Net wor k Wor ki ng Group T. Dierks

Request for Comments: 2246 Certicom
Cat egory: Standards Track C. Allen
Certicom

January 1999

The TLS Protoco
Version 1.0

Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardi zati on state
and status of this protocol. Distribution of this neno is unlimted.

Copyright Notice
Copyright (C The Internet Society (1999). Al Rights Reserved.

Abst ract
Thi s docunent specifies Version 1.0 of the Transport Layer Security
(TLS) protocol. The TLS protocol provides conmuni cations privacy over
the Internet. The protocol allows client/server applications to
conmmunicate in a way that is designed to prevent eavesdroppi ng,
tanpering, or nessage forgery.

Tabl e of Contents

1. I nt roducti on 3
2. Coal s 4
3. Goal s of this docunent 5
4, Presentati on | anguage 5
4.1 Basi ¢ bl ock size 6
4.2 M scel | aneous 6
4.3 Vectors 6
4.4 Nunber s 7
4.5 Enuner at eds 7
4.6. Constructed types 8
4.6.1. Vari ants 9
4.7 Cryptographic attributes 10
4.8 Const ant s 11
5. HVAC and t he pseudorandom function 11
6. The TLS Record Protocol 13
6. 1. Connection states 14

Dierks & Allen St andards Track [Page 1]

RFC 2246

OWP22EPPPPPPPHO00RRNNNNNNNNNNNNNNNNNNNNNOOOIDDO OO

D erks

WWNNNNNN

BARARARAARARARARRAONNNE

CONNNoOrLONRREE

e
N

ScurbrAARONE

-

PONE

WwWwNE

The TLS Protocol Version 1.0

Record | ayer

Fragnent ati on

Record conpressi on and deconpressi on
Record payl oad protection

Nul I or standard stream ci pher

CBC bl ock ci pher

Key cal cul ation

Export key generation exanple

The TLS Handshake Protoco

Change ci pher spec protoco

Al ert protocol

Closure alerts

Error alerts

Handshake Protocol overview
Handshake protoco

Hel | o messages

Hel | o request

Client hello

Server hello

Server certificate

Server key exchange nessage
Certificate request

Server hell o done

Client certificate

dient key exchange nessage

RSA encrypted prenaster secret nessage
Cient Diffie-Hellman public val ue
Certificate verify

Fi ni shed

Crypt ogr aphi ¢ conput ati ons
Conputing the naster secret

RSA

Diffie-Hellmn

Mandat ory G pher Suites
Appl i cation data protoco

Prot ocol constant val ues

Record | ayer

Change ci pher specs nessage

Al ert nessages

Handshake protoco

Hel | o messages

Server authentication and key exchange nessages
dient authentication and key exchange nessages
Handshake finalization nessage

The G pherSuite

The Security Paraneters

d ossary

Ci pher Suite definitions

& All en St andards Track

January 1999

16
16
17
18
19
19
21
22
23
24
24
25
26
29
32
33
33
34
36
37
39
41
42
43
43
44
45
45
46
47
47
48
48
48
48
49
49
50
50
51
51
52
53
54
54
56
57
61

[Page 2]

RFC 2246
D
D. 1.
D. 2.
D. 3.
D. 4.
E
E 1.
E. 2.
F.
F. 1.
F.1.1.
F.1.1.1.
F.1.1.2.
F.1.1.3.
F.1.2.
F.1.3.
F.1.4.
F.1.5.
F. 2.
F. 3.
G

The TLS Protocol Version 1.0

| mpl enent ati on Notes

Tenporary RSA keys

Random Nunber Generation and Seedi ng
Certificates and authentication

Ci pher Suites

Backward Conpatibility Wth SSL

Version 2 client hello

Avoi di ng man-in-the-mddl e version roll back
Security analysis

Handshake protoco

Aut henti cati on and key exchange

Anonynmous key exchange

RSA key exchange and aut hentication
Diffie-Hellman key exchange with authentication
Version rol | back attacks

Det ecting attacks agai nst the handshake protocol
Resum ng sessions

MD5 and SHA

Protecting application data

Fi nal notes

Pat ent St at enent

Security Considerations

Ref er ences

Credits

Comment s

Ful I Copyright Statenent

1. Introduction

January 1999

64
64
64
65
65
66
67
68
69
69
69
69
70
71
71
72
72
72
72
73
74
75
75
77
78
80

The prinmary goal of the TLS Protocol is to provide privacy and data

integrity between two communicating applications.

conposed
Pr ot ocol

The protocol is

of two layers: the TLS Record Protocol and the TLS Handshake

At the lowest level, layered on top of sone rel

i abl e

transport protocol (e.g., TCP[TCP]), is the TLS Record Protocol. The

TLS Record Protoco

properties:

- The connection is private. Symmetric cryptography is
encryption (e.g., DES [DES], RC4A [RC4], etc.) The keys for
this symmetric encryption are generated uni quely for each
connection and are based on a secret negotiated by anot her
protocol (such as the TLS Handshake Protocol). The Record
Prot ocol can al so be used wi thout encryption.

dat a

provi des connection security that has two basic

used for

- The connection is reliable. Message transport includes a nessage
integrity check using a keyed MAC. Secure hash functions (e.g.

MD5, etc.) are used for MAC conputations. The Record

Protocol can operate without a MAC, but is generally

SHA,

Dierks & Al

en St andards Track

only used in

[Page 3]

RFC 2246 The TLS Protocol Version 1.0 January 1999

this nmode while another protocol is using the Record Protocol as
a transport for negotiating security paraneters.

The TLS Record Protocol is used for encapsul ati on of various higher

| evel protocols. One such encapsul ated protocol, the TLS Handshake
Protocol, allows the server and client to authenticate each other and
to negotiate an encryption al gorithmand cryptographi c keys before
the application protocol transmts or receives its first byte of

data. The TLS Handshake Protocol provides connection security that
has three basic properties:

- The peer’'s identity can be authenticated using asymmetric, or
public key, cryptography (e.g., RSA [RSA], DSS [DSS], etc.). This
aut hentication can be nade optional, but is generally required
for at |east one of the peers.

- The negotiation of a shared secret is secure: the negotiated
secret is unavailable to eavesdroppers, and for any authenticated
connection the secret cannot be obtained, even by an attacker who
can place hinself in the niddle of the connection

- The negotiation is reliable: no attacker can nodify the
negoti ati on communi cation w thout being detected by the parties
to the communi cati on.

One advantage of TLS is that it is application protocol independent.
Hi gher | evel protocols can layer on top of the TLS Protoco
transparently. The TLS standard, however, does not specify how
protocol s add security with TLS; the decisions on howto initiate TLS
handshaki ng and how to interpret the authentication certificates
exchanged are left up to the judgnent of the designers and

i mpl ementors of protocols which run on top of TLS

2. Coals
The goals of TLS Protocol, in order of their priority, are:

1. Cryptographic security: TLS should be used to establish a secure
connection between two parties.

2. Interoperability: |Independent programers should be able to
devel op applications utilizing TLS that will then be able to
successful | y exchange cryptographic paraneters w thout know edge
of one another’s code.

3. Extensibility: TLS seeks to provide a framework into which new

public key and bul k encryption nethods can be incorporated as
necessary. This will also acconplish two sub-goals: to prevent

Dierks & Allen St andards Track [Page 4]

RFC 2246 The TLS Protocol Version 1.0 January 1999

the need to create a new protocol (and risking the introduction
of possi bl e new weaknesses) and to avoid the need to inplenment an
entire new security library.

4. Relative efficiency: Cryptographic operations tend to be highly
CPU intensive, particularly public key operations. For this
reason, the TLS protocol has incorporated an optional session
caching schene to reduce the nunber of connections that need to
be established fromscratch. Additionally, care has been taken to
reduce network activity.

3. CGoals of this docunent

This docunent and the TLS protocol itself are based on the SSL 3.0
Prot ocol Specification as published by Netscape. The differences
between this protocol and SSL 3.0 are not dramatic, but they are
significant enough that TLS 1.0 and SSL 3.0 do not interoperate

(al though TLS 1.0 does incorporate a nechani smby which a TLS

i mpl enentati on can back down to SSL 3.0). This docunent is intended
primarily for readers who will be inplenenting the protocol and those
doi ng cryptographic analysis of it. The specification has been
witten with this in nmind, and it is intended to reflect the needs of
those two groups. For that reason, many of the al gorithm dependent
data structures and rules are included in the body of the text (as
opposed to in an appendi x), providing easier access to them

This docunent is not intended to supply any details of service
definition nor interface definition, although it does cover select
areas of policy as they are required for the maintenance of solid
security.

4. Presentation | anguage

This docunent deals with the formatting of data in an externa
representation. The follow ng very basic and somewhat casually
defined presentation syntax will be used. The syntax draws from
several sources in its structure. Although it resenbles the
programmi ng | anguage "C' in its syntax and XDR [XDR] in both its
syntax and intent, it would be risky to draw too many parallels. The
purpose of this presentation |anguage is to document TLS only, not to
have general application beyond that particul ar goal

Dierks & Allen St andards Track [Page 5]

RFC 2246 The TLS Protocol Version 1.0 January 1999

4.1. Basic block size

The representation of all data itenms is explicitly specified. The
basic data block size is one byte (i.e. 8 bits). Miltiple byte data
items are concatenations of bytes, fromleft to right, fromtop to
bottom Fromthe bytestreama nulti-byte item (a nuneric in the
exanple) is formed (using C notation) by:

value = (byte[0] << 8*(n-1)) | (byte[l] << 8*(n-2))
| byte[n-1];

This byte ordering for nulti-byte values is the comonpl ace network
byte order or big endian fornat.

4.2. M scel |l aneous
Comments begin with "/*" and end with "*/".

Optional conponents are denoted by enclosing themin "[[]]" double
bracket s.

Single byte entities containing uninterpreted data are of type
opaque.

4.3. Vectors

A vector (single dinensioned array) is a stream of honbgeneous data
el ements. The size of the vector may be specified at docunentation
time or left unspecified until runtinme. In either case the length
decl ares the nunber of bytes, not the nunber of elenents, in the
vector. The syntax for specifying a newtype T that is a fixed

| ength vector of type T is

T TI[n];
Here T' occupies n bytes in the data stream where nis a nultiple of
the size of T. The length of the vector is not included in the
encoded stream
In the follow ng exanple, Datumis defined to be three consecutive
bytes that the protocol does not interpret, while Data is three
consecutive Datum consuming a total of nine bytes

opaque Datunf 3]; /* three uninterpreted bytes */
Dat um Dat a[9] ; /* 3 consecutive 3 byte vectors */

Dierks & Allen St andards Track [Page 6]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Variable I ength vectors are defined by specifying a subrange of | egal
| engt hs, inclusively, using the notation <floor..ceiling> Wen
encoded, the actual length precedes the vector’'s contents in the byte
stream The length will be in the formof a nunber consunmi ng as nmany
bytes as required to hold the vector’s specified nmaxi mum (ceiling)

Il ength. A variable length vector with an actual length field of zero
is referred to as an enpty vector.

T T <floor..ceiling>;

In the foll ow ng exanple, nandatory is a vector that mnust contain

bet ween 300 and 400 bytes of type opaque. It can never be enpty. The
actual length field consunes two bytes, a uintl1l6, sufficient to
represent the value 400 (see Section 4.4). On the other hand, |onger
can represent up to 800 bytes of data, or 400 uintl16 elenents, and it
may be enpty. Its encoding will include a two byte actual |ength
field prepended to the vector. The I ength of an encoded vector nust
be an even nultiple of the length of a single elenent (for exanple, a
17 byte vector of uintl6 would be illegal).

opaque mandat or y<300. . 400>;

/* length field is 2 bytes, cannot be enpty */
ui nt 16 | onger <0. . 800>;

/* zero to 400 16-bit unsigned integers */

4.4, Nunbers

The basic nunmeric data type is an unsigned byte (uint8). Al [Iarger
nuneric data types are fornmed fromfixed |l ength series of bytes
concatenated as described in Section 4.1 and are al so unsi gned. The
followi ng nuneric types are predefined.

ui nt 8 uint16[2];
ui nt 8 ui nt 24[3] ;
ui nt 8 ui nt 32[4] ;
ui nt 8 ui nt64[8];

Al'l values, here and el sewhere in the specification, are stored in
"networ k" or "big-endian" order; the uint32 represented by the hex
bytes 01 02 03 04 is equivalent to the decimal value 16909060.

4.5. Enuner at eds
An additional sparse data type is available called enum A field of
type enum can only assunme the values declared in the definition

Each definition is a different type. Only enunerateds of the sane
type may be assigned or conpared. Every element of an enumnerated nust

Dierks & Allen St andards Track [Page 7]

RFC 2246 The TLS Protocol Version 1.0 January 1999

be assigned a value, as denonstrated in the foll owi ng exanple. Since
the elenments of the enunerated are not ordered, they can be assigned
any uni que val ue, in any order

enum { el(vl), e2(v2), ... , en(vn) [[, (n)]] } Te

Enuner at eds occupy as nuch space in the byte streamas would its
maxi mal defined ordinal value. The follow ng definition would cause
one byte to be used to carry fields of type Col or

enum { red(3), blue(5), white(7) } Color

One nay optionally specify a value without its associated tag to
force the width definition without defining a superfluous el enent.
In the foll owi ng exanple, Taste will consune two bytes in the data
stream but can only assunme the values 1, 2 or 4.

enum { sweet (1), sour(2), bitter(4), (32000) } Taste;

The nanmes of the elements of an enuneration are scoped within the
defined type. In the first exanple, a fully qualified reference to
the second el enent of the enuneration would be Col or.blue. Such
qualification is not required if the target of the assignment is well

speci fi ed.
Col or col or = Col or. bl ue; /* overspecified, legal */
Col or col or = bl ue; /* correct, type inplicit */

For enunerateds that are never converted to external representation
the nunerical information may be omitted.

enum { | ow, nedium high } Amount;
4.6. Constructed types
Structure types may be constructed fromprimtive types for
conveni ence. Each specification declares a new, unique type. The
syntax for definition is much like that of C
struct {
T1 f1;
T2 f2;

fﬁ.fn;
FLOTIL

Dierks & Allen St andards Track [Page 8]

RFC 2246 The TLS Protocol Version 1.0 January 1999

The fields within a structure may be qualified using the type's nane
using a syntax nuch like that available for enunerateds. For exanple,
T.f2 refers to the second field of the previous declaration
Structure definitions my be enbedded.

4.6.1. Variants

Defined structures may have variants based on sonme know edge that is
avai l abl e within the environnment. The sel ector must be an enunerated
type that defines the possible variants the structure defines. There
must be a case armfor every elenent of the enunmeration declared in
the select. The body of the variant structure nay be given a | abe
for reference. The nechani sm by which the variant is selected at
runtime is not prescribed by the presentation | anguage.

struct {
T1 f1;
T2 f2;
™ fn;
select (E) {

case el: Tel;
case e2: Tez;

éééé en: Ten;
PLIfvT,
PLITVITS

For exanpl e:

enum { apple, orange } Variant Tag;
struct {
ui nt 16 nunber;
opaque string<0..10>; /* variable length */
} Vi
struct {
ui nt 32 nunber;
opaque string[10]; /* fixed length */
}ove;
struct {
select (VariantTag) { /* value of selector is inplicit */
case apple: Vi; /* VariantBody, tag = apple */
case orange: V2; [/* VariantBody, tag = orange */
} variant _body; /* optional |abel on variant */
} Variant Record;

Variant structures may be qualified (narrowed) by specifying a val ue
for the selector prior to the type. For exanple, a

Dierks & Allen St andards Track [Page 9]

RFC 2246 The TLS Protocol Version 1.0 January 1999

orange Vari ant Record

is a narrowed type of a VariantRecord containing a variant_body of
type V2.

4.7. Cryptographic attributes

The four cryptographi c operations digital signing, stream cipher
encryption, block cipher encryption, and public key encryption are
designated digitally-signed, streamciphered, bl ock-ciphered, and
public-key-encrypted, respectively. A field s cryptographic
processing is specified by prepending an appropriate key word
designation before the field s type specification. Cryptographic keys
are inplied by the current session state (see Section 6.1).

In digital signing, one-way hash functions are used as input for a
signing algorithm A digitally-signed elenment is encoded as an opaque
vector <0..2716-1>, where the length is specified by the signing

al gorithm and key.

In RSA signing, a 36-byte structure of two hashes (one SHA and one
MD5) is signed (encrypted with the private key). It is encoded with
PKCS #1 bl ock type O or type 1 as described in [PKCS1].

In DSS, the 20 bytes of the SHA hash are run directly through the
Digital Signing Algorithmw th no additional hashing. This produces
two values, r and s. The DSS signhature is an opaque vector, as above,
the contents of which are the DER encodi ng of:

Dss-Sig-Value ::= SEQUENCE ({
r | NTEGER,
S | NTEGER

}

In stream ci pher encryption, the plaintext is exclusive-ORed with an
i dentical anount of output generated froma cryptographically-secure
keyed pseudorandom nunber generat or

In bl ock cipher encryption, every block of plaintext encrypts to a
bl ock of ciphertext. Al block cipher encryption is done in CBC

(G pher Bl ock Chaining) node, and all itens which are bl ock-ci phered
will be an exact nmultiple of the cipher block |ength.

