Net wor k Wor ki ng Group M Eisler

Request for Comments: 2203
Cat egory: Standards Track

A. Chiu
L. Ling

Sept enber 1997

RPCSEC_GSS Prot ocol Specification
Status of this Meno

Thi s docunent specifies an Internet standards track protocol
Internet conmunity, and requests discussion and suggestions f

for the

or

i mprovenents. Please refer to the current edition of the "Internet

O ficial Protocol Standards" (STD 1) for the standardization
and status of this protocol. Distribution of this nmeno is un

Abst r act

state
[imted.

This meno describes an ONC/RPC security flavor that allows RPC

protocols to access the Generic Security Services Application
Programming Interface (referred to henceforth as GSS-API).

Tabl e of Contents

I ntroduction . .
The ONC RPC I\/essage Pr ot ocol
Fl avor Nunber Assignnment
New aut h_stat Values . . .
El ements of the RPCSEC GSS Securl ty Prot ocol
Versi on Sel ection .
Context Creation . .
Mechani sm and QOP Sel ect| on
Cont ext Creation Requests
Cont ext Creation Responses . e e e
.1. Context Creation Response - Successful Acceptance
.1.1. dient Processing of Successful Context Creation
Responses

ook eE

NENENESESENES
wwwN e

5.2.3.2. Context Creation Response - Unsuccessful Cases .
5.3. RPC Data Exchange .
5.3.1. RPC Request Header
5.3.2. RPC Request Data . e e e e
5.3.2.1. RPC Request Data - No Data Integrity .
5.3.2.2. RPC Request Data - Wth Data Integrity .
5.3.2.3. RPC Request Data - Wth Data Privacy .
5.3.3. Server Processing of RPC Data Requests .
5.3.3.1. Context Mnagenent
5.3.3.2. Server Reply - Request Accept ed
5.3.3.3. Server Reply - Request Denied

Eisler, et. al. St andards Track

CCOoOOUITUITUTWWWNN

10
10
11
11
11
12
12
12
14
15

[Page 1]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

5.3.3.4. Mapping of GSS-API Errors to Server Responses 16
5.3.3.4.1 GSsS GetM () Failure 16
5.3.3.4.2. GSS VerifyMC() Failure 16
5.3.3.4.3 GSS Unw ap() Failure 16
5.3.3.4.4. GSS Wap() Failure 16
5.4, Context Destruction 17
6. Set of GSS-API Mechanisms 17
7. Security Considerations 18
7.1 Privacy of Call Header 18
7.2. Sequence Nunber Attacks . . T R
7.2.1. Sequence Numbers Above the VVndow S 18
7.2.2. Sequence Nunbers Wthin or Below the VVndow 18
7.3. Message Stealing Attacks . . . e A
Appendi x A GSS- APl Major Status Codes e e e e oo 20
Acknowl edgenments C e e e e e s 22
Authors’ Addresses .. 23
1. Introduction

Thi s docunent describes the protocol used by the RPCSEC GSS security
flavor. Security flavors have been called authentication flavors for
hi storical reasons. This neno recogni zes that there are two other
security services besides authentication, integrity, and privacy, and
so defines a new RPCSEC GSS security flavor

The protocol is described using the XDR | anguage [Sri nivasan-xdr].
The reader is assumed to be fanmliar with ONC RPC and the security
flavor mechani sm [Srinivasan-rpc]. The reader is also assunmed to be
famliar with the GSS-API framework [Linn]. The RPCSEC GSS security
flavor uses GSS-APlI interfaces to provide security services that are
i ndependent of the underlying security nmechani sm

2. The ONC RPC Message Protocol

This meno refers to the followi ng XDR types of the ONC RPC protocol
whi ch are described in the docunment entitled Renote Procedure Call
Prot ocol Specification Version 2 [Srinivasan-rpc]:

nmsg_type
reply_stat
auth_flavor
accept _stat
reject_stat
aut h_st at
opaque_aut h
rpc_nsg
cal | _body
reply_body

Eisler, et. al. St andards Track [Page 2]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

accepted reply
rejected reply

3. Flavor Nunber Assignnent
The RPCSEC GSS security flavor has been assigned the val ue of 6:
enum aut h_fl avor {

RPCSEC_GSS = 6 /* RPCSEC_GSS security flavor */
}

4. New auth_stat Val ues

RPCSEC_GSS requires the addition of two new values to the auth_stat
enunerated type definition

enum aut h_stat {

I

* RPCSEC_GSS errors

*/

RPCSEC_GSS_CREDPROBLEM = 13,
RPCSEC_GSS_CTXPROBLEM = 14

b

The descriptions of these two new values are defined later in this
neno.

5. Elenents of the RPCSEC GSS Security Protoco

An RPC session based on the RPCSEC GSS security flavor consists of
t hree phases: context creation, RPC data exchange, and context
destruction. In the follow ng discussion, protocol elenments for
these three phases are descri bed.

The follow ng description of the RPCSEC GSS protocol uses sonme of the
definitions within XDR | anguage description of the RPC protocol

Context creation and destruction use control nmessages that are not

di spatched to service procedures registered by an RPC server. The
program and versi on nunbers used in these control nessages are the
same as the RPC service' s program and version nunbers. The procedure
nunber used is NULLPROC (zero). A field in the credentia

information (the gss_proc field which is defined in the
rpc_gss_cred_t structure bel ow) specifies whether a nmessage is to be
interpreted as a control nessage or a regular RPC nmessage. If this
field is set to RPCSEC GSS DATA, no control action is inplied; in

Eisler, et. al. St andards Track [Page 3]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

this case, it is a regular data nessage. |If this field is set to any
other value, a control action is inplied. This is described in the
foll owi ng sections.

