
Network Working Group K. Holtman
Request for Comments: 2295 TUE
Category: Experimental A. Mutz
 Hewlett-Packard
 March 1998

 Transparent Content Negotiation in HTTP

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1998). All Rights Reserved.

ABSTRACT

 HTTP allows web site authors to put multiple versions of the same
 information under a single URL. Transparent content negotiation is
 an extensible negotiation mechanism, layered on top of HTTP, for
 automatically selecting the best version when the URL is accessed.
 This enables the smooth deployment of new web data formats and markup
 tags.

TABLE OF CONTENTS

 1 Introduction..4
 1.1 Background..4

 2 Terminology...5
 2.1 Terms from HTTP/1.1.......................................5
 2.2 New terms...6

 3 Notation..8

 4 Overview..9
 4.1 Content negotiation.......................................9
 4.2 HTTP/1.0 style negotiation scheme.........................9
 4.3 Transparent content negotiation scheme...................10
 4.4 Optimizing the negotiation process.......................12
 4.5 Downwards compatibility with non-negotiating user agents.14
 4.6 Retrieving a variant by hand.............................15
 4.7 Dimensions of negotiation................................15

Holtman & Mutz Experimental [Page 1]

RFC 2295 Transparent Content Negotiation March 1998

 4.8 Feature negotiation......................................15
 4.9 Length of variant lists..................................16
 4.10 Relation with other negotiation schemes.................16

 5 Variant descriptions.......................................17
 5.1 Syntax...17
 5.2 URI..17
 5.3 Source-quality...18
 5.4 Type, charset, language, and length......................19
 5.5 Features...19
 5.6 Description..19
 5.7 Extension-attribute......................................20

 6 Feature negotiation..20
 6.1 Feature tags...20
 6.1.1 Feature tag values.....................................21
 6.2 Feature sets...21
 6.3 Feature predicates.......................................22
 6.4 Features attribute.......................................24

 7 Remote variant selection algorithms........................25
 7.1 Version numbers..25

 8 Content negotiation status codes and headers...............25
 8.1 506 Variant Also Negotiates..............................25
 8.2 Accept-Features..26
 8.3 Alternates...27
 8.4 Negotiate..28
 8.5 TCN..30
 8.6 Variant-Vary...30

 9 Cache validators...31
 9.1 Variant list validators..................................31
 9.2 Structured entity tags...................................31
 9.3 Assigning entity tags to variants........................32

 10 Content negotiation responses..............................32
 10.1 List response...33
 10.2 Choice response...34
 10.3 Adhoc response..37
 10.4 Reusing the Alternates header...........................38
 10.5 Extracting a normal response from a choice response.....39
 10.6 Elaborate Vary headers..................................39
 10.6.1 Construction of an elaborate Vary header..............40
 10.6.2 Caching of an elaborate Vary header...................41
 10.7 Adding an Expires header for HTTP/1.0 compatibility.....41
 10.8 Negotiation on content encoding.........................41

Holtman & Mutz Experimental [Page 2]

RFC 2295 Transparent Content Negotiation March 1998

 11 User agent support for transparent negotiation.............42
 11.1 Handling of responses...................................42
 11.2 Presentation of a transparently negotiated resource.....42

 12 Origin server support for transparent negotiation..........43
 12.1 Requirements..43
 12.2 Negotiation on transactions other than GET and HEAD.....45

 13 Proxy support for transparent negotiation..................45

 14 Security and privacy considerations........................46
 14.1 Accept- headers revealing personal information..........46
 14.2 Spoofing of responses from variant resources............47
 14.3 Security holes revealed by negotiation..................47

 15 Internationalization considerations........................47

 16 Acknowledgments..47

 17 References...48

 18 Authors’ Addresses...48

 19 Appendix: Example of a local variant selection algorithm...49
 19.1 Computing overall quality values........................49
 19.2 Determining the result..................................51
 19.3 Ranking dimensions......................................51

 20 Appendix: feature negotiation examples.....................52
 20.1 Use of feature tags.....................................52
 20.2 Use of numeric feature tags.............................53
 20.3 Feature tag design......................................53

 21 Appendix: origin server implementation considerations......54
 21.1 Implementation with a CGI script........................54
 21.2 Direct support by HTTP servers..........................55
 21.3 Web publishing tools....................................55

 22 Appendix: Example of choice response construction..........55

 23 Full Copyright Statement...................................58

Holtman & Mutz Experimental [Page 3]

RFC 2295 Transparent Content Negotiation March 1998

1 Introduction

 HTTP allows web site authors to put multiple versions of the same
 information under a single URI. Each of these versions is called a
 ‘variant’. Transparent content negotiation is an extensible
 negotiation mechanism for automatically and efficiently retrieving
 the best variant when a GET or HEAD request is made. This enables
 the smooth deployment of new web data formats and markup tags.

 This specification defines transparent content negotiation as an
 extension on top of the HTTP/1.1 protocol [1]. However, use of this
 extension does not require use of HTTP/1.1: transparent content
 negotiation can also be done if some or all of the parties are
 HTTP/1.0 [2] systems.

 Transparent content negotiation is called ‘transparent’ because it
 makes all variants which exist inside the origin server visible to
 outside parties.

 Note: Some members of the IETF are currently undertaking a number
 of activities which are loosely related to this experimental
 protocol. First, there is an effort to define a protocol-
 independent registry for feature tags. The intention is that this
 experimental protocol will be one of the clients of the registry.
 Second, some research is being done on content negotiation systems
 for other transport protocols (like internet mail and internet fax)
 and on generalized negotiation systems for multiple transport
 protocols. At the time of writing, it is unclear if or when this
 research will lead to results in the form of complete negotiation
 system specifications. It is also unclear to which extent possible
 future specifications can or will re-use elements of this
 experimental protocol.

1.1 Background

 The addition of content negotiation to the web infrastructure has
 been considered important since the early days of the web. Among the
 expected benefits of a sufficiently powerful system for content
 negotiation are

 * smooth deployment of new data formats and markup tags will
 allow graceful evolution of the web

 * eliminating the need to choose between a ‘state of the art
 multimedia homepage’ and one which can be viewed by all web users

 * enabling good service to a wider range of browsing
 platforms (from low-end PDA’s to high-end VR setups)

Holtman & Mutz Experimental [Page 4]

RFC 2295 Transparent Content Negotiation March 1998

 * eliminating error-prone and cache-unfriendly
 User-Agent based negotiation

 * enabling construction of sites without ‘click here for the X
 version’ links

 * internationalization, and the ability to offer multi-lingual
 content without a bias towards one language.

2 Terminology

 The words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY" in
 this document are to be interpreted as described in RFC 2119 [4].

 This specification uses the term ‘header’ as an abbreviation for for
 ‘header field in a request or response message’.

2.1 Terms from HTTP/1.1

 This specification mostly uses the terminology of the HTTP/1.1
 specification [1]. For the convenience of the reader, this section
 reproduces some key terminology definition from [1].

 request
 An HTTP request message.

 response
 An HTTP response message.

 resource
 A network data object or service that can be identified by a URI.
 Resources may be available in multiple representations (e.g.
 multiple languages, data formats, size, resolutions) or vary in
 other ways.

 content negotiation
 The mechanism for selecting the appropriate representation when
 servicing a request.

 client
 A program that establishes connections for the purpose of sending
 requests.

 user agent
 The client which initiates a request. These are often browsers,
 editors, spiders (web-traversing robots), or other end user tools.

Holtman & Mutz Experimental [Page 5]

RFC 2295 Transparent Content Negotiation March 1998

 server
 An application program that accepts connections in order to service
 requests by sending back responses. Any given program may be
 capable of being both a client and a server; our use of these terms
 refers only to the role being performed by the program for a
 particular connection, rather than to the program’s capabilities in
 general. Likewise, any server may act as an origin server, proxy,
 gateway, or tunnel, switching behavior based on the nature of each
 request.

 origin server
 The server on which a given resource resides or is to be created.

 proxy
 An intermediary program which acts as both a server and a client
 for the purpose of making requests on behalf of other clients.
 Requests are serviced internally or by passing them on, with
 possible translation, to other servers. A proxy must implement
 both the client and server requirements of this specification.

 age
 The age of a response is the time since it was sent by, or
 successfully validated with, the origin server.

 fresh
 A response is fresh if its age has not yet exceeded its freshness
 lifetime.

2.2 New terms

 transparently negotiable resource
 A resource, identified by a single URI, which has multiple
 representations (variants) associated with it. When servicing a
 request on its URI, it allows selection of the best representation
 using the transparent content negotiation mechanism. A
 transparently negotiable resource always has a variant list bound
 to it, which can be represented as an Alternates header (defined in
 section 8.3).

 variant list
 A list containing variant descriptions, which can be bound to a
 transparently negotiable resource.

Holtman & Mutz Experimental [Page 6]

RFC 2295 Transparent Content Negotiation March 1998

 variant description
 A machine-readable description of a variant resource, usually found
 in a variant list. A variant description contains the variant
 resource URI and various attributes which describe properties of
 the variant. Variant descriptions are defined in section 5.

 variant resource
 A resource from which a variant of a negotiable resource can be
 retrieved with a normal HTTP/1.x GET request, i.e. a GET request
 which does not use transparent content negotiation.

 neighboring variant
 A variant resource is called a neighboring variant resource of some
 transparently negotiable HTTP resource if the variant resource has
 a HTTP URL, and if the absolute URL of the variant resource up to
 its last slash equals the absolute URL of the negotiable resource
 up to its last slash, where equality is determined with the URI
 comparison rules in section 3.2.3 of [1]. The property of being a
 neighboring variant is important because of security considerations
 (section 14.2). Not all variants of a negotiable resource need to
 be neighboring variants. However, access to neighboring variants
 can be more highly optimized by the use of remote variant selection
 algorithms (section 7) and choice responses (section 10.2).

 remote variant selection algorithm
 A standardized algorithm by which a server can sometimes choose a
 best variant on behalf of a negotiating user agent. The algorithm
 typically computes whether the Accept- headers in the request
 contain sufficient information to allow a choice, and if so, which
 variant is the best variant. The use of a remote algorithm can
 speed up the negotiation process.

 list response
 A list response returns the variant list of the negotiable
 resource, but no variant data. It can be generated when the server
 does not want to, or is not allowed to, return a particular best
 variant for the request. List responses are defined in section
 10.1.

 choice response
 A choice response returns a representation of the best variant for
 the request, and may also return the variant list of the negotiable
 resource. It can be generated when the server has sufficient
 information to be able to choose the best variant on behalf the
 user agent, but may only be generated if this best variant is a
 neighboring variant. Choice responses are defined in section 10.2.

Holtman & Mutz Experimental [Page 7]

RFC 2295 Transparent Content Negotiation March 1998

 adhoc response
 An adhoc response can be sent by an origin server as an extreme
 measure, to achieve compatibility with a non-negotiating or buggy
 client if this compatibility cannot be achieved by sending a list
 or choice response. There are very little requirements on the
 contents of an adhoc response. Adhoc responses are defined in
 section 10.3.

 Accept- headers
 The request headers: Accept, Accept-Charset, Accept-Language, and
 Accept-Features.

 supports transparent content negotiation
 From the viewpoint of an origin server or proxy, a user agent
 supports transparent content negotiation if and only if it sends a
 Negotiate header (section 8.4) which indicates such support.

 server-side override
 If a request on a transparently negotiated resource is made by a
 client which supports transparent content negotiation, an origin
 server is said to perform a server-side override if the server
 ignores the directives in the Negotiate request header, and instead
 uses a custom algorithm to choose an appropriate response. A
 server-side override can sometimes be used to work around known
 client bugs. It could also be used by protocol extensions on top
 of transparent content negotiation.

3 Notation

 The version of BNF used in this document is taken from [1], and many
 of the nonterminals used are defined in [1]. Note that the
 underlying charset is US-ASCII.

