
Network Working Group R. Rivest
Request for Comments: 2268 MIT Laboratory for Computer Science
Category: Informational and RSA Data Security, Inc.
 March 1998

 A Description of the RC2(r) Encryption Algorithm

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1998). All Rights Reserved.

1. Introduction

 This memo is an RSA Laboratories Technical Note. It is meant for
 informational use by the Internet community.

 This memo describes a conventional (secret-key) block encryption
 algorithm, called RC2, which may be considered as a proposal for a
 DES replacement. The input and output block sizes are 64 bits each.
 The key size is variable, from one byte up to 128 bytes, although the
 current implementation uses eight bytes.

 The algorithm is designed to be easy to implement on 16-bit
 microprocessors. On an IBM AT, the encryption runs about twice as
 fast as DES (assuming that key expansion has been done).

1.1 Algorithm description

 We use the term "word" to denote a 16-bit quantity. The symbol + will
 denote twos-complement addition. The symbol & will denote the bitwise
 "and" operation. The term XOR will denote the bitwise "exclusive-or"
 operation. The symbol ˜ will denote bitwise complement. The symbol ^
 will denote the exponentiation operation. The term MOD will denote
 the modulo operation.

 There are three separate algorithms involved:

 Key expansion. This takes a (variable-length) input key and
 produces an expanded key consisting of 64 words K[0],...,K[63].

Rivest Informational [Page 1]

RFC 2268 RC2(r) Encryption Algorithm March 1998

 Encryption. This takes a 64-bit input quantity stored in words
 R[0], ..., R[3] and encrypts it "in place" (the result is left in
 R[0], ..., R[3]).

 Decryption. The inverse operation to encryption.

2. Key expansion

 Since we will be dealing with eight-bit byte operations as well as
 16-bit word operations, we will use two alternative notations

 for referring to the key buffer:

 For word operations, we will refer to the positions of the
 buffer as K[0], ..., K[63]; each K[i] is a 16-bit word.

 For byte operations, we will refer to the key buffer as
 L[0], ..., L[127]; each L[i] is an eight-bit byte.

 These are alternative views of the same data buffer. At all times it
 will be true that

 K[i] = L[2*i] + 256*L[2*i+1].

 (Note that the low-order byte of each K word is given before the
 high-order byte.)

 We will assume that exactly T bytes of key are supplied, for some T
 in the range 1 <= T <= 128. (Our current implementation uses T = 8.)
 However, regardless of T, the algorithm has a maximum effective key
 length in bits, denoted T1. That is, the search space is 2^(8*T), or
 2^T1, whichever is smaller.

 The purpose of the key-expansion algorithm is to modify the key
 buffer so that each bit of the expanded key depends in a complicated
 way on every bit of the supplied input key.

 The key expansion algorithm begins by placing the supplied T-byte key
 into bytes L[0], ..., L[T-1] of the key buffer.

 The key expansion algorithm then computes the effective key length in
 bytes T8 and a mask TM based on the effective key length in bits T1.
 It uses the following operations:

 T8 = (T1+7)/8;
 TM = 255 MOD 2^(8 + T1 - 8*T8);

 Thus TM has its 8 - (8*T8 - T1) least significant bits set.

Rivest Informational [Page 2]

RFC 2268 RC2(r) Encryption Algorithm March 1998

 For example, with an effective key length of 64 bits, T1 = 64, T8 = 8
 and TM = 0xff. With an effective key length of 63 bits, T1 = 63, T8
 = 8 and TM = 0x7f.

 Here PITABLE[0], ..., PITABLE[255] is an array of "random" bytes
 based on the digits of PI = 3.14159... . More precisely, the array
 PITABLE is a random permutation of the values 0, ..., 255. Here is
 the PITABLE in hexadecimal notation:

 0 1 2 3 4 5 6 7 8 9 a b c d e f
 00: d9 78 f9 c4 19 dd b5 ed 28 e9 fd 79 4a a0 d8 9d
 10: c6 7e 37 83 2b 76 53 8e 62 4c 64 88 44 8b fb a2
 20: 17 9a 59 f5 87 b3 4f 13 61 45 6d 8d 09 81 7d 32
 30: bd 8f 40 eb 86 b7 7b 0b f0 95 21 22 5c 6b 4e 82
 40: 54 d6 65 93 ce 60 b2 1c 73 56 c0 14 a7 8c f1 dc
 50: 12 75 ca 1f 3b be e4 d1 42 3d d4 30 a3 3c b6 26
 60: 6f bf 0e da 46 69 07 57 27 f2 1d 9b bc 94 43 03
 70: f8 11 c7 f6 90 ef 3e e7 06 c3 d5 2f c8 66 1e d7
 80: 08 e8 ea de 80 52 ee f7 84 aa 72 ac 35 4d 6a 2a
 90: 96 1a d2 71 5a 15 49 74 4b 9f d0 5e 04 18 a4 ec
 a0: c2 e0 41 6e 0f 51 cb cc 24 91 af 50 a1 f4 70 39
 b0: 99 7c 3a 85 23 b8 b4 7a fc 02 36 5b 25 55 97 31
 c0: 2d 5d fa 98 e3 8a 92 ae 05 df 29 10 67 6c ba c9
 d0: d3 00 e6 cf e1 9e a8 2c 63 16 01 3f 58 e2 89 a9
 e0: 0d 38 34 1b ab 33 ff b0 bb 48 0c 5f b9 b1 cd 2e
 f0: c5 f3 db 47 e5 a5 9c 77 0a a6 20 68 fe 7f c1 ad

