Net wor k Wor ki ng Group K. BEvans

Request for Comments: 2372 J. Klein
Cat egory: | nformational Tandem Conput er s
J. Lyon
M crosoft
July 1998

Transaction Internet Protocol - Requirenents and

Suppl enental I nformation
Status of this Meno
This meno provides information for the Internet conmunity. It does
not specify an Internet standard of any kind. Distribution of this
menmo is unlinted.
Copyright Notice
Copyright (C) The Internet Society (1998). Al Rights Reserved.
Abstr act
Thi s docunent describes the purpose (usage scenarios), and
requi renents for the Transaction Internet Protocol [1]. It is
intended to help qualify the necessary features and functions of the
protocol. It also provides supplenental information to aid
understanding and facilitate inplenentation of the TIP protocol

Tabl e of Contents

1. Introduction 2
2. The Transaction Internet Protocol 3
3. Scope 4
4., Anticipated Usage of TIP 4
5. TIP Conpliant Systens 4
6. Relationship to the X/ Open DTP Mdel 5
7. Exanple TIP Usage Scenario 5
8. TIP Transaction Recovery 9
9. TIP Transaction and Application Message Serialisation 10
10. TIP Protocol and Local Actions 10
11. Security Considerations 11
12. TI P Requirenents 11

Ref er ences 14

Aut hors’ Addresses 15

Commrent s 15
A. An Exanple TIP Transacti on Manager API 16

Ful I Copyright Statenent 24

Evans, et. al. I nf or mat i onal [Page 1]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

1

I ntroduction

Transactions are a very useful progranmm ng paradigm greatly
simplifying the witing of distributed applications. Wen
transacti ons are enployed, no matter how many distributed application
conponents participate in a particular unit-of-work, the nunber of
possi bl e outcones is reduced to only two; that is, either all of the
wor k conpl et ed successfully, or none of it did (this characteristic
is known as atonmicity). Applications progranming is therefore nuch

| ess conpl ex since the programrer does not have to deal with a

mul titude of possible failure scenarios. Typically, transaction
semantics are provided by sonme underlying systeminfrastructure
(usually in the formof products such as Transaction Processing

Moni tors, and/or Databases). This infrastructure deals with failures,
and performs the necessary recovery actions to guarantee the property
of atomicity. The use of transactions enabl es the devel opnent of
reliable distributed applications which would ot herwi se be difficult,
i f not inpossible.

A key technol ogy required to support distributed transactions is the
t wo- phase commit protocol (2-pc). 2-pc protocols have been used in
commer ci al Transaction Processing (TP) systenms for nany years, and
are well understood (e.g. the LU6.2 2-pc (syncpoint) protocol was
first inplenented nore than 12 years ago). Today a nunber of
different 2-pc protocols are supported by a variety of TP nonitor and
dat abase products. 2-pc is used between the conponents participating
in adistributed unit-of-work (transaction) to ensure agreenent by
all parties regarding the outcome of that work (regardless of any
failure).

Today both standard and proprietary 2-pc protocols exist. These
protocols typically enploy a "one-pipe" nodel. That is, the
transaction and application protocols are tightly-integrated,
executing over the same communi cations channel. An application may
use only the particul ar conmuni cati ons nmechani sm associated with the
transaction protocol. The standard protocols (CSI TP, LU6.2) are
complex, with a large footprint and extensive configuration and

admi ni stration requirenents. For these reasons they are not very

wi dely depl oyed. The net of all this is restricted application
flexibility and interoperability if transactions are to be used.
Applications may wi sh to use a nunber of conmunications protocols for
which there are no transactional variants (e.g. HTTP), and be

depl oyed in very heterogeneous application environnments.

In sunmary, transactions greatly sinplify the progranm ng of

di stributed applications, and the 2-pc protocol is a key
transacti onal technology. Current 2-pc protocols only offer
transaction senantics to a limted set of applications, operating

Evans, et. al. I nf or mat i onal [Page 2]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

wi thin a special -purpose (conpl ex, honbgeneous) infrastructure, using
a particular set of intercomrunication protocols. The restrictions
thus inposed by current 2-pc protocols linmts the w despread use of
the transacti on paradigm thereby inhibiting the devel opnment of new
di stributed business applications.

(See [2] for nore infornmation re transactions, atonmicity, and two-
phase conmit protocols in general.)

2. The Transaction Internet Protocol (TIP)

TIP is a 2-pc protocol which is intended to provide ubiquitous

di stributed transaction support, in a heterogeneous (networked)
environnment. TIP renoves the restrictions of current 2-pc protocols
and enabl es the devel opnment of new distributed business applications.

This goal is achieved primarily by satisfying two key requirenents:

1) Keep the protocol sinple (yet functionally sufficient). If the
protocol is conplex it will not be wi dely depl oyed or quickly
adopted. Sinplicity also neans suitability to a wi de range of
application environnments.

2) Enable the protocol to be used with any applications
communi cati ons protocol (e.g. HITP). This ensures heterogeneous
environnents can participate in distributed work.