 One new BNF construct is added:

 1%rule

 stands for one or more instances of "rule", separated by whitespace:

 1%rule = rule *(1*LWS rule)

 This specification also introduces

 number = 1*DIGIT

 short-float = 1*3DIGIT ["." 0*3DIGIT]

Holtman & Mutz Experimental [Page 8]

RFC 2295 Transparent Content Negotiation March 1998

 This specification uses the same conventions as in [1] (see section
 1.2 of [1]) for defining the significance of each particular
 requirement.

4 Overview

 This section gives an overview of transparent content negotiation.
 It starts with a more general discussion of negotiation as provided
 by HTTP.

4.1 Content negotiation

 HTTP/1.1 allows web site authors to put multiple versions of the same
 information under a single resource URI. Each of these versions is
 called a ‘variant’. For example, a resource http://x.org/paper could
 bind to three different variants of a paper:

 1. HTML, English
 2. HTML, French
 3. Postscript, English

 Content negotiation is the process by which the best variant is
 selected if the resource is accessed. The selection is done by
 matching the properties of the available variants to the capabilities
 of the user agent and the preferences of the user.

 It has always been possible under HTTP to have multiple
 representations available for one resource, and to return the most
 appropriate representation for each subsequent request. However,
 HTTP/1.1 is the first version of HTTP which has provisions for doing
 this in a cache-friendly way. These provisions include the Vary
 response header, entity tags, and the If-None-Match request header.

4.2 HTTP/1.0 style negotiation scheme

 The HTTP/1.0 protocol elements allow for a negotiation scheme as
 follows:

 Server _____ proxy _____ proxy _____ user
 x.org cache cache agent

 < ----------------------------------
 | GET http://x.org/paper
 | Accept- headers
 choose
 |
 ---------------------------------- >
 Best variant

Holtman & Mutz Experimental [Page 9]

RFC 2295 Transparent Content Negotiation March 1998

 When the resource is accessed, the user agent sends (along with its
 request) various Accept- headers which express the user agent
 capabilities and the user preferences. Then the origin server uses
 these Accept- headers to choose the best variant, which is returned
 in the response.

 The biggest problem with this scheme is that it does not scale well.
 For all but the most minimal user agents, Accept- headers expressing
 all capabilities and preferences would be very large, and sending
 them in every request would be hugely inefficient, in particular
 because only a small fraction of the resources on the web have
 multiple variants.

4.3 Transparent content negotiation scheme

 The transparent content negotiation scheme eliminates the need to
 send huge Accept- headers, and nevertheless allows for a selection
 process that always yields either the best variant, or an error
 message indicating that user agent is not capable of displaying any
 of the available variants.

 Under the transparent content negotiation scheme, the server sends a
 list with the available variants and their properties to the user
 agent. An example of a list with three variants is

 {"paper.1" 0.9 {type text/html} {language en}},
 {"paper.2" 0.7 {type text/html} {language fr}},
 {"paper.3" 1.0 {type application/postscript} {language en}}

 The syntax and semantics of the variant descriptions in this list are
 covered in section 5. When the list is received, the user agent can
 choose the best variant and retrieve it. Graphically, the
 communication can be represented as follows:

Holtman & Mutz Experimental [Page 10]

RFC 2295 Transparent Content Negotiation March 1998

 Server _____ proxy _____ proxy _____ user
 x.org cache cache agent

 < ----------------------------------
 | GET http://x.org/paper
 |
 ----------------------------------- > [list response]
 return of list |
 choose
 |
 < ----------------------------------
 | GET http://x.org/paper.1
 |
 ---------------------------------- > [normal response]
 return of paper.1

 The first response returning the list of variants is called a ‘list
 response’. The second response is a normal HTTP response: it does
 not contain special content negotiation related information. Only
 the user agent needs to know that the second request actually
 retrieves a variant. For the other parties in the communication, the
 second transaction is indistinguishable from a normal HTTP
 transaction.

 With this scheme, information about capabilities and preferences is
 only used by the user agent itself. Therefore, sending such
 information in large Accept- headers is unnecessary. Accept- headers
 do have a limited use in transparent content negotiation however; the
 sending of small Accept- headers can often speed up the negotiation
 process. This is covered in section 4.4.

 List responses are covered in section 10.1. As an example, the list
 response in the above picture could be:

 HTTP/1.1 300 Multiple Choices
 Date: Tue, 11 Jun 1996 20:02:21 GMT
 TCN: list
 Alternates: {"paper.1" 0.9 {type text/html} {language en}},
 {"paper.2" 0.7 {type text/html} {language fr}},
 {"paper.3" 1.0 {type application/postscript}
 {language en}}
 Vary: negotiate, accept, accept-language
 ETag: "blah;1234"
 Cache-control: max-age=86400
 Content-Type: text/html
 Content-Length: 227
 <h2>Multiple Choices:</h2>

Holtman & Mutz Experimental [Page 11]

RFC 2295 Transparent Content Negotiation March 1998

 HTML, English version
 HTML, French version
 Postscript, English version

 The Alternates header in the response contains the variant list. The
 Vary header is included to ensure correct caching by plain HTTP/1.1
 caches (see section 10.6). The ETag header allows the response to be
 revalidated by caches, the Cache-Control header controls this
 revalidation. The HTML entity included in the response allows the
 user to select the best variant by hand if desired.

4.4 Optimizing the negotiation process

 The basic transparent negotiation scheme involves two HTTP
 transactions: one to retrieve the list, and a second one to retrieve
 the chosen variant. There are however several ways to ‘cut corners’
 in the data flow path of the basic scheme.

 First, caching proxies can cache both variant lists and variants.
 Such caching can reduce the communication overhead, as shown in the
 following example:

 Server _____ proxy _____ proxy __________ user
 x.org cache cache agent

 < --------------
 | GET ../paper
 |
 has the list
 in cache
 |
 ------------- > [list response]
 list |
 |
 choose
 |
 < --------------------------
 | GET ../paper.1
 |
 has the variant
 in cache
 |
 -------------------------- > [normal response]
 return of paper.1

Holtman & Mutz Experimental [Page 12]

RFC 2295 Transparent Content Negotiation March 1998

 Second, the user agent can send small Accept- headers, which may
 contain enough information to allow the server to choose the best
 variant and return it directly.

 Server _____ proxy _____ proxy _____ user
 x.org cache cache agent

 < ----------------------------------
 | GET http://x.org/paper
 | small Accept- headers
 |
 able to choose on
 behalf of user agent
 |
 ---------------------------------- > [choice response]
 return of paper.1 and list

 This choosing based on small Accept- headers is done with a ‘remote
 variant selection algorithm’. Such an algorithm takes the variant
 list and the Accept- headers as input. It then computes whether the
 Accept- headers contain sufficient information to choose on behalf of
 the user agent, and if so, which variant is the best variant. If the
 best variant is a neighboring variant, it may be returned, together
 with the variant list, in a choice response.

 A server may only choose on behalf of a user agent supporting
 transparent content negotiation if the user agent explicitly allows
 the use of a particular remote variant selection algorithm in the
 Negotiate request header. User agents with sophisticated internal
 variant selection algorithms may want to disallow a remote choice, or
 may want to allow it only when retrieving inline images. If the
 local algorithm of the user agent is superior in only some difficult
 areas of negotiation, it is possible to enable the remote algorithm
 for the easy areas only. More information about the use of a remote
 variant selection algorithm can be found in [3].

 Choice responses are covered in section 10.2. For example, the
 choice response in the above picture could be:

 HTTP/1.1 200 OK
 Date: Tue, 11 Jun 1996 20:05:31 GMT
 TCN: choice
 Content-Type: text/html
 Last-Modified: Mon, 10 Jun 1996 10:01:14 GMT
 Content-Length: 5327
 Cache-control: max-age=604800
 Content-Location: paper.1
 Alternates: {"paper.1" 0.9 {type text/html} {language en}},

Holtman & Mutz Experimental [Page 13]

RFC 2295 Transparent Content Negotiation March 1998

 {"paper.2" 0.7 {type text/html} {language fr}},
 {"paper.3" 1.0 {type application/postscript}
 {language en}}
 Etag: "gonkyyyy;1234"
 Vary: negotiate, accept, accept-language
 Expires: Thu, 01 Jan 1980 00:00:00 GMT

 <title>A paper about

 Finally, the above two kinds of optimization can be combined; a
 caching proxy which has the list will sometimes be able to choose on
 behalf of the user agent. This could lead to the following
 communication pattern:

 Server _____ proxy _____ proxy __________ user
 x.org cache cache agent

 < ---------------
 | GET ../paper
 | small Accept
 |
 able to choose
 on behalf
 |
 < ----------
 | GET ../paper.1
 |
 ---------- > [normal response]
 paper.1 |
 ---------------- > [choice response]
 paper.1 and list

 Note that this cutting of corners not only saves bandwidth, it also
 eliminates delays due to packet round trip times, and reduces the
 load on the origin server.

4.5 Downwards compatibility with non-negotiating user agents

 To handle requests from user agents which do not support transparent
 content negotiation, this specification allows the origin server to
 revert to a HTTP/1.0 style negotiation scheme. The specification of
 heuristics for such schemes is beyond the scope of this document.

Holtman & Mutz Experimental [Page 14]

RFC 2295 Transparent Content Negotiation March 1998

4.6 Retrieving a variant by hand

 It is always possible for a user agent to retrieve the variant list
 which is bound to a negotiable resource. The user agent can use this
 list to make available a menu of all variants and their
 characteristics to the user. Such a menu allows the user to randomly
 browse other variants, and makes it possible to manually correct any
 sub-optimal choice made by the automatic negotiation process.

4.7 Dimensions of negotiation

 Transparent content negotiation defines four dimensions of
 negotiation:

 1. Media type (MIME type)
 2. Charset
 3. Language
 4. Features

 The first three dimensions have traditionally been present in HTTP.
 The fourth dimension is added by this specification. Additional
 dimensions, beyond the four mentioned above, could be added by future
 specifications.

 Negotiation on the content encoding of a response (gzipped,
 compressed, etc.) is left outside of the realm of transparent
 negotiation. See section 10.8 for more information.

4.8 Feature negotiation

 Feature negotiation intends to provide for all areas of negotiation
 not covered by the type, charset, and language dimensions. Examples
 are negotiation on

 * HTML extensions
 * Extensions of other media types
 * Color capabilities of the user agent
 * Screen size
 * Output medium (screen, paper, ...)
 * Preference for speed vs. preference for graphical detail

 The feature negotiation framework (section 6) is the principal means
 by which transparent negotiation offers extensibility; a new
 dimension of negotiation (really a sub-dimension of the feature
 dimension) can be added without the need for a new standards effort
 by the simple registration of a ‘feature tag’.

Holtman & Mutz Experimental [Page 15]

RFC 2295 Transparent Content Negotiation March 1998

4.9 Length of variant lists

 As a general rule, variant lists should be short: it is expected that
 a typical transparently negotiable resource will have 2 to 10
 variants, depending on its purpose. Variant lists should be short
 for a number of reasons:

 1. The user must be able to pick a variant by hand to correct a
 bad automatic choice, and this is more difficult with a long
 variant list.

 2. A large number of variants will decrease the efficiency of
 internet proxy caches.

 3. Long variant lists will make some transparently negotiated
 responses longer.

 In general, it is not desirable to create a transparently negotiable
 resource with hundreds of variants in order to fine-tune the
 graphical presentation of a resource. Any graphical fine-tuning
 should be done, as much as possible, by using constructs which act at
 the user agent side, for example

 <center><img src=titlebanner.gif width=100%
 alt="MegaBozo Corp"></center>

 In order to promote user agent side fine tuning, which is more
 scalable than fine tuning over the network, user agents which
 implement a scripting language for content rendering are encouraged
 to make the availability of this language visible for transparent
 content negotiation, and to allow rendering scripts to access the
 capabilities and preferences data used for content negotiation, as
 far as privacy considerations permit this.