 The key expansion operation consists of the following two loops and
 intermediate step:

 for i = T, T+1, ..., 127 do
 L[i] = PITABLE[L[i-1] + L[i-T]];

 L[128-T8] = PITABLE[L[128-T8] & TM];

 for i = 127-T8, ..., 0 do
 L[i] = PITABLE[L[i+1] XOR L[i+T8]];

 (In the first loop, the addition of L[i-1] and L[i-T] is performed
 modulo 256.)

 The "effective key" consists of the values L[128-T8],..., L[127].
 The intermediate step’s bitwise "and" operation reduces the search
 space for L[128-T8] so that the effective number of key bits is T1.
 The expanded key depends only on the effective key bits, regardless

Rivest Informational [Page 3]

RFC 2268 RC2(r) Encryption Algorithm March 1998

 of the supplied key K. Since the expanded key is not itself modified
 during encryption or decryption, as a pragmatic matter one can expand
 the key just once when encrypting or decrypting a large block of
 data.

3. Encryption algorithm

 The encryption operation is defined in terms of primitive "mix" and
 "mash" operations.

 Here the expression "x rol k" denotes the 16-bit word x rotated left
 by k bits, with the bits shifted out the top end entering the bottom
 end.

3.1 Mix up R[i]

 The primitive "Mix up R[i]" operation is defined as follows, where
 s[0] is 1, s[1] is 2, s[2] is 3, and s[3] is 5, and where the indices
 of the array R are always to be considered "modulo 4," so that R[i-1]
 refers to R[3] if i is 0 (these values are

 "wrapped around" so that R always has a subscript in the range 0 to 3
 inclusive):

 R[i] = R[i] + K[j] + (R[i-1] & R[i-2]) + ((˜R[i-1]) & R[i-3]);
 j = j + 1;
 R[i] = R[i] rol s[i];

 In words: The next key word K[j] is added to R[i], and j is advanced.
 Then R[i-1] is used to create a "composite" word which is added to
 R[i]. The composite word is identical with R[i-2] in those positions
 where R[i-1] is one, and identical to R[i-3] in those positions where
 R[i-1] is zero. Then R[i] is rotated left by s[i] bits (bits rotated
 out the left end of R[i] are brought back in at the right). Here j is
 a "global" variable so that K[j] is always the first key word in the
 expanded key which has not yet been used in a "mix" operation.

3.2 Mixing round

 A "mixing round" consists of the following operations:

 Mix up R[0]
 Mix up R[1]
 Mix up R[2]
 Mix up R[3]

Rivest Informational [Page 4]

RFC 2268 RC2(r) Encryption Algorithm March 1998

3.3 Mash R[i]

 The primitive "Mash R[i]" operation is defined as follows (using the
 previous conventions regarding subscripts for R):

 R[i] = R[i] + K[R[i-1] & 63];

 In words: R[i] is "mashed" by adding to it one of the words of the
 expanded key. The key word to be used is determined by looking at the
 low-order six bits of R[i-1], and using that as an index into the key
 array K.

3.4 Mashing round

 A "mashing round" consists of:

 Mash R[0]
 Mash R[1]
 Mash R[2]
 Mash R[3]

3.5 Encryption operation

 The entire encryption operation can now be described as follows. Here
 j is a global integer variable which is affected by the mixing
 operations.

 1. Initialize words R[0], ..., R[3] to contain the
 64-bit input value.

 2. Expand the key, so that words K[0], ..., K[63] become
 defined.

 3. Initialize j to zero.

 4. Perform five mixing rounds.

 5. Perform one mashing round.

 6. Perform six mixing rounds.

 7. Perform one mashing round.

 8. Perform five mixing rounds.

 Note that each mixing round uses four key words, and that there are
 16 mixing rounds altogether, so that each key word is used exactly

Rivest Informational [Page 5]

RFC 2268 RC2(r) Encryption Algorithm March 1998

 once in a mixing round. The mashing rounds will refer to up to eight
 of the key words in a data-dependent manner. (There may be
 repetitions, and the actual set of words referred to will vary from
 encryption to encryption.)