Just as with normal RPC data exchange messages, the transaction
identifier (the xid field in struct rpc_nsg), should be set to unique
val ues on each call for context creation and context destruction

The following definitions are used for describing the protocol

/* RPCSEC_GSS control procedures */

enum rpc_gss_proc_t {
RPCSEC_GSS_DATA = 0,
RPCSEC GSS INIT = 1,
RPCSEC _GSS CONTINUE_INIT = 2,
RPCSEC_GSS_DESTROY = 3

s
/* RPCSEC _GSS services */

enum rpc_gss_service_t {
/* Note: the enunerated value for 0 is reserved. */
rpc_gss_svc_none = 1,
rpc_gss_svc integrity = 2,
rpc_gss_svc_privacy = 3

s
/* Credential */

/*
* Note: version O is reserved for possible future
* definition of a version negotiation protoco
*
*/
#define RPCSEC_GSS_VERS_1 1

struct rpc_gss_cred_t {
union switch (unsigned int version) { /* version of
RPCSEC_GSS */
case RPCSEC GSS _VERS 1:
struct {
rpc_gss_proc_t gss _proc; [/* control procedure */
unsi gned int seq_num /* sequence nunber */
rpc_gss_service_t service; /* service used */
opaque handl e<>; /* context handle */
} rpc_gss _cred vers_ 1 t;

Eisler, et. al. St andards Track [Page 4]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

H
/* Maxi mum sequence nunber val ue */
#defi ne MAXSEQ 0x80000000

5.1. Version Selection

Thi s docunent defines just one protocol version (RPCSEC GSS VERS 1).
The client should assune that the server supports RPCSEC GSS VERS 1
and i ssue a Context Creation nessage (as described in the section
RPCSEC GSS VERS 1, the RPC response will have a reply_stat of

MSG DENI ED, a rejection status of AUTH ERROR, and an aut h_stat of
AUTH_REJECTED_CRED.

5.2. Context Creation

Bef ore RPC data is exchanged on a session using the RPCSEC GSS
flavor, a context nmust be set up between the client and the server
Cont ext creation may involve zero or nore RPC exchanges. The nunber
of exchanges depends on the security mechani sm

5.2.1. Mechani smand QOP Sel ection

There is no facility in the RPCSEC GSS protocol to negotiate GSS-API
mechani smidentifiers or QOP values. At mininum it is expected that
i mpl enent ati ons of the RPCSEC GSS protocol provide a neans to:

* specify nechanismidentifiers, QOP values, and RPCSEC GSS
service values on the client side, and to

* enforce mechani smidentifiers, QOP values, and RPCSEC GSS
service values on a per-request basis on the server side.

It is necessary that above capabilities exist so that applications
have the nmeans to conformthe required set of required set of
<nechani sm QOP, service> tuples (See the section entitled Set of
GSS- APl Mechani sms). An application may negotiate <mechani sm QOP
service> selection within its protocol or via an out of band
protocol. Hence it may be necessary for RPCSEC GSS i npl enmentations to
provi de programm ng interfaces for the specification and enforcenent
of <nmechanism QOP, service>

Additionally, inplenentations may depend on negotiation schenes
constructed as pseudo-nechani sns under the GSS-APlI. Because such
schenes are bel ow the GSS-API | ayer, the RPCSEC GSS protocol, as
specified in this docunent, can nake use of them

Eisler, et. al. St andards Track [Page 5]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

5.2.2. Context Creation Requests

The first RPC request fromthe client to the server initiates context
creation. Wthin the RPC nessage protocol’s call _body structure,
rpcvers is set to 2. prog and vers are always those for the service
bei ng accessed. The proc is always set to NULLPROC (zero).

Wthin the RPC nessage protocol’s cred structure, flavor is set to
RPCSEC GSS (6). The opaque data of the cred structure (the body
field) constituting the credential encodes the rpc_gss_cred_t
structure defined previously.

The val ues of the fields contained in the rpc_gss cred t structure
are set as follows. The version field is set to the version of the
RPCSEC GSS protocol the client wants to use. The renainder of this
meno docunents version RPCSEC GSS VERS 1 of RPCSEC GSS, and so the
version field would be set to RPCSEC GSS VERS 1. The gss_proc field
nmust be set to RPCSEC GSS INIT for the first creation request. In
subsequent creation requests, the gss _proc field nust be set to
RPCSEC _GSS CONTINUE_INIT. In a creation request, the seq_num and
service fields are undefined and both nust be ignored by the server
In the first creation request, the handle field is NULL (opaque data
of zero length). |In subsequent creation requests, handl e nust be
equal to the value returned by the server. The handle field serves
as the identifier for the context, and will not change for the
duration of the context, including responses to
RPCSEC_GSS_CONTI NUE_I NI T.

The verifier field in the RPC nessage header is also described by the
opaque_auth structure. All creation requests have the NULL verifier
(AUTH_NONE flavor with zero | ength opaque data).