TI P does not reinvent the 2-pc protocol itself, the well-known
presuned- abort 2-pc protocol is used as a basis. Rather the novelty
and utility of TIPis in its separation fromthe application
commruni cati ons protocol (the two-pipe nodel).

S + Application Comrmunication +------------- +
| Application |----------=---------------- | Application
| Program | "Pi pe 1" | Program |
S + S +
| TIP TM API TIP TM API
| |
R LR + TIP 2-pc Protocol R LR +
| TIP Transaction |----------------------- | TIP Transaction
| Manager | " Pi pe 2" | Manager
. + . +

Fig 1. The two-pipe nature of TIP

Evans, et. al. I nf or mat i onal [Page 3]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

3. Scope

TI P does not describe how busi ness transactions or electronic
comrerce are to be conducted on the internet, it specifies only the
2-pc transaction protocol (which is an aid in the devel opment of such
applications). e.g. TIP does not provide a nechani smfor non-
repudi ati on. Such protocols m ght be a subject for subsequent |ETF
activity, once the requirenents for general electronic comrerce are
better understood. TIP does not preclude the later definition of

t hese protocol s.

TI P does not specify Application Programing Interfaces (note that an
exanple TIP TM APl is included in this docunent (Appendix A), as an
aid to understandi ng).

4. Anticipated Usage of TIP

As descri bed above, transactions are a very useful tool in
simplifying the programm ng of distributed applications. TIP is
therefore targeted at any application that involves distributed work.
Such applications may conprise conponents executing within a single
system across a corporate intranet, across the internet, or any
other distributed system configuration. The application may be of
"enterprise" class (requiring high-levels of performance and
availability), or be less demanding. TIP is intended to be generally
applicable, nmeeting the requirenents of any application type which
woul d benefit fromthe provision of transaction semantics.

5. TIP Conpliant Systens
There are two classes of TIP conpliant Transacti on Manager system

1) dient-only systens. Those which provide an application
interface to demarcate TIP transactions, but which do not offer
access to |l ocal recoverable resources. Such a |ightweight
i mpl enentation is useful for systens which host client
applications only (e.g. desktop machines). Such client systens nay
be unreliable, and are not appropriate as transaction coordinators
(their unavailability m ght cause resources on other transaction
partici pant systems to remain | ocked and unavail abl e). These so-
called "volatile client" systens therefore del egate the
responsibility to coordinate the transaction (and recover from
failures), to other "full" (server) TIP systeminpl enentations.
For these |ightweight systens, only the TIP | DENTIFY, BEG N,
COW T, and ABORT commands are needed; no transaction log is
required.

Evans, et. al. I nf or mat i onal [Page 4]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

2) Server systens. Those which offer the above support, plus TIP
transacti on coordination and recovery services. These systens nay
al so provide access to recoverable resources (e.g. relationa
dat abases). Server systens support all TIP commands, and provide a
recoverabl e transaction | og.

A TIP conpliant Transaction Manager (TM, will also supply
application programmng interfaces to demarcate transactions (e.qg.
the X/ Open TX interface [3]), plus commands to generate TIP URLs, to
PUSH PULL TIP transactions, and to set the current TIP transaction
context. TIP support can be added to TMs with existing APIs and 2-pc
protocols, and transactions may conprise both proprietary and TIP
transaction branches (it is assuned existing TMinpl enentations wll
provide "TIP gateway" facilities which will coordinate between TIP
and ot her transaction protocols).

6. Relationship to the X/ Open DTP Mde

The X/ Open Distributed Transaction Processing (DTP) Moddel [4] defines
four conponents: 1) Application Program (AP), 2) Transacti on Manager
(TM, 3) Resource Manager (RM), and 4) Conmuni cations Resource
Manager (CRM. In this nodel, TIP defines a TMto TMinteroperability
protocol, which is independent of application communications (there
is no such equival ent protocol specified by X/ Open, where all
transaction and application comrmuni cati on occurs between CRMs (the
one-pi pe nodel)). Progranmatic interfaces between the AP and TM RM
are unaffected by, and may be used with TIP. The TMto RMinteraction
is defined via the X/ Open XA interface specification [5]. TIP is
compatible with XA, and a TIP transaction may conprise applications
accessing nultiple RVs where the XA interface is being used to

coordi nate the RMtransaction branches.

7. Exanple TIP Usage Scenario

It is expected that a typical internet usage of TIP will involve
applications using the agency nodel. In this nodel, the client node
itself is not directly involved in the TIP protocol at all, and does

not need the services of a local TIP TM Instead, an agency (server)
application handl es the dialogue with the client, and is responsible
for the coordination of the TIP transaction. The agency works wth
other service providers to deliver the service to the client. e.g. as
a Travel Agency acts as an internediate between airlines/hotels/etc
and the custoner. A big benefit of this nodel is that the agency is
trusted by the service providers, and there are fewer such agencies
(conmpared to user clients), so issues of security and performance are
reduced.

