Net wor k Wor ki ng Group R dlligan

Request for Comments: 2553 FreeGate
bsol etes: 2133 S. Thonson
Cat egory: I nformational Bel | core
J. Bound

Conpaq

W Stevens
Consul t ant

March 1999
Basi ¢ Socket Interface Extensions for |Pv6
Status of this Meno
This meno provides information for the Internet conmunity. It does

not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C The Internet Society (1999). Al Rights Reserved.
Abst r act

The de facto standard application programinterface (APl) for TCP/IP
applications is the "sockets" interface. Al though this APl was

devel oped for Unix in the early 1980s it has al so been inplenented on
a wide variety of non-Unix systens. TCP/IP applications witten
usi ng the sockets APl have in the past enjoyed a hi gh degree of
portability and we would like the same portability with |IPv6
applications. But changes are required to the sockets APl to support
I Pv6 and this meno describes these changes. These include a new
socket address structure to carry | Pv6 addresses, new address
conversion functions, and sone new socket options. These extensions
are designed to provide access to the basic | Pv6 features required by
TCP and UDP applications, including rmulticasting, while introducing a
m ni mum of change into the system and providing conplete
compatibility for existing IPv4 applications. Additional extensions
for advanced | Pv6 features (raw sockets and access to the | Pv6

ext ensi on headers) are defined in another docunent [4].

Glligan, et. al. I nf or mat i onal [Page 1]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Tabl e of Contents

1. Introduction. e 3
2. Design Considerati Ons. 3
2.1 What Needs to be Changed.......... 4
2.2 Data TYPeS. . oo i 5
2.3 Header s. . ..o 5
2.4 SErUCTUN S, . . e e e e e e 5
3. Socket Interface...... i 6
3.1 IPv6 Address Family and Protocol Family..................... 6
3.2 IPv6 Address Structure. 6
3.3 Socket Address Structure for 4.3BSD Based Systens........... 7
3.4 Socket Address Structure for 4.4BSD Based Systens........... 8
3.5 The Socket FUNCLiONS. e 9
3.6 Conpatibility with I1Pv4 Applications....................... 10
3.7 Conpatibility with I1Pv4 Nodes.......... 10
3.8 IPv6 Wldcard Address. e 11
3.9 IPv6 Loophback AdAress. 12
3.10 Portability Additions......... i, 13
4. Interface ldentification........ 16
4.1 Name-to-lndeX. e 16
4.2 Index-to-NamB. 17
4.3 Return All Interface Nanes and Indexes..................... 17
4. A Free MmOl Y. .o 18
5. Socket OPtioNs. e 18
5.1 Unicast Hop Limit.. e 18
5.2 Sending and Receiving Milticast Packets.................... 19
6. Library FUNCLioONnS. e 21
6.1 Nodename-to-Address Translation............... 21
6.2 Address-To-Nodenanme Translation................. 24
6.3 Freeing nenory for getipnodebyname and geti pnodebyaddr. 26
6.4 Protocol -1 ndependent Nodenanme and Service Nane Transl ation. 26
6.5 Socket Address Structure to Nodenane and Service Nane...... 29
6.6 Address Conversion FUNCtioONs............. ..., 31
6.7 Address Testing MAaCroS. 32
7. Summary of New Definitions............ 33
8. Security Considerations.............. i, 35
9. Year 2000 Considerati OnS., 35
Changes From RFC 2133, e 35
ACKnOoW edgIment S. 38
Ref erences. 39
AUt hor s’ Addr €SS eS. . . oot 40
Ful | Copyright Statement........... 41

Glligan, et. al. I nf or mat i onal [Page 2]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

1

I ntroduction

While | Pv4 addresses are 32 bits long, IPv6 interfaces are identified
by 128-bit addresses. The socket interface nmakes the size of an IP
address quite visible to an application; virtually all TCP/IP
applications for BSD based systens have know edge of the size of an

| P address. Those parts of the APl that expose the addresses nust be

changed to accommpdate the |arger | Pv6 address size. |Pv6 also
i ntroduces new features (e.g., traffic class and fl ow abel), sonme of
whi ch nmust be made visible to applications via the API. This neno

defines a set of extensions to the socket interface to support the
| arger address size and new features of |Pv6.

Desi gn Consi der ati ons

There are a nunber of inportant considerations in designing changes
to this well-worn API:

- The APl changes shoul d provide both source and binary
conmpatibility for programs witten to the original API. That
is, existing program binaries should continue to operate when
run on a system supporting the new API. In addition, existing
applications that are re-conpiled and run on a system supporting
the new APl should continue to operate. Sinply put, the AP
changes for 1Pv6 should not break existing progranms. An
addi t onal mechani sm for inplenentations to verify this is to
verify the new synbols are protected by Feature Test Mcros as
described in I EEE Std 1003.1. (Such Feature Test Macros are not
defined by this RFC.)