4.10 Relation with other negotiation schemes

 The HTTP/1.x protocol suite allows for many different negotiation
 mechanisms. Transparent content negotiation specializes in scalable,
 interoperable negotiation of content representations at the HTTP
 level. It is intended that transparent negotiation can co-exist with
 other negotiation schemes, both open and proprietary, which cover
 different application domains or work at different points in the
 author-to-user chain. Ultimately, it will be up to the resource
 author to decide which negotiation mechanism, or combination of
 negotiation mechanisms, is most appropriate for the task at hand.

Holtman & Mutz Experimental [Page 16]

RFC 2295 Transparent Content Negotiation March 1998

5 Variant descriptions

5.1 Syntax

 A variant can be described in a machine-readable way with a variant
 description.

 variant-description =
 "{" <"> URI <"> source-quality *variant-attribute"}"

 source-quality = qvalue

 variant-attribute = "{" "type" media-type "}"
 | "{" "charset" charset "}"
 | "{" "language" 1#language-tag "}"
 | "{" "length" 1*DIGIT "}"
 | "{" "features" feature-list "}"
 | "{" "description"
 quoted-string [language-tag] "}"
 | extension-attribute

 extension-attribute = "{" extension-name extension-value "}"
 extension-name = token
 extension-value = *(token | quoted-string | LWS
 | extension-specials)

 extension-specials =
 <any element of tspecials except <"> and "}">

 The feature-list syntax is defined in section 6.4.

 Examples are

 {"paper.2" 0.7 {type text/html} {language fr}}

 {"paper.5" 0.9 {type text/html} {features tables}}

 {"paper.1" 0.001}

 The various attributes which can be present in a variant description
 are covered in the subsections below. Each attribute may appear only
 once in a variant description.

5.2 URI

 The URI attribute gives the URI of the resource from which the
 variant can be retrieved with a GET request. It can be absolute or
 relative to the Request-URI. The variant resource may vary (on the

Holtman & Mutz Experimental [Page 17]

RFC 2295 Transparent Content Negotiation March 1998

 Cookie request header, for example), but MUST NOT engage in
 transparent content negotiation itself.

5.3 Source-quality

 The source-quality attribute gives the quality of the variant, as a
 representation of the negotiable resource, when this variant is
 rendered with a perfect rendering engine on the best possible output
 medium.

 If the source-quality is less than 1, it often expresses a quality
 degradation caused by a lossy conversion to a particular data format.
 For example, a picture originally in JPEG form would have a lower
 source quality when translated to the XBM format, and a much lower
 source quality when translated to an ASCII-art variant. Note
 however, that degradation is a function of the source; an original
 piece of ASCII-art may degrade in quality if it is captured in JPEG
 form.

 The source-quality could also represent a level of quality caused by
 skill of language translation, or ability of the used media type to
 capture the intended artistic expression.

 Servers should use the following table a guide when assigning source
 quality values:

 1.000 perfect representation
 0.900 threshold of noticeable loss of quality
 0.800 noticeable, but acceptable quality reduction
 0.500 barely acceptable quality
 0.300 severely degraded quality
 0.000 completely degraded quality

 The same table can be used by local variant selection algorithms (see
 appendix 19) when assigning degradation factors for different content
 rendering mechanisms. Note that most meaningful values in this table
 are close to 1. This is due to the fact that quality factors are
 generally combined by multiplying them, not by adding them.

 When assigning source-quality values, servers should not account for
 the size of the variant and its impact on transmission and rendering
 delays; the size of the variant should be stated in the length
 attribute and any size-dependent calculations should be done by the
 variant selection algorithm. Any constant rendering delay for a
 particular media type (for example due to the startup time of a
 helper application) should be accounted for by the user agent, when
 assigning a quality factor to that media type.

Holtman & Mutz Experimental [Page 18]

RFC 2295 Transparent Content Negotiation March 1998

5.4 Type, charset, language, and length

 The type attribute of a variant description carries the same
 information as its Content-Type response header counterpart defined
 in [1], except for any charset information, which MUST be carried in
 the charset attribute. For, example, the header

 Content-Type: text/html; charset=ISO-8859-4

 has the counterpart attributes

 {type text/html} {charset ISO-8859-4}

 The language and length attributes carry the same information as
 their Content-* response header counterparts in [1]. The length
 attribute, if present, MUST thus reflect the length of the variant
 alone, and not the total size of the variant and any objects inlined
 or embedded by the variant.

 Though all of these attributes are optional, it is often desirable to
 include as many attributes as possible, as this will increase the
 quality of the negotiation process.

 Note: A server is not required to maintain a one-to-one
 correspondence between the attributes in the variant description
 and the Content-* headers in the variant response. For example,
 if the variant description contains a language attribute, the
 response does not necessarily have to contain a Content-Language
 header. If a Content-Language header is present, it does not have
 to contain an exact copy of the information in the language
 attribute.

5.5 Features

 The features attribute specifies how the presence or absence of
 particular feature tags in the user agent affects the overall quality
 of the variant. This attribute is covered in section 6.4.

5.6 Description

 The description attribute gives a textual description of the variant.
 It can be included if the URI and normal attributes of a variant are
 considered too opaque to allow interpretation by the user. If a user
 agent is showing a menu of available variants compiled from a variant
 list, and if a variant has a description attribute, the user agent
 SHOULD show the description attribute of the variant instead of
 showing the normal attributes of the variant. The description field
 uses the UTF-8 character encoding scheme [5], which is a superset of

Holtman & Mutz Experimental [Page 19]

RFC 2295 Transparent Content Negotiation March 1998

 US-ASCII, with ""%" HEX HEX" encoding. The optional language tag MAY
 be used to specify the language used in the description text.

5.7 Extension-attribute

 The extension-attribute allows future specifications to incrementally
 define dimensions of negotiation which cannot be created by using the
 feature negotiation framework, and eases content negotiation
 experiments. In experimental situations, servers MUST ONLY generate
 extension-attributes whose names start with "x-". User agents SHOULD
 ignore all extension attributes they do not recognize. Proxies MUST
 NOT run a remote variant selection algorithm if an unknown extension
 attribute is present in the variant list.

6 Feature negotiation

 This section defines the feature negotiation mechanism. Feature
 negotiation has been introduced in section 4.8. Appendix 19 contains
 examples of feature negotiation.

6.1 Feature tags

 A feature tag (ftag) identifies something which can be negotiated on,
 for example a property (feature) of a representation, a capability
 (feature) of a user agent, or the preference of a user for a
 particular type of representation. The use of feature tags need not
 be limited to transparent content negotiation, and not every feature
 tag needs to be usable in the HTTP transparent content negotiation
 framework.

 ftag = token | quoted-string

 Note: A protocol-independent system for feature tag registration
 is currently being developed in the IETF. This specification does
 not define any feature tags. In experimental situations, the use
 of tags which start with "x." is encouraged.

 Feature tags are used in feature sets (section 6.2) and in feature
 predicates (section 6.3). Feature predicates are in turn used in
 features attributes (section 6.4), which are used in variant
 descriptions (section 5). Variant descriptions can be transmitted in
 Alternates headers (section 8.3).

 The US-ASCII charset is used for feature tags. Feature tag
 comparison is case-insensitive. A token tag XYZ is equal to a
 quoted-string tag "XYZ". Examples are

 tables, fonts, blebber, wolx, screenwidth, colordepth

Holtman & Mutz Experimental [Page 20]

RFC 2295 Transparent Content Negotiation March 1998

 An example of the use of feature tags in a variant description is:

 {"index.html" 1.0 {type text/html} {features tables frames}}

 This specification follows general computing practice in that it
 places no restrictions on what may be called a feature. At the
 protocol level, this specification does not distinguish between
 different uses of feature tags: a tag will be processed in the same
 way, no matter whether it identifies a property, capability, or
 preference. For some tags, it may be fluid whether the tag
 represents a property, preference, or capability. For example, in
 content negotiation on web pages, a "textonly" tag would identify a
 capability of a text-only user agent, but the user of a graphical
 user agent may use this tag to specify that text-only content is
 preferred over graphical content.

6.1.1 Feature tag values

 The definition of a feature tag may state that a feature tag can have
 zero, one, or more values associated with it. These values
 specialize the meaning of the tag. For example, a feature tag
 ‘paper’ could be associated with the values ‘A4’ and ‘A5’.

 tag-value = token | quoted-string

 The US-ASCII charset is used for feature tag values. Equality
 comparison for tag values MUST be done with a case-sensitive, octet-
 by-octet comparison, where any ""%" HEX HEX" encodings MUST be
 processed as in [1]. A token value XYZ is equal to a quoted-string
 value "XYZ".

6.2 Feature sets

 The feature set of a user agent is a data structure which records the
 capabilities of the user agent and the preferences of the user.

 Feature sets are used by local variant selection algorithms (see
 appendix 19 for an example). A user agent can use the Accept-
 Features header (section 8.2) to make some of the contents of its
 feature set known to remote variant selection algorithms.

 Structurally, a feature set is a possibly empty set, containing
 records of the form

 (feature tag , set of feature tag values)

Holtman & Mutz Experimental [Page 21]

RFC 2295 Transparent Content Negotiation March 1998

 If a record with a feature tag is present in the set, this means that
 the user agent implements the corresponding capability, or that the
 user has expressed the corresponding preference.

 Each record in a feature set has a, possibly empty, set of tag
 values. For feature tags which cannot have values associated with
 it, this set is always empty. For feature tags which can have zero,
 one, or more values associated with it, this set contains those
 values currently associated with the tag. If the set of a feature
 tag T has the value V in it, it is said that ‘the tag T is present
 with the value V’.

 This specification does not define a standard notation for feature
 sets. An example of a very small feature set, in a mathematical
 notation, is

 { ("frames" , { }) ,
 ("paper" , { "A4" , "A5" })
 }

 As feature registration is expected to be an ongoing process, it is
 generally not possible for a user agent to know the meaning of all
 feature tags it can possibly encounter in a variant description. A
 user agent SHOULD treat all features tags unknown to it as absent
 from its feature set.

 A user agent may change the contents of its feature set depending on
 the type of request, and may also update it to reflect changing
 conditions, for example a change in the window size. Therefore, when
 considering feature negotiation, one usually talks about ‘the feature
 set of the current request’.

6.3 Feature predicates

 Feature predicates are predicates on the contents of feature sets.
 They appear in the features attribute of a variant description.

 fpred = ["!"] ftag
 | ftag ("=" | "!=") tag-value
 | ftag "=" "[" numeric-range "]"

 numeric-range = [number] "-" [number]

 Feature predicates are used in features attributes (section 6.4),
 which are used in variant descriptions (section 5). Variant
 descriptions can be transmitted in Alternates headers (section 8.3).

Holtman & Mutz Experimental [Page 22]

RFC 2295 Transparent Content Negotiation March 1998

 Examples of feature predicates are

 blebber, !blebber, paper=a4, colordepth=5, blex!=54,
 dpi=[300-599], colordepth=[24-]

 Using the feature set of the current request, a user agent SHOULD
 compute the truth value of the different feature predicates as
 follows.

 ftag true if the feature is present, false otherwise

 !ftag true if the feature is absent, false otherwise

 ftag=V true if the feature is present with the value V,
 false otherwise,

 ftag!=V true if the feature is not present with the value V,
 false otherwise,

 ftag=[N-M] true if the feature is present with at least one
 numeric value, while the highest value with which it
 is present in the range N-M, false otherwise. If N
 is missing, the lower bound is 0. If M is missing,
 the upper bound is infinity.