In public key encryption, a public key algorithmis used to encrypt
data in such a way that it can be decrypted only with the matching

private key. A public-key-encrypted elenment is encoded as an opaque
vector <0..2716-1>, where the length is specified by the signing

al gorithm and key.

Dierks & Allen St andards Track [Page 10]

RFC 2246 The TLS Protocol Version 1.0 January 1999

An RSA encrypted value is encoded with PKCS #1 bl ock type 2 as
described in [PKCS1].

In the foll ow ng exanple:

streamci phered struct {

uint8 fieldl,;

uint8 field2;

digitally-signed opaque hash[20];
} User Type;

The contents of hash are used as input for the signing al gorithm
then the entire structure is encrypted with a stream ci pher. The
length of this structure, in bytes would be equal to 2 bytes for
fieldl and field2, plus two bytes for the I ength of the signature,
plus the length of the output of the signing algorithm This is known
due to the fact that the algorithmand key used for the signing are
known prior to encoding or decoding this structure.

4.8. Constants

Typed constants can be defined for purposes of specification by
declaring a synbol of the desired type and assigning values to it.
Under - speci fied types (opaque, variable |length vectors, and
structures that contain opaque) cannot be assigned values. No fields
of a nmulti-elenent structure or vector may be elided.

For exanpl e,

struct {
uint8 f1,
uint8 f2;
} Exanpl el;

Exanpl el ex1 = {1, 4}; [* assigns f1 =1, f2 =4 */
5. HMAC and t he pseudorandom function

A nunber of operations in the TLS record and handshake | ayer required
a keyed MAC, this is a secure digest of sonme data protected by a
secret. Forging the MAC is infeasible w thout know edge of the MAC
secret. The construction we use for this operation is known as HVAC
described in [HVAC] .

HVAC can be used with a variety of different hash algorithms. TLS

uses it in the handshake with two different algorithms: MD5 and SHA-
1, denoting these as HVAC MD5(secret, data) and HVAC SHA(secret,

Dierks & Allen St andards Track [Page 11]

RFC 2246 The TLS Protocol Version 1.0 January 1999

data). Additional hash algorithns can be defined by cipher suites and
used to protect record data, but MD5 and SHA-1 are hard coded into
the description of the handshaking for this version of the protocol

In addition, a construction is required to do expansi on of secrets
into blocks of data for the purposes of key generation or validation
Thi s pseudo-random function (PRF) takes as input a secret, a seed,
and an identifying | abel and produces an output of arbitrary |ength.

In order to make the PRF as secure as possible, it uses two hash
algorithnms in a way which should guarantee its security if either
al gorithmrenai ns secure.

First, we define a data expansion function, P_hash(secret, data)
whi ch uses a single hash function to expand a secret and seed into an
arbitrary quantity of output:

P_hash(secret, seed) = HVAC hash(secret, A(1l) + seed) +
HVAC hash(secret, A(2) + seed) +
HVAC hash(secret, A(3) + seed) + ..

Where + indicates concatenation

A() is defined as:
A(0) = seed
A(i) = HVAC hash(secret, A(i-1))

P_hash can be iterated as nany times as is necessary to produce the
required quantity of data. For example, if P_SHA-1 was being used to
create 64 bytes of data, it would have to be iterated 4 tines
(through A(4)), creating 80 bytes of output data; the |last 16 bytes
of the final iteration would then be discarded, |eaving 64 bytes of
out put dat a.

TLS s PRF is created by splitting the secret into two hal ves and
using one half to generate data with P_VMD5 and the other half to
generate data with P_SHA-1, then exclusive-or’ing the outputs of
t hese two expansi on functions together

S1 and S2 are the two hal ves of the secret and each is the sane
length. S1 is taken fromthe first half of the secret, S2 fromthe
second half. Their length is created by rounding up the I ength of the
overall secret divided by two; thus, if the original secret is an odd
number of bytes long, the last byte of S1 will be the sane as the
first byte of S2.

L S=1length in bytes of secret;
L.S1 =L_S2 =ceil(L_S/ 2);

Dierks & Allen St andards Track [Page 12]

RFC 2246 The TLS Protocol Version 1.0 January 1999

The secret is partitioned into two halves (with the possibility of
one shared byte) as described above, Sl1 taking the first L_S1 bytes
and S2 the last L_S2 bytes.

The PRF is then defined as the result of mxing the two pseudorandom
streans by exclusive-or’ing themtogether

PRF(secret, l|abel, seed) = P _MD5(S1, |abel + seed) XOR
P_SHA-1(S2, |abel + seed);

The | abel is an ASCI1 string. It should be included in the exact form
it is given without a length byte or trailing null character. For
exanpl e, the label "slithy toves" would be processed by hashing the
foll owi ng bytes:

73 6C 69 74 68 79 20 74 6F 76 65 73

Not e that because MD5 produces 16 byte outputs and SHA-1 produces 20
byte outputs, the boundaries of their internal iterations will not be
aligned; to generate a 80 byte output will involve P_MD5 being
iterated through A(5), while P_SHA-1 will only iterate through A(4).

6. The TLS Record Protoco

The TLS Record Protocol is a |layered protocol. At each |ayer

messages may include fields for |length, description, and content.

The Record Protocol takes nmessages to be transnmitted, fragnents the
data i nto manageabl e bl ocks, optionally conpresses the data, applies
a MAC, encrypts, and transnmits the result. Received data is
decrypted, verified, deconpressed, and reassenbled, then delivered to
hi gher | evel clients.

Four record protocol clients are described in this docunent: the
handshake protocol, the alert protocol, the change ci pher spec
protocol, and the application data protocol. In order to all ow
extension of the TLS protocol, additional record types can be
supported by the record protocol. Any new record types shoul d

al | ocate type val ues imredi ately beyond the Content Type val ues for
the four record types described here (see Appendix A 2). If a TLS

i npl enment ati on receives a record type it does not understand, it
shoul d just ignore it. Any protocol designed for use over TLS nust be
carefully designed to deal with all possible attacks against it.
Not e that because the type and length of a record are not protected
by encryption, care should be take to minimnmize the value of traffic
anal ysis of these val ues.

Dierks & Allen St andards Track [Page 13]

RFC 2246 The TLS Protocol Version 1.0 January 1999

6.1. Connection states

A TLS connection state is the operating environnent of the TLS Record
Protocol. It specifies a conpression algorithm encryption algorithm
and MAC algorithm In addition, the paraneters for these algorithns
are known: the MAC secret and the bul k encryption keys and 1Vs for
the connection in both the read and the wite directions. Logically,
there are always four connection states outstanding: the current read
and wite states, and the pending read and wite states. Al records
are processed under the current read and wite states. The security
paraneters for the pending states can be set by the TLS Handshake
Protocol, and the Handshake Protocol can selectively nake either of
the pending states current, in which case the appropriate current
state is disposed of and replaced with the pending state; the pending
state is then reinitialized to an enpty state. It is illegal to nake
a state which has not been initialized with security paraneters a
current state. The initial current state always specifies that no
encryption, conpression, or MAC will be used.

The security paraneters for a TLS Connection read and wite state are
set by providing the follow ng val ues:

connection end
Whether this entity is considered the "client" or the "server" in
this connection.

bul k encryption al gorithm
An algorithmto be used for bul k encryption. This specification
i ncludes the key size of this algorithm how nmuch of that key is
secret, whether it is a block or stream ci pher, the bl ock size of
the cipher (if appropriate), and whether it is considered an
"export" cipher.

MAC al gorithm
An algorithmto be used for nessage authentication. This
specification includes the size of the hash which is returned by
the MAC al gorithm

conpression al gorithm
An algorithmto be used for data conpression. This specification
must include all information the algorithmrequires to do
conpr essi on.

nmast er secret
A 48 byte secret shared between the two peers in the connection

client random
A 32 byte value provided by the client.

Dierks & Allen St andards Track [Page 14]

RFC 2246

The TLS Protocol Version 1.0 January 1999

server random
A 32 byte value provided by the server

These paraneters are defined in the presentati on | anguage as:

enum {
enum {
enum {
enum {
enum {
enum {

/* The

server, client } ConnectionEnd;

null, rc4, rc2, des, 3des, des40 } Bul kC pher Al gorithm
stream block } G pherType

true, false } |sExportable;

null, nmd5, sha } MACA gorithm

nul 1 (0), (255) } ConpressionMet hod;

al gorithns specified in Conpressi onMet hod,

Bul kG pher Al gorithm and MACAl gorithm may be added to. */

struct {
Connect i onEnd entity;
Bul kCi pher Al gorithm bul k_ci pher _al gorit hm
Ci pher Type ci pher _type;
uint8 key_si ze;
uint8 key_material _| ength;
| sExportabl e i s_exportable;
MACAI gorithm mac_al gorit hm
uint8 hash_si ze;
Conpr essi onMet hod conpression_al gorithm
opaque mast er _secret[48];
opaque client_randoni 32];
opaque server _randoni 32] ;

} SecurityParaneters;

The record

layer will use the security paraneters to generate the

followi ng six itens:

client
server
client
server
client
server

The client
processi ng

wite MAC secret

write MAC secret

wite key

wite key

wite IV (for block ciphers only)
wite IV (for block ciphers only)

wite paraneters are used by the server when receiving and
records and vice-versa. The al gorithmused for generating

these itens fromthe security paraneters is described in section 6.3.

Dierks & All en

St andards Track [Page 15]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Once the security paraneters have been set and the keys have been
generated, the connection states can be instantiated by making them
the current states. These current states nust be updated for each
record processed. Each connection state includes the follow ng

el ement s:

conpression state
The current state of the conpression al gorithm

ci pher state
The current state of the encryption algorithm This will consist
of the schedul ed key for that connection. In addition, for block
ci phers running in CBC node (the only node specified for TLS)
this will initially contain the IV for that connection state and
be updated to contain the ciphertext of the |ast bl ock encrypted
or decrypted as records are processed. For stream ciphers, this
wi || contain whatever the necessary state information is to allow
the streamto continue to encrypt or decrypt data.

MAC secr et
The MAC secret for this connection as generated above.

sequence nunber

Each connection state contains a sequence nunber, which is

mai nt ai ned separately for read and wite states. The sequence
number nust be set to zero whenever a connection state is made
the active state. Sequence nunbers are of type uint64 and nay not
exceed 2764-1. A sequence nunber is increnented after each
record: specifically, the first record which is transmtted under
a particular connection state should use sequence nunber O.

6.2. Record | ayer

The TLS Record Layer receives uninterpreted data from higher |ayers
in non-enpty bl ocks of arbitrary size.

6.2.1. Fragnentation

The record | ayer fragnents information blocks into TLSPI ai nt ext
records carrying data in chunks of 2714 bytes or less. Cient nessage
boundari es are not preserved in the record layer (i.e., multiple
client nmessages of the sane Content Type may be coal esced into a
single TLSPI ai ntext record, or a single nessage may be fragnented
across several records).

struct {

uint8 major, mnor;
} Protocol Version;

Dierks & Allen St andards Track [Page 16]

RFC 2246 The TLS Protocol Version 1.0 January 1999

6.

No

2.

enum {
change_ci pher _spec(20), alert(21), handshake(22),
application_data(23), (255)

} Content Type;

struct {

Cont ent Type type;

Pr ot ocol Versi on version;

uint16 | ength;

opaque fragment[TLSPI ai nt ext. | ength];
} TLSPI ai nt ext;

type
The hi gher |evel protocol used to process the enclosed fragnent.

ver si on
The version of the protocol being enployed. This docunent
descri bes TLS Version 1.0, which uses the version { 3, 1 }. The
version value 3.1 is historical: TLS version 1.0 is a mnor
nmodi fication to the SSL 3.0 protocol, which bears the version
val ue 3.0. (See Appendix A 1).

| ength
The length (in bytes) of the follow ng TLSPI ai ntext.fragnent.
The | ength should not exceed 2"14.

f ragnment
The application data. This data is transparent and treated as an
i ndependent block to be dealt with by the higher |evel protoco
specified by the type field.

te: Data of different TLS Record |layer content types nay be
interleaved. Application data is generally of |ower precedence
for transm ssion than other content types.

2. Record conpression and deconpression

Al'l records are conpressed using the conpression algorithmdefined in
the current session state. There is always an active conpression

al gorithm however, initially it is defined as

Conmpr essi onMet hod. nul | . The conpression algorithmtranslates a
TLSPI ai ntext structure into a TLSConpressed structure. Conpression
functions are initialized with default state information whenever a
connection state is nmade active.

Dierks & Allen St andards Track [Page 17]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Conpressi on nust be | ossless and nmay not increase the content |ength
by nore than 1024 bytes. If the deconpression function encounters a
TLSConpr essed. fragment that woul d deconpress to a length in excess of
2714 bytes, it should report a fatal deconpression failure error.

struct {
Cont ent Type type; /* sane as TLSPl ai ntext.type */
Pr ot ocol Version version;/* sane as TLSPl ai ntext.version */
uint16 | ength;
opaque fragment[TLSConpr essed. | engt h];
} TLSConpr essed;

| ength
The length (in bytes) of the follow ng TLSConpressed. fragnent.
The I ength should not exceed 2714 + 1024.

f ragment
The conpressed form of TLSPI ai ntext.fragnent.

Not e: A ConpressionMethod. null operation is an identity operation; no
fields are altered.

| mpl enent ati on note:
Deconpr essi on functions are responsi ble for ensuring that
messages cannot cause internal buffer overflows.

6.2.3. Record payl oad protection

The encryption and MAC functions translate a TLSConpressed structure
into a TLSCi phertext. The decryption functions reverse the process.
The MAC of the record also includes a sequence nunber so that

m ssing, extra or repeated nessages are detectable.

struct {
Cont ent Type type;
Pr ot ocol Ver si on versi on;
uint16 | ength;
sel ect (G pher Spec. ci pher_type) {
case stream CenericStreanC pher;
case bl ock: Generi cBl ockCi pher;
} fragnent;
} TLSCGi phertext;

type
The type field is identical to TLSConpressed.type

version
The version field is identical to TLSConpressed. version

Dierks & Allen St andards Track [Page 18]

RFC 2246 The TLS Protocol Version 1.0 January 1999

| ength
The length (in bytes) of the follow ng TLSC phertext.fragnent.
The I ength nmay not exceed 2714 + 2048.

f ragment
The encrypted form of TLSConpressed.fragnent, with the MAC

6.2.3.1. Null or standard stream ci pher

Stream ci phers (including Bul kG pherAl gorithmnull - see Appendi x
A.6) convert TLSConpressed.fragnment structures to and from stream
TLSG phertext.fragnment structures.

streamci phered struct {
opaque content[TLSConpressed. | engt h];
opaque MAC Ci pher Spec. hash_si ze] ;

} CenericStreanC pher;

The MAC i s generated as:

HVAC hash(MAC write_secret, seq_num + TLSConpressed.type +
TLSConpr essed. versi on + TLSConpressed. |l ength +
TLSConpr essed. fragnent)) ;

where "+" denot es concat enati on.

seq_num
The sequence nunber for this record.

hash
The hashing al gorithm specified by
Securi tyParameters. mac_al gorithm

Note that the MAC i s conputed before encryption. The stream ci pher
encrypts the entire block, including the MAC. For stream ciphers that
do not use a synchronization vector (such as RC4), the stream cipher
state fromthe end of one record is sinply used on the subsequent
packet. If the G pherSuite is TLS NULL_W TH NULL_NULL, encryption
consists of the identity operation (i.e., the data is not encrypted
and the MAC size is zero inplying that no MAC i s used).

TLSG phertext.length is TLSConpressed. | ength plus

Ci pher Spec. hash_si ze.

6.2.3.2. CBC bl ock cipher
For bl ock ciphers (such as RC2 or DES), the encryption and MAC

functions convert TLSConpressed. fragnment structures to and from bl ock
TLSG phertext.fragnment structures.

Dierks & Allen St andards Track [Page 19]

RFC 2246 The TLS Protocol Version 1.0 January 1999

bl ock-ci phered struct {
opaque content[TLSConpressed. | engt h];
opaque MAC Ci pher Spec. hash_si ze] ;
ui nt 8 paddi ng[Generi cBl ockCi pher. paddi ng_| engt h] ;
ui nt 8 paddi ng_| engt h;
} Generi cBl ockG pher;

The MAC is generated as described in Section 6.2.3.1.

paddi ng

Padding that is added to force the length of the plaintext to be
an integral nultiple of the block cipher’s block I ength. The
paddi ng may be any length up to 255 bytes long, as long as it
results in the TLSG phertext.length being an integral multiple of
the block length. Lengths |onger than necessary night be
desirable to frustrate attacks on a protocol based on anal ysis of
the I engths of exchanged nmessages. Each uint8 in the padding data
vector nust be filled with the padding | ength val ue.

paddi ng_Il engt h

The padding |l ength shoul d be such that the total size of the
Ceneri cBl ockCi pher structure is a multiple of the cipher’s block
| ength. Legal values range fromzero to 255, inclusive. This

| ength specifies the I ength of the padding field exclusive of the
paddi ng_l ength field itself.