Evans, et. al. I nf or mat i onal [Page 5]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

Consi der a Travel Agency exanple. A client running a web browser on a
network PC accesses the Travel Agency web page. Via pages served up
by the agency (which may in turn be constructed from pages provi ded
by the airline and hotel servers), the client creates an itinerary
involving flights and hotel choices. Finally, the client clicks the
"make reservation" button. At this point the foll ow ng sequence of
events occurs (user-witten application code is invoked by the

vari ous web servers, via any of the standard or proprietary

techni ques available (e.g. Cd)):

1) The travel agency begins a |ocal transaction, and gets a TIP URL
for this transaction (both of these functions are perfornmed using
the APl of the local TM e.g. "tip xid to url ()" would return the
TIP URL for the local transaction). The TIP URL contains the
listening endpoint |IP address of the local TM and the transaction
identifier of the local transaction

2) The travel agency application sends a request to the airline
server (via sone protocol (e.g. HTTP)), requesting the
"book flight" service, passing the flights selected by the client,
and the TIP URL (obtained in 1. above).

3) The request is received by the airline server which invokes the
book flight application. This application retrieves the TIP URL
fromthe input data, and passes this on a "tip_pull ()" APl request
toits local TM The tip_pull() function causes the following to
occur:

a. the local TMcreates a |local transaction (under which the
work will be perforned),

b. if a TIP connection does not already exist to the superior
(travel agency) TM (as identified via the I P address passed in
the TIP URL), one is created and an | DENTI FY exchange occurs
(if multiplexing is to be used on the connection, this is
foll owed by a MILTI PLEX exchange),

c. a PULL command is sent to the superior TM

d. in response to the PULL, the superior TM associ ates the
subordinate (airline) TMwith the transaction (by associating
the connection with the transaction), and sends a PULLED
response to the subordinate ™™

e. the subordinate TMreturns control to the book_flight

application, which is now executing in the context of the newy
created | ocal transaction.

Evans, et. al. I nf or mat i onal [Page 6]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

4)

5)

6)

7)

8)

9)

10)

11)

Evans,

The book flight application does its work (which nmay invol ve
access to a recoverabl e resource manager (e.g. an RDBMS), in which
case the local TMwill associate the RMw th the |ocal transaction
(via the XA interface or whatever)).

The book flight application returns to the travel agency
application indicating success.

Steps 2-5 are then repeated with the hotel server "book_roont
application. At the conclusion of this, the superior TM has

regi stered two subordinate TMs as participants in the transaction
there are TIP connections between the agency TM and the airline
and hotel TMs, and there are inflight transactions at the airline
and hotel servers. [Note that steps 2-5 and 6 could be perforned
in parallel.]

The travel agency application issues a "conmt transaction”
request (using the APl of the local TM. The local TM sends a
PREPARE command on the TIP connections to the airline and hotel
TMs (as these are registered as subordinate transaction

partici pants).

The TMs at the airline and hotel servers performthe

necessary steps to prepare their |ocal recoverable resources (e.qg.
by issuing xa_prepare() requests). |If successful, the subordinate
TMs change their TIP transaction state to Prepared, and | og
recovery information (e.g. local and superior transaction branch
identifiers, and the I P address of the superior TM. The

subordi nate TMs then send PREPARED commands to the superior TM

I f both subordi nates respond PREPARED, the superior TM I ogs that
the transaction is Conmmitted, with recovery information (e.g.

| ocal and subordi nate transaction identifiers, and subordinate TM
| P addresses). The superior TMthen sends COW T commands on the
two subordinate TIP connecti ons.

The TMs at the airline and hotel servers performthe

necessary steps to conmit their |ocal recoverable resources (e.g.
by issuing xa_commit() requests). The subordinate TMs forget the
transacti on. The subordinate TMs then send COM TTED commands to
the superior TM

The superior TMforgets the transaction. The TIP connections
bet ween the superior and subordinate TMs return to Idle state
(not associated with any transaction). The superior TMreturns
success to the travel agency application "conmit transaction”
request.

et. al. I nf or mat i onal [Page 7]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

12) The travel agency application returns "reservation nade" to the

Thi

client.

s exanple illustrates the use of PULL. If PUSH were to be used

i nstead, events 2) and 3) above would change as foll ows:

2)

3)

Evans,

The travel agency application

a. passes the TIP URL obtained in 1. above, together with the
listening endpoint address of the TMat the airline server, to
its local TMvia a "tip_push()" APl request. The tip_push()
function causes the follow ng to occur

i. if a TIP connection does not already exist to the
subordinate (airline server) TM (as identified via the IP
address passed on the tip_push), one is created and an
| DENTI FY exchange occurs (if multiplexing is to be used on
the connection, this is followed by a MILTI PLEX exchange),

ii. a PUSH conmand is sent to the subordinate TM

iii. in response to the PUSH the subordinate TMcreates a
| ocal transaction, associates this transaction with the
connection, and sends a PUSHED response to the superi or
™

iv. in response to the PUSHED response, the superior TM
associ ates the subordinate TMwith the transacti on,

v. the superior TMreturns control to the travel agency
application.

b. the travel agency application sends a request to the airline
server (via sone protocol (e.g. HTTP)), requesting the
"book_flight" service, passing the flights selected by the
client, and the TIP URL (obtained in 1 above).