 As an example, with the feature set

 { ("blex" , { }),
 ("colordepth" , { "5" }),
 ("UA-media" , { "stationary" }),
 ("paper" , { "A4", "A3" }) ,
 ("x-version" , { "104", "200" })
 }

 the following predicates are true:

 blex, colordepth=[4-], colordepth!=6, colordepth, !screenwidth, UA-
 media=stationary, UA-media!=screen, paper=A4, paper =!A0,
 colordepth=[4 - 6], x-version=[100-300], x-version=[200-300]

 and the following predicates are false:

 !blex, blebber, colordepth=6, colordepth=foo, !colordepth,
 screenwidth, screenwidth=640, screenwidth!=640, x-version=99, UA-
 media=screen, paper=A0, paper=a4, x-version=[100-199], wuxta

Holtman & Mutz Experimental [Page 23]

RFC 2295 Transparent Content Negotiation March 1998

6.4 Features attribute

 The features attribute, for which section 5.1 defines the syntax

 "{" "features" feature-list "}"

 is used in a variant description to specify how the presence or
 absence of particular feature tags in the user agent affects the
 overall quality of the variant.

 feature-list = 1%feature-list-element

 feature-list-element = (fpred | fpred-bag)
 [";" ["+" true-improvement]
 ["-" false-degradation]
]

 fpred-bag = "[" 1%fpred "]"

 true-improvement = short-float
 false-degradation = short-float

 Features attributes are used in variant descriptions (section 5).
 Variant descriptions can be transmitted in Alternates headers
 (section 8.3).

 Examples are:

 {features !textonly [blebber !wolx] colordepth=3;+0.7}

 {features !blink;-0.5 background;+1.5 [blebber !wolx];+1.4-0.8}

 The default value for the true-improvement is 1. The default value
 for the false-degradation is 0, or 1 if a true-improvement value is
 given.

 A user agent SHOULD, and a remote variant selection algorithm MUST
 compute the quality degradation factor associated with the features
 attribute by multiplying all quality degradation factors of the
 elements of the feature-list. Note that the result can be a factor
 greater than 1.

 A feature list element yields its true-improvement factor if the
 corresponding feature predicate is true, or if at least one element
 of the corresponding fpred-bag is true. The element yields its
 false-degradation factor otherwise.

Holtman & Mutz Experimental [Page 24]

RFC 2295 Transparent Content Negotiation March 1998

7 Remote variant selection algorithms

 A remote variant selection algorithm is a standardized algorithm by
 which a server can choose a best variant on behalf of a negotiating
 user agent. The use of a remote algorithm can speed up the
 negotiation process by eliminating a request-response round trip.

 A remote algorithm typically computes whether the Accept- headers in
 the request contain sufficient information to allow a choice, and if
 so, which variant is the best variant. This specification does not
 define any remote algorithms, but does define a mechanism to
 negotiate on the use of such algorithms.

7.1 Version numbers

 A version numbering scheme is used to distinguish between different
 remote variant selection algorithms.

 rvsa-version = major "." minor

 major = 1*4DIGIT
 minor = 1*4DIGIT

 An algorithm with the version number X.Y, with Y>0, MUST be downwards
 compatible with all algorithms from X.0 up to X.Y. Downwards
 compatibility means that, if supplied with the same information, the
 newer algorithm MUST make the same choice, or a better choice, as the
 old algorithm. There are no compatibility requirements between
 algorithms with different major version numbers.

8 Content negotiation status codes and headers

 This specification adds one new HTTP status code, and introduces six
 new HTTP headers. It also extends the semantics of an existing
 HTTP/1.1 header.

8.1 506 Variant Also Negotiates

 The 506 status code indicates that the server has an internal
 configuration error: the chosen variant resource is configured to
 engage in transparent content negotiation itself, and is therefore
 not a proper end point in the negotiation process.

Holtman & Mutz Experimental [Page 25]

RFC 2295 Transparent Content Negotiation March 1998

8.2 Accept-Features

 The Accept-Features request header can be used by a user agent to
 give information about the presence or absence of certain features in
 the feature set of the current request. Servers can use this
 information when running a remote variant selection algorithm.

 Note: the name ‘Accept-Features’ for this header was chosen
 because of symmetry considerations with other Accept- headers,
 even though the Accept-Features header will generally not contain
 an exhaustive list of features which are somehow ‘accepted’. A
 more accurate name of this header would have been ‘Feature-Set-
 Info’.

 Accept-Features = "Accept-Features" ":"
 #(feature-expr *(";" feature-extension))

 feature-expr = ["!"] ftag
 | ftag ("=" | "!=") tag-value
 | ftag "=" "{" tag-value "}"
 | "*"

 feature-extension = token ["=" (token | quoted-string)]

 No feature extensions are defined in this specification. An example
 is:

 Accept-Features: blex, !blebber, colordepth={5}, !screenwidth,
 paper = A4, paper!="A2", x-version=104, *

 The different feature expressions have the following meaning:

 ftag ftag is present

 !ftag ftag is absent

 ftag=V ftag is present with the value V

 ftag!=V ftag is present, but not with the value V

 ftag={V} ftag is present with the value V, and not with any
 other values

 * the expressions in this header do not fully describe
 the feature set: feature tags not mentioned in this
 header may also be present, and, except for the case
 ftag={V}, tags may be present with more values than
 mentioned.

Holtman & Mutz Experimental [Page 26]

RFC 2295 Transparent Content Negotiation March 1998

 Absence of the Accept-Features header in a request is equivalent to
 the inclusion of

 Accept-Features: *

 By using the Accept-Features header, a remote variant selection
 algorithm can sometimes determine the truth value of a feature
 predicate on behalf of the user agent. For example, with the header

 Accept-Features: blex, !blebber, colordepth={5}, !screenwidth,
 paper = A4, paper!="A2", x-version=104, *

 the algorithm can determine that the following predicates are true:

 blex, colordepth=[4-], colordepth!=6, colordepth, !screenwidth,
 paper=A4, colordepth=[4-6]

 and that the following predicates are false:

 !blex, blebber, colordepth=6, colordepth=foo, !colordepth,
 screenwidth, screenwidth=640, screenwidth!=640,

 but the truth value of the following predicates cannot be
 determined:

 UA-media=stationary, UA-media!=screen, paper!=a0,
 x-version=[100-300], x-version=[200-300], x-version=99,
 UA-media=screen, paper=A0, paper=a4, x-version=[100-199], wuxta

8.3 Alternates

 The Alternates response header is used to convey the list of variants
 bound to a negotiable resource. This list can also include
 directives for any content negotiation process. If a response from a
 transparently negotiable resource includes an Alternates header, this
 header MUST contain the complete variant list bound to the negotiable
 resource. Responses from resources which do not support transparent
 content negotiation MAY also use Alternates headers.

 Alternates = "Alternates" ":" variant-list

 variant-list = 1#(variant-description
 | fallback-variant
 | list-directive)

 fallback-variant = "{" <"> URI <"> "}"

 list-directive = ("proxy-rvsa" "=" <"> 0#rvsa-version <">)

Holtman & Mutz Experimental [Page 27]

RFC 2295 Transparent Content Negotiation March 1998

 | extension-list-directive

 extension-list-directive =
 token ["=" (token | quoted-string)]

 An example is

 Alternates: {"paper.1" 0.9 {type text/html} {language en}},
 {"paper.2" 0.7 {type text/html} {language fr}},
 {"paper.3" 1.0 {type application/postscript}
 {language en}},
 proxy-rvsa="1.0, 2.5"

 Any relative URI specified in a variant-description or fallback-
 variant field is relative to the request-URI. Only one fallback-
 variant field may be present. If the variant selection algorithm of
 the user agent finds that all described variants are unacceptable,
 then it SHOULD choose the fallback variant, if present, as the best
 variant. If the user agent computes the overall quality values of
 the described variants, and finds that several variants share the
 highest value, then the first variant with this value in the list
 SHOULD be chosen as the best variant.

 The proxy-rvsa directive restricts the use of remote variant
 selection algorithms by proxies. If present, a proxy MUST ONLY use
 algorithms which have one of the version numbers listed, or have the
 same major version number and a higher minor version number as one of
 the versions listed. Any restrictions set by proxy-rvsa come on top
 of the restrictions set by the user agent in the Negotiate request
 header. The directive proxy-rvsa="" will disable variant selection
 by proxies entirely. Clients SHOULD ignore all extension-list-
 directives they do not understand.

 A variant list may contain multiple differing descriptions of the
 same variant. This can be convenient if the variant uses conditional
 rendering constructs, or if the variant resource returns multiple
 representations using a multipart media type.

8.4 Negotiate

 The Negotiate request header can contain directives for any content
 negotiation process initiated by the request.

 Negotiate = "Negotiate" ":" 1#negotiate-directive

 negotiate-directive = "trans"
 | "vlist"
 | "guess-small"

Holtman & Mutz Experimental [Page 28]

RFC 2295 Transparent Content Negotiation March 1998

 | rvsa-version
 | "*"
 | negotiate-extension

 negotiate-extension = token ["=" token]

 Examples are

 Negotiate: 1.0, 2.5
 Negotiate: *

 The negotiate directives have the following meaning

 "trans"
 The user agent supports transparent content negotiation for
 the current request.

 "vlist"
 The user agent requests that any transparently negotiated
 response for the current request includes an Alternates
 header with the variant list bound to the negotiable resource.
 Implies "trans".

 "guess-small"
 The user agent allows origin servers to run a custom algorithm
 which guesses the best variant for the request, and to return
 this variant in a choice response, if the resulting choice
 response is smaller than or not much larger than a list
 response. The definition of ‘not much larger’ is left to
 origin server heuristics. Implies "vlist" and "trans".

 rvsa-version
 The user agent allows origin servers and proxies to run the
 remote variant selection algorithm with the indicated version
 number, or with the same major version number and a higher
 minor version number. If the algorithm has sufficient
 information to choose a best, neighboring variant, the origin
 server or proxy MAY return a choice response with this
 variant. Implies "trans".

 "*"
 The user agent allows origin servers and proxies to run any
 remote variant selection algorithm. The origin server may
 even run algorithms which have not been standardized. If the
 algorithm has sufficient information to choose a best,
 neighboring variant, the origin server or proxy MAY return a
 choice response with this variant. Implies "trans".

Holtman & Mutz Experimental [Page 29]

RFC 2295 Transparent Content Negotiation March 1998

 Servers SHOULD ignore all negotiate-directives they do not
 understand. If the Negotiate header allows a choice between multiple
 remote variant selection algorithms which are all supported by the
 server, the server SHOULD use some internal precedence heuristics to
 select the best algorithm.

8.5 TCN

 The TCN response header is used by a server to signal that the
 resource is transparently negotiated.

 TCN = "TCN" ":" #(response-type
 | server-side-override-directive
 | tcn-extension)

 response-type = "list" | "choice" | "adhoc"

 server-side-override-directive = "re-choose" | "keep"

 tcn-extension = token ["=" (token | quoted-string)]

 If the resource is not transparently negotiated, a TCN header MUST
 NOT be included in any response. If the resource is transparently
 negotiated, a TCN header, which includes the response-type value of
 the response, MUST be included in every response with a 2xx status
 code or any 3xx status code, except 304, in which it MAY be included.
 A TCN header MAY also be included, without a response-type value, in
 other responses from transparently negotiated resources.

 A server-side override directive MUST be included if the origin
 server performed a server-side override when choosing the response.
 If the directive is "re-choose", the server MUST include an
 Alternates header with the variant bound to the negotiable resource
 in the response, and user agent SHOULD use its internal variant
 selection algorithm to choose, retrieve, and display the best variant
 from this list. If the directive is "keep" the user agent SHOULD NOT
 renegotiate on the response, but display it directly, or act on it
 directly if it is a redirection response.

 Clients SHOULD ignore all tcn-extensions they do not understand.

8.6 Variant-Vary

 The Variant-Vary response header can be used in a choice response to
 record any vary information which applies to the variant data (the
 entity body combined with some of the entity headers) contained in
 the response, rather than to the response as a whole.