The encrypted data | ength (TLSC phertext.length) is one nore than the
sum of TLSConpressed. | ength, CipherSpec. hash_si ze, and
paddi ng_I engt h.

Exanple: If the block length is 8 bytes, the content |ength

Not e:

(TLSConpressed. l ength) is 61 bytes, and the MAC length is 20
bytes, the length before padding is 82 bytes. Thus, the
paddi ng | ength nodul o 8 nmust be equal to 6 in order to make
the total length an even nmultiple of 8 bytes (the block

| ength). The padding | ength can be 6, 14, 22, and so on
through 254. |If the padding length were the m ni rum necessary,
6, the padding would be 6 bytes, each containing the val ue 6.
Thus, the last 8 octets of the GenericBl ockC pher before bl ock
encryption would be xx 06 06 06 06 06 06 06, where xx is the

| ast octet of the MAC

Wth block ciphers in CBC node (Ci pher Bl ock Chaining) the
initialization vector (I1V) for the first record is generated with
the ot her keys and secrets when the security paraneters are set.
The 1V for subsequent records is the |ast ciphertext block from
the previous record.

Dierks & Allen St andards Track [Page 20]

RFC 2246 The TLS Protocol Version 1.0 January 1999

6.3. Key calcul ation

The Record Protocol requires an algorithmto generate keys, |Vs, and
MAC secrets fromthe security paraneters provided by the handshake
pr ot ocol .

The master secret is hashed into a sequence of secure bytes, which
are assigned to the MAC secrets, keys, and non-export |Vs required by
the current connection state (see Appendi x A 6). G pherSpecs require
aclient wite MAC secret, a server wite MAC secret, a client wite
key, a server wite key, a client wite IV, and a server wite |V,
which are generated fromthe nmaster secret in that order. Unused

val ues are enpty.

When generating keys and MAC secrets, the master secret is used as an
entropy source, and the random val ues provi de unencrypted salt
material and IVs for exportable ciphers.

To generate the key material, conpute

key_ bl ock = PRF(SecurityParaneters. master_secret,
"key expansion",
SecurityParaneters. server_random +
SecurityParaneters.client_random;

until enough output has been generated. Then the key block is
partitioned as foll ows:

client_wite MAC secret[SecurityParaneters. hash_si ze]
server_write MAC secret[SecurityParaneters. hash_si ze]
client_wite key[SecurityParaneters. key material | ength]
server_write_key[SecurityParaneters. key_material _| ength]
client_write_IV[SecurityParaneters.|V_size]
server_wite_ | V[SecurityParanmeters.|V_size]

The client_wite IV and server wite IV are only generated for non-
export bl ock ciphers. For exportable block ciphers, the
initialization vectors are generated later, as described bel ow. Any
extra key_block material is discarded.

| mpl enent ati on note:
The ci pher spec which is defined in this docunent which requires
the nost material is 3DES EDE CBC SHA: it requires 2 x 24 byte
keys, 2 x 20 byte MAC secrets, and 2 x 8 byte IVs, for a total of
104 bytes of key material.

Dierks & Allen St andards Track [Page 21]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Exportabl e encryption algorithns (for which G pherSpec.is_exportabl e
is true) require additional processing as follows to derive their
final wite keys:

final _client_wite_key =
PRF(SecurityParaneters.client_wite_key,
"client wite key",
SecurityParaneters.client_random +
Securi tyParaneters. server_randon);
final _server wite_key =
PRF(SecurityParaneters. server_wite_key,
"server wite key",
SecurityParaneters.client_random +
Securi tyParaneters. server_randon);

Exportabl e encryption algorithnms derive their 1Vs solely fromthe
random val ues fromthe hell o nessages

iv_block = PRF("", "IV block", SecurityParaneters.client_random +
Securi tyParaneters. server_randon);

The iv_block is partitioned into two initialization vectors as the
key_ bl ock was above:

client_wite |V[SecurityParanmeters.|V_size]
server_write_| V[SecurityParaneters.|V_size]

Note that the PRF is used without a secret in this case: this just
means that the secret has a length of zero bytes and contributes
nothing to the hashing in the PRF.

6.3.1. Export key generation exanple

TLS _RSA EXPORT_W TH_RC2_CBC 40_MD5 requires five random bytes for
each of the two encryption keys and 16 bytes for each of the MAC
keys, for a total of 42 bytes of key material. The PRF output is
stored in the key block. The key block is partitioned, and the wite
keys are salted because this is an exportable encryption algorithm

key_ bl ock PRF(mast er _secret,
"key expansion”,
server_random +
client_randon)[O0. . 41]
key_bl ock[0. . 15]
key_bl ock[16. . 31]
key_bl ock[32. . 36]

key_bl ock[37. . 41]

client_wite MAC secret
server_wite MAC secret
client_wite_key
server_wite_key

Dierks & Allen St andards Track [Page 22]

RFC 2246 The TLS Protocol Version 1.0 January 1999

final _client_wite key = PRF(client_wite key,
"client wite key",
client_random +
server_randon)[0.. 15]

final _server_ wite _key = PRF(server_wite_key,
"server wite key",
client_random +
server_random [0. . 15]

i v_bl ock PRF("", "IV block", client_random +
server_randon)[0.. 15]
client_wite IV = iv_block[O0..7]

server_wite |V = iv_block[8..15]
7. The TLS Handshake Protoco

The TLS Handshake Protocol consists of a suite of three sub-protocols
which are used to allow peers to agree upon security paraneters for
the record | ayer, authenticate thenselves, instantiate negotiated
security paraneters, and report error conditions to each other

The Handshake Protocol is responsible for negotiating a session
whi ch consists of the follow ng itens:

session identifier
An arbitrary byte sequence chosen by the server to identify an
active or resunabl e session state.

peer certificate
X509v3 [X509] certificate of the peer. This elenent of the state
may be nul .

conpr essi on net hod
The al gorithmused to conpress data prior to encryption

ci pher spec
Specifies the bulk data encryption algorithm (such as null, DES,
etc.) and a MAC algorithm (such as M5 or SHA). It al so defines
cryptographic attributes such as the hash_size. (See Appendix A 6
for formal definition)

mast er secret
48-byte secret shared between the client and server

is resunmbl e

A flag indicating whether the session can be used to initiate new
connecti ons.

Dierks & Allen St andards Track [Page 23]

RFC 2246 The TLS Protocol Version 1.0 January 1999

These itens are then used to create security paraneters for use by
the Record Layer when protecting application data. Many connections
can be instantiated using the same session through the resunption
feature of the TLS Handshake Protocol

7.1. Change ci pher spec protoco

The change ci pher spec protocol exists to signal transitions in

ci phering strategies. The protocol consists of a single nessage,
which is encrypted and conpressed under the current (not the pending)
connection state. The nessage consists of a single byte of value 1

struct {
enum { change_ci pher _spec(1), (255) } type;
} ChangeGi pher Spec;

The change ci pher spec nessage is sent by both the client and server
to notify the receiving party that subsequent records will be
protected under the newy negotiated C pherSpec and keys. Reception
of this nmessage causes the receiver to instruct the Record Layer to
i mredi ately copy the read pending state into the read current state.
I medi ately after sending this nessage, the sender should instruct
the record | ayer to make the wite pending state the wite active
state. (See section 6.1.) The change ci pher spec nessage is sent
during the handshake after the security paraneters have been agreed
upon, but before the verifying finished nessage is sent (see section
7.4.9).

7.2. Aert protocol

One of the content types supported by the TLS Record |ayer is the
alert type. Alert nessages convey the severity of the nessage and a
description of the alert. Alert nessages with a level of fatal result
in the imediate term nation of the connection. In this case, other
connections corresponding to the session may continue, but the
session identifier nust be invalidated, preventing the failed session
frombeing used to establish new connections. Like other nessages,

al ert nessages are encrypted and conpressed, as specified by the
current connection state.

enum { warning(l), fatal (2), (255) } AlertlLevel

enum {
cl ose_notify(0),
unexpect ed_nessage(10),
bad_record_mac(20),
decryption_fail ed(21),
record_overfl ow 22),

Dierks & Allen St andards Track [Page 24]

RFC 2246 The TLS Protocol Version 1.0 January 1999

deconpressi on_fail ure(30),
handshake fail ure(40),
bad_certificate(42),
unsupported_certificate(43),
certificate_revoked(44),
certificate_expired(45),
certificate_unknown(46),
illegal paraneter(47),
unknown_ca(48),
access_deni ed(49),
decode_error (50),
decrypt _error(51),
export _restriction(60),
protocol _version(70),
i nsufficient_security(71),
i nternal _error(80),
user _cancel ed(90),
no_renegoti ati on(100),
(255)

} AlertDescription;

struct {

Al ertLevel |evel;

Al ertDescription description;
} Alert;

7.2.1. Closure alerts

The client and the server nust share know edge that the connection is
ending in order to avoid a truncation attack. Either party may
initiate the exchange of closing nessages.

cl ose_notify
This message notifies the recipient that the sender will not send
any nore nessages on this connection. The session becones
unresunabl e if any connection is ternm nated wi thout proper
close_notify nessages with | evel equal to warning.

Either party may initiate a close by sending a close_notify alert.
Any data received after a closure alert is ignored.

Each party is required to send a close notify alert before closing
the wite side of the connection. It is required that the other party
respond with a close_notify alert of its own and cl ose down the
connection imredi ately, discarding any pending wites. It is not
required for the initiator of the close to wait for the respondi ng
close_notify alert before closing the read side of the connection

Dierks & Allen St andards Track [Page 25]

RFC 2246 The TLS Protocol Version 1.0 January 1999

If the application protocol using TLS provides that any data nmay be
carried over the underlying transport after the TLS connection is

cl osed, the TLS inplenmentation nust receive the responding
close_notify alert before indicating to the application |ayer that
the TLS connection has ended. If the application protocol wll not
transfer any additional data, but will only close the underlying
transport connection, then the inplenentation may choose to close the
transport without waiting for the responding close notify. No part of
this standard should be taken to dictate the nanner in which a usage
profile for TLS manages its data transport, including when
connections are opened or closed.

NB: It is assunmed that closing a connection reliably delivers
pendi ng data before destroying the transport.

7.2.2. Error alerts

Error handling in the TLS Handshake protocol is very sinple. Wen an
error is detected, the detecting party sends a nessage to the other
party. Upon transm ssion or receipt of an fatal alert message, both
parties imredi ately close the connection. Servers and clients are
required to forget any session-identifiers, keys, and secrets
associated with a failed connection. The following error alerts are
defi ned:

unexpect ed_nessage
An inappropriate nessage was received. This alert is always fata
and shoul d never be observed in comunication between proper
i npl enent ati ons.

bad record_nac
This alert is returned if a record is received with an incorrect
MAC. This nessage is always fatal

decryption_fail ed
A TLSCi phertext decrypted in an invalid way: either it wasn‘'t an
even nmultiple of the block length or its padding val ues, when
checked, weren‘t correct. This message is always fatal

record_overfl ow
A TLSCi phertext record was received which had a I ength nore than
2714+2048 bytes, or a record decrypted to a TLSConpressed record
with nore than 2714+1024 bytes. This nessage is always fatal

deconpression_failure
The deconpression function received inproper input (e.g. data
that woul d expand to excessive length). This nessage is al ways
fatal .

Dierks & Allen St andards Track [Page 26]

RFC 2246 The TLS Protocol Version 1.0 January 1999

handshake fail ure
Reception of a handshake failure alert nessage indicates that the
sender was unable to negotiate an acceptable set of security
paraneters given the options available. This is a fatal error.

bad certificate
A certificate was corrupt, contained signatures that did not
verify correctly, etc.

unsupported_certificate
A certificate was of an unsupported type.

certificate_revoked
A certificate was revoked by its signer

certificate_expired
A certificate has expired or is not currently valid.

certificate_unknown
Some ot her (unspecified) issue arose in processing the
certificate, rendering it unacceptable.

i |l egal _paraneter
A field in the handshake was out of range or inconsistent wth
other fields. This is always fatal

unknown_ca
A valid certificate chain or partial chain was received, but the
certificate was not accepted because the CA certificate could not
be |l ocated or couldn‘'t be matched with a known, trusted CA. This
message is always fatal.

access_deni ed
A valid certificate was received, but when access control was
appl i ed, the sender decided not to proceed with negotiation.
This nmessage is always fatal

decode_error
A nmessage coul d not be decoded because sone field was out of the
specified range or the Iength of the nmessage was incorrect. This
message i s always fatal.

decrypt _error
A handshake cryptographic operation failed, including being
unable to correctly verify a signature, decrypt a key exchange
or validate a finished nessage.

Dierks & Allen St andards Track [Page 27]

RFC 2246 The TLS Protocol Version 1.0 January 1999

export _restriction
A negotiation not in conpliance with export restrictions was
detected; for exanple, attenpting to transfer a 1024 bit
epheneral RSA key for the RSA EXPORT handshake method. This
message i s always fatal.

pr ot ocol version
The protocol version the client has attenpted to negotiate is
recogni zed, but not supported. (For exanple, old protoco
versions night be avoided for security reasons). This nmessage is
al ways f at al

i nsufficient_security
Ret urned i nstead of handshake failure when a negotiation has
failed specifically because the server requires ciphers nore
secure than those supported by the client. This nessage is al ways
fatal .

internal _error
An internal error unrelated to the peer or the correctness of the
protocol makes it inpossible to continue (such as a nenory
all ocation failure). This nmessage is always fatal

user _cancel ed
Thi s handshake is being cancel ed for sone reason unrelated to a
protocol failure. If the user cancels an operation after the
handshake is conplete, just closing the connection by sending a
close_notify is nore appropriate. This alert should be foll owed
by a close_notify. This nessage is generally a warning.

no_renegoti ation
Sent by the client in response to a hello request or by the
server in response to a client hello after initial handshaking.
Either of these would norrmally lead to renegotiation; when that
is not appropriate, the recipient should respond with this alert;
at that point, the original requester can deci de whether to
proceed with the connection. One case where this would be
appropriate woul d be where a server has spawned a process to
satisfy a request; the process mght receive security paraneters
(key length, authentication, etc.) at startup and it m ght be
difficult to communi cate changes to these paraneters after that
point. This nessage is always a warning.

For all errors where an alert level is not explicitly specified, the

sending party may deternmine at its discretion whether this is a fata
error or not; if an alert with a level of warning is received, the

Dierks & Allen St andards Track [Page 28]

RFC 2246 The TLS Protocol Version 1.0 January 1999

receiving party may decide at its discretion whether to treat this as
a fatal error or not. However, all nessages which are transnitted
with a level of fatal mnmust be treated as fatal nessages

7. 3. Handshake Protocol overvi ew

The cryptographic paraneters of the session state are produced by the
TLS Handshake Protocol, which operates on top of the TLS Record
Layer. When a TLS client and server first start conmunicating, they
agree on a protocol version, select cryptographic algorithns,
optionally authenticate each other, and use public-key encryption
techni ques to generate shared secrets.

The TLS Handshake Protocol involves the foll owi ng steps:

- Exchange hell o nessages to agree on al gorithns, exchange random
val ues, and check for session resunption

- Exchange the necessary cryptographic paraneters to allow the
client and server to agree on a prenaster secret.

- Exchange certificates and cryptographic information to allow the
client and server to authenticate thenselves.

- Generate a nmaster secret fromthe premaster secret and exchanged
random val ues

- Provide security parameters to the record | ayer.

- Allow the client and server to verify that their peer has
cal cul ated the sane security paraneters and that the handshake
occurred wi thout tanpering by an attacker

Not e that higher layers should not be overly reliant on TLS al ways
negoti ati ng the strongest possible connection between two peers:
there are a nunber of ways a man in the mddle attacker can attenpt
to nake two entities drop down to the | east secure nethod they
support. The protocol has been designed to mininize this risk, but
there are still attacks available: for exanple, an attacker could

bl ock access to the port a secure service runs on, or attenpt to get
the peers to negotiate an unaut henticated connection. The fundanenta
rule is that higher |evels nmust be cogni zant of what their security
requirenents are and never transnit information over a channel |ess
secure than what they require. The TLS protocol is secure, in that
any cipher suite offers its pronmised |evel of security: if you
negotiate 3DES with a 1024 bit RSA key exchange with a host whose
certificate you have verified, you can expect to be that secure.

Dierks & Allen St andards Track [Page 29]

RFC 2246 The TLS Protocol Version 1.0 January 1999

However, you should never send data over a link encrypted with 40 bit
security unless you feel that data is worth no nore than the effort
required to break that encryption

These goal s are achi eved by the handshake protocol, which can be
sunmari zed as follows: The client sends a client hello nessage to

whi ch the server nust respond with a server hello nessage, or else a
fatal error will occur and the connection will fail. The client hello
and server hello are used to establish security enhancenent
capabilities between client and server. The client hello and server
hell o establish the following attributes: Protocol Version, Session

I D, Cipher Suite, and Conpression Method. Additionally, two random
val ues are generated and exchanged: dientHello.random and
Server Hel | 0. random

The actual key exchange uses up to four nessages: the server
certificate, the server key exchange, the client certificate, and the
client key exchange. New key exchange nethods can be created by
specifying a format for these nessages and defining the use of the
nessages to allow the client and server to agree upon a shared
secret. This secret should be quite long; currently defined key
exchange net hods exchange secrets which range from 48 to 128 bytes in
| engt h.