Following the verifier are the call data (procedure specific
paraneters). Note that the proc field of the call_body structure is
set to NULLPROC, and thus normally there would be zero octets
following the verifier. However, since there is no RPC data exchange
during a context creation, it is safe to transfer information
following the verifier. It is necessary to "overload" the call data
in this way, rather than pack the GSS-APlI token into the RPC header
because RPC Version 2 restricts the anount of data that can be sent
in the header. The opaque body of the credential and verifier fields
can be each at nobst 400 octets |long, and GSS tokens can be | onger

t han 800 octets.

Eisler, et. al. St andards Track [Page 6]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

The call data for a context creation request is described by the
following structure for all creation requests:

struct rpc_gss_init_arg {
opaque gss_token<>;

Here, gss _token is the token returned by the call to GSS-APlI's

GSS Init_sec_context() routine, opaquely encoded. The value of this
field will likely be different in each creation request, if there is
nore than one creation request. |If no token is returned by the cal
to GSS I nit_sec _context(), the context nust have been created
(assuning no errors), and there will not be any nore creation
requests.

When GSS I nit_sec_context() is called, the paraneters
replay_det _req_flag and sequence_req_flag nmust be turned off. The
reasons for this are:

* ONC RPC can be used over unreliable transports and provides no
layer to reliably re-assenble nessages. Thus it is possible for
gaps i n nessage sequencing to occur, as well as out of order
nessages.

* RPC servers can be multi-threaded, and thus the order in which
GSS- APl nessages are signed or wapped can be different fromthe
order in which the nessages are verified or unwapped, even if
the requests are sent on reliable transports.

* To maxi nm ze conveni ence of inplenentation, the order in which an
ONC RPC entity will verify the header and verify/unwap the body
of an RPC call or reply is left unspecified.

The RPCSEC _GSS protocol provides for protection fromreplay attack

yet tolerates out-of-order delivery or processing of nessages and
tol erat es dropped requests.

Eisler, et. al. St andards Track [Page 7]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

5.2.3. Context Creation Responses
5.2.3.1. Context Creation Response - Successful Acceptance

The response to a successful creation request has an M5G_ACCEPTED
response with a status of SUCCESS. The results field encodes a
response with the follow ng structure:

struct rpc_gss_init_res {
opaque handl e<>;
unsi gned int gss_major;
unsi gned int gss_m nor
unsi gned int seq_w ndow;,
opaque gss_token<>;

b

Here, handl e is non-NULL opaque data that serves as the context
identifier. The client nust use this value in all subsequent requests
whet her control nessages or otherwi se). The gss_nmjor and gss_m nor
fields contain the results of the call to GSS Accept_sec_context ()
executed by the server. The values for the gss_major field are
defined in Appendix A of this docunment. The values for the gss_m nor
field are GSS- APl mechani sm specific and are defined in the

mechani smis specification. |If gss major is not one of GSS S COWLETE
or GSS_S CONTI NUE_NEEDED, the context setup has failed; in this case
handl e and gss_token must be set to NULL by the server. The val ue of
gss_minor is dependent on the value of gss_nmjor and the security
mechani sm used. The gss_token field contains any token returned by
the GSS_Accept _sec_context() call executed by the server. A token
may be returned for both successful values of gss mpjor. |If the
value is GSS S COWLETE, it indicates that the server is not
expecting any nore tokens, and the RPC Data Exchange phase nust begin
on the subsequent request fromthe client. If the value is

GSS_S CONTI NUE_NEEDED, the server is expecting another token. Hence
the client nust send at | east one nore creation request (wth
gss_proc set to RPCSEC GSS CONTINUE INIT in the request’s credential)
carrying the required token

In a successful response, the seq_window field is set to the sequence
wi ndow | ength supported by the server for this context. This w ndow
speci fies the maxi mum nunber of client requests that may be
outstanding for this context. The server will accept "seq_ w ndow'
requests at a tinme, and these may be out of order. The client may
use this nunber to deternine the nunber of threads that can

simul taneously send requests on this context.

Eisler, et. al. St andards Track [Page 8]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

If gss _major is GSS S COWLETE, the verifier's (the verf elenent in
the response) flavor field is set to RPCSEC GSS, and the body field
set to the checksum of the seq_w ndow (in network order). The QOP
used for this checksumis 0 (zero), which is the default QOP. For

all other values of gss_major, a NULL verifier (AUTH _NONE flavor wth
zero-1ength opaque data) is used.

5.2.3.1.1. dient Processing of Successful Context Creation Responses

If the value of gss_major in the response is GSS_S CONTI NUE_NEEDED,
then the client, per the GSS-APlI specification, nust invoke

GSS Init_sec_context() using the token returned in gss_token in the
context creation response. The client nust then generate a context
creation request, with gss proc set to RPCSEC GSS CONTI NUE | NI T.

If the value of gss_mjor in the response is GSS S COWLETE, and if
the client’s previous invocation of GSS Init_sec_context() returned a
gss_nmj or value of GSS S CONTI NUE_NEEDED, then the client, per the
GSS- APl speci fication, nmust invoke GSS I nit_sec_context() using the
token returned in gss_token in the context creation response. |f

GSS Init_sec_context() returns GSS S COWLETE, the context is
successfully set up, and the RPC data exchange phase must begin on

t he subsequent request fromthe client.