4. Decryption algorithm

 The decryption operation is defined in terms of primitive operations
 that undo the "mix" and "mash" operations of the encryption
 algorithm. They are named "r-mix" and "r-mash" (r- denotes the
 reverse operation).

 Here the expression "x ror k" denotes the 16-bit word x rotated right
 by k bits, with the bits shifted out the bottom end entering the top
 end.

4.1 R-Mix up R[i]

 The primitive "R-Mix up R[i]" operation is defined as follows, where
 s[0] is 1, s[1] is 2, s[2] is 3, and s[3] is 5, and where the indices
 of the array R are always to be considered "modulo 4," so that R[i-1]
 refers to R[3] if i is 0 (these values are "wrapped around" so that R
 always has a subscript in the range 0 to 3 inclusive):

 R[i] = R[i] ror s[i];
 R[i] = R[i] - K[j] - (R[i-1] & R[i-2]) - ((˜R[i-1]) & R[i-3]);
 j = j - 1;

 In words: R[i] is rotated right by s[i] bits (bits rotated out the
 right end of R[i] are brought back in at the left). Here j is a
 "global" variable so that K[j] is always the key word with greatest
 index in the expanded key which has not yet been used in a "r-mix"
 operation. The key word K[j] is subtracted from R[i], and j is
 decremented. R[i-1] is used to create a "composite" word which is
 subtracted from R[i]. The composite word is identical with R[i-2] in
 those positions where R[i-1] is one, and identical to R[i-3] in those
 positions where R[i-1] is zero.

4.2 R-Mixing round

 An "r-mixing round" consists of the following operations:

 R-Mix up R[3]
 R-Mix up R[2]
 R-Mix up R[1]
 R-Mix up R[0]

Rivest Informational [Page 6]

RFC 2268 RC2(r) Encryption Algorithm March 1998

4.3 R-Mash R[i]

 The primitive "R-Mash R[i]" operation is defined as follows (using
 the previous conventions regarding subscripts for R):

 R[i] = R[i] - K[R[i-1] & 63];

 In words: R[i] is "r-mashed" by subtracting from it one of the words
 of the expanded key. The key word to be used is determined by looking
 at the low-order six bits of R[i-1], and using that as an index into
 the key array K.

4.4 R-Mashing round

 An "r-mashing round" consists of:

 R-Mash R[3]
 R-Mash R[2]
 R-Mash R[1]
 R-Mash R[0]

4.5 Decryption operation

 The entire decryption operation can now be described as follows.
 Here j is a global integer variable which is affected by the mixing
 operations.

 1. Initialize words R[0], ..., R[3] to contain the 64-bit
 ciphertext value.

 2. Expand the key, so that words K[0], ..., K[63] become
 defined.

 3. Initialize j to 63.

 4. Perform five r-mixing rounds.

 5. Perform one r-mashing round.

 6. Perform six r-mixing rounds.

 7. Perform one r-mashing round.

 8. Perform five r-mixing rounds.

5. Test vectors

 Test vectors for encryption with RC2 are provided below.

Rivest Informational [Page 7]

RFC 2268 RC2(r) Encryption Algorithm March 1998

 All quantities are given in hexadecimal notation.

 Key length (bytes) = 8
 Effective key length (bits) = 63
 Key = 00000000 00000000
 Plaintext = 00000000 00000000
 Ciphertext = ebb773f9 93278eff

 Key length (bytes) = 8
 Effective key length (bits) = 64
 Key = ffffffff ffffffff
 Plaintext = ffffffff ffffffff
 Ciphertext = 278b27e4 2e2f0d49

 Key length (bytes) = 8
 Effective key length (bits) = 64
 Key = 30000000 00000000
 Plaintext = 10000000 00000001
 Ciphertext = 30649edf 9be7d2c2

 Key length (bytes) = 1
 Effective key length (bits) = 64
 Key = 88
 Plaintext = 00000000 00000000
 Ciphertext = 61a8a244 adacccf0

 Key length (bytes) = 7
 Effective key length (bits) = 64
 Key = 88bca90e 90875a
 Plaintext = 00000000 00000000
 Ciphertext = 6ccf4308 974c267f

 Key length (bytes) = 16
 Effective key length (bits) = 64
 Key = 88bca90e 90875a7f 0f79c384 627bafb2
 Plaintext = 00000000 00000000
 Ciphertext = 1a807d27 2bbe5db1