Fol I owi ng the hell o nmessages, the server will send its certificate,
if it is to be authenticated. Additionally, a server key exchange
message may be sent, if it is required (e.g. if their server has no
certificate, or if its certificate is for signing only). If the
server is authenticated, it may request a certificate fromthe
client, if that is appropriate to the cipher suite selected. Now the
server will send the server hell o done nessage, indicating that the
hel | o- ressage phase of the handshake is conplete. The server will
then wait for a client response. If the server has sent a certificate
request message, the client nust send the certificate nessage. The
client key exchange nessage is now sent, and the content of that
message wi Il depend on the public key al gorithm sel ected between the
client hello and the server hello. If the client has sent a
certificate with signing ability, a digitally-signed certificate
verify message is sent to explicitly verify the certificate.

At this point, a change cipher spec nessage is sent by the client,
and the client copies the pending C pher Spec into the current G pher
Spec. The client then imedi ately sends the finished nessage under
the new al gorithns, keys, and secrets. In response, the server wll
send its own change cipher spec nmessage, transfer the pending to the
current G pher Spec, and send its finished nessage under the new

Dierks & Allen St andards Track [Page 30]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Ci pher Spec. At this point, the handshake is conplete and the client
and server may begin to exchange application |layer data. (See flow
chart bel ow.)

Cient Ser ver

dientHello —eoo---- >
ServerHello
Certificate*
Ser ver KeyExchange*
Certificat eRequest*

S Server Hel | oDone
Certificate*
C i ent KeyExchange
CertificateVerify*
[ChangeCGi pher Spec]
Finished -------- >

[ChangeGi pher Spec]

<-m----- Fi ni shed

Appl i cation Data <---m--- > Application Data

Fig. 1 - Message flow for a full handshake

* | ndicates optional or situation-dependent nessages that are not
al ways sent.

Note: To help avoid pipeline stalls, ChangeC pherSpec is an
i ndependent TLS Protocol content type, and is not actually a TLS
handshake nessage.

When the client and server decide to resune a previous session or
duplicate an existing session (instead of negotiating new security
paraneters) the nmessage flowis as follows:

The client sends a CientHello using the Session ID of the session to
be resuned. The server then checks its session cache for a match. |If
a match is found, and the server is willing to re-establish the
connection under the specified session state, it will send a
ServerHello with the same Session ID value. At this point, both
client and server must send change ci pher spec nessages and proceed
directly to finished nessages. Once the re-establishnment is conplete,
the client and server nmay begin to exchange application |ayer data.
(See flow chart below.) If a Session ID match is not found, the
server generates a new session ID and the TLS client and server
performa full handshake.

Dierks & Allen St andards Track [Page 31]

RFC 2246 The TLS Protocol Version 1.0 January 1999

dient Server

CientHello aeeaa-- >
ServerHel |l o
[ChangeGi pher Spec]

<e-m----- Fi ni shed
[ChangeCi pher Spec]
Fi nished — a------- >
Application Data <------- > Application Data

Fig. 2 - Message flow for an abbrevi ated handshake

The contents and significance of each nmessage will be presented in
detail in the follow ng sections.

7.4. Handshake protoco

The TLS Handshake Protocol is one of the defined higher level clients
of the TLS Record Protocol. This protocol is used to negotiate the
secure attributes of a session. Handshake nessages are supplied to
the TLS Record Layer, where they are encapsul ated within one or nore
TLSPI ai ntext structures, which are processed and transnitted as
specified by the current active session state.

enum {
hell o_request (0), client_hello(l), server_hello(2),
certificate(11), server_key_exchange (12),
certificate_request(13), server_hell o_done(14),
certificate_verify(15), client_key_exchange(16),
finished(20), (255)

} HandshakeType;

struct {

HandshakeType nsg_type; / * handshake type */
ui nt 24 | engt h; /* bytes in nmessage */
sel ect (HandshakeType) {

case hell o_request: Hel | oRequest ;

case client_hello: CientHello

case server_hello: ServerHel |l o

case certificate: Certificate;

case server_key_exchange: Server KeyExchange
case certificate request: CertificateRequest;
case server_hel |l o_done: Server Hel | oDone;
case certificate_verify: CertificateVerify;
case client_key exchange: dientKeyExchange;
case finished: Fi ni shed;
} body;
} Handshake;

Dierks & Allen St andards Track [Page 32]

RFC 2246 The TLS Protocol Version 1.0 January 1999

The handshake protocol nessages are presented below in the order they
must be sent; sendi ng handshake nessages in an unexpected order
results in a fatal error. Unneeded handshake nessages can be onitted,
however. Note one exception to the ordering: the Certificate nmessage
is used twice in the handshake (from server to client, then from
client to server), but described only in its first position. The one
message which is not bound by these ordering rules in the Hello
Request nessage, which can be sent at any tine, but which should be
ignored by the client if it arrives in the nmddle of a handshake.

7.4.1. Hello nessages

The hell o phase nessages are used to exchange security enhancenent
capabilities between the client and server. Wen a new session
begi ns, the Record Layer’s connection state encryption, hash, and
conpression algorithns are initialized to null. The current
connection state is used for renegotiati on nessages.

7.4.1.1. Hello request

When this nessage will be sent:
The hell o request message may be sent by the server at any tine.

Meani ng of this nessage:
Hell o request is a sinple notification that the client should
begi n the negotiation process anew by sending a client hello
nmessage when convenient. This nmessage will be ignored by the
client if the client is currently negotiating a session. This
message may be ignored by the client if it does not wish to
renegotiate a session, or the client may, if it w shes, respond
with a no_renegotiation alert. Since handshake nessages are
i ntended to have transm ssion precedence over application data,
it is expected that the negotiation will begin before no nore
than a few records are received fromthe client. If the server
sends a hello request but does not receive a client hello in
response, it may close the connection with a fatal alert.

After sending a hello request, servers should not repeat the request
until the subsequent handshake negotiation is conplete.

Structure of this message
struct { } Hell oRequest;

Not e: This nmessage should never be included in the nmessage hashes which

are nmai ntai ned throughout the handshake and used in the finished
messages and the certificate verify nessage

Dierks & Allen St andards Track [Page 33]

RFC 2246 The TLS Protocol Version 1.0 January 1999

7.4.1.2. dient hello

When this nessage will be sent:
When a client first connects to a server it is required to send
the client hello as its first message. The client can also send a
client hello in response to a hello request or on its own
initiative in order to renegotiate the security paraneters in an
exi sting connection

Structure of this message
The client hello nmessage includes a random structure, which is
used later in the protocol

struct {
ui nt 32 gnt _uni x_ti me;
opaque random byt es[28];
} Random

gnt_uni x_tinme

The current tine and date in standard UNI X 32-bit fornmat (seconds
since the midnight starting Jan 1, 1970, GMI) according to the
sender’s internal clock. Clocks are not required to be set
correctly by the basic TLS Protocol; higher |evel or application
protocol s nmay define additional requirenents.

random byt es
28 bytes generated by a secure random nunber generator

The client hello nmessage includes a variable | ength session
identifier. If not enpty, the value identifies a session between the
same client and server whose security parameters the client wi shes to
reuse. The session identifier may be froman earlier connection, this
connection, or another currently active connection. The second option
is useful if the client only wishes to update the random structures
and derived val ues of a connection, while the third option makes it
possi ble to establish several independent secure connections w thout
repeating the full handshake protocol. These i ndependent connections
may occur sequentially or sinultaneously; a SessionlD becones valid
when the handshake negotiating it conpletes with the exchange of

Fi ni shed nmessages and persists until renoved due to agi ng or because
a fatal error was encountered on a connection associated with the
session. The actual contents of the SessionlD are defined by the
server.

opaque Sessi onl D<0. . 32>;

Dierks & Allen St andards Track [Page 34]

RFC 2246 The TLS Protocol Version 1.0 January 1999

War ni ng:
Because the SessionlDis transmtted w thout encryption or
i medi ate MAC protection, servers must not place confidentia
information in session identifiers or let the contents of fake
session identifiers cause any breach of security. (Note that the
content of the handshake as a whole, including the SessionlD, is
protected by the Finished nessages exchanged at the end of the
handshake.)

The CipherSuite list, passed fromthe client to the server in the
client hell o nmessage, contains the conbinations of cryptographic

al gorithnms supported by the client in order of the client’s
preference (favorite choice first). Each Ci pherSuite defines a key
exchange al gorithm a bulk encryption algorithm (including secret key
I ength) and a MAC al gorithm The server will select a cipher suite
or, if no acceptable choices are presented, return a handshake
failure alert and close the connection

uint8 G pherSuite[2]; /* Cryptographic suite selector */

The client hello includes a list of conpression algorithns supported
by the client, ordered according to the client’s preference.

enum{ null (0), (255) } Conpressi onMet hod;

struct {
Pr ot ocol Version client_version;
Random r andom
Sessionl D session_id;
Ci pher Sui te ci pher_suites<2..2"16-1>;
Conpr essi onMet hod conpressi on_net hods<1..2"8- 1>;
} dientHell o;

client _version
The version of the TLS protocol by which the client wi shes to
communi cate during this session. This should be the | atest
(hi ghest val ued) version supported by the client. For this
version of the specification, the version will be 3.1 (See
Appendi x E for details about backward conpatibility).

random
A client-generated random structure.

session_id
The I D of a session the client wishes to use for this connection
This field should be enpty if no session_id is available or the
client wishes to generate new security paraneters.

Dierks & Allen St andards Track [Page 35]

RFC 2246 The TLS Protocol Version 1.0 January 1999

ci pher _suites
This is a list of the cryptographic options supported by the
client, with the client’s first preference first. If the
session_id field is not enpty (inplying a session resunption
request) this vector must include at |east the cipher_suite from
that session. Values are defined in Appendix A 5.

conpr essi on_net hods
This is a list of the conpression nethods supported by the
client, sorted by client preference. If the session_id field is
not enpty (inplying a session resunption request) it nust include
the conpression_nethod fromthat session. This vector nust
contain, and all inplenentations nust support,
Conpr essi onMet hod. nul I . Thus, a client and server will always be
able to agree on a conpressi on net hod.

After sending the client hello nessage, the client waits for a server
hel | o nessage. Any ot her handshake nmessage returned by the server
except for a hello request is treated as a fatal error

Forward conpatibility note
In the interests of forward conpatibility, it is permitted for a
client hello nessage to include extra data after the conpression
nmet hods. This data nust be included in the handshake hashes, but
nmust otherwi se be ignored. This is the only handshake nessage for
which this is legal; for all other nessages, the ambunt of data
in the nessage nust nmatch the description of the nessage
preci sel y.

7.4.1.3. Server hello

When this nessage will be sent:
The server will send this message in response to a client hello
message when it was able to find an acceptable set of algorithns.
If it cannot find such a match, it will respond with a handshake
failure alert.

Structure of this nessage

struct {
Pr ot ocol Versi on server_version;
Random r andom
Sessi onl D session_id;
Ci pher Sui te ci pher_suite;
Conpr essi onMet hod conpressi on_net hod;

} ServerHell o;

Dierks & Allen St andards Track [Page 36]

RFC 2246 The TLS Protocol Version 1.0 January 1999

server _version
This field will contain the | ower of that suggested by the client
in the client hello and the hi ghest supported by the server. For
this version of the specification, the versionis 3.1 (See
Appendi x E for details about backward conpatibility).

random
This structure is generated by the server and nust be different
from (and i ndependent of) ClientHello.random

session_id
This is the identity of the session corresponding to this
connection. If the dientHello.session_id was non-enpty, the

server will look in its session cache for a match. If a match is
found and the server is willing to establish the new connection
using the specified session state, the server will respond with

the sane value as was supplied by the client. This indicates a
resuned session and dictates that the parties nust proceed
directly to the finished nessages. Gtherwise this field wll
contain a different value identifying the new session. The server
may return an enpty session_id to indicate that the session wll
not be cached and therefore cannot be resunmed. If a session is
resuned, it nust be resumed using the sane cipher suite it was
originally negotiated with.

ci pher_suite
The single cipher suite selected by the server fromthe list in
CientHello.cipher_suites. For resuned sessions this field is the
value fromthe state of the session being resuned.

conpr essi on_net hod
The single conpression algorithmselected by the server fromthe
list in CientHello.conpression_nethods. For resuned sessions
this field is the value fromthe resuned session state.

7.4.2. Server certificate

When this nessage will be sent:
The server nust send a certificate whenever the agreed-upon key
exchange nethod is not an anonynous one. This nessage will always
i medi ately follow the server hell o nessage.

Meani ng of this nessage:
The certificate type nust be appropriate for the selected cipher
suite's key exchange algorithm and is generally an X 509v3
certificate. It nmust contain a key which matches the key exchange
met hod, as follows. Unless otherw se specified, the signing

Dierks & Allen St andards Track [Page 37]

RFC 2246 The TLS Protocol Version 1.0 January 1999

algorithmfor the certificate nust be the sanme as the al gorithm
for the certificate key. Unless otherw se specified, the public
key may be of any | ength.

Key Exchange Al gorithm Certificate Key Type

RSA RSA public key; the certificate nust
all ow the key to be used for encryption

RSA_EXPORT RSA public key of length greater than
512 bits which can be used for signing,
or a key of 512 bits or shorter which
can be used for either encryption or

si gni ng.

DHE_DSS DSS public key.

DHE_DSS_EXPORT DSS public key.

DHE_RSA RSA public key which can be used for
si gni ng.

DHE_RSA EXPORT RSA public key which can be used for
si gni ng.

DH_DSS Diffie-Hellman key. The al gorithm used

to sign the certificate should be DSS.

DH_RSA Diffie-Hell man key. The al gorithm used
to sign the certificate should be RSA

Al'l certificate profiles, key and cryptographic formats are defined
by the | ETF PKI X working group [PKIX]. Wen a key usage extension is
present, the digital Signature bit must be set for the key to be
eligible for signing, as described above, and the keyEnci phernent bit
nmust be present to allow encryption, as described above. The
keyAgreenment bit nust be set on Diffie-Hellnman certificates.

As G pherSuites which specify new key exchange methods are specified
for the TLS Protocol, they will inply certificate format and the
requi red encoded keying information

Structure of this nessage
opaque ASN. 1Cert<1..2724-1>;

struct {

ASN. 1Cert certificate list<0..2"24-1>;
} Certificate;

Dierks & Allen St andards Track [Page 38]

RFC 2246 The TLS Protocol Version 1.0 January 1999

certificate |ist

This is a sequence (chain) of X 509v3 certificates. The sender’s
certificate nmust come first in the list. Each follow ng
certificate nust directly certify the one preceding it. Because
certificate validation requires that root keys be distributed

i ndependently, the self-signed certificate which specifies the
root certificate authority may optionally be onmtted fromthe
chain, under the assunption that the renpte end nust already
possess it in order to validate it in any case.

The sane nessage type and structure will be used for the client’s
response to a certificate request nessage. Note that a client may
send no certificates if it does not have an appropriate certificate
to send in response to the server’s authentication request.

Not e:

7.4.3.

PKCS #7 [PKCS7] is not used as the format for the certificate
vector because PKCS #6 [PKCS6] extended certificates are not
used. Al so PKCS #7 defines a SET rather than a SEQUENCE, nuki ng
the task of parsing the list nore difficult.

Server key exchange nessage

When this nessage will be sent:

This message will be sent inmediately after the server
certificate nessage (or the server hello nessage, if this is an
anonynmous negoti ation).

The server key exchange nessage is sent by the server only when
the server certificate nessage (if sent) does not contain enough
data to allow the client to exchange a prenaster secret. This is
true for the follow ng key exchange nethods:

RSA EXPORT (if the public key in the server certificate is
| onger than 512 bits)

DHE_DSS

DHE_DSS_EXPORT

DHE_RSA

DHE_RSA EXPORT

DH_anon

It is not legal to send the server key exchange nmessage for the
foll owi ng key exchange nethods:

RSA

RSA_EXPCORT (when the public key in the server certificate is
| ess than or equal to 512 bits in I ength)

DH_DSS

DH_RSA

Dierks & Allen St andards Track [Page 39]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Meani ng of this nmessage:
Thi s message conveys cryptographic infornation to allow the
client to communi cate the premaster secret: either an RSA public
key to encrypt the premaster secret with, or a Diffie-Hellman
public key with which the client can conplete a key exchange
(with the result being the premaster secret.)

As additional CipherSuites are defined for TLS which include new key
exchange al gorithns, the server key exchange nessage will be sent if
and only if the certificate type associated with the key exchange

al gorithm does not provide enough information for the client to
exchange a prenaster secret.

Note: According to current US export law, RSA noduli |arger than 512
bits may not be used for key exchange in software exported from
the US. Wth this nmessage, the | arger RSA keys encoded in
certificates may be used to sign tenporary shorter RSA keys for
t he RSA EXPORT key exchange net hod.