5.2.3.2. Context Creation Response - Unsuccessful Cases

An MSG _ACCEPTED reply (to a creation request) with an acceptance
status of other than SUCCESS has a NULL verifier (flavor set to
AUTH NONE, and zero |l ength opaque data in the body field), and is
fornul ated as usual for different status val ues.

An MSG DENIED reply (to a creation request) is also formulated as
usual . Note that MSG DEN ED coul d be returned because the server’s
RPC i npl ement ati on does not recogni ze the RPCSEC GSS security flavor.
RFC 1831 does not specify the appropriate reply status in this

i nstance, but common inplenentation practice appears to be to return
a rejection status of AUTH ERROR with an aut h_stat of
AUTH_REJECTEDCRED. Even though two new val ues (RPCSEC_GSS_CREDPROBLEM
and RPCSEC GSS _CTXPROBLEM) have been defined for the auth_stat type
neither of these two can be returned in responses to context creation
requests. The auth_stat new val ues can be used for responses to
normal (data) requests. This is described |ater

MSG DENI ED ni ght al so be returned if the RPCSEC GSS version number in
the credential is not supported on the server. In that case, the
server returns a rejection status of AUTH ERROR, with an auth_stat of

AUTH_REJECTED_CRED.

Eisler, et. al. St andards Track [Page 9]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

5.3. RPC Data Exchange

The data exchange phase is entered after a context has been
successfully set up. The format of the data exchanged depends on the
security service used for the request. Although clients can change
the security service and QOP used on a per-request basis, this may
not be acceptable to all RPC services; sone RPC services nmay "l ock"

t he data exchange phase into using the QOP and service used on the
first data exchange nessage. For all three nodes of service (no data
integrity, data integrity, data privacy), the RPC request header has
the sane format.

5.3.1. RPC Request Header

The credential has the opaque_auth structure described earlier. The
flavor field is set to RPCSEC GSS. The credential body is created by
XDR encoding the rpc_gss_cred_t structure listed earlier into an
octet stream and then opaquely encoding this octet streamas the
body field.

Val ues of the fields contained in the rpc_gss_cred_t structure are
set as follows. The version field is set to sanme version val ue that
was used to create the context, which within the scope of this nmeno
will always be RPCSEC GSS VERS 1. The gss _proc field is set to
RPCSEC GSS DATA. The service field is set to indicate the desired
service (one of rpc_gss_svc_none, rpc_gss _svc_integrity, or
rpc_gss_svc_privacy). The handle field is set to the context handle
val ue received fromthe RPC server during context creation. The
seg_numfield can start at any val ue bel ow MAXSEQ and nust be
increnented (by one or nore) for successive requests. Use of
sequence nunbers is described in detail when server processing of the
request is discussed.

The verifier has the opaque_auth structure described earlier. The
flavor field is set to RPCSEC GSS. The body field is set as foll ows.
The checksum of the RPC header (up to and including the credential)
is conputed using the GSS GetM C() call with the desired QOP. This
returns the checksum as an opaque octet streamand its length. This
is encoded into the body field. Note that the QOP is not explicitly
specified anywhere in the request. It is inplicit in the checksum or
encrypted data. The same QOP value as is used for the header
checksum nust al so be used for the data (for checksunm ng or
encrypting), unless the service used for the request is

r pc_gss_svc_none.

Eisler, et. al. St andards Track [Page 10]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

5.3.2. RPC Request Data
5.3.2.1. RPC Request Data - No Data Integrity

If the service specified is rpc_gss_svc_none, the data (procedure
argunents) are not integrity or privacy protected. They are sent in
exactly the sane way as they would be if the AUTH NONE fl avor were
used (following the verifier). Note, however, that since the RPC
header is integrity protected, the sender will still be authenticated
in this case

5.3.2.2. RPC Request Data - Wth Data Integrity

When data integrity is used, the request data is represented as
fol | ows:

struct rpc_gss_integ_data {
opaque dat abody_i nt eg<>;
opaque checksunx>;

The databody_integ field is created as follows. A structure
consi sting of a sequence nunber followed by the procedure argunents
is constructed. This is shown bel ow as the type rpc_gss data_t:

struct rpc_gss_data t {
unsi gned int seq_num
proc_req_arg_t arg;

H

Here, seq_num nust have the sane value as in the credential. The
type proc_req arg t is the procedure specific XDR type describing the
procedure argunments (and so is not specified here). The octet stream
corresponding to the XDR encoded rpc_gss_data t structure and its

Il ength are placed in the databody_integ field. Note that because the
XDR type of databody integ is opaque, the XDR encodi ng of

dat abody _integ will include an initial four octet length field,

foll owed by the XDR encoded octet stream of rpc_gss data_ t.

The checksum field represents the checksum of the XDR encoded oct et
stream corresponding to the XDR encoded rpc_gss_data t structure
(note, this is not the checksum of the databody integ field). This
is obtained using the GSS GetM () call, with the same QOP as was
used to conpute the header checksum (in the verifier). The

Eisler, et. al. St andards Track [Page 11]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

GSS GetM C() call returns the checksum as an opaque octet stream and
its length. The checksum field of struct rpc_gss_integ_data has an
XDR type of opaque. Thus the checksumlength from GSS GetMC() is
encoded as a four octet Ilength field, followed by the checksum
padded to a nultiple of four octets.