Holtman & Mutz Experimental [Page 30]

RFC 2295 Transparent Content Negotiation March 1998

 Variant-Vary = "Variant-Vary" ":" ("*" | 1#field-name)

 Use of the Variant-Vary header is discussed in section 10.2.

9 Cache validators

 To allow for correct and efficient caching and revalidation of
 negotiated responses, this specification extends the caching model of
 HTTP/1.1 [1] in various ways.

 This specification does not introduce a ‘variant-list-max-age’
 directive which explicitly bounds the freshness lifetime of a cached
 variant list, like the ‘max-age’ Cache-Control directive bounds the
 freshness lifetime of a cached response. However, this specification
 does ensure that a variant list which is sent at a time T by the
 origin server will never be re-used without revalidation by
 semantically transparent caches after the time T+M. This M is the
 maximum of all freshness lifetimes assigned (using max-age directives
 or Expires headers) by the origin server to

 a. the responses from the negotiable resource itself, and

 b. the responses from its neighboring variant resources

 If no freshness lifetimes are assigned by the origin server, M is the
 maximum of the freshness lifetimes which were heuristically assigned
 by all caches which can re-use the variant list.

9.1 Variant list validators

 A variant list validator is an opaque value which acts as the cache
 validator of a variant list bound to a negotiable resource.

 variant-list-validator = <quoted-string not containing any ";">

 If two responses contain the same variant list validator, a cache can
 treat the Alternates headers in these responses as equivalent (though
 the headers themselves need not be identical).

9.2 Structured entity tags

 A structured entity tag consists of a normal entity tag of which the
 opaque string is extended with a semicolon followed by the text
 (without the surrounding quotes) of a variant list validator:

Holtman & Mutz Experimental [Page 31]

RFC 2295 Transparent Content Negotiation March 1998

 normal | variant list | structured
 entity tag | validator | entity tag
 -------------+----------------+-----------------
 "etag" | "vlv" | "etag;vlv"
 W/"etag" | "vlv" | W/"etag;vlv"

 Note that a structured entity tag is itself also an entity tag. The
 structured nature of the tag allows caching proxies capable of
 transparent content negotiation to perform some optimizations defined
 in section 10. When not performing such optimizations, a structured
 tag SHOULD be treated as a single opaque value, according to the
 general rules in HTTP/1.1. Examples of structured entity tags are:

 "xyzzy;1234" W/"xyzzy;1234" "gonkxxxx;1234" "a;b;c;;1234"

 In the last example, the normal entity tag is "a;b;c;" and the
 variant list validator is "1234".

 If a transparently negotiated response includes an entity tag, it
 MUST be a structured entity tag. The variant list validator in the
 structured tag MUST act as a validator for the variant list contained
 in the Alternates header. The normal entity tag in the structured
 tag MUST act as a validator of the entity body in the response and of
 all entity headers except Alternates.

9.3 Assigning entity tags to variants

 To allow for correct revalidation of transparently negotiated
 responses by clients, origin servers SHOULD generate all normal
 entity tags for the neighboring variant resources of the negotiable
 resource in such a way that

 1. the same tag is never used by two different variants,
 unless this tag labels exactly the same entity on all occasions,

 2. if one normal tag "X" is a prefix of another normal tag "XY",
 then "Y" must never be a semicolon followed by a variant list
 validator.

10 Content negotiation responses

 If a request on a transparently negotiated resource yields a response
 with a 2xx status code or any 3xx status code except 304, this
 response MUST always be either a list response, a choice response, or
 an adhoc response. These responses MUST always include a TCN header
 which specifies their type. Transparently negotiated responses with
 other status codes MAY also include a TCN header.

Holtman & Mutz Experimental [Page 32]

RFC 2295 Transparent Content Negotiation March 1998

 The conditions under which the different content negotiation
 responses may be sent are defined in section 12.1 for origin servers
 and in section 13 for proxies.

 After having constructed a list, choice, or adhoc response, a server
 MAY process any If-No-Match or If-Range headers in the request
 message and shorten the response to a 304 (Not Modified) or 206
 (Partial Content) response, following the rules in the HTTP/1.1
 specification [1]. In this case, the entity tag of the shortened
 response will identify it indirectly as a list, choice, or adhoc
 response.

10.1 List response

 A list response returns the variant list of the negotiable resource,
 but no variant data. It can be generated when the server does not
 want to, or is not allowed to, return a particular best variant for
 the request. If the user agent supports transparent content
 negotiation, the list response will cause it to select a best variant
 and retrieve it.

 A list response MUST contain (besides the normal headers required by
 HTTP) a TCN header which specifies the "list" response-type, the
 Alternates header bound to the negotiable resource, a Vary header and
 (unless it was a HEAD request) an entity body which allows the user
 to manually select the best variant.

 An example of a list response is

 HTTP/1.1 300 Multiple Choices
 Date: Tue, 11 Jun 1996 20:02:21 GMT
 TCN: list
 Alternates: {"paper.1" 0.9 {type text/html} {language en}},
 {"paper.2" 0.7 {type text/html} {language fr}},
 {"paper.3" 1.0 {type application/postscript}
 {language en}}
 Vary: negotiate, accept, accept-language
 ETag: "blah;1234"
 Cache-control: max-age=86400
 Content-Type: text/html
 Content-Length: 227

 <h2>Multiple Choices:</h2>

 HTML, English version
 HTML, French version
 Postscript, English version

Holtman & Mutz Experimental [Page 33]

RFC 2295 Transparent Content Negotiation March 1998

 Note: A list response can have any status code, but the 300
 (Multiple Choices) code is the most appropriate one for HTTP/1.1
 clients. Some existing versions of HTTP/1.0 clients are known to
 silently ignore 300 responses, instead of handling them according
 to the HTTP/1.0 specification [2]. Servers should therefore be
 careful in sending 300 responses to non-negotiating HTTP/1.0 user
 agents, and in making these responses cacheable. The 200 (OK)
 status code can be used instead.

 The Vary header in the response SHOULD ensure correct handling by
 plain HTTP/1.1 caching proxies. This header can either be

 Vary: *

 or a more elaborate header; see section 10.6.1.

 Only the origin server may construct list responses. Depending on
 the status code, a list response is cacheable unless indicated
 otherwise.

 According to the HTTP/1.1 specification [1], a user agent which does
 not support transparent content negotiation will, when receiving a
 list response with the 300 status code, display the entity body
 included in the response. If the response contains a Location
 header, however, the user agent MAY automatically redirect to this
 location.

 The handling of list responses by clients supporting transparent
 content negotiation is described in sections 11.1 and 13.

10.2 Choice response

 A choice response returns a representation of the best variant for
 the request, and may also return the variant list of the negotiable
 resource. It can be generated when the server has sufficient
 information to be able to choose the best variant on behalf the user
 agent, but may only be generated if this best variant is a
 neighboring variant. For request from user agents which do not
 support transparent content negotiation, a server may always generate
 a choice response, provided that the variant returned is a
 neighboring variant. The variant returned in a choice response need
 not necessarily be listed in the variant list bound to the negotiable
 resource.

Holtman & Mutz Experimental [Page 34]

RFC 2295 Transparent Content Negotiation March 1998

 A choice response merges a normal HTTP response from the chosen
 variant, a TCN header which specifies the "choice" response-type, and
 a Content-Location header giving the location of the variant.
 Depending on the status code, a choice response is cacheable unless
 indicated otherwise.

 Origin servers and proxy caches MUST construct choice responses with
 the following algorithm (or any other algorithm which gives equal end
 results for the client).

 In this algorithm, ‘the current Alternates header’ refers to the
 Alternates header containing the variant list which was used to
 choose the best variant, and ‘the current variant list validator’
 refers to the validator of this list. Section 10.4 specifies how
 these two items can be obtained by a proxy cache.

 The algorithm consists of four steps.

 1. Construct a HTTP request message on the best variant resource
 by rewriting the request-URI and Host header (if appropriate) of
 the received request message on the negotiable resource.

 2. Generate a valid HTTP response message, but not one with the
 304 (Not Modified) code, for the request message constructed in
 step 1.

 In a proxy cache, the response can be obtained from cache
 memory, or by passing the constructed HTTP request towards the
 origin server. If the request is passed on, the proxy MAY add,
 modify, or delete If-None-Match and If-Range headers to optimize
 the transaction with the upstream server.

 Note: the proxy should be careful not to add entity tags of
 non-neighboring variants to If-* (conditional) headers of the
 request, as there are no global uniqueness requirements for
 these tags.

 3. Only in origin servers: check for an origin server
 configuration error. If the HTTP response message generated in
 step 2 contains a TCN header, then the best variant resource is
 not a proper end point in the transparent negotiation process,
 and a 506 (Variant Also Negotiates) error response message
 SHOULD be generated instead of going to step 4.

 4. Add a number of headers to the HTTP response message generated
 in step 2.

Holtman & Mutz Experimental [Page 35]

RFC 2295 Transparent Content Negotiation March 1998

 a. Add a TCN header which specifies the "choice"
 response-type.

 b. Add a Content-Location header giving the location of the
 chosen variant. Delete any Content-Location header which was
 already present.

 Note: According to the HTTP/1.1 specification [1], if the
 Content-Location header contains a relative URI, this URI
 is relative to the URI in the Content-Base header, if
 present, and relative to the request-URI if no Content-
 Base header is present.

 c. If any Vary headers are present in the response message
 from step 2, add, for every Vary header, a Variant-Vary
 header with a copy of the contents of this Vary header.

 d. Delete any Alternates headers which are present in in the
 response. Now, the current Alternates header MUST be added
 if this is required by the Negotiate request header, or if
 the server returns "re-choose" in the TCN response header.
 Otherwise, the current Alternates header MAY be added.

 Note: It is usually a good strategy to always add the
 current Alternates header, unless it is very large
 compared to the rest of the response.

 e. Add a Vary header to ensure correct handling by plain
 HTTP/1.1 caching proxies. This header can either be

 Vary: *
 or a more elaborate header, see section 10.6.

 f. To ensure compatibility with HTTP/1.0 caching proxies which
 do not recognize the Vary header, an Expires header with a
 date in the past MAY be added. See section 10.7 for more
 information.

 g. If an ETag header is present in the response message from
 step 2, then extend the entity tag in that header with the
 current variant list validator, as specified in section 9.2.

 Note: Step g. is required even if the variant list itself
 is not added in step d.

 h. Only in proxy caches: set the Age header of the response to

 max(variant_age , alternates_age)

Holtman & Mutz Experimental [Page 36]

RFC 2295 Transparent Content Negotiation March 1998

 where variant_age is the age of the variant response obtained
 in step 2, calculated according to the rules in the HTTP/1.1
 specification [1], and alternates_age is the age of the
 Alternates header added in step d, calculated according to
 the rules in section 10.4.

 Note that a server can shorten the response produced by the above
 algorithm to a 304 (Not Modified) response if an If-None-Match header
 in the original request allows it. If this is the case, an
 implementation of the above algorithm can avoid the unnecessary
 internal construction of full response message in step 2, it need
 only construct the parts which end up in the final 304 response. A
 proxy cache which implements this optimization can sometimes generate
 a legal 304 response even if it has not cached the variant data
 itself.