The request is received by the airline server which invokes the
book_flight application. This application retrieves the TIP URL
fromthe input data, and passes this on a "tip_pull ()" APl request
toits local TM Since the |local TM has already "seen" this URL
(it was already pushed), it sinply returns to the book flight
application, which is now executing in the context of the
previously created | ocal transaction.

et. al. I nf or mat i onal [Page 8]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

[Note that although in this exanple the transaction coordinator role
is performed by a node which is also a participant in the transaction
(the Travel Agency), other configurations are possible (e.g. where
the transaction coordinator role is perfornmed by a non-partici pant
3rd-party node).]

8. TIP Transacti on Recovery

Until the transaction reaches the Prepared state, any failure results
in the transaction being aborted. If an error occurs once the
transacti on has reached the Prepared state, then transaction recovery
nmust be perfornmed. Recovery behaviour is different for superior and
subordi nate; the details depend upon the outcone of the transaction
(committed or aborted), and the precise point at which failure
occurs.

In the travel agency application for exanple, if the connection to
the hotel server fails before the COWM T conmand has been received by
the hotel TM then (once the connection is restored):

1) The superior (travel agency) TM sends a RECONNECT conmand
(passing the subordinate transaction identifier (recovered from
the transaction log if necessary)).

2) The subordinate (hotel) TM responds RECONNECTED (since it never
received the COM T commuand, and still has the transaction in
Prepared state (if the failure had occurred after the subordinate
had responded COMM TTED, then the subordi nate woul d have forgotten
the transaction, and responded NOTRECONNECTED to t he RECONNECT
conmmand)) .

3) The superior TM sends a COW T conmmand. The subordi nate TM
comrits the transaction and responds COMW TTED. The transaction is
now resol ved

4) |If the subordinate TMrestores the connection to the superior TM
before receiving a RECONNECT conmand, then it nay send a QUERY
command. In this case, the superior TMw Il respond QUERI EDEXI STS
and the subordinate TM should wait for the superior to send a
RECONNECT command. |f the transaction had been aborted, then the
superior may respond QUERI EDNOTFOUND, in which case the
subordi nate should abort the transaction (note that the superior
is not obliged to send a RECONNECT conmand for an aborted
transaction (i.e. it could just forget the transaction after
sendi ng ABORT and before receiving an ABORTED response)).

Evans, et. al. I nf or mat i onal [Page 9]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

10.

There are failure circunstances in which the client application (the
one calling "comrit") may not receive a response indicating the fina
out come of the transaction (even though the transaction itself is
successfully completed). This is a comon problem and one not unique
to TIP. In such circunstances, it is up to the application to
ascertain the final outcone of the transaction (a TIP TM may
facilitate this by providing sone i npl ementation specific nechani sm
e.g. witing the outcone to a user-1log).

TI P Transacti on and Application Message Serialisation

A rel ationship exists between TIP conmmands and application nessages:
a TIP transaction nust not be conmitted until it is certain that all
partici pants have properly regi stered, and have fini shed work on the
transacti on. Because of the two-pipe nature of TIP, this behaviour
cannot necessarily be enforced by the TIP systemitself (although it
may be possible in some inplementations). It is therefore incunbent
upon the application to behave properly. Generally, an application
nmust not:

1) call it’s local TMs "commit" function when it has any requests
associated with the transaction still outstanding.

2) positively respond to a transactional request froma partner
application prior to having registered it's local TMwith the
transacti on.

TI P Protocol and Local Actions

In order to ensure that transaction atomcity is properly guaranteed,
a systeminplenenting TIP nust performother |ocal actions at certain
points in the protocol exchange. These actions pertain to the
creation and deletion of transaction "log-records" (the necessary

i nformati on which survives failures and ensures that transaction
recovery is correctly executed). The follow ng information regarding
the rel ationship between the TIP protocol and | ogging events is
advisory, and is not intended to be definitive (see [2] for nore

di scussion on this subject):

1) before sending a PREPARED response, the system should create
a prepared-recovery-record for the transaction

2) having created a prepared-recovery-record, this record shoul d not
be deleted until after
a. an ABORT nessage is received; or
b. a COMT nessage is received; or
c. a QUERI EDNOTFQUND response i s received.

Evans, et. al. I nf or mat i onal [Page 10]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

11.

12.

3) the system should not send a COMM TTED or NOTRECONNECTED nessage
if a prepared-recovery-record exists.

4) before creating a comm t-recovery-record for the transaction, the
system shoul d have recei ved a PREPARED response.

5) before sending a COM T nessage in Prepared state, the system
shoul d have created a comit-recovery-record for the transaction

6) having created a conmt-recovery-record, this record should not be
deleted until after:
a. a COW TTED nessage is received; or
b. a NOTRECONNECTED nessage is received

Security Considerations

The means by which applications comuni cate and perform distributed
work are outside the scope of the TIP protocol. The nechani sns used
for authentication and authorisation of clients to access prograns
and information on a particular systemare part of the application
communi cati ons protocol and the application execution infrastructure.
Use of the TIP protocol does not affect these considerations.