5.3.2.3. RPC Request Data - Wth Data Privacy

When data privacy is used, the request data is represented as
fol |l ows:

struct rpc_gss_priv_data {
opaque databody_ priv<>
s

The databody _priv field is created as follows. The rpc_gss_data_t
structure described earlier is constructed again in the sane way as
for the case of data integrity. Next, the GSS Wap() call is invoked
to encrypt the octet streamcorresponding to the rpc_gss data_t
structure, using the same value for QOP (argument qop_req to

GSS Wap()) as was used for the header checksum (in the verifier) and
conf_req_flag (an argunent to GSS Wap()) of TRUE. The GSS Wap()
call returns an opaque octet stream (representing the encrypted
rpc_gss_data t structure) and its length, and this is encoded as the
dat abody _priv field. Since databody priv has an XDR type of opaque,
the length returned by GSS Wap() is encoded as the four octet

I ength, followed by the encrypted octet stream (padded to a nmultiple
of four octets).

5.3.3. Server Processing of RPC Data Requests
5.3.3.1. Context Mnagenent

When a request is received by the server, the following are verified
to be acceptabl e:

* the version nunber in the credentia
* the service specified in the credential
* the context handl e specified in the credentia

* t he header checksumin the verifier (via GSS VerifyMC())

* t he sequence nunber (seq_nun) specified in the credential (nore
on this follows)

Eisler, et. al. St andards Track [Page 12]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

The gss _proc field in the credential nust be set to RPCSEC GSS DATA
for data requests (otherw se, the nessage will be interpreted as a
control nessage).

The server maintains a w ndow of "seq_w ndow' sequence numnbers,
starting with the |Iast sequence nunber seen and extendi ng backwards.
I f a sequence nunber higher than the | ast nunber seen is received
(AND if GSS_VerifyM C() on the header checksum fromthe verifier
returns GSS_ S COWPLETE), the wi ndow is noved forward to the new
sequence number. |If the last sequence nunber seen is N, the server
is prepared to receive requests with sequence nunbers in the range N
through (N - seq_wi ndow + 1), both inclusive. |If the sequence nunber
received falls belowthis range, it is silently discarded. If the
sequence nunmber is within this range, and the server has not seen it,
the request is accepted, and the server turns on a bit to "renenber"
that this sequence nunber has been seen. |If the server deternines
that it has already seen a sequence nunber within the w ndow, the
request is silently discarded. The server should select a seq_w ndow
val ue based on the nunber requests it expects to process

si nul taneously. For exanple, in a threaded inplenmentation seq_w ndow
nm ght be equal to the nunber of server threads. There are no known
security issues with selecting a | arge wi ndow. The primary issue is
how nuch space the server is willing to allocate to keep track of
requests received within the w ndow.

The reason for discarding requests silently is that the server is
unable to deternine if the duplicate or out of range request was due
to a sequencing problemin the client, network, or the operating
system or due to sonme quirk in routing, or a replay attack by an
intruder. Discarding the request allows the client to recover after
timng out, if indeed the duplication was unintentional or well

i ntended. Note that a consequence of the silent discard is that
clients may increment the seq_num by nore than one. The effect of
this is that the window will nove forward nore quickly. It is not
believed that there is any benefit to doing this.

Not e that the sequence nunber algorithmrequires that the client

i ncrenent the sequence nunber even if it is retrying a request with
the same RPC transaction identifier. It is not infrequent for
clients to get into a situation where they send two or nore attenpts
and a slow server sends the reply for the first attenpt. Wth

RPCSEC GSS, each request and reply will have a uni que sequence
nunber. If the client wishes to inprove turn around tine on the RPC
call, it can cache the RPCSEC GSS sequence nunber of each request it
sends. Then when it receives a response with a matching RPC
transaction identifier, it can compute the checksum of each sequence
nunber in the cache to try to match the checksumin the reply’s
verifier.

Eisler, et. al. St andards Track [Page 13]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

The data is decoded according to the service specified in the
credential. |In the case of integrity or privacy, the server ensures
that the QOP value is acceptable, and that it is the sane as that
used for the header checksumin the verifier. Also, in the case of
integrity or privacy, the server will reject the nessage (with a
reply status of MSG ACCEPTED, and an acceptance status of
GARBAGE_ARGS) if the sequence nunber enbedded in the request body is
different fromthe sequence nunber in the credential

5.3.3.2. Server Reply - Request Accepted

An MSG ACCEPTED reply to a request in the data exchange phase wl|
have the verifier’'s (the verf elenent in the response) flavor field
set to RPCSEC GSS, and the body field set to the checksum (the out put
of GSS GetM C()) of the sequence nunber (in network order) of the
correspondi ng request. The QOP used is the sane as the QOP used for
t he correspondi ng request.

If the status of the reply is not SUCCESS, the rest of the nessage is
formatted as usual

If the status of the nessage is SUCCESS, the format of the rest of
t he message depends on the service specified in the correspondi ng
request nmessage. Basically, what follows the verifier in this case
are the procedure results, fornatted in different ways dependi ng on
t he requested service.

If no data integrity was requested, the procedure results are
formatted as for the AUTH NONE security flavor

If data integrity was requested, the results are encoded in exactly
the sane way as the procedure argunents were in the correspondi ng
request. See the section ' RPC Request Data - Wth Data Integrity.’
The only difference is that the structure representing the
procedure’s result - proc_res_arg_t - nust be substituted in place of
the request argunent structure proc_req _arg t. The QOP used for the
checksum nust be the same as that used for constructing the reply
verifier.

