
Network Working Group G. Pall
Request for Comments: 2118 Microsoft Corporation
Category: Informational March 1997

 Microsoft Point-To-Point Compression (MPPC) Protocol

Status of this Memo

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

Abstract

 The Point-to-Point Protocol (PPP) [1] provides a standard method for
 transporting multi-protocol datagrams over point-to-point links.

 The PPP Compression Control Protocol [2] provides a method to
 negotiate and utilize compression protocols over PPP encapsulated
 links.

 This document describes the use of the Microsoft Point to Point
 Compression protocol (also referred to as MPPC in this document) for
 compressing PPP encapsulated packets.

Table of Contents

 1. Introduction .. 2
 1.1 Licensing 2
 1.2. Specification of Requirements 2
 2. Configuration Option Format 3
 3. MPPC Packets .. 4
 3.1 Packet Format.................................... 5
 4. Description of Compressor and Encoding 6
 4.1 Literal Encoding 7
 4.2 Copy Tuple Encoding 7
 4.2.1 Offset Encoding 7
 4.2.2 Length-of-Match Encoding 7
 4.3 Synchronization 8
 SECURITY CONSIDERATIONS 8
 REFERENCES ... 9
 ACKNOWLEDGEMENTS ... 9
 CHAIR’S ADDRESS ... 9
 AUTHORS’ ADDRESS ... 9

Pall Informational [Page 1]

RFC 2118 MPPC Protocol March 1997

1. Introduction

 The Microsoft Point to Point Compression scheme is a means of
 representing arbitrary Point to Point Protocol (PPP) packets in a
 compressed form. The MPPC algorithm is designed to optimize processor
 utilization and bandwidth utilization in order to support large
 number of simultaneous connections. The MPPC algorithm is also
 optimized to work efficiently in typical PPP scenarios
 (1500 byte MTU, etc.).

 The MPPC algorithm uses an LZ [3] based algorithm with a sliding
 window history buffer.

 The MPPC algorithm keeps a continous history so that after 8192 bytes
 of data has been transmitted compressed there is always 8192 bytes of
 history to use for compressing, except when the history is flushed.

1.1. Licensing

 MPPC can only be used in products that implement the Point to Point
 Protocol AND for the sole purpose of interoperating with other MPPC
 and Point to Point Protocol implementations.

 Source and object licenses are available on a non-discriminatory
 basis from Stac Electronics. Please contact:

 Cheryl Poland
 Stac Electronics
 12636 High Bluff Drive,
 San Deigo, CA 92130
 Phone: (619)794-4534
 Email: cherylp@stac.com

1.2. Specification of Requirements

 In this document, several words are used to signify the requirements
 of the specification. These words are often capitalized.

 MUST This word, or the adjective "required", means that the
 definition is an absolute requirement of the specification.

 MUST NOT This phrase means that the definition is an absolute
 prohibition of the specification.

Pall Informational [Page 2]

RFC 2118 MPPC Protocol March 1997

 SHOULD This word, or the adjective "recommended", means that there
 may exist valid reasons in particular circumstances to
 ignore this item, but the full implications MUST be
 understood and carefully weighed before choosing a
 different course.

 MAY This word, or the adjective "optional", means that this
 item is one of an allowed set of alternatives. An
 implementation which does not include this option MUST be
 prepared to interoperate with another implementation which
 does include the option.

2. Configuration Option Format

 Description

 The CCP Configuration Option negotiates the use of MPPC on the
 link. By default or ultimate disagreement, no compression is
 used.

 A summary of the CCP Configuration Option format is shown below.
 The fields are transmitted from left to right.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | Supported Bits |
 +-+
 | Supported Bits |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Type

 18

 Length

 6

 Supported Bits

 This field is 4 octets, most significant octet first. The least
 significant bit in the least significant octet set to 1 indicates
 desire to negotiate MPPC.

 All other bits MUST be set to 0.

Pall Informational [Page 3]

RFC 2118 MPPC Protocol March 1997

3. MPPC Packets

 Before any MPPC packets may be communicated, PPP must reach the
 Network-Layer Protocol phase, and the CCP Control Protocol must reach
 the Opened state.

 Exactly one MPPC datagram is encapsulated in the PPP Information
 field. The PPP Protocol field indicates type hex 00FD for all
 compressed datagrams.

 The maximum length of the MPPC datagram transmitted over a PPP link
 is the same as the maximum length of the Information field of a PPP
 encapsulated packet. Since the history buffer is limited to 8192
 bytes, this length cannot be greater than 8192 bytes.