 An example of a choice response is:

 HTTP/1.1 200 OK
 Date: Tue, 11 Jun 1996 20:05:31 GMT
 TCN: choice
 Content-Type: text/html
 Last-Modified: Mon, 10 Jun 1996 10:01:14 GMT
 Content-Length: 5327
 Cache-control: max-age=604800
 Content-Location: paper.1
 Alternates: {"paper.1" 0.9 {type text/html} {language en}},
 {"paper.2" 0.7 {type text/html} {language fr}},
 {"paper.3" 1.0 {type application/postscript}
 {language en}}
 Etag: "gonkyyyy;1234"
 Vary: negotiate, accept, accept-language
 Expires: Thu, 01 Jan 1980 00:00:00 GMT

 <title>A paper about

10.3 Adhoc response

 An adhoc response can be sent by an origin server as an extreme
 measure, to achieve compatibility with a non-negotiating or buggy
 client if this compatibility cannot be achieved by sending a list or
 choice response. There are very little requirements on the contents
 of an adhoc response. An adhoc response MUST have a TCN header which
 specifies the "adhoc" response-type, and a Vary header if the
 response is cacheable. It MAY contain the Alternates header bound to
 the negotiable resource.

Holtman & Mutz Experimental [Page 37]

RFC 2295 Transparent Content Negotiation March 1998

 Any Vary header in the response SHOULD ensure correct handling by
 plain HTTP/1.1 caching proxies. This header can either be

 Vary: *

 or a more elaborate header, see section 10.6.1. Depending on the
 status code, an adhoc response is cacheable unless indicated
 otherwise.

 As an example of the use of an adhoc response, suppose that the
 variant resource "redirect-to-blah" yields redirection (302)
 responses. A choice response with this variant could look as
 follows:

 HTTP/1.1 302 Moved Temporarily
 Date: Tue, 11 Jun 1996 20:02:28 GMT
 TCN: choice
 Content-location: redirect-to-blah
 Location: http://blah.org/
 Content-Type: text/html
 Content-Length: 62

 This document is available here.

 Suppose that the server knows that the receiving user agent has a
 bug, which causes it to crash on responses which contain both a
 Content-Location and a Location header. The server could then work
 around this bug by performing a server-side override and sending the
 following adhoc response instead:

 HTTP/1.1 302 Moved Temporarily
 Date: Tue, 11 Jun 1996 20:02:28 GMT
 TCN: adhoc, keep
 Location: http://blah.org/
 Content-Type: text/html
 Content-Length: 62

 This document is available here.

10.4 Reusing the Alternates header

 If a proxy cache has available a negotiated response which is
 cacheable, fresh, and has ETag and Alternates headers, then it MAY
 extract the Alternates header and associated variant list validator
 from the response, and reuse them (without unnecessary delay) to

Holtman & Mutz Experimental [Page 38]

RFC 2295 Transparent Content Negotiation March 1998

 negotiate on behalf of the user agent (section 13) or to construct a
 choice response (section 10.2). The age of the extracted Alternates
 header is the age of the response from which it is extracted,
 calculated according to the rules in the HTTP/1.1 specification [1].

10.5 Extracting a normal response from a choice response

 If a proxy receives a choice response, it MAY extract and cache the
 normal HTTP response contained therein. The normal response can be
 extracted by taking a copy of the choice response and then deleting
 any Content-Location, Alternates, and Vary headers, renaming any
 Variant-Vary headers to Vary headers, and shortening the structured
 entity tag in any ETag header to a normal entity tag.

 This normal response MAY be cached (as a HTTP response to the variant
 request as constructed in step 1. of section 10.2) and reused to
 answer future direct requests on the variant resource, according to
 the rules in the HTTP/1.1 specification [1].

 Note: The caching of extracted responses can decrease the upstream
 bandwidth usage with up to a factor 2, because two independent
 HTTP/1.1 cache entries, one associated with the negotiable
 resource URI and one with the variant URI, are created in the same
 transaction. Without this optimization, both HTTP/1.1 cache
 entries can only be created by transmitting the variant data
 twice.

 For security reasons (see section 14.2), an extracted normal response
 MUST NEVER be cached if belongs to a non-neighboring variant
 resource. If the choice response claims to contain data for a non-
 neighboring variant resource, the proxy SHOULD reject the choice
 response as a probable spoofing attempt.

10.6 Elaborate Vary headers

 If a HTTP/1.1 [1] server can generate varying responses for a request
 on some resource, then the server MUST include a Vary header in these
 responses if they are cacheable. This Vary header is a signal to
 HTTP/1.1 caches that something special is going on. It prevents the
 caches from returning the currently chosen response for every future
 request on the resource.

 Servers engaging in transparent content negotiation will generate
 varying responses. Therefore, cacheable list, choice, and adhoc
 responses MUST always include a Vary header.

Holtman & Mutz Experimental [Page 39]

RFC 2295 Transparent Content Negotiation March 1998

 The most simple Vary header which can be included is

 Vary: *

 This header leaves the way in which the response is selected by the
 server completely unspecified.

 A more elaborate Vary header MAY be used to allow for certain
 optimizations in HTTP/1.1 caches which do not have specific
 optimizations for transparent content negotiation, but which do cache
 multiple variant responses for one resource. Such a more elaborate
 Vary header lists all request headers which can be used by the server
 when selecting a response for a request on the resource.

10.6.1 Construction of an elaborate Vary header

 Origin servers can construct a more elaborate Vary header in the
 following way. First, start with the header

 Vary: negotiate

 ‘negotiate’ is always included because servers use the information in
 the Negotiate header when choosing between a list, choice, or adhoc
 response.

 Then, if any of the following attributes is present in any variant
 description in the Alternates header, add the corresponding header
 name to the Vary header

 attribute | header name to add
 -----------+---------------------
 type | accept
 charset | accept-charset
 language | accept-language
 features | accept-features

 The Vary header constructed in this way specifies the response
 variation which can be caused by the use of a variant selection
 algorithm in proxies. If the origin server will in some cases, for
 example if contacted by a non-negotiating user agent, use a custom
 negotiation algorithm which takes additional headers into account,
 these names of these headers SHOULD also be added to the Vary header.

Holtman & Mutz Experimental [Page 40]

RFC 2295 Transparent Content Negotiation March 1998

10.6.2 Caching of an elaborate Vary header

 A proxy cache cannot construct an elaborate vary header using the
 method above, because this method requires exact knowledge of any
 custom algorithms present in the origin server. However, when
 extracting an Alternates header from a response (section 10.4) caches
 MAY also extract the Vary header in the response, and reuse it along
 with the Alternates header. A clean Vary header can however only be
 extracted if the variant does not vary itself, i.e. if a Variant-Vary
 header is absent.

10.7 Adding an Expires header for HTTP/1.0 compatibility

 To ensure compatibility with HTTP/1.0 caching proxies which do not
 recognize the Vary header, an Expires header with a date in the past
 can be added to the response, for example

 Expires: Thu, 01 Jan 1980 00:00:00 GMT

 If this is done by an origin server, the server SHOULD usually also
 include a Cache-Control header for the benefit of HTTP/1.1 caches,
 for example

 Cache-Control: max-age=604800

 which overrides the freshness lifetime of zero seconds specified by
 the included Expires header.

 Note: This specification only claims downwards compatibility with
 the HTTP/1.0 proxy caches which implement the HTTP/1.0
 specification [2]. Some legacy proxy caches which return the
 HTTP/1.0 protocol version number do not honor the HTTP/1.0 Expires
 header as specified in [2]. Methods for achieving compatibility
 with such proxy caches are beyond the scope of this specification.

10.8 Negotiation on content encoding

 Negotiation on the content encoding of a response is orthogonal to
 transparent content negotiation. The rules for when a content
 encoding may be applied are the same as in HTTP/1.1: servers MAY
 content-encode responses that are the result of transparent content
 negotiation whenever an Accept-Encoding header in the request allows
 it. When negotiating on the content encoding of a cacheable
 response, servers MUST add the accept-encoding header name to the
 Vary header of the response, or add ‘Vary: *’.

Holtman & Mutz Experimental [Page 41]

RFC 2295 Transparent Content Negotiation March 1998

 Servers SHOULD always be able to provide unencoded versions of every
 transparently negotiated response. This means in particular that
 every variant in the variant list SHOULD at least be available in an
 unencoded form.

 Like HTTP/1.1, this specification allows proxies to encode or decode
 relayed or cached responses on the fly, unless explicitly forbidden
 by a Cache-Control directive. The encoded or decoded response still
 contains the same variant as far as transparent content negotiation
 is concerned. Note that HTTP/1.1 requires proxies to add a Warning
 header if the encoding of a response is changed.

11 User agent support for transparent negotiation

 This section specifies the requirements a user agent needs to satisfy
 in order to support transparent negotiation. If the user agent
 contains an internal cache, this cache MUST conform to the rules for
 proxy caches in section 13.

11.1 Handling of responses

 If a list response is received when a resource is accessed, the user
 agent MUST be able to automatically choose, retrieve, and display the
 best variant, or display an error message if none of the variants are
 acceptable.

 If a choice response is received when a resource is accessed, the
 usual action is to automatically display the enclosed entity.
 However, if a remote variant selection algorithm which was enabled
 could have made a choice different from the choice the local
 algorithm would make, the user agent MAY apply its local algorithm to
 any variant list in the response, and automatically retrieve and
 display another variant if the local algorithm makes an other choice.

 When receiving a choice response, a user agent SHOULD check if
 variant resource is a neighboring variant resource of the negotiable
 resource. If this is not the case, the user agent SHOULD reject the
 choice response as a probable spoofing attempt and display an error
 message, for example by internally replacing the choice response with
 a 502 (bad gateway) response.

11.2 Presentation of a transparently negotiated resource

 If the user agent is displaying a variant which is not an embedded or
 inlined object and which is the result of transparent content
 negotiation, the following requirements apply.

Holtman & Mutz Experimental [Page 42]

RFC 2295 Transparent Content Negotiation March 1998

 1. The user agent SHOULD allow the user to review a list of all
 variants bound to the negotiable resource, and to manually
 retrieve another variant if desired. There are two general ways
 of providing such a list. First, the information in the
 Alternates header of the negotiable resource could be used to
 make an annotated menu of variants. Second, the entity included
 in a list response of the negotiable resource could be displayed.
 Note that a list response can be obtained by doing a GET request
 which only has the "trans" directive in the Negotiate header.

 2. The user agent SHOULD make available though its user interface
 some indication that the resource being displayed is a negotiated
 resource instead of a plain resource. It SHOULD also allow the
 user to examine the variant list included in the Alternates
 header. Such a notification and review mechanism is needed
 because of privacy considerations, see section 14.1.

 3. If the user agent shows the URI of the displayed information to
 the user, it SHOULD be the negotiable resource URI, not the
 variant URI that is shown. This encourages third parties, who
 want to refer to the displayed information in their own
 documents, to make a hyperlink to the negotiable resource as a
 whole, rather than to the variant resource which happens to be
 shown. Such correct linking is vital for the interoperability of
 content across sites. The user agent SHOULD however also provide
 a means for reviewing the URI of the particular variant which is
 currently being displayed.

 4. Similarly, if the user agent stores a reference to the
 displayed information for future use, for example in a hotlist,
 it SHOULD store the negotiable resource URI, not the variant URI.

 It is encouraged, but not required, that some of the above
 functionality is also made available for inlined or embedded objects,
 and when a variant which was selected manually is being displayed.

12 Origin server support for transparent negotiation

12.1 Requirements

 To implement transparent negotiation on a resource, the origin server
 MUST be able to send a list response when getting a GET request on
 the resource. It SHOULD also be able to send appropriate list
 responses for HEAD requests. When getting a request on a
 transparently negotiable resource, the origin server MUST NEVER
 return a response with a 2xx status code or any 3xx status code,
 except 304, which is not a list, choice, or adhoc response.

Holtman & Mutz Experimental [Page 43]

RFC 2295 Transparent Content Negotiation March 1998

 If the request includes a Negotiate header with a "vlist" or "trans"
 directive, but without any directive which allows the server to
 select a best variant, a list response MUST ALWAYS be sent, except
 when the server is performing a server-side override for bug
 compatibility. If the request includes a Negotiate header with a
 "vlist" or "guess-small" directive, an Alternates header with the
 variant list bound to the negotiable resource MUST ALWAYS be sent in
 any list, choice, or adhoc response, except when the server is
 performing a server-side override for bug compatibility.