If data privacy was requested, the results are encoded in exactly the
same way as the procedure argunents were in the correspondi ng
request. See the section 'RPC Request Data - Wth Data Privacy.’ The
QOP used for encryption nust be the sane as that used for
constructing the reply verifier.

Eisler, et. al. St andards Track [Page 14]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

5.3.3.3. Server Reply - Request Denied

An MSG DENIED reply (to a data request) is fornulated as usual. Two
new val ues (RPCSEC GSS CREDPROBLEM and RPCSEC GSS CTXPROBLEM have
been defined for the auth_stat type. When the reason for denial of
the request is a reject_stat of AUTH ERROR, one of the two new
auth_stat values could be returned in addition to the existing

val ues. These two new val ues have special significance fromthe

exi sting reasons for denial of a request.

The server maintains a list of contexts for the clients that are
currently in session with it. Nornmally, a context is destroyed when
the client ends the session corresponding to it. However, due to
resource constraints, the server may destroy a context prematurely
(on an LRU basis, or if the server nachine is rebooted, for exanple).
In this case, when a client request cones in, there nay not be a
context corresponding to its handle. The server rejects the request,
with the reason RPCSEC GSS CREDPROBLEM in this case. Upon receiving
this error, the client nust refresh the context - that is,
reestablish it after destroying the old one - and try the request
again. This error is also returned if the context handl e matches
that of a different context that was allocated after the client’s
context was destroyed (this will be detected by a failure in

veri fying the header checksum.

If the GSS VerifyM C() call on the header checksum (contained in the
verifier) fails to return GSS_S COWLETE, the server rejects the
request and returns an auth_stat of RPCSEC GSS CREDPROBLEM

When the client’s sequence nunber exceeds the nmaxi numthe server will
allow, the server will reject the request with the reason
RPCSEC_GSS_CTXPROBLEM Also, if security credentials become stale
while in use (due to ticket expiry in the case of the Kerberos V5
mechani sm for exanple), the failures which result cause the

RPCSEC _GSS_CTXPROBLEM reason to be returned. 1In these cases also
the client nust refresh the context, and retry the request.

For other errors, retrying will not rectify the problem and the
client nust not refresh the context until the problem causing the
client request to be denied is rectified.

If the version field in the credential does not match the version of
RPCSEC GSS t hat was used when the context was created, the
AUTH_BADCRED val ue is returned.

If there is a problemwith the credential, such a bad length, illega

control procedure, or an illegal service, the appropriate auth_stat
status i s AUTH BADCRED.

Eisler, et. al. St andards Track [Page 15]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

O her errors can be returned as appropriate.
5.3.3.4. Mapping of GSS-API Errors to Server Responses

During the data exchange phase, the server may invoke GSS GetM (),
GSS VerifyMC(), GSS Unwap(), and GSS Wap(). If any of these
routines fail to return GSS S COWLETE, then various unsuccessf ul
responses can be returned. The are described as follows for each of
the af orenmenti oned four interfaces.

5.3.3.4.1. GSS GetM C() Failure

When GSS GetM C() is called to generate the verifier in the response,
a failure results in an RPC response with a reply status of

MSG DENI ED, reject status of AUTH ERROR and an auth status of
RPCSEC_GSS_CTXPROBLEM

When GSS GetM C() is called to sign the call results (service is
rpc_gss_svc_integrity), a failure results in no RPC response being
sent. Since ONC RPC server applications will typically control when a
response is sent, the failure indication will be returned to the
server application and it can take appropriate action (such as

| ogging the error).

5.3.3.4.2. GSS VerifyMC() Failure

When GSS VerifyM C() is called to verify the verifier in request, a
failure results in an RPC response with a reply status of NMSG _DEN ED,
reject status of AUTH ERROR and an auth status of
RPCSEC_GSS_CREDPROBLEM

Wien GSS VerifyM C() is called to verify the call argunents (service
is rpc_gss_svc_integrity), a failure results in an RPC response with
a reply status of MSG ACCEPTED, and an acceptance status of
GARBAGE_ARGS.

5.3.3.4.3. GSS Unwap() Failure
When GSS Unwrap() is called to decrypt the call arguments (service is
rpc_gss_svc_privacy), a failure results in an RPC response with a
reply status of MSG ACCEPTED, and an acceptance status of
GARBAGE_ARGS.

5.3.3.4.4. GSS Wap() Failure
When GSS Wap() is called to encrypt the call results (service is

rpc_gss_svc_privacy), a failure results in no RPC response being
sent. Since ONC RPC server applications will typically control when a

Eisler, et. al. St andards Track [Page 16]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

response is sent, the failure indication will be returned to the
application and it can take appropriate action (such as |ogging the
error).

5.4. Context Destruction

When the client is done using the session, it nust send a contro
nessage informng the server that it no longer requires the context.
This message is fornulated just |like a data request packet, with the
followi ng differences: the credential has gss_proc set to
RPCSEC _GSS _DESTROY, the procedure specified in the header is
NULLPROC, and there are no procedure argunents. The sequence nunber
in the request nust be valid, and the header checksumin the verifier
nmust be valid, for the server to accept the message. The server
sends a response as it would to a data request. The client and
server nust then destroy the context for the session

If the request to destroy the context fails for sone reason, the
client need not take any special action. The server nust be prepared
to deal with situations where clients never informthe server that
they no longer are in session and so don’t need the server to

mai ntain a context. An LRU nechani smor an agi ng mechani sm shoul d be
enpl oyed by the server to clean up in such cases

6. Set of GSS-API Mechani sns

RPCSEC GSS is effectively a "pass-through" to the GSS-API |ayer, and
as such it is inappropriate for the RPCSEC GSS specification to
enunerate a mni num set of required security mechani sms and/ or
quality of protections.