- The changes to the APl should be as snall as possible in order
to sinmplify the task of converting existing |Pv4d applications to
| Pv6.

- Where possible, applications should be able to use this APl to
interoperate with both IPv6 and | Pv4 hosts. Applications should
not need to know which type of host they are conmunicating with.

- I Pv6 addresses carried in data structures should be 64-bit
aligned. This is necessary in order to obtain optinm
performance on 64-bit machi ne architectures.

Because of the inportance of providing IPv4 conpatibility in the API,
these extensions are explicitly designed to operate on nachi nes that
provi de conpl ete support for both IPv4 and I Pv6. A subset of this
APl coul d probably be designed for operation on systens that support
only 1Pv6. However, this is not addressed in this neno.

Glligan, et. al. I nf or mat i onal [Page 3]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

2.1 What Needs to be Changed
The socket interface APl consists of a few distinct conponents:
- Core socket functions.
- Address data structures.
- Nanme-to-address translation functions.

- Address conversion functions.

The core socket functions -- those functions that deal w th such
things as setting up and tearing down TCP connections, and sendi ng
and receiving UDP packets -- were designed to be transport

i ndependent. \Where protocol addresses are passed as function
argunents, they are carried via opaque pointers. A protocol-specific
address data structure is defined for each protocol that the socket
functions support. Applications nust cast pointers to these

prot ocol -speci fic address structures into pointers to the generic
"sockaddr" address structure when using the socket functions. These
functions need not change for |1Pv6, but a new | Pv6-specific address
data structure i s needed.

The "sockaddr _in" structure is the protocol-specific data structure
for IPv4. This data structure actually includes 8-octets of unused
space, and it is tenpting to try to use this space to adapt the
sockaddr _in structure to IPv6. Unfortunately, the sockaddr_in
structure is not |arge enough to hold the 16-octet |Pv6 address as
well as the other information (address family and port nunber) that
is needed. So a new address data structure nust be defined for |Pv6.

| Pv6 addresses are scoped [2] so they could be link-local, site,
organi zation, global, or other scopes at this tine undefined. To
support applications that want to be able to identify a set of
interfaces for a specific scope, the I Pv6 sockaddr _in structure nust
support a field that can be used by an inplenentation to identify a
set of interfaces identifying the scope for an | Pv6 address.

The nane-to-address translation functions in the socket interface are
get host bynanme() and gethostbyaddr(). These are left as is and new
functions are defined to support IPv4d and IPv6. Additionally, the
PCSI X 1003.g draft [3] specifies a new nodenane-to-address
translation function which is protocol independent. This function
can al so be used with | Pv4 and | Pv6.

Glligan, et. al. I nf or mat i onal [Page 4]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

The address conversion functions -- inet_ntoa() and inet_addr() --
convert | Pv4 addresses between binary and printable form These
functions are quite specific to 32-bit |Pv4 addresses. W have
designed two anal ogous functions that convert both IPv4 and | Pv6
addresses, and carry an address type paraneter so that they can be
extended to other protocol famlies as well.

Finally, a few m scellaneous features are needed to support |Pv6.

New i nterfaces are needed to support the IPv6 traffic class, flow

| abel , and hop limt header fields. New socket options are needed to
control the sending and receiving of IPv6 multicast packets.

The socket interface will be enhanced in the future to provi de access
to other I Pv6 features. These extensions are described in [4].

2.2 Data Types

The data types of the structure el enents given in this nmeno are

i ntended to be exanpl es, not absol ute requirenents. Wenever

possi ble, data types fromDraft 6.6 (March 1997) of POSI X 1003.1g are
used: uintN_t means an unsigned integer of exactly N bits (e.g.
uintlé t). W also assune the argument data types from 1003.1g when
possible (e.g., the final argument to setsockopt() is a size_t

val ue). Wienever buffer sizes are specified, the PCSI X 1003.1 size t
data type is used (e.g., the two length argunents to getnaneinfo()).

2.3 Headers

When function prototypes and structures are shown we show t he headers
that must be #included to cause that itemto be defined.

2.4 Structures

When structures are described the nmenbers shown are the ones that
nmust appear in an inplenentation. Additional, nonstandard nenbers
may al so be defined by an inplenentation. As an additiona
precaution nonstandard nenbers could be verified by Feature Test
Macros as described in EEE Std 1003.1. (Such Feature Test Macros
are not defined by this RFC.)

The ordering shown for the nenbers of a structure is the reconmended

ordering, given alignnent considerations of nultibyte nenbers, but an
i mpl enentati on nay order the nmenbers differently.