 If the Negotiate header allows it, the origin server MAY run a remote
 variant selection algorithm. If the algorithm has sufficient
 information to choose a best variant, and if the best variant is a
 neighboring variant, the origin server MAY return a choice response
 with this variant.

 When getting a request on a transparently negotiable resource from a
 user agent which does not support transparent content negotiation,
 the origin server MAY use a custom algorithm to select between
 sending a list, choice, or adhoc response.

 The following table summarizes the rules above.

 |Req on |Usr agnt|server- | Response may be: |
 |trans neg|capable |side +------+------+------+------+------+
 |resource?|of TCN? |override?|list |choice|adhoc |normal|error |
 +---------+--------+---------+------+------+------+------+------+
 | Yes | Yes | No |always|smt(*)|never |never |always|
 +---------+--------+---------+------+------+------+------+------+
 | Yes | Yes | Yes |always|always|always|never |always|
 +---------+--------+---------+------+------+------+------+------+
 | Yes | No | - |always|always|always|never |always|
 +---------+--------+---------+------+------+------+------+------+
 | No | - | - |never |never |never |always|always|
 +---------+--------+---------+------+------+------+------+------+
 (*) sometimes, when allowed by the Negotiate request header

 Negotiability is a binary property: a resource is either
 transparently negotiated, or it is not. Origin servers SHOULD NOT
 vary the negotiability of a resource, or the variant list bound to
 that resource, based on the request headers which are received. The
 variant list and the property of being negotiated MAY however change
 through time. The Cache-Control header can be used to control the
 propagation of such time-dependent changes through caches.

 It is the responsibility of the author of the negotiable resource to
 ensure that all resources in the variant list serve the intended
 content, and that the variant resources do not engage in transparent

Holtman & Mutz Experimental [Page 44]

RFC 2295 Transparent Content Negotiation March 1998

 content negotiation themselves.

12.2 Negotiation on transactions other than GET and HEAD

 If a resource is transparently negotiable, this only has an impact on
 the GET and HEAD transactions on the resource. It is not possible
 (under this specification) to do transparent content negotiation on
 the direct result of a POST request.

 However, a POST request can return an unnegotiated 303 (See Other)
 response which causes the user agent to do a GET request on a second
 resource. This second resource could then use transparent content
 negotiation to return an appropriate final response. The figure
 below illustrates this.

 Server ______ proxy ______ proxy ______ user
 x.org cache cache agent

 < -------------------------------------
 | POST http://x.org/cgi/submit
 | <form contents in request body>
 |
 -------------------------------------- >
 303 See Other |
 Location: http://x.org/result/OK |
 |
 < -------------------------------------
 | GET http://x.org/result/OK
 | small Accept- headers
 |
 able to choose on
 behalf of user agent
 |
 ------------------------------------- >
 choice response with |
 ..result/OK.nl variant |
 displays OK.nl

 See the HTTP/1.1 specification [1] for details on the 303 (See Other)
 status code. Note that this status code is not understood by some
 HTTP/1.0 clients.

13 Proxy support for transparent negotiation

 Transparent content negotiation is an extension on top of HTTP/1.x.
 It is designed to work through any proxy which only implements the
 HTTP/1.1 specification [1]. If Expires headers are added as
 discussed in section 10.7, negotiation will also work though proxies

Holtman & Mutz Experimental [Page 45]

RFC 2295 Transparent Content Negotiation March 1998

 which implement HTTP/1.0 [2]. Thus, every HTTP/1.0 or HTTP/1.1 proxy
 provides support for transparent content negotiation. However, if it
 is to be claimed that a HTTP/1.x proxy offers transparent content
 negotiation services, at least one of the specific optimizations
 below MUST be implemented.

 An HTTP/1.x proxy MUST ONLY optimize (change) the HTTP traffic
 flowing through it in ways which are explicitly allowed by the
 specification(s) it conforms to. A proxy which supports transparent
 content negotiation on top of HTTP/1.x MAY perform the optimizations
 allowed for by HTTP/1.x. In addition, it MAY perform three
 additional optimizations, defined below, on the HTTP traffic for
 transparently negotiated resources and their neighboring variant
 resources.

 First, when getting a request on a transparently negotiable resource
 from a user agent which supports transparent content negotiation, the
 proxy MAY return any cached, fresh list response from that resource,
 even if the selecting request headers, as specified by the Vary
 header, do not match.

 Second, when allowed by the user agent and origin server, a proxy MAY
 reuse an Alternates header taken from a previous response (section
 10.4) to run a remote variant selection algorithm. If the algorithm
 has sufficient information to choose a best variant, and if the best
 variant is a neighboring variant, the proxy MAY return a choice
 response with this variant.

 Third, if a proxy receives a choice response, it MAY extract and
 cache the normal response embedded therein, as described in section
 10.5.

14 Security and privacy considerations

14.1 Accept- headers revealing personal information

 Accept- headers, in particular Accept-Language headers, may reveal
 information which the user would rather keep private unless it will
 directly improve the quality of service. For example, a user may not
 want to send language preferences to sites which do not offer multi-
 lingual content. The transparent content negotiation mechanism
 allows user agents to omit sending of the Accept-Language header by
 default, without adversely affecting the outcome of the negotiation
 process if transparently negotiated multi-lingual content is
 accessed.

Holtman & Mutz Experimental [Page 46]

RFC 2295 Transparent Content Negotiation March 1998

 However, even if Accept- headers are never sent, the automatic
 selection and retrieval of a variant by a user agent will reveal a
 preference for this variant to the server. A malicious service
 author could provide a page with ‘fake’ negotiability on (ethnicity-
 correlated) languages, with all variants actually being the same
 English document, as a means of obtaining privacy-sensitive
 information. Such a plot would however be visible to an alert victim
 if the list of available variants and their properties is reviewed.

 Some additional privacy considerations connected to Accept- headers
 are discussed in [1].

14.2 Spoofing of responses from variant resources

 The caching optimization in section 10.5 gives the implementer of a
 negotiable resource control over the responses cached for all
 neighboring variant resources. This is a security problem if a
 neighboring variant resource belongs to another author. To provide
 security in this case, the HTTP server will have to filter the
 Content-Location headers in the choice responses generated by the
 negotiable resource implementation.

14.3 Security holes revealed by negotiation

 Malicious servers could use transparent content negotiation as a
 means of obtaining information about security holes which may be
 present in user agents. This is a risk in particular for negotiation
 on the availability of scripting languages and libraries.

15 Internationalization considerations

 This protocol defines negotiation facilities which can be used for
 the internationalization of web content. For the
 internationalization of list response bodies (section 10.1), HTTP/1.0
 style negotiation (section 4.2) can be used.

16 Acknowledgments

 Work on HTTP content negotiation has been done since at least 1993.
 The authors are unable to trace the origin of many of the ideas
 incorporated in this document. Many members of the HTTP working
 group have contributed to the negotiation model in this
 specification. The authors wish to thank the individuals who have
 commented on earlier versions of this document, including Brian
 Behlendorf, Daniel DuBois, Martin J. Duerst, Roy T. Fielding, Jim
 Gettys, Yaron Goland, Dirk van Gulik, Ted Hardie, Graham Klyne, Scott
 Lawrence, Larry Masinter, Jeffrey Mogul, Henrik Frystyk Nielsen,
 Frederick G.M. Roeber, Paul Sutton, and Klaus Weide and Mark Wood.

Holtman & Mutz Experimental [Page 47]

RFC 2295 Transparent Content Negotiation March 1998

17 References

 [1] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and
 T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC
 2068, January 1997.

 [2] Berners-Lee, T., Fielding, R., and H. Frystyk, "Hypertext
 Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996.

 [3] Holtman, K., and A. Mutz, "HTTP Remote Variant Selection
 Algorithm -- RVSA/1.0", RFC 2296, March 1998.

 [4] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [5] Yergeau, F., "UTF-8, a transformation format of Unicode and ISO
 10646", RFC 2044, October 1996.

18 Authors’ Addresses

 Koen Holtman
 Technische Universiteit Eindhoven
 Postbus 513
 Kamer HG 6.57
 5600 MB Eindhoven (The Netherlands)

 EMail: koen@win.tue.nl

 Andrew H. Mutz
 Hewlett-Packard Company
 1501 Page Mill Road 3U-3
 Palo Alto CA 94304, USA

 Fax +1 415 857 4691
 EMail: mutz@hpl.hp.com

Holtman & Mutz Experimental [Page 48]

RFC 2295 Transparent Content Negotiation March 1998

19 Appendix: Example of a local variant selection algorithm

 A negotiating user agent will choose the best variant from a variant
 list with a local variant selection algorithm. This appendix
 contains an example of such an algorithm.

 The inputs of the algorithm are a variant list from an Alternates
 header, and an agent-side configuration database, which contains

 - the feature set of the current request,

 - a collection of quality values assigned to media types,
 languages, and charsets for the current request, following the
 model of the corresponding HTTP/1.1 [1] Accept- headers,

 - a table which lists ‘forbidden’ combinations of media types and
 charsets, i.e. combinations which cannot be displayed because of
 some internal user agent limitation.

 The output of the algorithm is either the best variant, or the
 conclusion that none of the variants are acceptable.

19.1 Computing overall quality values

 As a first step in the local variant selection algorithm, the overall
 qualities associated with all variant descriptions in the list are
 computed.

 The overall quality Q of a variant description is the value

 Q = round5(qs * qt * qc * ql * qf * qa)

 where rounds5 is a function which rounds a floating point value to 5
 decimal places after the point. It is assumed that the user agent
 can run on multiple platforms: the rounding function makes the
 algorithm independent of the exact characteristics of the underlying
 floating point hardware.

 The factors qs, qt, qc, ql, qf, and qa are determined as follows.

 qs Is the source quality factor in the variant description.

 qt The media type quality factor is 1 if there is no type
 attribute in the variant description. Otherwise, it is the
 quality value assigned to this type by the configuration
 database. If the database does not assign a value, then the
 factor is 0.

Holtman & Mutz Experimental [Page 49]

RFC 2295 Transparent Content Negotiation March 1998

 qc The charset quality factor is 1 if there is no charset
 attribute in the variant description. Otherwise, it is the
 quality value assigned to this charset by the configuration
 database. If the database does not assign a value, then the
 factor is 0.

 ql The language quality factor is 1 if there is no language
 attribute in the variant description. Otherwise, it is the
 highest quality value the configuration database assigns to any
 of the languages listed in the language attribute. If the
 database does not assign a value to any of the languages
 listed, then the factor is 0.

 qf The features quality factor is 1 if there is no features
 attribute in the variant description. Otherwise, it is the
 quality degradation factor computed for the features attribute
 using the feature set of the current request.

 qa The quality adjustment factor is 0 if the variant description
 lists a media type - charset combination which is ‘forbidden’
 by the table, and 1 otherwise.

 As an example, if a variant list contains the variant description

 {"paper.2" 0.7 {type text/html} {language fr}}

 and if the configuration database contains the quality value
 assignments

 types: text/html;q=1.0, type application/postscript;q=0.8
 languages: en;q=1.0, fr;q=0.5

 then the local variant selection algorithm will compute the overall
 quality for the variant description as follows:

 {"paper.2" 0.7 {type text/html} {language fr}}
 | | |
 | | |
 V V V
 round5 (0.7 * 1.0 * 0.5) = 0.35000

 With same configuration database, the variant list

 {"paper.1" 0.9 {type text/html} {language en}},
 {"paper.2" 0.7 {type text/html} {language fr}},
 {"paper.3" 1.0 {type application/postscript} {language en}}

 would yield the following computations:

Holtman & Mutz Experimental [Page 50]

RFC 2295 Transparent Content Negotiation March 1998

 round5 (qs * qt * qc * ql * qf * qa) = Q
 --- --- --- --- --- ---
 paper.1: 0.9 * 1.0 * 1.0 * 1.0 * 1.0 * 1.0 = 0.90000
 paper.1: 0.7 * 1.0 * 1.0 * 0.5 * 1.0 * 1.0 = 0.35000
 paper.3: 1.0 * 0.8 * 1.0 * 1.0 * 1.0 * 1.0 = 0.80000

19.2 Determining the result

 Using all computed overall quality values, the end result of the
 local variant selection algorithm is determined as follows.