 Key length (bytes) = 16
 Effective key length (bits) = 128
 Key = 88bca90e 90875a7f 0f79c384 627bafb2
 Plaintext = 00000000 00000000
 Ciphertext = 2269552a b0f85ca6

 Key length (bytes) = 33
 Effective key length (bits) = 129
 Key = 88bca90e 90875a7f 0f79c384 627bafb2 16f80a6f 85920584
 c42fceb0 be255daf 1e

Rivest Informational [Page 8]

RFC 2268 RC2(r) Encryption Algorithm March 1998

 Plaintext = 00000000 00000000
 Ciphertext = 5b78d3a4 3dfff1f1

6. RC2 Algorithm Object Identifier

 The Object Identifier for RC2 in cipher block chaining mode is

 rc2CBC OBJECT IDENTIFIER
 ::= {iso(1) member-body(2) US(840) rsadsi(113549)
 encryptionAlgorithm(3) 2}

 RC2-CBC takes parameters

 RC2-CBCParameter ::= CHOICE {
 iv IV,
 params SEQUENCE {
 version RC2Version,
 iv IV
 }
 }

 where

 IV ::= OCTET STRING -- 8 octets
 RC2Version ::= INTEGER -- 1-1024

 RC2 in CBC mode has two parameters: an 8-byte initialization vector
 (IV) and a version number in the range 1-1024 which specifies in a
 roundabout manner the number of effective key bits to be used for the
 RC2 encryption/decryption.

 The correspondence between effective key bits and version number is
 as follows:

 1. If the number EKB of effective key bits is in the range 1-255,
 then the version number is given by Table[EKB], where the 256-byte
 translation table Table[] is specified below. Table[] specifies a
 permutation on the numbers 0-255; note that it is not the same
 table that appears in the key expansion phase of RC2.

 2. If the number EKB of effective key bits is in the range
 256-1024, then the version number is simply EKB.

 The default number of effective key bits for RC2 is 32. If RC2-CBC
 is being performed with 32 effective key bits, the parameters
 should be supplied as a simple IV, rather than as a SEQUENCE
 containing a version and an IV.

Rivest Informational [Page 9]

RFC 2268 RC2(r) Encryption Algorithm March 1998

 0 1 2 3 4 5 6 7 8 9 a b c d e f

 00: bd 56 ea f2 a2 f1 ac 2a b0 93 d1 9c 1b 33 fd d0
 10: 30 04 b6 dc 7d df 32 4b f7 cb 45 9b 31 bb 21 5a
 20: 41 9f e1 d9 4a 4d 9e da a0 68 2c c3 27 5f 80 36
 30: 3e ee fb 95 1a fe ce a8 34 a9 13 f0 a6 3f d8 0c
 40: 78 24 af 23 52 c1 67 17 f5 66 90 e7 e8 07 b8 60
 50: 48 e6 1e 53 f3 92 a4 72 8c 08 15 6e 86 00 84 fa
 60: f4 7f 8a 42 19 f6 db cd 14 8d 50 12 ba 3c 06 4e
 70: ec b3 35 11 a1 88 8e 2b 94 99 b7 71 74 d3 e4 bf
 80: 3a de 96 0e bc 0a ed 77 fc 37 6b 03 79 89 62 c6
 90: d7 c0 d2 7c 6a 8b 22 a3 5b 05 5d 02 75 d5 61 e3
 a0: 18 8f 55 51 ad 1f 0b 5e 85 e5 c2 57 63 ca 3d 6c
 b0: b4 c5 cc 70 b2 91 59 0d 47 20 c8 4f 58 e0 01 e2
 c0: 16 38 c4 6f 3b 0f 65 46 be 7e 2d 7b 82 f9 40 b5
 d0: 1d 73 f8 eb 26 c7 87 97 25 54 b1 28 aa 98 9d a5
 e0: 64 6d 7a d4 10 81 44 ef 49 d6 ae 2e dd 76 5c 2f
 f0: a7 1c c9 09 69 9a 83 cf 29 39 b9 e9 4c ff 43 ab

A. Intellectual Property Notice

 RC2 is a registered trademark of RSA Data Security, Inc. RSA’s
 copyrighted RC2 software is available under license from RSA Data
 Security, Inc.

B. Author’s Address

 Ron Rivest
 RSA Laboratories
 100 Marine Parkway, #500
 Redwood City, CA 94065 USA

 Phone: (650) 595-7703
 EMail: rsa-labs@rsa.com

Rivest Informational [Page 10]

RFC 2268 RC2(r) Encryption Algorithm March 1998

C. Full Copyright Statement

 Copyright (C) The Internet Society (1998). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Rivest Informational [Page 11]