Glligan, et. al. I nf or mat i onal [Page 5]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

3. Socket Interface
This section specifies the socket interface changes for |Pv6.
3.1 IPv6 Address Family and Protocol Famly

A new address fam |y nane, AF_INET6, is defined in <sys/socket.h>.
The AF_I NET6 definition distinguishes between the origina
sockaddr _in address data structure, and the new sockaddr _in6 data
structure.

A new protocol fam |y nane, PF_INET6, is defined in <sys/socket.h>.
Li ke nost of the other protocol fanmily nanes, this will usually be
defined to have the sane val ue as the corresponding address fanily
name:

#define PF_I NET6 AF_I NET6

The PF_INET6 is used in the first argunment to the socket() function
to indicate that an | Pv6 socket is being created.

3.2 | Pv6 Address Structure

A new i n6_addr structure holds a single |IPv6 address and i s defined
as a result of including <netinet/in.h>:

struct in6_addr {
uint8 t s6_addr[16]; /* I Pv6 address */
b

This data structure contains an array of sixteen 8-bit el enents,
whi ch make up one 128-bit |Pv6 address. The |Pv6 address is stored
in network byte order

The structure in6_addr above is usually inplenented with an enbedded
union with extra fields that force the desired alignnent level in a
manner simlar to BSD i npl enentations of "struct in_addr". Those
additional inplementation details are onitted here for sinplicity.

An exanple is as follows:

Glligan, et. al. I nf or mat i onal [Page 6]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

struct in6_addr {
uni on {
uint8 t _S6_u8[16];
uint32_t _S6_u32[4];
uint64_t _S6_u64[2];
} _S6_un;
1
#define s6_addr _S6 un. S6 u8

3.3 Socket Address Structure for 4.3BSD Based Systens

In the socket interface, a different protocol-specific data structure
is defined to carry the addresses for each protocol suite. Each
protocol - specific data structure is designed so it can be cast into a
protocol - independent data structure -- the "sockaddr" structure.

Each has a "famly" field that overlays the "sa _fanmly" of the
sockaddr data structure. This field identifies the type of the data
structure.

The sockaddr _in structure is the protocol -specific address data
structure for IPv4. It is used to pass addresses between applications
and the systemin the socket functions. The follow ng sockaddr_in6
structure holds | Pv6 addresses and is defined as a result of including
the <netinet/in.h> header

struct sockaddr _in6 {

sa_famly_t sin6_fanmly; /* AF_I NET6 */

in_port _t sin6_port; /* transport |ayer port # */
uint32_t sin6_flowinfo; /* IPv6 traffic class & flow info */
struct in6_addr sin6_addr; /* 1 Pv6 address */

uint32_t sin6_scope_id; /* set of interfaces for a scope */

This structure is designed to be conpatible with the sockaddr data
structure used in the 4.3BSD rel ease.

The sin6 famly field identifies this as a sockaddr _in6 structure
This field overlays the sa_famly field when the buffer is cast to a
sockaddr data structure. The value of this field nust be AF_I NET6.

The sin6_port field contains the 16-bit UDP or TCP port nunber. This
field is used in the sanme way as the sin_port field of the
sockaddr _in structure. The port nunber is stored in network byte
order.

Glligan, et. al. I nf or mat i onal [Page 7]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

The sin6 flowinfo field is a 32-bit field that contains two pieces of
information: the traffic class and the flow label. The contents and
interpretation of this nenber is specified in [1]. The sin6_flow nfo
field SHOULD be set to zero by an inplenmentation prior to using the
sockaddr _in6 structure by an application on receive operations.

The sin6_addr field is a single in6_addr structure (defined in the
previous section). This field holds one 128-bit |Pv6 address. The
address is stored in network byte order.

The ordering of elenents in this structure is specifically designed
so that when sin6_addr field is aligned on a 64-bit boundary, the
start of the structure will also be aligned on a 64-bit boundary.
This is done for optinum performance on 64-bit architectures.

The sin6_scope_id field is a 32-bit integer that identifies a set of
interfaces as appropriate for the scope of the address carried in the
sin6_addr field. For a link scope sin6_addr sin6_scope_id would be
an interface index. For a site scope sin6_addr, sin6_scope_id would
be a site identifier. The mapping of sin6 _scope id to an interface
or set of interfaces is left to inplenmentation and future
specifications on the subject of site identifiers.