Structure of this nessage
enum{ rsa, diffie_hellman } KeyExchangeAl gorithm

struct {
opaque rsa_nodul us<l..2716- 1>;
opaque rsa_exponent<l..2"16-1>;
} Server RSAPar ans;

rsa_nodul us
The nmodul us of the server’s tenporary RSA key.

r sa_exponent
The public exponent of the server’'s tenporary RSA key.

struct {
opaque dh_p<1..2716-1>;
opaque dh_g<1..2716-1>;
opaque dh_Ys<1..2"16-1>;
} Server DHPar ans; /* Epheneral DH paraneters */

dh_p
The prime nodul us used for the Diffie-Hellman operation

dh_g
The generator used for the Diffie-Hellman operation

dh_Ys
The server’s Diffie-Hellman public value (g"X nod p).

Dierks & Allen St andards Track [Page 40]

RFC 2246 The TLS Protocol Version 1.0 January 1999

struct {
sel ect (KeyExchangeAl gorithm {
case diffie_hell man:
Ser ver DHPar ans par ans,;
Si gnat ure si gned_par ans;
case rsa
Ser ver RSAPar ans par ans;
Si gnature signed_parans;
i
} Server KeyExchange;

par ans
The server’s key exchange paraneters

si gned_par ans
For non-anonynous key exchanges, a hash of the correspondi ng
parans value, with the signature appropriate to that hash
appl i ed.

nmd5_hash
MD5(d i ent Hel | o. random + Server Hel | o. random + Ser ver Par ans) ;

sha_hash
SHA(C i ent Hel | 0. random + Server Hel | 0. random + Ser ver Par ans) ;

enum { anonynous, rsa, dsa } SignatureAl gorithm

sel ect (SignatureAlgorithm
{ case anonymnous: struct { };
case rsa
digitally-signed struct {
opaque nd5 hash[16];
opaque sha_hash[20];

case dsa
digitally-signed struct {
opaque sha_hash[20];
} Signat u,re;
7.4.4. Certificate request
When this nessage will be sent:

A non-anonynous server can optionally request a certificate from
the client, if appropriate for the selected cipher suite. This

message, if sent, will imediately follow the Server Key Exchange
message (if it is sent; otherw se, the Server Certificate
nmessage) .

Dierks & Allen St andards Track [Page 41]

RFC 2246 The TLS Protocol Version 1.0 January 1999

7.

Not e:

Not e:

4.

Structure of this nessage

5.

enum {
rsa_sign(1l), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
(255)

} AdientCertificateType;

opaque Di stingui shedNane<l..2"16-1>;

struct {

CientCertificateType certificate_types<l..2"8-1>;

Di sti ngui shedNane certificate_authorities<3..2"16-1>;
} CertificateRequest;

certificate types
This field is a list of the types of certificates requested,
sorted in order of the server’s preference

certificate authorities
A list of the distinguished names of acceptable certificate
authorities. These distingui shed names may specify a desired
di stingui shed name for a root CA or for a subordinate CA
thus, this nessage can be used both to describe known roots
and a desired authorization space.

Di sti ngui shedNane is derived from [X509].

It is a fatal handshake_failure alert for an anonynous server to
request client identification

Server hell o done

When this nessage will be sent:

The server hello done nessage is sent by the server to indicate
the end of the server hello and associ ated nmessages. After
sending this nmessage the server will wait for a client response.

Meani ng of this nessage:

Thi s message neans that the server is done sending nessages to
support the key exchange, and the client can proceed with its
phase of the key exchange.

Upon recei pt of the server hello done nessage the client should
verify that the server provided a valid certificate if required
and check that the server hello paraneters are acceptable.

Structure of this message

struct { } ServerHell oDone;

Dierks & Allen St andards Track [Page 42]

RFC 2246 The TLS Protocol Version 1.0 January 1999

7.4.6. dient certificate

When this nessage will be sent:
This is the first message the client can send after receiving a
server hell o done nmessage. This nmessage is only sent if the
server requests a certificate. If no suitable certificate is
avai l abl e, the client should send a certificate nessage
containing no certificates. If client authentication is required
by the server for the handshake to continue, it may respond with
a fatal handshake failure alert. Client certificates are sent
using the Certificate structure defined in Section 7.4.2.

Not e: When using a static Diffie-Hell man based key exchange net hod
(DH_DSS or DH RSA), if client authentication is requested, the
Diffie-Hellman group and generator encoded in the client’'s
certificate nust match the server specified D ffie-Hellman
paraneters if the client’s paraneters are to be used for the key
exchange.

7.4.7. Cient key exchange nessage

When this nmessage will be sent:
This message is always sent by the client. It will immed ately
follow the client certificate nessage, if it is sent. Ot herw se
it will be the first nmessage sent by the client after it receives
the server hell o done nessage.

Meani ng of this nmessage:
Wth this nessage, the premaster secret is set, either though
direct transnission of the RSA-encrypted secret, or by the
transm ssion of Diffie-Hellnman paranmeters which will allow each
side to agree upon the sane premaster secret. \Wen the key
exchange method is DH RSA or DH DSS, client certification has
been requested, and the client was able to respond with a
certificate which contained a Diffie-Hellmn public key whose
paraneters (group and generator) matched those specified by the
server inits certificate, this message will not contain any
dat a.

Structure of this message:
The choi ce of nessages depends on whi ch key exchange nethod has
been sel ected. See Section 7.4.3 for the KeyExchangeAl gorithm
definition.

struct {
sel ect (KeyExchangeAl gorithnm {
case rsa: EncryptedPreMasterSecret;
case diffie hellman: dientDiffieHell manPublic;

Dierks & Allen St andards Track [Page 43]

RFC 2246 The TLS Protocol Version 1.0 January 1999

} exchange_keys;
} dient KeyExchange;

7.4.7.1. RSA encrypted premaster secret nessage

Meani ng of this nmessage:

If RSA is being used for key agreenent and authentication, the
client generates a 48-byte prenaster secret, encrypts it using
the public key fromthe server’s certificate or the tenporary RSA
key provided in a server key exchange nmessage, and sends the
result in an encrypted premaster secret nessage. This structure
is a variant of the client key exchange nessage, not a nessage in
itself.

Structure of this nessage

Not e:

struct {
Pr ot ocol Versi on client_version;
opaque randoni 46];

} PreMaster Secret;

client_version
The | atest (newest) version supported by the client. This is
used to detect version roll-back attacks. Upon receiving the
prenmaster secret, the server should check that this val ue
mat ches the value transnmitted by the client in the client
hel | o nessage.

random
46 securel y-generated random bytes.

struct {
publ i c-key-encrypted PreMasterSecret pre_naster_secret;
} Encrypt edPreMast er Secr et ;

An attack discovered by Daniel Bleichenbacher [BLEI] can be used
to attack a TLS server which is using PKCS#1 encoded RSA. The
attack takes advantage of the fact that by failing in different
ways, a TLS server can be coerced into revealing whether a
particul ar nmessage, when decrypted, is properly PKCS#1 formatted
or not.

The best way to avoid vulnerability to this attack is to treat
incorrectly fornatted nessages in a nanner indistinguishable from
correctly formatted RSA bl ocks. Thus, when it receives an
incorrectly formatted RSA bl ock, a server should generate a
random 48- byte val ue and proceed using it as the prenmaster

secret. Thus, the server will act identically whether the

recei ved RSA block is correctly encoded or not.

Dierks & Allen St andards Track [Page 44]

RFC 2246 The TLS Protocol Version 1.0 January 1999

pre_naster_secret
This random val ue is generated by the client and is used to
generate the nmaster secret, as specified in Section 8. 1.

7.4.7.2. Cient Diffie-Hellmn public val ue

Meani ng of this nessage:
This structure conveys the client’s Diffie-Hellman public val ue
(Yc) if it was not already included in the client’s certificate.
The encoding used for Yc is determ ned by the enumnerated
Publ i cVal ueEncodi ng. This structure is a variant of the client
key exchange nessage, not a nessage in itself.

Structure of this nessage
enum{ inplicit, explicit } PublicVal ueEncodi ng;

inmplicit
If the client certificate already contains a suitable
Diffie-Hell man key, then Yc is inplicit and does not need to
be sent again. In this case, the dient Key Exchange nessage
will be sent, but will be enpty.

explicit
Yc needs to be sent.

struct {
sel ect (PublicVal ueEncodi ng) {
case inplicit: struct { };
case explicit: opaque dh_Yc<l..2"16-1>;
} dh_public;
} dientDiffieHell manPublic

dh_Yc
The client’s Diffie-Hellman public value (Yc).

7.4.8. Certificate verify

When this nessage will be sent:
This nessage is used to provide explicit verification of a client
certificate. This message is only sent following a client
certificate that has signing capability (i.e. all certificates
except those containing fixed Diffie-Hellman paraneters). Wen
sent, it will inmediately follow the client key exchange nessage.

Structure of this nessage
struct {
Si gnat ure signature;
} CertificateVerify;

Dierks & Allen St andards Track [Page 45]

RFC 2246 The TLS Protocol Version 1.0 January 1999

The Signature type is defined in 7.4.3.

CertificateVerify.signature.nd5_hash
MD5(handshake_nessages) ;

Certificate.signature.sha_hash
SHA(handshake_nessages) ;

Her e handshake_nessages refers to all handshake nessages sent or
received starting at client hello up to but not including this
message, including the type and length fields of the handshake
messages. This is the concatenation of all the Handshake structures
as defined in 7.4 exchanged thus far.

7.4.9. Finished

When this nessage will be sent:
A finished nessage is always sent immedi ately after a change
ci pher spec nessage to verify that the key exchange and
aut henti cation processes were successful. It is essential that a
change ci pher spec nessage be received between the other
handshake nessages and the Fini shed nessage.

Meani ng of this nessage:
The finished nessage is the first protected with the just-
negoti ated al gorithns, keys, and secrets. Recipients of finished
nmessages nmust verify that the contents are correct. Once a side
has sent its Finished nessage and received and validated the
Fi ni shed nmessage fromits peer, it may begin to send and receive
application data over the connection

struct {
opaque verify_data[12];
} Fini shed;

verify data
PRF(nmaster _secret, finished |abel, MD5(handshake nessages) +
SHA- 1(handshake_nessages)) [O0..11];

fini shed_I abel
For Finished nessages sent by the client, the string "client
finished". For Finished nessages sent by the server, the
string "server finished"

handshake_nessages
Al'l of the data fromall handshake nessages up to but not
including this nessage. This is only data visible at the
handshake | ayer and does not include record | ayer headers.

Dierks & Allen St andards Track [Page 46]

RFC 2246 The TLS Protocol Version 1.0 January 1999

This is the concatenation of all the Handshake structures as
defined in 7.4 exchanged thus far.

It is a fatal error if a finished nessage is not preceded by a change
ci pher spec nessage at the appropriate point in the handshake.

The hash contained in finished nessages sent by the server

i ncorporate Sender.server; those sent by the client incorporate
Sender.client. The val ue handshake_nessages includes all handshake
messages starting at client hello up to, but not including, this

fini shed message. This nmay be different from handshake_nessages in
Section 7.4.8 because it would include the certificate verify nessage
(if sent). Also, the handshake nessages for the finished nessage sent
by the client will be different fromthat for the finished nessage
sent by the server, because the one which is sent second will include
the prior one.

Not e: Change ci pher spec nessages, alerts and any other record types
are not handshake nessages and are not included in the hash
conmput ations. Al so, Hello Request nessages are omtted from
handshake hashes.

8. Cryptographi c conputations

In order to begin connection protection, the TLS Record Protoco
requires specification of a suite of algorithnms, a naster secret, and
the client and server random val ues. The authentication, encryption
and MAC al gorithms are determ ned by the cipher_suite selected by the
server and revealed in the server hello nessage. The conpression
algorithmis negotiated in the hello nessages, and the random val ues
are exchanged in the hello nessages. Al that remains is to calculate
the master secret.

8.1. Conputing the master secret

For all key exchange nethods, the sane algorithmis used to convert
the pre_nmaster_secret into the nmaster_secret. The pre_naster_secret
shoul d be deleted from nenory once the naster_secret has been
conput ed.

mast er _secret = PRF(pre_naster_secret, "naster secret”,
dientHello.random + ServerHel | 0. randon)
[0..47];

The master secret is always exactly 48 bytes in I ength. The | ength of
the premaster secret will vary depending on key exchange net hod.

Dierks & Allen St andards Track [Page 47]

RFC 2246 The TLS Protocol Version 1.0 January 1999

8.1.1. RSA

When RSA is used for server authentication and key exchange, a 48-
byte pre_master_secret is generated by the client, encrypted under
the server’s public key, and sent to the server. The server uses its
private key to decrypt the pre _naster _secret. Both parties then
convert the pre_nmmster_secret into the nmaster_secret, as specified
above.

RSA digital signatures are performed using PKCS #1 [PKCS1] bl ock type
1. RSA public key encryption is perfornmed using PKCS #1 bl ock type 2.

8.1.2. Diffie-Hellmn

A conventional Diffie-Hellmn conputation is performed. The
negoti ated key (Z) is used as the pre_master_secret, and is converted
into the master_secret, as specified above.

Note: Diffie-Hellman paraneters are specified by the server, and nmay

9.

10.

be either epheneral or contained within the server’s certificate.
Mandat ory G pher Suites

In the absence of an application profile standard specifying
otherwi se, a TLS conpliant application MJST inplenment the cipher
suite TLS DHE DSS W TH _3DES_EDE_CBC_SHA.

Appl i cation data protoco

Application data nessages are carried by the Record Layer and are
fragment ed, conpressed and encrypted based on the current connection
state. The nessages are treated as transparent data to the record

| ayer.

Dierks & Allen St andards Track [Page 48]

RFC 2246 The TLS Protocol Version 1.0 January 1999

A. Protocol constant val ues
This section describes protocol types and constants.
A. 1. Record | ayer

struct {
uint8 maj or, mnor;
} Protocol Version;

Protocol Version version = { 3, 1 }; /* TLS v1.0 */

enum {
change_ci pher _spec(20), alert(21), handshake(22),
application_data(23), (255)

} Content Type;

struct {

Cont ent Type type;

Pr ot ocol Versi on version;

uint16 | ength;

opaque fragment[TLSPI ai nt ext. | ength];
} TLSPI ai nt ext;

struct {

Cont ent Type type;

Pr ot ocol Versi on version;

uint16 | engt h;

opaque fragment[TLSConpr essed. | engt h];
} TLSConpr essed;

struct {
Cont ent Type type;
Pr ot ocol Ver si on versi on;
uint 16 | engt h;
sel ect (G pher Spec. ci pher _type) {
case stream GenericStreanC pher;
case bl ock: CenericBl ockCi pher
} fragnent;
} TLSGi phertext;

streamci phered struct {
opaque content[TLSConpressed. | engt h];
opaque MAC Ci pher Spec. hash_si ze] ;

} GenericStreanC pher;

bl ock- ci phered struct {
opaque content[TLSConpressed. | engt h];

Dierks & Allen St andards Track [Page 49]

RFC 2246 The TLS Protocol Version 1.0

opaque MAC Ci pher Spec. hash_si ze] ;

ui nt 8 paddi ng[Generi cBl ockCi pher. paddi ng_| engt h];

ui nt 8 paddi ng_I engt h;
} Ceneri cBl ockCi pher;

A. 2. Change ci pher specs nessage

struct {

enum { change_ci pher _spec(1), (255) } type;

} ChangeGi pher Spec;
A 3. Alert nessages
enum { warning(l), fatal (2),

enum {
cl ose_notify(0),

(255) } AlertlLevel

unexpect ed_nessage(10),

bad record_nac(20),

decryption_fail ed(21),

record_overflow 22),

deconpressi on_fail ure(30),
handshake_f ail ure(40),

bad certificate(42),

unsupported certificate(43),
certificate revoked(44),
certificate_expired(45),
certificate_unknown(46),
illegal _paraneter(47),

unknown_ca(48),

access_deni ed(49),
decode_error(50),
decrypt __error(51),

export_restriction(60),

prot ocol _version(70),

i nsufficient_security(71),

i nternal _error(80),
user _cancel ed(90),

no_renegoti ati on(100),

(255)
} AlertDescription;

struct {
Al ertlLevel |evel;

Al ert Descri ption description;

} Alert;

Dierks & All en St andards Track

January 1999

[Page 50]

RFC 2246

The TLS Protoco

A. 4. Handshake protocol

enum {

hel | o_request (0),
certificate(11),
certificate request(13),
certificate verify(15),
fini shed(20),

(255)

} HandshakeType;

struct {

HandshakeType nsg _type
ui nt 24 | engt h;
sel ect (HandshakeType) {

client_hello(1),
server _key_exchange (12),

server _hel |l o_done(14),
client_key exchange(16),

Version 1.0

case hell o_request: Hel | oRequest ;

case client_hello: ClientHello

case server_hel |l o: ServerHell o

case certificate: Certificate;

case server_key exchange: Server KeyExchange
case certificate request: CertificateRequest;

case
case

server _hel | o_done:
certificate_ verify:

Server Hel | oDone;
CertificateVerify;

server_hell o(2),

January 1999

case client_key exchange: i entKeyExchange;
case finished: Fi ni shed;
} body;
} Handshake;

A . 4.1. Hello nessages

struct { } Hell oRequest;

struct {
ui nt 32 gnt _uni x_ti nme;
opaque random byt es[28];
} Random

opaque Sessi onl D<0. . 32>;
uint8 G pherSuite[?2];

enum { null (0), (255) } Conpressi onMet hod;
struct {
Pr ot ocol Version client_version;
Random r andom
Sessionl D session_id;
Ci pher Sui te ci pher_suites<2..2"16-1>;
Conpr essi onMet hod conpressi on_net hods<1. . 2"8- 1>;

Dierks & Allen St andards Track [Page 51]

RFC 2246 The TLS Protocol Version 1.0

A 4.