 Only packets with PPP Protocol numbers in the range hex 0021 to hex
 00FA are compressed. Other packets are not passed thru the MPPC
 processor and are sent with their original PPP Protocol numbers.

 Padding

 It is recommended that padding not be used with MPPC since it
 defeats the purpose of compression. If the sender must use padding
 it MUST negotiate the Self-Describing-Padding Configuration option
 during LCP phase and use self-describing pads.

 Reliability and Sequencing

 The MPPC scheme does not require a reliable link. Instead, it
 relies on a 12 bit coherency count in each packet to keep the
 history buffers synchronized. If the receiver recognizes that the
 coherency count received in the packet does not match the count it
 is expecting, it sends a CCP Reset-Request packet to resynchronize
 its history buffer with the sender’s history buffer.

 MPPC expects the packets to be delivered in sequence, otherwise
 history buffer re-synchronization will not occur.

 MPPC MAY be used over a reliable link, as described in "PPP
 Reliable Transmision" [5], but this typically just adds
 unnecessary overhead since only the coherency count is required.

 Data Expansion

 If compressing the data results in data expansion, the original
 data is sent as an uncompressed MPPC packet. The sender must flush
 the history before compressing any more data and set the FLUSHED
 bit on the next outgoing packet.

Pall Informational [Page 4]

RFC 2118 MPPC Protocol March 1997

3.1. Packet Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PPP Protocol |A|B|C|D| Coherency Count |
 +-+
 | Compressed Data...
 +-+

 PPP Protocol

 The PPP Protocol field is described in the Point-to-Point Protocol
 Encapsulation [1].

 When the MPPC compression protocol is successfully negotiated by
 the PPP Compression Control Protocol, the value is hex 00FD. This
 value MAY be compressed when Protocol-Field-Compression is
 negotiated.

 Bit A

 This bit indicates that the history buffer has just been
 initialized before this packet was generated. This packet can
 ALWAYS be decompressed because it is not based on any previous
 history. This bit is typically sent to inform the peer that the
 sender has initialized its history buffer before compressing the
 packet and that the receiving peer must initialize its history
 buffer before decompressing the packet. This bit is referred to as
 FLUSHED bit in this document.

 Implementation Note: Compression and decompression histories are
 always initialized with all zeroes.

 Bit B

 This bit indicates that the packet was moved to the front of the
 history buffer typically because there was no room at the end of
 the history buffer. This bit is used to tell the decompressor to
 set its history pointer to the beginning of the history buffer.

 Implementation Notes:
 1. It is implied that this bit must be set at least once for every
 8192 bytes of data that is sent compressed.
 2. It is also implied that this bit can be set even if the
 sender’s history buffer is not full. Initialized history that
 has not been used for compressing data must not be referred to
 in the compressed packets.

Pall Informational [Page 5]

RFC 2118 MPPC Protocol March 1997

 Bit C

 This bit (if set) is used to indicate that the packet is
 compressed.

 Bit D

 This bit must be set to 0.

 Coherency Count

 The coherency count is used to assure that the packets are sent in
 proper order and that no packet has been dropped. This count
 starts at 0 and is always increased by 1 and NEVER decreases or
 goes back. When all bits are 1, the count returns to 0.

 Compressed Data

 The compressed data begins with the protocol field. For example,
 in case of an IP packet (0021 followed by an IP header), the
 compressor will first try to compress the 0021 protocol field and
 then compress the IP header.

 If the packet contains header compression, the MPPC compressor is
 applied AFTER header compression is preformed and MUST be applied
 to the compressed header as well. For example, if a packet
 contained the protocol 002d for a compressed TCP/IP header, the
 compressor would first attempt to compress 002d and then it
 would attempt to compress the compressed Van-Jacobsen TCP/IP
 header.

4. Description of Compressor and Encoding

 The compressor runs through the length of the frame producing as
 output a Literal (byte to be sent uncompressed) or a <Offset,
 Length-of-Match> Copy tuple, where Offset is the number of bytes
 before in the history where the match lies and Length-of-Match is the
 number of bytes to copy from the location indicated by Offset.

 For example, comsider the following string:

 0 1 2 3 4
 012345678901234567890123456789012345678901234567890
 for whom the bell tolls, the bell tolls for thee.

 The compressor would produce:

 for whom the bell tolls,<16,15> <40,4><19,3>e.

Pall Informational [Page 6]

RFC 2118 MPPC Protocol March 1997

 The Literal and Copy tuple tokens are then encoded according to the
 MPPC encoding scheme.

