability. If a
 member is found to be bad, from a security point of view all traffic
 on the network should stop. However, if that traffic is supporting a
 critical operation, the group may prefer to live with the security
 leak rather than interrupt the group communication.

Harney & Muckenhirn Experimental [Page 22]

RFC 2093 GKMP Specification July 1997

 The GKMP provides two mechanisms to help restrict access of
 compromised members. First, it implements a Certificate Revocation
 List (CRL) which is checked during the group creation process. Thus
 it will not allow a compromised member to be included in a new group.
 Second, the GKMP facilitates the creation of another group (minus the
 compromised member(s)). However, it does not dictate whether or not
 the group may continue to operate with a compromised member.

 The mechanism the GKMP uses to remove a compromised member is to key
 that member out. This entails creating a new group, without the
 compromised member, and switching group operations. The old group is
 canceled by several multicasts of a group delete message.

 This function consists of one message from the GC to all members.
 The GC sends the Delete_Group message to all members encrypted in the
 GTEK. This results in the deletion of the group traffic and key
 encryption keys in all group members. All members decrypt the
 received Delete_Group message, validate the authorization, extracts
 the group identification, and delete the group traffic and key
 encryption keys.

7 Security Conditions

 This document, in entirety, concerns security.

8 Addresses of Authors

 Hugh Harney
 SPARTA, Inc.
 Secure Systems Engineering Division
 9861 Broken Land Parkway, Suite 300
 Columbia, MD 21046-1170
 United States
 Phone: +1 410 381 9400 (ext. 203)
 EMail: hh@columbia.sparta.com

 Carl Muckenhirn
 SPARTA, Inc.
 Secure Systems Engineering Division
 9861 Broken Land Parkway, Suite 300
 Columbia, MD 21046-1170
 United States
 Phone: +1 410 381 9400 (ext. 208)
 EMail: cfm@columbia.sparta.com

Harney & Muckenhirn Experimental [Page 23]