If an application protocol specification references RPCSEC GSS, the
protocol specification nust |ist a mandatory set of { nechanism QOP
service } triples, such that an inplenentation cannot claim
conformance to the protocol specification unless it inplements the
set of triples. Wthin each triple, nmechanismis a GSS-APl security
mechanism QOP is a valid quality-of-protection within the nechani sm
and service is either rpc_gss_svc_integrity or rpc_gss_svc_privacy.

For exanple, a network filing protocol built on RPC that depends on
RPCSEC GSS for security, might require that Kerberos V5 with the
default QOP using the rpc_gss _svc integrity service be supported by
i mpl enentations conforming to the network filing protoco

speci fication.

Eisler, et. al. St andards Track [Page 17]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

7. Security Considerations
7.1. Privacy of Call Header

The reader will note that for the privacy option, only the cal
argunents and results are encrypted. Information about the
application in the formof RPC program nunber, program version
nunber, and program procedure nunber is transnmitted in the clear
Encrypting these fields in the RPC call header woul d have changed the
size and format of the call header. This would have required revising
the RPC protocol which was beyond the scope of this proposal. Storing
the encrypted nunbers in the credential would have obviated a
protocol change, but woul d have introduced nore overloading of fields
and woul d have nmade inpl enmentations of RPC nore conplex. Even if the
fields were encrypted sonehow, in nost cases an attacker can
determ ne the program nunmber and versi on nunber by exam ning the
destination address of the request and querying the rpchind service
on the destination host [Srinivasan-bind]. |In any case, even by not
encrypting the three nunbers, RPCSEC GSS still inproves the state of
security over what existing RPC services have had avail abl e
previously. Inplenmentors of new RPC services that are concerned about
this risk may opt to design in a "sub-procedure” field that is
included in the service specific call arguments.

7.2. Sequence Nunber Attacks
7.2.1. Sequence Nunmbers Above the W ndow

An attacker cannot coax the server into raising the sequence nunber
beyond the range the legitimate client is aware of (and thus engi neer
a denial of server attack) wi thout constructing an RPC request that
wi Il pass the header checksum |f the cost of verifying the header
checksumis sufficiently large (depending on the speed of the
processor doing the checksum and the cost of checksumal gorithn), it
is possible to envision a denial of service attack (vandalism in the
form of wasting processing resources) whereby the attacker sends
requests that are above the wi ndow. The sinplest nethod m ght be for
the attacker to nonitor the network traffic and then choose a
sequence nunber that is far above the current sequence number. Then
the attacker can send bogus requests using the above w ndow sequence
nunber .

7.2.2. Sequence Nunbers Wthin or Bel ow the W ndow
If the attacker sends requests that are within or bel ow the w ndow,
then even if the header checksumis successfully verified, the server

will silently discard the requests because the server assunes it has
al ready processed the request. In this case, a server can optimze by

Eisler, et. al. St andards Track [Page 18]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

ski ppi ng the header checksumverification if the sequence nunber is
bel ow the wi ndow, or if it is within the wi ndow, not attenpt the
checksum verification if the sequence nunber has already been seen

7.3. Message Stealing Attacks

Thi s proposal does not address attacks where an attacker can bl ock or
steal nessages wi thout being detected by the server. To inplenent
such protection would be tantanpbunt to assuming a state in the RPC
service. RPCSEC GSS does not worsen this situation

Eisler, et. al. St andards Track [Page 19]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

Appendi x A, GSS- APl Maj or Status Codes
The GSS- APl definition [Linn] does not
the various GSS-API mmjor status codes. It is expected that this wll
be addressed in future RFC. Until then, this appendi x defines the

val ues for each GSS-APlI nmjor status code listed in the GSS-API
definition. |If in the future, the GSS-APlI definition defines val ues
for the codes that are different than what follows, then inplenentors
of RPCSEC GSS will be obliged to map theminto the val ues defined
below. If in the future, the GSS-API definition defines additional
status codes not defined below, then the RPCSEC GSS definition wll
subsunme those additional val ues.

i ncl ude nunerical val ues for

Here are the definitions of each GSS S * major status that the

i mpl enment or of RPCSEC GSS can expect in the gss_major nmajor field of
rpc_gss_init_res. These definitions are not in RPC description

| anguage form The nunbers are in base 16 (hexadeci mal):