Security relates to the TIP protocol itself inasnuch that systens
require to protect thenselves fromthe recei pt of unauthorised TIP
commands, or the inpersonation of a trusted partner TIP TM Probably
the worst consequence of this is the possibility of undetected data

i nconsi stency resulting fromviolations of the TIP comm t nent

protocol (e.g. a COWMT command is injected on a TIP connection in

pl ace of an ABORT command). TIP uses the Transport Layer Security
protocol [6] to restrict access to only trusted partners (i.e. to
control fromwhich renote endpoints TIP transactions will be
accepted, and to verify that an end-point is genuine), and to encrypt
TI P conmands. Usage of TLS (or not) is negotiated between partner TIP
TMs. See [1] for details of how TLS is used with TIP

TIP TMinplenentations will also likely provide |ocal neans to tine-
out and abort transactions which have not conpleted within sonme tine
period (thereby preventing unavailability of resources due to
mal i cious intent). Transaction tine-out also serves as a neans of
deadl ock resol ution

TI P Requi renents

Most of these requirenents stemfromthe prinmary objective of making
transacti ons a ubi quitous system service, available to al
application classes (nmuch as TCP may be assumed to be avail abl e
everywhere). |In general this requires inposing as few restrictions

Evans, et. al. I nf or mat i onal [Page 11]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

regarding the use of TIP as possible (applications should not be
required to execute in some "special" environment in order to use
transactions), and keeping the protocol sinple and efficient. This
enabl es the wi despread inplenentation of TIP (it’s cheap to do), on a
wi de range of systens (it’s cheap to run).

1) Application Comuni cations Protocol |ndependence

The TIP protocol must be defined i ndependently of the
conmmuni cati ons protocol used for transferring application data, to
all ow TI P usage in conjunction with any application protocol. It
nmust be possible for applications using arbitrary conmuni cati ons
protocols to begin, end, and propagate TIP transactions.

This inplies that the TIP protocol enploy a 2-pi pe nodel of
operation. This nodel requires the separation of application
communi cati ons and transaction coordi nation, into two discrete
conmmuni cati on channels (pipes). This separation enabl es the use of
the transacti on coordination protocol (TIP), with any application
communi cati ons protocol (e.g. HITP, ODBC, plain TCP/ UDP, etc).

2) Support for Transaction Semantics

The TIP protocol nust provide the functionality of the de-facto
standard presuned-abort 2-pc protocol, to guarantee transactiona
atonmicity even in the event of failure. It should provide a nmeans
to construct the transaction tree, as well as provide conm tnent
and recovery functions.

3) Application Transaction Propagation and Interoperability

In order to facilitate protocol independence, application
interoperability, and provide a neans for TIP transaction context
propagati on, a standard representation of the TIP transaction
context information is required (in the formof a URL). This

i nformati on nust include the listening endpoint address of the
partner TIP TM and transaction identifier information.

4) Ease of |nplenmentation
The TIP protocol must be sinple to inplenent. It should support
only those features necessary to provide a useful, performant 2-pc

protocol service. The protocol should not add conplexity in the
form of extraneous optimn sations.

Evans, et. al. I nf or mat i onal [Page 12]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

5)

6)

7)

8)

Evans,

Suitability for Al Application d asses

The TIP protocol should be conplete and robust enough not only for
el ectronic commerce on the web, but also for intranet applications
and for traditional TP applications spanning heterogenous
transacti on manager environnents. The protocol should be
performant and scal eabl e enough to neet the needs of lowto very
hi gh t hroughput applications.

a. the TIP protocol should support the concept of client-only
transaction participants (useful for ultra-Iightweight
i npl enent ati ons on | owend platforns).

b. since sonme clients may be unreliable, TIP nust provide support
for delegation of transaction coordination (to a nore reliable
(trusted) node).

c. the TIP protocol nust scale between 1 and n (> 1) concurrent
transacti ons per TCP connection

d. TIP comands shoul d be able to be concatenated (pipelined).
e. TIP should be conpatible with the X/ Open XA interface.
Security

The TIP protocol must be conpatible with existing security

mechani sms, potentially including encryption, firewalls, and

aut hori zati on nechanisns (e.g. TLS may be used to authenticate the
sender of a TIP command, and for encryption of TIP commands).

Not hing in the protocol definition should prevent TIP working
within any security environment.

TI P Protocol Transport |ndependence

It woul d be beneficial to sone applications to allowthe TIP
protocol to flow over different transport protocols. The benefit
is when using different transport protocols for the application
data, the same transport can be used for the TIP 2PC protocol. TIP
must therefore not preclude use with other transport protocols.

Recovery
Recovery semantics need to be defined sufficiently to avoid

anbi guous results in the event of any type of conmunications
transport failure.

et. al. I nf or mat i onal [Page 13]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

9) Extensibility

The TIP protocol should be able to be extended, whilst naintaining
conmpatibility with previous versions.

Ref er ences

[1] Lyon, J., Evans, K, and J. Kl ein, "The Transaction |nternet
Protocol Version 3.0", RFC 2371, July 1998.