} dientHell o;

struct {
Pr ot ocol Versi on server_version;
Random r andom
Sessi onl D session_id;
Ci pher Sui te ci pher_suite;
Conpr essi onMet hod conpressi on_net hod;
} ServerHell o;

2. Server authentication and key exchange nessages
opaque ASN. 1Cert <2”24- 1>;

struct {
ASN. 1Cert certificate list<l..2"24-1>;
} Certificate;

enum{ rsa, diffie_hellman } KeyExchangeAl gorithm

struct {
opaque RSA nodul us<l1..2716-1>;
opaque RSA exponent<l..2”"16-1>;
} Server RSAPar ans;

struct {
opaque DH p<1..2716-1>;
opaque DH g<1..2716-1>;
opaque DH Ys<1..2"16-1>
} Server DHPar ans;

struct {
sel ect (KeyExchangeAl gorithm {
case diffie_hel |l nan:
Ser ver DHPar ans par ans,;
Si gnature signed_parans;
case rsa
Ser ver RSAPar ans par ans;
Si gnat ure si gned_par ans;
s
} Server KeyExchange;

enum { anonynous, rsa, dsa } SignatureAl gorithm

sel ect (SignatureAl gorithm
{ case anonymous: struct { };
case rsa
digitally-signed struct {

Dierks & All en St andards Track

January 1999

[Page 52]

RFC 2246 The TLS Protocol Version 1.0 January 1999

opaque nd5_hash[16];
opaque sha_hash[20] ;
H
case dsa
digitally-signed struct {
opaque sha_hash[20] ;
H

} Signature;

enum {
rsa_sign(l), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
(255)

} dientCertificateType;

opaque Di stingui shedNane<1..2716-1>;

struct {

CientCertificateType certificate types<l..2"8-1>;

Di stingui shedNane certificate_ authorities<3..2"16-1>;
} CertificateRequest;

struct { } ServerHell oDone;
A . 4.3. dient authentication and key exchange nessages

struct {
sel ect (KeyExchangeAl gorithm {
case rsa: EncryptedPreMasterSecret;
case diffie_hellman: DiffieHell mand i ent PublicVal ue;
} exchange_keys;
} dient KeyExchange;

struct {
Pr ot ocol Versi on client_version;
opaque randonf 46] ;

} PreMaster Secret;
struct {
publi c- key-encrypted PreMasterSecret pre_naster_secret;
} Encrypt edPr eMast er Secr et ;
enum{ inplicit, explicit } PublicVal ueEncodi ng;
struct {
sel ect (PublicVal ueEncodi ng) {

case inplicit: struct {};
case explicit: opaque DH Yc<l..2"16-1>;

Dierks & Allen St andards Track [Page 53]

RFC 2246 The TLS Protocol Version 1.0 January 1999

} dh_public;
} AientDiffieHell manPubli c;

struct {
Si gnat ure signature;
} CertificateVerify;

A 4. 4. Handshake finalization nessage

struct {
opaque verify data[12];
} Finished;

A.5. The Ci pherSuite

The follow ng val ues define the CipherSuite codes used in the client
hell o and server hell o nessages.

A CipherSuite defines a cipher specification supported in TLS Version
1.0.

TLS NULL_ W TH NULL_NULL is specified and is the initial state of a
TLS connection during the first handshake on that channel, but nust
not be negotiated, as it provides no nore protection than an
unsecured connecti on.

Gi pherSuite TLS_NULL_W TH NULL_NULL = { 0x00, 0X00 };

The following CipherSuite definitions require that the server provide
an RSA certificate that can be used for key exchange. The server nay
request either an RSA or a DSS signature-capable certificate in the
certificate request nessage.

Ci pherSuite TLS RSA W TH _NULL_MD5 = { 0x00, 0x01 };
Ci pherSuite TLS RSA W TH_NULL_SHA = { 0x00, 0x02 };
Ci pherSuite TLS_RSA EXPORT_W TH_RC4_40_ND5 = { 0x00, 0x03 };
Ci pherSuite TLS RSA WTH RC4_128 MD5 = { 0x00, 0x04 };
Ci pherSuite TLS RSA WTH RC4_128_ SHA = { 0x00, 0x05 };
Ci pherSuite TLS_RSA EXPORT_W TH_RC2_CBC 40_MD5 = { 0x00, 0x06 };
Ci pherSuite TLS RSA W TH_| DEA CBC_SHA = { 0x00, 0x07 };
Ci pherSuite TLS RSA EXPORT_W TH _DES40_CBC_SHA = { 0x00, 0x08 };
Ci pherSuite TLS_RSA W TH_DES_CBC_SHA = { 0x00, 0x09 };
Ci pherSuite TLS RSA W TH 3DES EDE CBC _SHA = { 0x00, Ox0A };

The following CipherSuite definitions are used for server-

aut henticated (and optionally client-authenticated) Diffie-Hellman.
DH denotes ci pher suites in which the server’s certificate contains
the Diffie-Hellman paraneters signed by the certificate authority

Dierks & Allen St andards Track [Page 54]

RFC 2246 The TLS Protocol Version 1.0 January 1999

(CA). DHE denotes epheneral Diffie-Hellnman, where the Diffie-Hell nman
paraneters are signed by a DSS or RSA certificate, which has been
signed by the CA. The signing algorithmused is specified after the
DH or DHE parameter. The server can request an RSA or DSS signat ure-
capable certificate fromthe client for client authentication or it
may request a Diffie-Hellman certificate. Any Diffie-Hell man
certificate provided by the client nust use the paraneters (group and
generator) described by the server.

Ci pherSuite TLS DH DSS EXPORT_W TH DES40 _CBC SHA = { 0x00, 0x0B };
Ci pherSuite TLS DH DSS W TH DES_CBC_SHA = { 0x00, 0x0C };
Ci pherSuite TLS DH DSS W TH_3DES_EDE_CBC_SHA = { 0x00, 0x0D };
Ci pherSuite TLS DH RSA EXPORT W TH DES40_CBC SHA = { 0x00, Ox0E };
Ci pherSuite TLS DH RSA W TH DES CBC _SHA = { 0x00, OxOF };
Ci pherSuite TLS DH RSA W TH 3DES EDE CBC SHA = { 0x00, 0x10 };
Ci pherSuite TLS DHE DSS EXPORT W TH DES40 _CBC SHA = { 0x00, Ox11 };
Ci pherSuite TLS DHE DSS W TH_DES_CBC_SHA = { 0x00, 0x12 };
Ci pherSuite TLS _DHE _DSS W TH_3DES_EDE_CBC_SHA = { 0x00, 0x13 };
Ci pher Suite TLS DHE RSA EXPORT W TH DES40 _CBC SHA = { 0x00, 0x14 };
Ci pherSuite TLS DHE RSA W TH_DES_CBC_SHA = { 0x00, 0x15 };
Ci pherSuite TLS DHE RSA W TH 3DES _EDE_CBC _SHA = { 0x00, 0x16 };

The follow ng cipher suites are used for conpletely anonynmous
Diffie-Hell man communications in which neither party is

aut henticated. Note that this node is vulnerable to man-in-the-niddle
attacks and is therefore deprecated.

Ci pher Suite TLS DH anon_EXPORT_W TH_RC4_40_MD5 = { 0x00, 0x17 };
Ci pherSuite TLS DH anon_W TH RC4_128 NMD5 = { 0x00, 0x18 };
C pherSuite TLS DH anon_EXPORT_W TH DES40_CBC _SHA = { 0x00, 0x19 };
Ci pherSuite TLS DH anon_ W TH DES CBC SHA = { 0x00, Ox1A };
Ci pherSuite TLS DH anon W TH 3DES EDE CBC SHA = { 0x00, 0x1B };

Note: All cipher suites whose first byte is OxFF are considered
private and can be used for defining |ocal/experinental
algorithns. Interoperability of such types is a |local matter.

Not e: Additional cipher suites can be registered by publishing an RFC
whi ch specifies the cipher suites, including the necessary TLS
protocol information, including nmessage encodi ng, prenaster
secret derivation, symmetric encryption and MAC cal cul ati on and
appropriate reference information for the algorithnms involved.
The RFC editor’'s office may, at its discretion, choose to publish
specifications for cipher suites which are not conpletely
described (e.g., for classified algorithns) if it finds the
specification to be of technical interest and conpletely
speci fi ed.

Dierks & Allen St andards Track [Page 55]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Not e: The ci pher suite values { 0x00, 0x1C} and { 0x00, Ox1D } are
reserved to avoid collision with Fortezza-based ci pher suites in

SSL 3.
A.6. The Security Paranmeters

These security paraneters are deternined by the TLS Handshake
Protocol and provided as paraneters to the TLS Record Layer in order
toinitialize a connection state. SecurityParaneters includes:

enum { null (0), (255) } Conpressi onMet hod;
enum { server, client } Connecti onEnd;

enum{ null, rc4, rc2, des, 3des, des40, idea }
Bul kCi pher Al gorit hm

enum { stream block } C pherType;
enum{ true, false } |sExportable;
enum { null, nmd5, sha } MACA gorithm

/* The al gorithns specified in Conpressi onMet hod,
Bul kG pher Al gorithm and MACAl gorithm may be added to. */

struct {
Connecti onEnd entity;
Bul kCi pher Al gorit hm bul k_ci pher _al gorithm
Ci pher Type ci pher _type;
ui nt 8 key_si ze;
uint8 key_material _I ength;
| sExportabl e i s_exportabl e;
MACAI gor it hm nac_al gorit hm
ui nt 8 hash_si ze;
Conpr essi onMet hod conpressi on_al gorithm
opaque naster_secret[48];
opaque client_randoni32];
opaque server_randoni 32];
} SecurityParaneters;

Dierks & Allen St andards Track [Page 56]

RFC 2246 The TLS Protocol Version 1.0 January 1999

B. dossary

application protoco
An application protocol is a protocol that normally |ayers
directly on top of the transport layer (e.g., TCP/IP). Exanples
i nclude HTTP, TELNET, FTP, and SMIP

asymetric cipher
See public key cryptography.

aut henti cati on
Aut hentication is the ability of one entity to determ ne the
identity of another entity.

bl ock ci pher
A bl ock cipher is an algorithmthat operates on plaintext in
groups of bits, called blocks. 64 bits is a common bl ock size.

bul k ci pher
A symmetric encryption algorithmused to encrypt |arge quantities
of data.

ci pher bl ock chaining (CBQC
CBC is a node in which every plaintext block encrypted with a
bl ock cipher is first exclusive-CORed with the previous ciphertext
bl ock (or, in the case of the first block, with the
initialization vector). For decryption, every block is first
decrypted, then exclusive-ORed with the previous ciphertext block

(or 1V).

certificate
As part of the X 509 protocol (a.k.a. |SO Authentication
framework), certificates are assigned by a trusted Certificate
Authority and provide a strong binding between a party's identity
or some other attributes and its public key.

client
The application entity that initiates a TLS connection to a
server. This may or may not inply that the client initiated the
underlying transport connection. The primary operationa
di fference between the server and client is that the server is
general ly authenticated, while the client is only optionally
aut henti cat ed.

client wite key
The key used to encrypt data witten by the client.

Dierks & Allen St andards Track [Page 57]

RFC 2246 The TLS Protocol Version 1.0 January 1999

client wite MAC secret
The secret data used to authenticate data witten by the client.

connection
A connection is a transport (in the OSI |ayering nodel
definition) that provides a suitable type of service. For TLS
such connections are peer to peer relationships. The connections
are transient. Every connection is associated with one session.

Data Encryption Standard
DES is a very widely used symetric encryption algorithm DES is
a block cipher with a 56 bit key and an 8 byte bl ock size. Note
that in TLS, for key generation purposes, DES is treated as
having an 8 byte key length (64 bits), but it still only provides
56 bits of protection. (The Iow bit of each key byte is presuned
to be set to produce odd parity in that key byte.) DES can al so
be operated in a node where three independent keys and three
encryptions are used for each bl ock of data; this uses 168 bits
of key (24 bytes in the TLS key generati on nethod) and provides
the equival ent of 112 bits of security. [DES], [3DES]

Digital Signature Standard (DSS)

A standard for digital signing, including the Digital Signing
Al gorithm approved by the National Institute of Standards and
Technol ogy, defined in NIST FIPS PUB 186, "Digital Signature
Standard, " published May, 1994 by the U S. Dept. of Commerce.

[BSS]

digital signatures
Digital signatures utilize public key cryptography and one-way
hash functions to produce a signature of the data that can be
aut henticated, and is difficult to forge or repudiate.

handshake
An initial negotiation between client and server that establishes
the paraneters of their transactions.

Initialization Vector (I1V)
When a bl ock cipher is used in CBC node, the initialization
vector is exclusive-ORed with the first plaintext block prior to
encryption.

| DEA

A 64-bit bl ock cipher designed by Xuejia Lai and Janmes Massey.
[| DEA]

Dierks & Allen St andards Track [Page 58]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Message Aut hentication Code (MAC
A Message Authentication Code is a one-way hash conputed froma
nmessage and sonme secret data. It is difficult to forge w thout
knowi ng the secret data. Its purpose is to detect if the nessage
has been altered.

mast er secret
Secure secret data used for generating encryption keys, MAC
secrets, and |Vs.

MD5
MD5 is a secure hashing function that converts an arbitrarily
Il ong data streaminto a digest of fixed size (16 bytes). [MD5]

public key cryptography
A cl ass of cryptographi c techni ques enpl oyi ng two-key ci phers.
Messages encrypted with the public key can only be decrypted with
the associated private key. Conversely, nessages signed with the
private key can be verified with the public key.

one-way hash function
A one-way transformation that converts an arbitrary anount of
data into a fixed-length hash. It is conmputationally hard to
reverse the transformation or to find collisions. MD5 and SHA are
exanpl es of one-way hash functions.

RC2
A bl ock ci pher devel oped by Ron Rivest at RSA Data Security, Inc.
[RSADSI | described in [RC2].

RC4
A stream ci pher licensed by RSA Data Security [RSADSI]. A
conpati bl e cipher is described in [RC4].

RSA
A very wi dely used public-key algorithmthat can be used for
either encryption or digital signing. [RSA

sal t
Non-secret random data used to nake export encryption keys resist
preconput ati on attacks

server

The server is the application entity that responds to requests
for connections fromclients. See al so under client.

Dierks & Allen St andards Track [Page 59]

RFC 2246 The TLS Protocol Version 1.0 January 1999

sessi on
A TLS session is an association between a client and a server
Sessions are created by the handshake protocol. Sessions define a
set of cryptographic security paraneters, which can be shared
anong nul tiple connections. Sessions are used to avoid the
expensi ve negoti ati on of new security paraneters for each
connecti on.

session identifier
A session identifier is a value generated by a server that
identifies a particular session

server wite key
The key used to encrypt data witten by the server

server wite MAC secret
The secret data used to authenticate data witten by the server

SHA
The Secure Hash Algorithmis defined in FIPS PUB 180-1. It
produces a 20-byte output. Note that all references to SHA
actually use the nodified SHA-1 algorithm [SHA]

SSL
Net scape’s Secure Socket Layer protocol [SSL3]. TLS is based on
SSL Version 3.0

stream ci pher
An encryption algorithmthat converts a key into a
cryptographi cal l y-strong keystream which is then excl usive-ORed
with the plaintext.

synmmetric cipher
See bul k ci pher.

Transport Layer Security (TLS)
This protocol; also, the Transport Layer Security working group
of the Internet Engineering Task Force (I ETF). See "Conments" at
the end of this document.