Ei sl er,

GSS_S_COVPLETE 0x00000000
GSS_S_CONTI NUE_NEEDED 0x00000001
GSS_S_DUPLI CATE_TOKEN 0x00000002
GSS_S_OLD_TOKEN 0x00000004
GSS_S_UNSEQ TOKEN 0x00000008
GSS_S_GAP_TOKEN 0x00000010
GSS_S_BAD_MECH 0x00010000
GSS_S_BAD_NAME 0x00020000
GSS_S_BAD_NAMETYPE 0x00030000
GSS_S_BAD_BI NDI NGS 0x00040000
GSS_S_BAD_STATUS 0x00050000
GSS_S BAD_ M C 0x00060000
GSS_S_BAD_SI G 0x00060000
GSS_S_NO_CRED 0x00070000
GSS_S_NO_CONTEXT 0x00080000
GSS_S_DEFECTI VE_TOKEN 0x00090000
GSS_S_DEFECTI VE_CREDENTI AL 0x000a0000
GSS_S_CREDENTI ALS_EXPI RED 0x000b0000
GSS_S_CONTEXT_EXPI RED 0x000c0000
GSS_S_FAI LURE 0x000d0000
GSS_S_BAD_QOP 0x000€0000
GSS_S_UNAUTHORI ZED 0x000f 0000
GSS_S_UNAVAI LABLE 0x00100000
GSS_S_DUPLI CATE_ELENMENT 0x00110000
GSS_S_NAVE_NOT_MWN 0x00120000
GSS_S_CALL_|I NACCESSI BLE_READ 0x01000000
GSS_S_CALL_I NACCESSI BLE_WRI TE 0x02000000
GSS_S_CALL_BAD_STRUCTURE 0x03000000

et. al.

St andards Track

[Page 20]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

Note that the GSS-API nmjor status is split into three fields as

fol | ows:
Most Significant Bit Least Significant Bit
| Gailing Error | Routine Error | Supplementary into |
st 2423 1615 0

Up to one status in the Calling Error field can be logically ORed
with up to one status in the Routine Error field which in turn can be
logically ORed with zero or nore statuses in the Supplenentary Info
field. If the resulting najor status has a non-zero Calling Error
and/or a non-zero Routine Error, then the applicable GSS-API
operation has failed. For purposes of RPCSEC GSS, this neans that
the GSS_Accept_sec_context() call executed by the server has fail ed.

If the major status is equal GSS S COWPLETE, then this indicates the
absence of any Errors or Supplenentary |nfo.

The meani ngs of nobst of the GSS S * status are defined in the GSS-API
definition, which the exceptions of:

GSS S BAD M C This code has the sanme neaning as GSS S BAD SIG

GSS_S_CALL_| NACCESSI BLE_READ
A required input paraneter could not be read.

GSS_S CALL_I NACCESSI BLE WRI TE
A required input paraneter could not be witten.

GSS_S CALL_BAD STRUCTURE
A paraneter was mal f or ned.

Eisler, et. al. St andards Track [Page 21]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

Acknowl edgenent s

Much of the protocol was based on the AUTH GSSAPI security flavor
devel oped by Open Vision Technol ogies [Jaspan]. |In particular, we
acknow edge Barry Jaspan, Marc Horowi tz, John Linn, and Ellen
McDer not t .

Raj Srinivasan designed RPCSEC GSS [Eisler] with input fromM ke
Eisler. Raj, Roland Schenmers, Lin Ling, and Alex Chiu contributed to
Sun M crosystens’ inplenmentation of RPCSEC GSS.

Brent Callaghan, Marc Horowitz, Barry Jaspan, John Linn, Hilarie
O man, Martin Rex, Ted Ts’'o, and John Wocl awski anal yzed the
speci ficati on and gave val uabl e feedback.

Steve Nahm and Kathy Slattery reviewed various drafts of this
speci fication.

Much of content of Appendix A was excerpted fromJohn Way's Wrk in
Progress on GSS- APl Version 2 C- bindings.

Ref er ences

[Eisler] Eisler, M, Scheners, R, and Srinivasan, R
(1996). "Security Mechani sm | ndependence in ONC
RPC, " Proceedi ngs of the Sixth Annual USEN X
Security Synposium pp. 51-65.

[Jaspan] Jaspan, B. (1995). "GSS-APlI Security for ONC
RPC," ‘95 Proceedi ngs of The Internet Society
Synposi um on Network and Distributed System
Security, pp. 144- 151.

[Li nn] Linn, J., "Generic Security Service Application
Program I nterface, Version 2", RFC 2078, January
1997.

[Srini vasan-bi nd] Srinivasan, R, "Binding Protocols for

ONC RPC Version 2", RFC 1833, August 1995.

[Srinivasan-rpc] Srinivasan, R, "RPC. Renote Procedure Call
Pr ot ocol Specification Version 2", RFC 1831,
August 1995.

[Srinivasan-xdr] Srinivasan, R, "XDR External Data
Representation Standard", RFC 1832, August 1995.

Eisler, et. al. St andards Track [Page 22]

RFC 2203 RPCSEC GSS Pr ot ocol Specification Sept enber 1997

Aut hors’ Addr esses

M chael Eisler

Sun M crosystens, |nc.
M S UCOS03

2550 Garci a Avenue
Mount ai n Vi ew, CA 94043

Phone: +1 (719) 599-9026
EMai | : nmre@ng. sun. com

Al ex Chiu

Sun M crosystens, |nc.
M S UWK17-203

2550 Garcia Avenue
Mountain View, CA 94043

Phone: +1 (415) 786-6465
EMai | : hacker @ng. sun. com

Li n Ling

Sun M crosystens, |nc.
M S UWPK17-201

2550 Garci a Avenue
Mount ai n Vi ew, CA 94043

Phone: +1 (415) 786-5084
EMail: |ling@ng.sun.com

Eisler, et. al. St andards Track [Page 23]