[2] Transaction Processing: Concepts and Techni ques. Morgan
Kauf mann Publishers. (I1SBN 1-55860-190-2). J. Gay, A Reuter

[3] X Open CAE Specification, April 1995, Distributed Transaction
Processing: The TX Specification. (ISBN 1-85912-094-6).

[4] X/ Open Cuide, Novenber 1993, Distributed Transacti on Processing:
Ref erence Mbdel Version 2. (ISBN 1-85912-019-9).

[5] X/ Open CAE Specification, Decermber 1991, Distributed Transaction
Processing: The XA Specification. (ISBN 1-872630-24-3).

[6] Dierks, T., et. al., "The TLS Protocol Version 1.0", Wrk in
Pr ogr ess.

Evans, et. al. I nf or mat i onal [Page 14]

RFC 2372

Aut hor s’

TI P Requi renents and Suppl enent a

Addr esses

Kei t h Evans

Tandem Conputers Inc, LOC 252-30
5425 Stevens Creek Bl vd

Santa O ara, CA 95051-7200, USA

Phone:

Fax:
EMai

+1
+1
Kei

(408) 285 5314
(408) 285 5245
t h. Evans@andem Com

Johannes Kl ein
Tandem Conputers Inc.
10555 Ri dgevi ew Court

Cuperti no,

Phone:

+1

CA 95014-0789, USA

(408) 285 0453
(408) 285 9818

Johannes. Kl ei n@andem Com

Fax: +1
EMai | :
Ji m Lyon

M crosoft Corporation
One M crosoft Way
Rednond, WA 98052-6399, USA

Phone:

Fax:
EMRi

Comment s

+1
+1

(206) 936 0867
(206) 936 7329

Ji mLyon@M crosoft. Com

I nf or mati on

Pl ease send comments on this docunent to the authors at

<Ji mLyon@M crosoft. Conp,
<Johannes. Kl ei n@andem Con,

<Kei t h. Evans@andem Conv,
or tothe TIP mailing list at

July 1998

<Ti p@andem Con®. You can subscribe to the TIP nailing list by

sending il
"subscribe tip <ful

Evans,

et.

al .

I nf or mat i ona

to <Listserv@.i sts. Tandem Con> with the Iine
nane>" somewhere in the body of the nessage

[Page 15]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

Appendi x A. An Exanple TIP Transacti on Manager Application Programing
I nterface.

Note that this APl is included solely for informational purposes, and
is not part of the formal TIP specification (TIP conformant
i npl ementations are free to define alternative APIs).

1) tip_open() - establish a connection to a TIP TM

Synopsi s
int tip_open ([out] tip_handle_t *ptiptm

Par anmet er s
ptiptm[out]

Pointer to the TIP TM handl e.

Descri ption
ti p_open() establishes a connection to a TIP TM The cal
returns a handle which identifies the TIP TM This function
nmust be called before any work can be perforned on a TIP
transacti on.

Ret urn Val ues
[TI POK]
Connecti on has been successfully established.
[TI PNOTCONNECTED]
User has been di sconnected fromthe TIP TM
[TI PNOTCONFI GURED]
TIP TM has not been confi gured.
[TI PTRANSI ENT]
Too many openers; re-try the open.
[TI PERROR]
An unexpected error occurred.

2) tip_close() - close a connection to a TIP TM
Synopsi s
int tip_close([in] tip_handle_t handle)
Par anet er s

handl e [in]
The TIP TM handl e.
Descri ption
tip_close() closes a connection to a TIP TM Al outstandi ng
requests associated with that connection will be cancell ed.
Ret urn Val ues
[TI POK]

Connecti on has been successfully cl osed.
[TI PI NVALI DPARM

I nvalid connection handl e specifi ed.
[TI PERROR]

An unexpected error occurred.

Evans, et. al. I nf or mat i onal [Page 16]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

3) tip_push() - export a local transaction to a renote node and
return a TIP transaction identifier for the
associ ated renote transaction.
Synopsi s
int tip_push ([in] tip_handle_t TM
[in] char *tm.url,
[in] void *plocal xid,
[out] char *pxid_ url
[in] unsigned int url_length)
Par aneters
TM [in]
The TIP TM handl e.
tmurl [in]
Pointer to the TIP URL of the renpbte transaction nmanager.
A TIP URL for a transaction manager takes the form
TIP:// <host>[: <port>]
pl ocal _xid [in]
Pointer to the local transaction identifier. The
structure of the transaction identifier is defined by the
| ocal transacti on manager
pxid_url [out]
Pointer to the TIP URL of the associated renote
transaction. A TIP URL for a transaction takes the form
TIP://<host>[:<port>]/<transaction identifier>
url _length [in]
The size in bytes of the buffer for the renote
transacti on URL.
Description
ti p_push() exports (pushes) a local transaction to a renote
node. If a local transaction identifier is not supplied, the
caller’s current transaction context is used. The call returns
a TIP URL for the associated renote transaction. The TIP
transaction identifier nmay be passed on application requests to
the renote node (as part of a TIP URL). The receiving process
uses this information in order to do work on behal f of the
transacti on.
Ret urn Val ues
[TI POK]
Transacti on has been successfully pushed to the renote
node.
[TI PI NVALI DXI D]
An invalid transaction identifier has been provided.
[TI PNOCURRENTTX]
Process is currently not associated with a transaction
(and none was supplied).
[TI PI NVALI DHANDLE]
Invalid connection handl e specified.
[TI PNOTPUSHED]