Dierks & Allen St andards Track [Page 60]

RFC 2246 The TLS Protocol Version 1.0 January 1999

C. CipherSuite definitions

Ci pherSuite I's Key G pher Hash
Export abl e Exchange
TLS_NULL_W TH_NULL_NULL * NULL NULL NULL
TLS_RSA W TH_NULL_MD5 * RSA NULL VD5
TLS_RSA W TH NULL_SHA * RSA NULL SHA
TLS_RSA EXPORT_W TH_RC4_40_MD5 * RSA_EXPORT RC4_40 VD5
TLS_RSA W TH_RC4_128_ND5 RSA RC4_128 VD5
TLS_RSA W TH_RC4_128_SHA RSA RC4_128 SHA
TLS_RSA EXPORT_W TH_RC2_CBC_40_MNMD5 * RSA_EXPORT RC2_CBC_40 VD5
TLS_RSA W TH_| DEA_CBC_SHA RSA | DEA_CBC SHA
TLS_RSA EXPORT_W TH_DES40_CBC_SHA * RSA_EXPORT DES40_CBC SHA
TLS_RSA W TH_DES CBC_SHA RSA DES_CBC SHA
TLS_RSA W TH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA
TLS_DH DSS_EXPORT_W TH _DES40_CBC _SHA * DH DSS_EXPORT DES40_CBC SHA
TLS_DH DSS_W TH_DES_CBC_SHA DH_DSS DES_CBC SHA
TLS_DH DSS_W TH_3DES_EDE _CBC_SHA DH_DSS 3DES_EDE_CBC SHA
TLS_DH RSA EXPORT_W TH DES40_CBC _SHA * DH_RSA EXPORT DES40_CBC SHA
TLS DH RSA W TH _DES_CBC_SHA DH_RSA DES_CBC SHA
TLS_DH RSA W TH 3DES_EDE CBC_SHA DH_RSA 3DES_EDE_CBC SHA
TLS_DHE _DSS_EXPORT_W TH _DES40_CBC_SHA * DHE_DSS EXPORT DES40_CBC SHA
TLS_DHE_DSS_W TH_DES_CBC_SHA DHE_DSS DES_CBC SHA
TLS_DHE_DSS_W TH_3DES_EDE_CBC_SHA DHE_DSS 3DES_EDE_CBC SHA
TLS_DHE_RSA EXPORT_W TH_DES40_CBC_SHA * DHE_RSA EXPORT DES40_CBC SHA
TLS_DHE _RSA W TH_DES_CBC_SHA DHE_RSA DES_CBC SHA
TLS_DHE_RSA W TH 3DES_EDE CBC_SHA DHE_RSA 3DES_EDE_CBC SHA
TLS_DH anon_EXPORT_W TH_RC4_40_ND5 * DH_anon_EXPORT RC4_40 VD5
TLS DH anon_WTH RC4_128 MD5 DH_anon RC4_128 VD5
TLS DH anon_EXPORT_W TH DES40_CBC SHA DH_anon DES40_CBC SHA
TLS_DH anon_W TH_DES CBC_SHA DH _anon DES_CBC SHA
TLS_DH anon_W TH_3DES_EDE_CBC_SHA DH_anon 3DES_EDE_CBC SHA
* | ndicates |sExportable is True

Key

Exchange

Al gorithm Description Key size limt

DHE_DSS Epheneral DH with DSS si gnatures None

DHE DSS EXPORT Epheneral DH with DSS si gnatures DH = 512 bhits

DHE_RSA Epheneral DH with RSA signatures None

DHE_RSA EXPORT Epheneral DH with RSA signatures DH = 512 bits,

RSA = none
DH_anon Anonymous DH, no signatures None
DH anon_EXPORT Anonynous DH, no signatures DH = 512 bhits

Dierks & Allen St andards Track [Page 61]

RFC 2246 The TLS Protocol Version 1.0 January 1999

DH _DSS DH wi th DSS-based certificates None
DH DSS EXPORT DH with DSS-based certificates DH = 512 bits
DH_RSA DH wit h RSA-based certificates None
DH RSA EXPORT DH wi th RSA-based certificates DH = 512 bits
RSA = none
NULL No key exchange N A
RSA RSA key exchange None
RSA_EXPORT RSA key exchange RSA = 512 bits

Key size limt
The key size limt gives the size of the largest public key that
can be legally used for encryption in cipher suites that are
exportabl e.

Key Expanded Ef fective IV Bl ock
Ci pher Type Material Key Material Key Bits Size Si ze
NULL * Stream O 0 0 0 N A
| DEA_CBC Bl ock 16 16 128 8 8
RC2_CBC 40 * Bl ock 5 16 40 8 8
RC4_40 * Stream 5 16 40 0 N A
RC4_128 Stream 16 16 128 0 N A
DES40_CBC * Bl ock 5 8 40 8 8
DES_CBC Bl ock 8 8 56 8 8
3DES_EDE_CBC Bl ock 24 24 168 8 8

* | ndicates | sExportable is true.

Type
I ndi cates whether this is a streamci pher or a bl ock cipher
running i n CBC node.

Key Materi al
The nunber of bytes fromthe key_block that are used for
generating the wite keys.

Expanded Key Materi al
The nunber of bytes actually fed into the encryption algorithm

Effective Key Bits
How rmuch entropy nmaterial is in the key material being fed into
the encryption routines.

IV Size
How rmuch data needs to be generated for the initialization
vector. Zero for stream ciphers; equal to the block size for
bl ock ci phers.

Dierks & Allen St andards Track [Page 62]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Bl ock Size
The amount of data a bl ock cipher enciphers in one chunk; a
bl ock ci pher running in CBC nobde can only encrypt an even
multiple of its block size.

Hash Hash Paddi ng
function Si ze Si ze

NULL 0 0

VD5 16 48

SHA 20 40

Dierks & Allen St andards Track [Page 63]

RFC 2246 The TLS Protocol Version 1.0 January 1999

D. Inpl enentati on Notes

The TLS protocol cannot prevent nmany comon security nistakes. This
section provides several recommendations to assist inplenentors.

D.1. Tenporary RSA keys

US Export restrictions lint RSA keys used for encryption to 512
bits, but do not place any linmt on | engths of RSA keys used for
signing operations. Certificates often need to be larger than 512
bits, since 512-bit RSA keys are not secure enough for high-val ue
transactions or for applications requiring |long-termsecurity. Some
certificates are al so designated signing-only, in which case they
cannot be used for key exchange.

When the public key in the certificate cannot be used for encryption
the server signs a tenporary RSA key, which is then exchanged. In
exportabl e applications, the tenporary RSA key should be the maxi num
all owable length (i.e., 512 bits). Because 512-bit RSA keys are
relatively insecure, they should be changed often. For typica

el ectronic comerce applications, it is suggested that keys be
changed daily or every 500 transactions, and nore often if possible.
Note that while it is acceptable to use the sane tenporary key for
nmul tiple transactions, it nust be signed each tinme it is used.

RSA key generation is a tine-consuning process. |In nmany cases, a
lowpriority process can be assigned the task of key generation

Whenever a new key is conpleted, the existing tenporary key can be
replaced with the new one.

D. 2. Random Nunmber Generation and Seedi ng

TLS requires a cryptographically-secure pseudorandom nunber gener ator
(PRNG) . Care must be taken in designing and seedi ng PRNGs. PRNGs
based on secure hash operations, nost notably MD5 and/or SHA, are
acceptabl e, but cannot provide nore security than the size of the
random nunmber generator state. (For exanple, MD5-based PRNGs usually
provide 128 bits of state.)

To estimate the amount of seed material being produced, add the
nunber of bits of unpredictable information in each seed byte. For
exanpl e, keystroke timng values taken froma PC conpatible s 18.2 Hz
timer provide 1 or 2 secure bits each, even though the total size of
the counter value is 16 bits or nore. To seed a 128-bit PRNG one
woul d thus require approxi mately 100 such tiner val ues.

Dierks & Allen St andards Track [Page 64]

RFC 2246 The TLS Protocol Version 1.0 January 1999

War ni ng: The seeding functions in RSAREF and versions of BSAFE prior to
3.0 are order-independent. For exanple, if 1000 seed bits are
supplied, one at a tinme, in 1000 separate calls to the seed
function, the PRNGwi Il end up in a state which depends only
on the nunber of 0 or 1 seed bits in the seed data (i.e.
there are 1001 possible final states). Applications using
BSAFE or RSAREF nust take extra care to ensure proper seeding.
This may be acconplished by accunul ating seed bits into a
buffer and processing themall at once or by processing an
increnmenting counter with every seed bit; either nethod will
rei ntroduce order dependence into the seedi ng process.

D.3. Certificates and authentication

I mpl enent ati ons are responsible for verifying the integrity of
certificates and should generally support certificate revocation
messages. Certificates should always be verified to ensure proper
signing by a trusted Certificate Authority (CA). The selection and
addition of trusted CAs should be done very carefully. Users should
be able to view information about the certificate and root CA

D. 4. G pherSuites

TLS supports a range of key sizes and security levels, including sonme
whi ch provide no or mininmal security. A proper inplenentation wll
probably not support many cipher suites. For exanple, 40-bit
encryption is easily broken, so inplenentations requiring strong
security should not allow 40-bit keys. Simlarly, anonynmous Diffie-
Hel I man is strongly discouraged because it cannot prevent man-in-
the-m ddl e attacks. Applications should al so enforce nininmm and

maxi mum key si zes. For exanple, certificate chains containing 512-bit
RSA keys or signatures are not appropriate for high-security
applications.

Dierks & Allen St andards Track [Page 65]

RFC 2246 The TLS Protocol Version 1.0 January 1999

E. Backward Conpatibility Wth SSL

For historical reasons and in order to avoid a profligate consunption
of reserved port nunbers, application protocols which are secured by
TLS 1.0, SSL 3.0, and SSL 2.0 all frequently share the sane
connection port: for exanple, the https protocol (HTTP secured by SSL
or TLS) uses port 443 regardl ess of which security protocol it is

usi ng. Thus, sone mechani sm nust be deternined to distinguish and
negoti ate anong the various protocols.

TLS version 1.0 and SSL 3.0 are very simlar; thus, supporting both
is easy. TLS clients who wish to negotiate with SSL 3.0 servers
shoul d send client hello nessages using the SSL 3.0 record format and
client hello structure, sending {3, 1} for the version field to note
that they support TLS 1.0. If the server supports only SSL 3.0, it
will respond with an SSL 3.0 server hello; if it supports TLS, with a
TLS server hello. The negotiation then proceeds as appropriate for

t he negoti ated protocol

Simlarly, a TLS server which wishes to interoperate with SSL 3.0
clients should accept SSL 3.0 client hello nessages and respond with
an SSL 3.0 server hello if an SSL 3.0 client hello is received which
has a version field of {3, 0}, denoting that this client does not
support TLS.

Whenever a client already knows the highest protocol known to a
server (for exanple, when resunming a session), it should initiate the
connection in that native protocol

TLS 1.0 clients that support SSL Version 2.0 servers nust send SSL
Version 2.0 client hello nmessages [SSL2]. TLS servers shoul d accept
either client hello format if they wish to support SSL 2.0 clients on
t he same connection port. The only deviations fromthe Version 2.0
specification are the ability to specify a version with a val ue of
three and the support for nore ciphering types in the C pher Spec.

Warning: The ability to send Version 2.0 client hello nmessages will be
phased out with all due haste. Inplenentors should nake every
effort to nmove forward as quickly as possible. Version 3.0
provi des better mechani snms for noving to newer versions.

The follow ng cipher specifications are carryovers from SSL Version
2.0. These are assuned to use RSA for key exchange and
aut henti cati on.

V2Gi pher Spec TLS_RCA_128 W TH_MD5
V2Gi pher Spec TLS_RCA_128_EXPORT40_W TH_MD5
V2Gi pher Spec TLS_RC2_CBC_128_CBC_W TH_MD5

{ 0x01, 0x00, 0x80 };
{ 0x02, 0x00, 0x80 };
{ 0x03, 0x00, 0x80 };

Dierks & Allen St andards Track [Page 66]

RFC 2246 The TLS Protocol Version 1.0 January 1999

V2Ci pher Spec TLS RC2_CBC 128 CBC EXPORT40 W TH _MD5

{ 0x04, 0x00, 0x80 }
{ 0x05, 0x00, 0x80 }
{ 0x06, 0x00, 0x40 }
{ 0x07, 0x00, 0xCO0 }

V2Gi pher Spec TLS_| DEA 128_CBC W TH_MD5
V2Gi pher Spec TLS_DES_64_CBC W TH_MD5
V2Gi pher Spec TLS_DES_192_ EDE3_CBC_W TH_MD5

Ci pher specifications native to TLS can be included in Version 2.0
client hell o nessages using the syntax bel ow. Any V2C pher Spec
element with its first byte equal to zero will be ignored by Version
2.0 servers. Uients sending any of the above V2G pher Specs shoul d
al so include the TLS equival ent (see Appendix A 5):

V2Ci pher Spec (see TLS nane) = { 0x00, Ci pherSuite };
E.1. Version 2 client hello

The Version 2.0 client hello nessage is presented bel ow using this
docunent’s presentation nodel. The true definition is still assuned
to be the SSL Version 2.0 specification

ui nt 8 V2Ci pher Spec[3] ;

struct {
uint8 nsg_type
Ver si on versi on;
uint 16 ci pher _spec_Il engt h;
ui nt 16 session_id_| ength;
uint16 chal |l enge_l engt h;
V2Ci pher Spec ci pher _specs[V2d i ent Hel | 0. ci pher _spec_| engt h];
opaque session_id[V2C ientHello.session_id |ength];
Random chal | enge
} V2dient Hel | o;

msg_type
This field, in conjunction with the version field, identifies a
version 2 client hello nessage. The val ue should be one (1).

version
The hi ghest version of the protocol supported by the client
(equal s Protocol Version.version, see Appendix A 1).

ci pher _spec_l ength
This field is the total length of the field cipher_specs. It
cannot be zero and nust be a multiple of the V2C pher Spec | ength

(3).

Dierks & Allen St andards Track [Page 67]

RFC 2246 The TLS Protocol Version 1.0 January 1999

session_id length
This field nmust have a value of either zero or 16. If zero, the
client is creating a new session. If 16, the session_id field
will contain the 16 bytes of session identification

chal I enge_| ength
The length in bytes of the client’s challenge to the server to
authenticate itself. This value nust be 32.

ci pher _specs
This is a list of all C pherSpecs the client is willing and able
to use. There nust be at | east one Ci pherSpec acceptable to the
server.

session_id
If this field s length is not zero, it will contain the
identification for a session that the client wi shes to resune.

chal | enge
The client challenge to the server for the server to identify
itself is a (nearly) arbitrary I ength random The TLS server will
right justify the challenge data to become the CientHello.random
data (padded with | eading zeroes, if necessary), as specified in
this protocol specification. If the length of the challenge is
greater than 32 bytes, only the last 32 bytes are used. It is
legitimate (but not necessary) for a V3 server to reject a V2
CientHello that has fewer than 16 bytes of chall enge data.

Not e: Requests to resume a TLS session should use a TLS client hello.
E. 2. Avoiding man-in-the-niddle version rollback

When TLS clients fall back to Version 2.0 conpatibility node, they
shoul d use special PKCS #1 bl ock formatting. This is done so that TLS
servers will reject Version 2.0 sessions with TLS-capable clients.

When TLS clients are in Version 2.0 conpatibility node, they set the
right-hand (least-significant) 8 random bytes of the PKCS paddi ng
(not including the terminal null of the padding) for the RSA
encryption of the ENCRYPTED- KEY- DATA field of the CLIENT- MASTER- KEY
to 0x03 (the other padding bytes are randon). After decrypting the
ENCRYPTED- KEY- DATA field, servers that support TLS should issue an
error if these eight padding bytes are 0x03. Version 2.0 servers
recei ving bl ocks padded in this manner will proceed nornally.

Dierks & Allen St andards Track [Page 68]

RFC 2246 The TLS Protocol Version 1.0 January 1999

F. Security analysis

The TLS protocol is designed to establish a secure connection between
a client and a server comuni cating over an insecure channel. This
docunent nmkes several traditional assunptions, including that
attackers have substantial conputational resources and cannot obtain
secret information from sources outside the protocol. Attackers are
assuned to have the ability to capture, nodify, delete, replay, and
otherwi se tanper with nessages sent over the comunication channel
Thi s appendi x outlines how TLS has been designed to resist a variety
of attacks.

F. 1. Handshake protoco

The handshake protocol is responsible for selecting a C pherSpec and
generating a Master Secret, which together conprise the primary
cryptographi c paraneters associated with a secure session. The
handshake protocol can also optionally authenticate parties who have
certificates signed by a trusted certificate authority.

F.1.1. Authentication and key exchange

TLS supports three authenticati on nodes: authentication of both
parties, server authentication with an unauthenticated client, and
total anonymity. Wenever the server is authenticated, the channel is
secure agai nst man-in-the-mniddle attacks, but conpletely anonynous
sessions are inherently vulnerable to such attacks. Anonynmous
servers cannot authenticate clients. If the server is authenticated,
its certificate message nust provide a valid certificate chain

| eading to an acceptable certificate authority. Simlarly,

aut henticated clients nust supply an acceptable certificate to the
server. Each party is responsible for verifying that the other’s
certificate is valid and has not expired or been revoked.

The general goal of the key exchange process is to create a
pre_nmaster_secret known to the communicating parties and not to
attackers. The pre_master_secret will be used to generate the
mast er _secret (see Section 8.1). The nmaster_secret is required to
generate the certificate verify and finished nmessages, encryption
keys, and MAC secrets (see Sections 7.4.8, 7.4.9 and 6.3). By sending
a correct finished nessage, parties thus prove that they know the
correct pre_master_secret.

F.1.1.1. Anonynous key exchange
Conpl et el y anonynous sessions can be established using RSA or

Diffie-Hell man for key exchange. Wth anonynmous RSA, the client
encrypts a pre_master_secret with the server’s uncertified public key

Dierks & Allen St andards Track [Page 69]

RFC 2246 The TLS Protocol Version 1.0 January 1999

extracted fromthe server key exchange nessage. The result is sent in
a client key exchange nessage. Since eavesdroppers do not know the
server’'s private key, it will be infeasible for themto decode the
pre_master_secret. (Note that no anonynous RSA C pher Suites are
defined in this docunent).