 If all overall quality values are 0, then the best variant is the
 fallback variant, if there is one in the list, else the result is the
 conclusion that none of the variants are acceptable.

 If at least one overall quality value is greater than 0, then the
 best variant is the variant which has the description with the
 highest overall quality value, or, if there are multiple variant
 descriptions which share the highest overall quality value, the
 variant of the first variant description in the list which has this
 highest overall quality value.

19.3 Ranking dimensions

 Consider the following variant list:

 {"paper.greek" 1.0 {language el} {charset ISO-8859-7}},
 {"paper.english" 1.0 {language en} {charset ISO-8859-1}}

 It could be the case that the user prefers the language "el" over
 "en", while the user agent can render "ISO-8859-1" better than "ISO-
 8859-7". The result is that in the language dimension, the first
 variant is best, while the second variant is best in the charset
 dimension. In this situation, it would be preferable to choose the
 first variant as the best variant: the user settings in the language
 dimension should take precedence over the hard-coded values in the
 charset dimension.

 To express this ranking between dimensions, the user agent
 configuration database should have a higher spread in the quality
 values for the language dimension than for the charset dimension.
 For example, with

 languages: el;q=1.0, en-gb;q=0.7, en;q=0.6, da;q=0, ...

 charsets: ISO-8859-1;q=1.0, ISO-8859-7;q=0.95,
 ISO-8859-5;q=0.97, unicode-1-1;q=0, ...

Holtman & Mutz Experimental [Page 51]

RFC 2295 Transparent Content Negotiation March 1998

 the first variant will have an overall quality of 0.95000, while the
 second variant will have an overall quality 0.70000. This makes the
 first variant the best variant.

20 Appendix: feature negotiation examples

 This appendix contains examples of the use of feature tags in variant
 descriptions. The tag names used here are examples only, they do not
 in general reflect the tag naming scheme proposed in [4].

20.1 Use of feature tags

 Feature tags can be used in variant lists to express the quality
 degradation associated with the presence or absence of certain
 features. One example is

 {"index.html.plain" 0.7 },
 {"index.html" 1.0 {features tables frames}}

 Here, the "{features tables frames}" part expresses that index.html
 uses the features tagged as tables and frames. If these features are
 absent, the overall quality of index.html degrades to 0. Another
 example is

 {"home.graphics" 1.0 {features !textonly}},
 {"home.textonly" 0.7 }

 where the "{features !textonly}" part expresses that home.graphics
 requires the absence of the textonly feature. If the feature is
 present, the overall quality of home.graphics degrades to 0.

 The absence of a feature need not always degrade the overall quality
 to 0. In the example

 {"x.html.1" 1.0 {features fonts;-0.7}}

 the absence of the fonts feature degrades the quality with a factor
 of 0.7. Finally, in the example

 {"y.html" 1.0 {features [blebber wolx] }}

 The "[blebber wolx]" expresses that y.html requires the presence of
 the blebber feature or the wolx feature. This construct can be used
 in a number of cases:

 1. blebber and wolx actually tag the same feature, but they were
 registered by different people, and some user agents say they
 support blebber while others say they support wolx.

Holtman & Mutz Experimental [Page 52]

RFC 2295 Transparent Content Negotiation March 1998

 2. blebber and wolx are HTML tags of different vendors which
 implement the same functionality, and which are used together in
 y.html without interference.

 3. blebber and wolx are HTML tags of different vendors which
 implement the same functionality, and y.html uses the tags in a
 conditional HTML construct.

 4. blebber is a complicated HTML tag with only a sketchy
 definition, implemented by one user agent vendor, and wolx
 indicates implementation of a well-defined subset of the blebber
 tag by some other vendor(s). y.html uses only this well-defined
 subset.

20.2 Use of numeric feature tags

 As an example of negotiation in a numeric area, the following variant
 list describes four variants with title graphics designed for
 increasing screen widths:

 {"home.pda" 1.0 {features screenwidth=[-199] }},
 {"home.narrow" 1.0 {features screenwidth=[200-599] }},
 {"home.normal" 1.0 {features screenwidth=[600-999] }},
 {"home.wide" 1.0 {features screenwidth=[1000-] }},
 {"home.normal"}

 The last element of the list specifies a safe default for user agents
 which do not implement screen width negotiation. Such user agents
 will reject the first four variants as unusable, as they seem to rely
 on a feature which they do not understand.

20.3 Feature tag design

 When designing a new feature tag, it is important to take into
 account that existing user agents, which do not recognize the new tag
 will treat the feature as absent. In general, a new feature tag
 needs to be designed in such a way that absence of the tag is the
 default case which reflects current practice. If this design
 principle is ignored, the resulting feature tag will generally be
 unusable.

 As an example, one could try to support negotiation between
 monochrome and color content by introducing a ‘color’ feature tag,
 the presence of which would indicate the capability to display color
 graphics. However, if this new tag is used in a variant list, for
 example

 {"rainbow.gif" 1.0 {features color} }

Holtman & Mutz Experimental [Page 53]

RFC 2295 Transparent Content Negotiation March 1998

 {"rainbow.mono.gif" 0.6 {features !color}}

 then existing user agents, which would not recognize the color tag,
 would all display the monochrome rainbow. The color tag is therefore
 unusable in situations where optimal results for existing user agents
 are desired. To provide for negotiation in this area, one must
 introduce a ‘monochrome’ feature tag; its presence indicates that the
 user agent can only render (or the user prefers to view) monochrome
 graphics.

21 Appendix: origin server implementation considerations

21.1 Implementation with a CGI script

 Transparent content negotiation has been designed to allow a broad
 range of implementation options at the origin server side. A very
 minimal implementation can be done using the CGI interface. The CGI
 script below is an example.

 #!/bin/sh

 cat - <<’blex’
 TCN: list
 Alternates: {"stats.tables.html" 1.0 {type text/html} {features
 tables}}, {"stats.html" 0.8 {type text/html}}, {"stats.ps" 0.95
 {type application/postscript}}
 Vary: *
 Content-Type: text/html

 <title>Multiple Choices for Web Statistics</title>
 <h2>Multiple Choices for Web Statistics:</h2>

 Version with HTML tables
 <p>
 Version without HTML tables
 <p>
 Postscript version

 blex

 The Alternates header in the above script must be read as a single
 line. The script always generates a list response with the 200 (OK)
 code, which ensures compatibility with non-negotiating HTTP/1.0
 agents.

Holtman & Mutz Experimental [Page 54]

RFC 2295 Transparent Content Negotiation March 1998

21.2 Direct support by HTTP servers

 Sophisticated HTTP servers could make a transparent negotiation
 module available to content authors. Such a module could incorporate
 a remote variant selection algorithm and an implementation of the
 algorithm for generating choice responses (section 10.2). The
 definition of interfaces to such modules is beyond the scope of this
 specification.

21.3 Web publishing tools

 Web publishing tools could automatically generate several variants of
 a document (for example the original TeX version, a HTML version with
 tables, a HTML version without tables, and a Postscript version),
 together with an appropriate variant list in the interface format of
 a HTTP server transparent negotiation module. This would allow
 documents to be published as transparently negotiable resources.

22 Appendix: Example of choice response construction

 The following is an example of the construction of a choice response
 by a proxy cache which supports HTTP/1.1 and transparent content
 negotiation. The use of the HTTP/1.1 conditional request mechanisms
 is also shown.

 Assume that a user agent has cached a variant list with the validator
 "1234" for the negotiable resource http://x.org/paper. Also assume
 that it has cached responses from two neighboring variants, with the
 entity tags "gonkyyyy" and W/"a;b". Assume that all three user agent
 cache entries are stale: they would need to be revalidated before the
 user agent can use them. If http://x.org/paper accessed in this
 situation, the user agent could send the following request to its
 proxy cache:

 GET /paper HTTP/1.1
 Host: x.org
 User-Agent: WuxtaWeb/2.4
 Negotiate: 1.0
 Accept: text/html, application/postscript;q=0.4, */*
 Accept-Language: en
 If-None-Match: "gonkyyyy;1234", W/"a;b;1234"

 Assume that the proxy cache has cached the same three items as the
 user agent, but that it has revalidated the variant list 8000 seconds
 ago, so that the list is still fresh for the proxy. This means that
 the proxy can run a remote variant selection algorithm on the list
 and the incoming request.

Holtman & Mutz Experimental [Page 55]

RFC 2295 Transparent Content Negotiation March 1998

 Assume that the remote algorithm is able to choose paper.html.en as
 the best variant. The proxy can now construct a choice response,
 using the algorithm in section 10.2. In steps 1 and 2 of the
 algorithm, the proxy can construct the following conditional request
 on the best variant, and send it to the origin server:

 GET /paper.html.en HTTP/1.1
 Host: x.org
 User-Agent: WuxtaWeb/2.4
 Negotiate: 1.0
 Accept: text/html, application/postscript;q=0.4, */*
 Accept-Language: en
 If-None-Match: "gonkyyyy", W/"a;b"
 Via: 1.1 fred

 On receipt of the response

 HTTP/1.1 304 Not Modified
 Date: Tue, 11 Jun 1996 20:05:31 GMT
 Etag: "gonkyyyy"

 from the origin server, the proxy can use its freshly revalidated
 paper.html.en cache entry to expand the response to a non-304
 response:

 HTTP/1.1 200 OK
 Date: Tue, 11 Jun 1996 20:05:31 GMT
 Content-Type: text/html
 Last-Modified: Mon, 10 Jun 1996 10:01:14 GMT
 Content-Length: 5327
 Cache-control: max-age=604800
 Etag: "gonkyyyy"
 Via: 1.1 fred
 Age: 0

 <title>A paper about

 Using this 200 response, the proxy can construct a choice response
 in step 4 of the algorithm:

 HTTP/1.1 200 OK
 Date: Tue, 11 Jun 1996 20:05:31 GMT
 TCN: choice
 Content-Type: text/html
 Last-Modified: Mon, 10 Jun 1996 10:01:14 GMT
 Content-Length: 5327
 Cache-control: max-age=604800
 Content-Location: paper.html.en

Holtman & Mutz Experimental [Page 56]

RFC 2295 Transparent Content Negotiation March 1998

 Alternates: {"paper.html.en" 0.9 {type text/html} {language en}},
 {"paper.html.fr" 0.7 {type text/html} {language fr}},
 {"paper.ps.en" 1.0 {type application/postscript}
 {language en}}

 Etag: "gonkyyyy;1234"
 Vary: negotiate, accept, accept-language
 Expires: Thu, 01 Jan 1980 00:00:00 GMT
 Via: 1.1 fred
 Age: 8000

 <title>A paper about

 The choice response can subsequently be shortened to a 304 response,
 because of the If-None-Match header in the original request from the
 user agent. Thus, the proxy can finally return

 HTTP/1.1 304 Not Modified
 Date: Tue, 11 Jun 1996 20:05:31 GMT
 Etag: "gonkyyyy;1234"
 Content-Location: paper.html.en
 Vary: negotiate, accept, accept-language
 Expires: Thu, 01 Jan 1980 00:00:00 GMT
 Via: 1.1 fred
 Age: 8000

 to the user agent.

Holtman & Mutz Experimental [Page 57]

RFC 2295 Transparent Content Negotiation March 1998

23 Full Copyright Statement

 Copyright (C) The Internet Society (1998). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Holtman & Mutz Experimental [Page 58]