Evans, et. al. I nf or mat i onal [Page 17]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

Transaction could not be pushed to the renote node.
[TI PNOTCONNECTED]
Cal l er has been disconnected fromthe TIP TM
[TI PI NVALI DURL]
Invalid endpoint URL is provided.
[TI PTRANSI ENT]
Transient error occurred; re-try the operation
[TI PTRUNCATED]
I nsufficient buffer size is specified for the TIP
transaction identifier.
[TI PERROR]
An unexpected error occurred.

4) tip_pull() - create a local transaction and join it with the TIP
transacti on.
Synopsi s
int tip_pull([in] tip_handle_t T™M

[in] char *pxid_url
[out] void *plocal xid,
[in] unsigned int xid_|length)

Par anet er s

TM [in]
The TIP TM handl e.
pxid_ url [in]

Pointer to the TIP URL of the associated renote
transaction. A TIP URL for a transaction takes the form
TIP://<host>[:<port>]/<transaction identifier>
pl ocal _xid [out]
Pointer to the local transaction identifier. The
structure of the transaction identifier is defined by the
| ocal transaction nanager
xid_length [in]
The size in bytes of the buffer for the |local transaction
identifier.
Descri ption
tip_pull() creates a local transaction and joins the |oca
transaction with the TIP transaction (the caller becones a
subordi nate participant in the TIP transaction). The renote TIP
TMis identified via the URL (*pxid_url). The local transaction
identifier is returned. If a local transaction has al ready been
created for the TIP transaction identifier supplied, then
[TIPOK] is returned (with the local transaction identifier),
and no other action is taken
Ret urn Val ues
[TI POK]
The | ocal transaction has been successfully created
and joined with the TIP transaction.
[TI PI NVALI DHANDLE]

Evans, et. al. I nf or mat i onal [Page 18]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

I nvalid connection handl e specified.
[TI PTRUNCATED]
Insufficient buffer size is specified for the |ocal
transaction identifier.
[TI PNOTPULLED]
Joining of the local transaction with the TIP
transaction has failed.
[TI PNOTCONNECTED]
Cal l er has been disconnected fromthe TIP TM
[TI PI NVALI DURL]
Invalid URL has been suppli ed.
[TI PTRANSI ENT]
Transient error occurred; retry the operation
[TI PERROR]
An unexpected error occurred.

5) tip_pull_async() - create a local transaction and join it with the
TIP transaction. Control is returned to the
caller as soon as a local transaction is
creat ed.

Synopsi s
int tip_pull_async ([in] tip_handle_t TM
[in] char *pxid_url
[out] void *plocal xid,
[in] unsigned int xid_|ength)
Par amet er s
TM [in]
The TIP gateway handl e.
pxid_url [in]
Pointer to the TIP URL of the associated renote
transaction. A TIP URL for a transaction takes the form
TIP://<host>[:<port>]/<transaction identifier>
pl ocal _xid [out]
Pointer to the local transaction identifier. The
structure of the transaction identifier is defined by the
| ocal transaction nanager
xid_length [in]
The size in bytes of the buffer for the local transaction
identifier.
Description
ti p_pull_async() creates a local transaction and joins the
| ocal transaction with the TIP transaction (the caller
becones a subordi nate participant in the TIP transaction). The
renote TIP TMis identified via the URL (*pxid_ url). The loca
transaction identifier is returned. A call to tip_pull_async()
returns i mediately after the local transaction has been
created (before the TIP PULL protocol command is sent). A
subsequent call to tip_pull_conplete() nust be issued to check

Evans, et. al. I nf or mat i onal [Page 19]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

6)

Evans,

for successful conpletion of the pull request.
Ret urn Val ues
[TI POK]
The | ocal transaction has been successfully created.
[TI PI NVALI DHANDLE]
I nvalid connection handl e specified.
[TI PNOTCONNECTED]
User has been di sconnected fromthe TIP TM
[TI PI NVALI DURL]
Invalid URL has been suppli ed.
[TI PTRANSI ENT]
Transient error has occurred; retry the operation
[TI PTRUNCATED]
Insufficient buffer size is specified for the |ocal
transaction identifier
[TI PERROR]
An unexpected error occurred.

tip_pull _conplete() - check whether a previous tip_pull_async()
request has been successfully conpl et ed.
Synopsi s
int tip_pull_conplete ([in] tip_handle_t T™M
[in] void *plocal _xid)
Par anmet er s
TM [in]
The TIP TM handl e.
pl ocal _xid [in]
Pointer to the local transaction identifier. The
structure of the transaction identifier is defined by the
| ocal transaction nanager