Wth Diffie-Hellman, the server’s public paraneters are contained in
the server key exchange nessage and the client’'s are sent in the
client key exchange nessage. Eavesdroppers who do not know the
private val ues should not be able to find the Diffie-Hellmn result
(i.e. the pre_naster_secret).

War ni ng: Conpl etely anonynous connections only provide protection
agai nst passi ve eavesdroppi ng. Unl ess an independent tanper-
proof channel is used to verify that the finished nessages
were not replaced by an attacker, server authentication is
required in environnments where active nman-in-the-niddle
attacks are a concern

F.1.1.2. RSA key exchange and aut hentication

Wth RSA, key exchange and server authentication are conbi ned. The
public key may be either contained in the server’s certificate or may
be a tenporary RSA key sent in a server key exchange nessage. Wen
tenporary RSA keys are used, they are signed by the server’s RSA or
DSS certificate. The signature includes the current
CientHello.random so old signhatures and tenporary keys cannot be
repl ayed. Servers may use a single tenmporary RSA key for nultiple
negoti ati on sessi ons.

Not e: The tenporary RSA key option is useful if servers need |arge
certificates but nust conply with governnent-inposed size linits
on keys used for key exchange.

After verifying the server’s certificate, the client encrypts a
pre_master_secret with the server’s public key. By successfully
decodi ng the pre_naster_secret and producing a correct finished
nessage, the server denonstrates that it knows the private key
corresponding to the server certificate.

When RSA is used for key exchange, clients are authenticated using
the certificate verify nessage (see Section 7.4.8). The client signs
a value derived fromthe naster_secret and all precedi ng handshake
nmessages. These handshake nmessages include the server certificate,
whi ch binds the signature to the server, and ServerHello.random

whi ch binds the signature to the current handshake process.

Dierks & Allen St andards Track [Page 70]

RFC 2246 The TLS Protocol Version 1.0 January 1999

F.1.1.3. Diffie-Hellman key exchange with authentication

Wien Diffie-Hellman key exchange is used, the server can either
supply a certificate containing fixed Diffie-Hellman parameters or
can use the server key exchange nessage to send a set of tenporary
Diffie-Hell man paranmeters signed with a DSS or RSA certificate
Tenporary paraneters are hashed with the hello.random val ues before
signing to ensure that attackers do not replay old paraneters. In
either case, the client can verify the certificate or signature to
ensure that the paraneters belong to the server.

If the client has a certificate containing fixed Diffie-Hellmn
paraneters, its certificate contains the information required to
conpl ete the key exchange. Note that in this case the client and
server will generate the same Diffie-Hellman result (i.e.
pre_master_secret) every time they comunicate. To prevent the
pre_master_secret fromstaying in nmenory any |onger than necessary,
it should be converted into the naster_secret as soon as possible.
Cient Diffie-Hellman paraneters nust be conpatible with those
supplied by the server for the key exchange to work.

If the client has a standard DSS or RSA certificate or is

unaut henticated, it sends a set of tenporary paraneters to the server
in the client key exchange nessage, then optionally uses a
certificate verify nessage to authenticate itself.

F.1.2. Version roll back attacks

Because TLS incl udes substantial inprovements over SSL Version 2.0,
attackers may try to nmake TLS-capable clients and servers fall back
to Version 2.0. This attack can occur if (and only if) two TLS-
capabl e parties use an SSL 2.0 handshake.

Al t hough the sol ution using non-random PKCS #1 bl ock type 2 message
padding is inelegant, it provides a reasonably secure way for Version
3.0 servers to detect the attack. This solution is not secure agai nst
attackers who can brute force the key and substitute a new
ENCRYPTED- KEY- DATA nessage contai ning the sane key (but w th nornmnal
paddi ng) before the application specified wait threshold has expired.
Parti es concerned about attacks of this scale should not be using
40-bit encryption keys anyway. Altering the padding of the |east-
significant 8 bytes of the PKCS paddi ng does not inpact security for
the size of the signed hashes and RSA key | engths used in the
protocol, since this is essentially equivalent to increasing the

i nput bl ock size by 8 bytes.

Dierks & Allen St andards Track [Page 71]

RFC 2246 The TLS Protocol Version 1.0 January 1999

F.1.3. Detecting attacks agai nst the handshake protocol

An attacker might try to influence the handshake exchange to nake the
parties select different encryption algorithnms than they would
normal |y choose. Because many inplenmentations will support 40-bit
exportabl e encryption and sone nmay even support null encryption or
MAC al gorithnms, this attack is of particular concern.

For this attack, an attacker mnust actively change one or nore
handshake nessages. If this occurs, the client and server wll
compute different values for the handshake nessage hashes. As a
result, the parties will not accept each others’ finished nessages.
Wthout the master_secret, the attacker cannot repair the finished
nmessages, so the attack will be discovered.

F.1.4. Resun ng sessions

When a connection is established by resuning a session, new
ClientHello.random and ServerHel |l o.random val ues are hashed with the
session’'s master_secret. Provided that the naster_secret has not been
conprom sed and that the secure hash operations used to produce the
encryption keys and MAC secrets are secure, the connection should be
secure and effectively independent from previous connections.
Attackers cannot use known encryption keys or MAC secrets to
conpromni se the master_secret wi thout breaking the secure hash
operations (which use both SHA and MD5).

Sessions cannot be resumed unless both the client and server agree.
If either party suspects that the session may have been conprom sed
or that certificates nmay have expired or been revoked, it should
force a full handshake. An upper lint of 24 hours is suggested for
session IDIlifetimes, since an attacker who obtains a naster_secret
may be able to inpersonate the conpronised party until the
corresponding session IDis retired. Applications that may be run in
relatively insecure environnments should not wite session IDs to
stabl e storage.

F.1.5. MD5 and SHA
TLS uses hash functions very conservatively. \Were possible, both M5
and SHA are used in tandemto ensure that non-catastrophic flaws in
one algorithmw Il not break the overall protocol

F.2. Protecting application data
The nmaster_secret is hashed with the CientHello.random and

ServerHel | o. random to produce uni que data encrypti on keys and MAC
secrets for each connecti on.

Dierks & Allen St andards Track [Page 72]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Qutgoing data is protected with a MAC before transm ssion. To prevent
message replay or nodification attacks, the MAC is conmputed fromthe
MAC secret, the sequence nunber, the nessage | ength, the nmessage
contents, and two fixed character strings. The nessage type field is
necessary to ensure that nessages intended for one TLS Record Layer
client are not redirected to another. The sequence nunber ensures
that attenpts to delete or reorder nessages will be detected. Since
sequence nunbers are 64-bits long, they should never overfl ow.
Messages fromone party cannot be inserted into the other’s output,
since they use independent MAC secrets. Similarly, the server-wite
and client-wite keys are independent so stream ci pher keys are used
only once.

If an attacker does break an encryption key, all nessages encrypted
with it can be read. Simlarly, conpronise of a MAC key can nake
message nodification attacks possible. Because MACs are al so
encrypted, nmessage-alteration attacks generally require breaking the
encryption algorithmas well as the MAC

Note: MAC secrets may be larger than encryption keys, so nessages can
remai n tanmper resistant even if encryption keys are broken

F.3. Final notes

For TLS to be able to provide a secure connection, both the client
and server systems, keys, and applications nust be secure. In
addition, the inplenmentation nust be free of security errors.

The systemis only as strong as the weakest key exchange and

aut henti cation al gorithm supported, and only trustworthy
cryptographi c functions should be used. Short public keys, 40-bit
bul k encryption keys, and anonynous servers should be used with great
caution. Inplenentations and users nust be careful when deciding
which certificates and certificate authorities are acceptable; a

di shonest certificate authority can do trenmendous danage

Dierks & Allen St andards Track [Page 73]

RFC 2246 The TLS Protocol Version 1.0 January 1999

G Patent Statenent

Some of the cryptographic algorithnms proposed for use in this

prot ocol have patent clains on them In addition Netscape
Conmmruni cati ons Cor porati on has a patent claimon the Secure Sockets
Layer (SSL) work that this standard is based on. The Internet

St andards Process as defined in RFC 2026 requests that a statenent be
obtained froma Patent holder indicating that a license will be nade
avail abl e to applicants under reasonable ternms and conditi ons.

The Massachusetts Institute of Technol ogy has granted RSA Data
Security, Inc., exclusive sub-licensing rights to the foll ow ng
patent issued in the United States:

Crypt ographi ¢ Communi cations System and Method ("RSA"), No.
4, 405, 829

Net scape Conmuni cati ons Corporation has been issued the foll ow ng
patent in the United States:

Secure Socket Layer Application Program Apparatus And Met hod
("SSL"), No. 5,657,390

Net scape Conmuni cati ons has issued the follow ng statenent:
Intellectual Property Rights
Secure Sockets Layer

The United States Patent and Trademark Office ("the PTQO')
recently issued U S. Patent No. 5,657,390 ("the SSL Patent") to
Net scape for inventions described as Secure Sockets Layers
("SSL"). The IETF is currently considering adopting SSL as a
transport protocol with security features. Netscape encourages
the royalty-free adoption and use of the SSL protocol upon the
following terns and conditions:

* |f you already have a valid SSL Ref |icense today which
i ncl udes source code from Netscape, an additional patent
Iicense under the SSL patent is not required.

* | f you don't have an SSL Ref license, you may have a royalty
free license to build inplenentations covered by the SSL
Patent Clains or the | ETF TLS specification provided that you
do not to assert any patent rights against Netscape or other
conmpani es for the inplementation of SSL or the | ETF TLS
recommendat i on.

Dierks & Allen St andards Track [Page 74]

RFC 2246 The TLS Protocol Version 1.0 January 1999

What are "Patent d ains":

Patent clainms are clainms in an issued foreign or donmestic patent
t hat :

1) nust be infringed in order to inplenent nethods or build
products according to the | ETF TLS specification; or

2) patent clains which require the elenents of the SSL patent
clains and/or their equivalents to be infringed.

The Internet Society, Internet Architecture Board, Internet

Engi neering Steering Goup and the Corporation for National Research
Initiatives take no position on the validity or scope of the patents
and patent applications, nor on the appropriateness of the ternms of
the assurance. The Internet Society and other groups nentioned above
have not made any determination as to any other intellectual property
rights which may apply to the practice of this standard. Any further
consideration of these matters is the user’s own responsibility.

Security Considerations
Security issues are discussed throughout this neno.
Ref erences

[3DES] W Tuchman, "Hellman Presents No Shortcut Solutions To DES, "
| EEE Spectrum v. 16, n. 7, July 1979, pp40-41.

[BLEI'] Bl ei chenbacher D., "Chosen C phertext Attacks agai nst
Prot ocol s Based on RSA Encryption Standard PKCS #1" in
Advances in Cryptology -- CRYPTO 98, LNCS vol. 1462, pages
1--12, 1998.

[DES] ANSI X3.106, "Anerican National Standard for Information
Systens-Data Link Encryption,” American National Standards
Institute, 1983.

[DH1] W Diffie and M E. Hellman, "New Directions in
Crypt ography, " | EEE Transactions on Information Theory, V.
| T-22, n. 6, Jun 1977, pp. 74-84.

[DSS] NI ST FIPS PUB 186, "Digital Signature Standard," Nationa
Institute of Standards and Technol ogy, U S. Department of
Comerce, My 18, 1994.

[FTP] Postel J., and J. Reynolds, "File Transfer Protocol", STD 9,
RFC 959, Cctober 1985.

Dierks & Allen St andards Track [Page 75]

RFC 2246

[HTTP]

[HVAC]

[I DEA

[MD2]

[MD5]

[PKCS1]

[PKCS6]

[PKCS7]

[PKI X]

[RC2]

[RCA]

[RSA]

[RSADSI |

[SCH

The TLS Protocol Version 1.0 January 1999

Berners-Lee, T., Fielding, R, and H Frystyk, "Hypertext
Transfer Protocol -- HTTP/1.0", RFC 1945, My 1996.

Krawczyk, H., Bellare, M, and R Canetti, "HVAC. Keyed-
Hashi ng for Message Authentication,” RFC 2104, February
1997.

X. Lai, "On the Design and Security of Block G phers," ETH
Series in Information Processing, v. 1, Konstanz: Hartung-
CGorre Verlag, 1992.

Kal i ski, B., "The MD2 Message Digest Algorithnt, RFC 1319,
April 1992.

Rivest, R, "The MD5 Message Digest Algorithni, RFC 1321
April 1992.

RSA Laboratories, "PKCS #1: RSA Encryption Standard,"
version 1.5, Novenber 1993.

RSA Laboratories, "PKCS #6: RSA Extended Certificate Syntax
Standard," version 1.5, Novenber 1993.

RSA Laboratories, "PKCS #7: RSA Cryptographi c Message Syntax
Standard," version 1.5, Novenmber 1993.

Housley, R, Ford, W, Polk, W and D. Solo, "Ilnternet
Public Key Infrastructure: Part |: X. 509 Certificate and CRL
Profile", RFC 2459, January 1999.

Rivest, R, "A Description of the RC2(r) Encryption
Al gorithm', RFC 2268, January 1998

Thayer, R and K. Kaukonen, A Stream G pher Encryption
Algorithm Wbrk in Progress

R Rvest, A Shanmir, and L. M Adlenman, "A Method for
ohtaining Digital Signatures and Public-Key Cryptosystens,
Conmuni cations of the ACM v. 21, n. 2, Feb 1978, pp. 120-
126.

Contact RSA Data Security, Inc., Tel: 415-595-8782

B. Schneier. Applied Cryptography: Protocols, Al gorithmns,
and Source Code in C, Published by John Wley & Sons, Inc.
1994.

Dierks & Allen St andards Track [Page 76]

RFC 2246

The TLS Protocol Version 1.0 January 1999

[SHA] NI ST FIPS PUB 180-1, "Secure Hash Standard,"” Nati onal
Institute of Standards and Technol ogy, U S. Department of
Conmerce, Work in Progress, May 31, 1994.

[SSL2] H ckman, Kipp, "The SSL Protocol ", Netscape Communi cations
Corp., Feb 9, 1995.

[SSL3] A. Frier, P. Karlton, and P. Kocher, "The SSL 3.0 Protocol",
Net scape Communi cations Corp., Nov 18, 1996.

[TCP] Postel, J., "Transm ssion Control Protocol,"” STD 7, RFC 793,
Sept enber 1981.

[TEL] Postel J., and J. Reynolds, "Telnet Protocol
Specifications", STD 8, RFC 854, My 1993.

[TEL] Postel J., and J. Reynolds, "Telnet Option Specifications”,
STD 8, RFC 855, May 1993.

[X509] CClI TT. Recommendati on X. 509: "The Directory - Authentication
Framewor k". 1988.

[XDR] R Srinivansan, Sun M crosystens, RFC 1832: XDR External
Dat a Representation Standard, August 1995.

Credits

Wn Treese

Open Mar ket

EMai | : treese@pennarket. com

Editors

Chri st opher Allen Tim Di erks

Certicom Certicom

EMai | . call en@erti comcom EMai | . tdierks@erticomcom

Aut hors’ Addresses

Ti m Di erks Philip L. Karlton

Certicom Net scape Conmmuni cati ons

EMail : tdierks@erti comcom

Dierks & All

en St andards Track [Page 77]

RFC 2246

Dierks & All en

Alan O Freier
Net scape Commruni cati ons

EMai | : freier@etscape. com

O her contributors

Martin Abadi
Di gital Equi pnent Corporation

EMai | : ma@a. dec. com

Ran Canetti
| BM Wat son Research Center

EMai | : canetti @wat son.ibm com
Taher El gamal
Securify

EMai | : el gamal @ecurify. com

Anil R Gangolli

Structured Arts Conputing Corp.

EMai | : gangol | i @tructuredarts. com

Ki pp E. B. Hickman
Net scape Conmmuni cati ons

EMai | : ki pp@et scape. com
Hugo Krawczyk
| BM WAt son Research Center

EMai | : hugo@vat son. i bm com

Comment s

The discussion list for the | ETF TLS working group is |l ocated at the

The TLS Prot ocol

Version 1.0
Paul C. Kocher
| ndependent Consul t ant

EMai | : pck@ et com com

Robert Rel yea
Net scape Conmuni cati ons

EMai | : rel yea@et scape. com

Ji m Roski nd
Net scape Conmmuni cati ons

EMai | : j ar @net scape. com

M cheal J. Sabin, Ph. D
Consul ti ng Engi neer

EMai | : nsabi n@et com com

Dan Si nobn

M crosof t

EMai |l : dansi nobn@nri crosoft. com

Tom Wei nstein
Net scape Conmmuni cati ons

EMai | : t omw@net scape. com

e-mai| address <ietf-tls@ists.consensus.conk. Information on the
group and information on how to subscribe to the list is at

<http://1ists.consensus. cont >.

St andards Track

January 1999

[Page 78]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Archives of the list can be found at:
<http://ww.inc.org/ietf-tls/mail-archivel/>

Dierks & Allen St andards Track [Page 79]

RFC 2246 The TLS Protocol Version 1.0 January 1999

Ful I Copyright Statenent
Copyright (C) The Internet Society (1999). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Dierks & Allen St andards Track [Page 80]