4.1 Literal Encoding

 Literals are bytes sent uncompressed. If the value of the Literal is
 below hex 80, it is encoded with its value itself. If the Literal has
 value greater than hex 7F it is sent as bits 10 followed by the lower
 7 bits of the Literal.

 Example: Literal hex 56 is transmitted as 01010110
 Literal hex E7 is transmitted as 101100111

4.2 Copy Tuple Encoding

 Copy tuples represent compressed data. A tuple has two elements: the
 Offset and Length-of-Match. The Offset is encoded before the Length-
 of-Match.

4.2.1 Offset Encoding

 Offset values less than 64 are encoded as bits 1111 followed by the
 lower 6 bits of the value.

 Offset values between 64 and 320 are encoded as bits 1110 followed by
 the lower 8 bits of the computation (value - 64).

 Offset values between 320 and 8191 are encoded as bits 110 followed
 by the lower 13 bits of the computation (value - 320).

 Examples: Offset value of 3 is encoded as: 1111 000011
 Offset value of 128 is encoded as: 1110 01000000
 Offset value of 1024 is encoded as: 110 0001011000000

4.2.2 Length-of-Match Encoding

 Length of 3 is encoded with bit 0.

 Length values from 4 to 7 are encoded as 10 followed by lower 2 bits
 of the value.

 Length values from 8 to 15 are encoded as 110 followed by lower 3
 bits of the value.

 Length values from 16 to 31 are encoded as 1110 followed by lower 4
 bits of the value.

Pall Informational [Page 7]

RFC 2118 MPPC Protocol March 1997

 Length values from 32 to 63 are encoded as 11110 followed by lower 5
 bits of the value.

 Length values from 64 to 127 are encoded as 111110 followed by lower
 6 bits of the value.

 Length values from 128 to 255 are encoded as 1111110 followed by
 lower 7 bits of the value.

 Length values from 256 to 511 are encoded as 11111110 followed by
 lower 8 bits of the value.

 Length values from 512 to 1023 are encoded as 111111110 followed by
 lower 9 bits of the value.

 Length values from 1024 to 2047 are encoded as 1111111110 followed by
 lower 10 bits of the value.

 Length values from 2048 to 4095 are encoded as 11111111110 followed
 by lower 11 bits of the value.

 Length values from 4096 to 8191 are encoded as 111111111110 followed
 by lower 12 bits of the value.

 Examples: Length of 15 is encoded as: 110 111
 Length of 120 is encoded as: 111110 111000
 Length of 4097 is encoded as:111111111110 000000000001

 The largest Length value that can be encoded is 8191.

4.3 Synchronization

 Packets may be lost during transfer. If the decompressor maintained
 coherency count does not match the coherency count received in the
 compressed packet, the decompressor drops the packet and sends a CCP
 Reset-Request packet. The compressor on receiving this packet flushes
 the history buffer and sets the FLUSHED bit in the next packet it
 sends. The decompressor on receiving a packet with its FLUSHED bit
 set flushes its history buffer and sets its coherency count to the
 one transmitted by the compressor in that packet. Thus
 synchronization is achieved without a CCP Reset-Ack packet.

Security Considerations

 Security issues are not discussed in this memo.

Pall Informational [Page 8]

RFC 2118 MPPC Protocol March 1997

References

 [1] Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD
 51, RFC 1661, Daydreamer, July 1994.

 [2] Rand, D., "The PPP Compression Control Protocol (CCP)", RFC
 1962, Novell, June 1996.

 [3] Lempel, A. and Ziv, J., "A Universal Algorithm for Sequential
 Data Compression", IEEE Transactions On Information Theory,
 Vol. IT-23, No. 3, May 1977.

 [4] Rand, D., "PPP Reliable Transmission", RFC 1663, Novell, July
 1994.

Acknowledgments

 Thomas Dimitri made significant contributions towards the design and
 development of Microsoft Point-To-Point Compression Protocol. Robert
 Friend of Stac Technology provided editoral input.

Chair’s Address

 The working group can be contacted via the current chair:

 Karl F. Fox
 Ascend Communications
 3518 Riverside Dr., Suite 101
 Columbus, Ohio 43221

 (614) 451-1883

 EMail: karl@ascend.Com

Author’s Address

 Questions about this memo can also be directed to:

 Gurdeep Singh Pall
 1, Microsoft Way,
 Redmond, WA 98052

 (206) 882-8080

 Email: gurdeep@microsoft.com

Pall Informational [Page 9]