Description
tip_pull_conplete() checks whether a previous call to
ti p_pull_async() has been successfully conpleted. i.e. whether

the | ocal transaction has been successfully joined with the TIP
transaction. The caller supplies the |ocal transaction
identifier returned by the previous call to tip_pull _async().
Repeated calls to tip_pull _conplete() for the sanme |oca
transaction identifier are idenpotent.
Ret urn Val ues
[TI POK]
The | ocal transaction has been successfully joined with
the TIP transaction.
[TI PI NVALI DHANDLE]
I nvalid connection handl e specified.
[TI PI NVALI DXI D]
An invalid transaction identifier has been provided.
[TI PNOTPULLED]
Joining of the local transaction with the TIP transaction

et. al. I nf or mat i onal [Page 20]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

has failed. The | ocal transaction has been aborted.
[TI PNOTCONNECTED]

Cal | er has been di sconnected fromthe TIP T™
[TI PERROR]

An unexpected error occurred.

7) tip xidto url() - return a TIP transaction identifier for a |oca
transaction identifier
Synopsi s
int tip_xidto url ([in] tip_handle_t T™M
[in] void *plocal _xid,
[out] char *pxid_ url
[in] unsigned int url _length)
Par aneters
TM [in]
The TIP TM handl e.
pl ocal _xid [in]
Pointer to the local transaction identifier. The
structure of the transaction identifier is defined by the
| ocal transacti on manager
pxid_url [out]
Pointer to the TIP URL of the local transaction.
A TIP URL for a transaction takes the form
TIP://<host>[:<port>]/<transaction identifier>
url _length [in]
The size in bytes of the buffer for the TIP URL.
Descri ption
tip_xid to url() returns a TIP transaction identifier for a
| ocal transaction identifier. The TIP transaction identifier
can be passed to renote applications to enable themto do work
on the transaction. e.g. to pull the local transaction to the
renote node. If a local transaction identifier is not supplied,
the caller’s current transaction context is used. The constant
TI PURLSI ZE defines the size of a TIP transaction identifier in
bytes. This value is inplementation specific.
Ret urn Val ues
[TI POK]
TIP transaction identifier has been returned.
[TI PNOTCONNECTED]
Cal | er has been disconnected fromthe TIP TM
[TI PNOCURRENTTX]
Process is currently not associated with a transaction
(and none was supplied).
[TI PI NVALI DXI D]
An invalid local transaction identifier has been
suppl i ed.
[TI PTRUNCATED]
Insufficient buffer size is specified for the TIP

Evans, et. al. I nf or mat i onal [Page 21]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

transaction identifier
[TI PERROR]
An unexpected error occurred.

8) tip_url_to xid() - return a local transaction identifier for a TIP
transaction identifier
Synopsi s
int tip_url_to xid ([in] tip_handle_t TM
[in] char *pxid_url
[out] void *plocal xid,
[in] unsigned int xid_|length)
Par anet er s

TM [in]
The TIP TM handl e.
pxid_url [in]

Pointer to the TIP URL of the local transaction. A TIP
URL for a transaction takes the form
TIP://<host>[:<port>]/<transaction identifier>
pl ocal _xid [out]
Pointer to the local transaction identifier. The
structure of the transaction identifier is defined by the
| ocal transaction manager.
xid_length [in]
The size in bytes of the buffer for the local transaction
identifier.
Descri ption
tip_url _to xid() returns a local transaction identifier for a
TIP transaction identifier (note that the |ocal transaction
must have previously been created via a tip_push(), or tip_pul
(or tip_pull _async()). The constant TIPXl DSI ZE defi nes the size
of a local transaction identifier in bytes. This value is
i mpl erent ati on specific.
Ret urn Val ues
[TI POK]
Local transaction identifier is returned.
[TI PI NVALI DURL]
An invalid TIP transaction identifier has been provided.
[TI PTRUNCATED]
Insufficient buffer size is specified for the |ocal
transaction identifier.
[TI PERROR]
An unexpected error occurred.

Evans, et. al. I nf or mat i onal [Page 22]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

9) tip_get tmurl() - get the nane of the local TIP transaction
manager in TIP URL form
Synopsi s
int tip_get _tmurl ([in] tip_handle_t T™M
[out] char *tm.url
[in] int tmlen);
Par anet er s
TM i n]
The TIP TM handl e.
tmurl [in]
Pointer to the TIP URL of the |local transaction manager. A
TIP URL for a transaction manager takes the form
TI P // <host>[: <port>]
tmlen [out]
The size in bytes of the buffer for the TIP URL of the |oca
transacti on manager
Description
tip_get tmurl() gets the nane of the |local transaction
manager in TIP URL form (i.e. TIP://<host>[:<port>])
Ret urn Val ues
[TI POK]
The nane of the |ocal transacti on manager has been
successful ly returned.
[TI PTRUNCATED]
The nane of the |ocal transacti on nmanager has been
truncated due to insufficient buffer size. Retry the
operation with larger buffer size.

Evans, et. al. I nf or mat i onal [Page 23]

RFC 2372 TI P Requi renents and Suppl enental |nformation July 1998

Ful I Copyright Statenent
Copyright (C) The Internet Society (1998). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Evans, et. al. I nf or mat i onal [Page 24]