Notice that the sockaddr _in6 structure will nornally be larger than
the generic sockaddr structure. On nmany existing inplenentations the
si zeof (struct sockaddr _in) equals sizeof(struct sockaddr), with both
being 16 bytes. Any existing code that nakes this assunption needs
to be exam ned carefully when converting to | Pv6

3.4 Socket Address Structure for 4.4BSD Based Systens

The 4.4BSD rel ease includes a small, but inconpatible change to the
socket interface. The "sa famly" field of the sockaddr data
structure was changed froma 16-bit value to an 8-bit value, and the
space saved used to hold a length field, naned "sa_len". The
sockaddr _in6 data structure given in the previous section cannot be
correctly cast into the newer sockaddr data structure. For this
reason, the following alternative | Pv6 address data structure is
provided to be used on systens based on 4.4BSD. It is defined as a
result of including the <netinet/in.h> header.

Glligan, et. al. I nf or mat i onal [Page 8]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

struct sockaddr _in6 {

ui nt 8_t sin6_| en; /* length of this struct */
sa_famly_t sin6_fanmly; /* AF_I NET6 */

in_port _t sin6_port; /* transport |ayer port # */
uint32_t sin6_flowinfo; /* IPv6 flow information */

struct in6_addr sin6_addr; /* 1 Pv6 address */

uint32_t sin6_scope_id; /* set of interfaces for a scope */

The only differences between this data structure and the 4.3BSD
variant are the inclusion of the length field, and the change of the
famly field to a 8-bit data type. The definitions of all the other
fields are identical to the structure defined in the previous
section.

Systenms that provide this version of the sockaddr_in6 data structure
nmust al so declare SIN6_LEN as a result of including the
<netinet/in.h> header. This nmacro allows applications to deternine
whet her they are being built on a systemthat supports the 4.3BSD or
4.4BSD variants of the data structure

3.5 The Socket Functions

Applications call the socket() function to create a socket descriptor
that represents a conmunication endpoint. The argunents to the
socket () function tell the system which protocol to use, and what
format address structure will be used in subsequent functions. For
exanple, to create an | Pv4/ TCP socket, applications make the call

s = socket (PF_I NET, SOCK_STREAM 0);
To create an | Pv4/ UDP socket, applications nmake the call:

s = socket (PF_I NET, SOCK DGRAM O0);
Applications may create | Pv6/ TCP and | Pv6/ UDP sockets by sinply using
the constant PF_INET6 instead of PF INET in the first argunent. For
exanple, to create an | Pv6/ TCP socket, applications nmake the call:

s = socket (PF_I NET6, SOCK_STREAM 0);
To create an | Pv6/ UDP socket, applications nmake the call:

s = socket (PF_I NET6, SOCK DGRAM 0);

Glligan, et. al. I nf or mat i onal [Page 9]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Once the application has created a PF_I NET6 socket, it nust use the
sockaddr i n6 address structure when passing addresses in to the
system The functions that the application uses to pass addresses
into the system are:

bi nd()
connect ()
sendnsg()
sendt o()

The systemwi || use the sockaddr_in6 address structure to return
addresses to applications that are using PF_|INET6 sockets. The
functions that return an address fromthe systemto an application
are:

accept ()
recvfrom))
recvisg()

get peer nane()
get socknane()

No changes to the syntax of the socket functions are needed to
support |1 Pv6, since all of the "address carrying” functions use an
opaque address pointer, and carry an address length as a function
argunent .

3.6 Conpatibility with 1 Pv4 Applications

In order to support the | arge base of applications using the origina
APl , system i npl enentations nust provide conplete source and binary
conpatibility with the original API. This neans that systens nust
continue to support PF_INET sockets and the sockaddr_in address
structure. Applications nust be able to create | Pv4/ TCP and | Pv4/ UDP
sockets using the PF_INET constant in the socket() function, as
described in the previous section. Applications should be able to
hol d a conbi nation of |Pv4/TCP, |Pv4/UDP, |Pv6/ TCP and | Pv6/ UDP
sockets sinultaneously within the sanme process.

Applications using the original APl should continue to operate as
they did on systenms supporting only IPv4. That is, they should
continue to interoperate with |IPv4 nodes.

3.7 Conpatibility with | Pv4d Nodes
The APl also provides a different type of conpatibility: the ability
for 1Pv6 applications to interoperate with I Pv4 applications. This

feature uses the I Pv4-mapped | Pv6 address format defined in the |IPv6
addressing architecture specification [2]. This address fornat

Glligan, et. al. I nf or mat i onal [Page 10]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

all ows the | Pv4 address of an | Pv4 node to be represented as an | Pv6
address. The I Pv4 address is encoded into the loworder 32 bits of
the | Pv6 address, and the high-order 96 bits hold the fixed prefix
0:0:0:0: 0: FFFF. 1 Pv4- mapped addresses are witten as foll ows:

.. FFFF: <l Pv4- addr ess>

These addresses can be generated automatically by the
geti pnodebynane() function when the specified host has only | Pv4
addresses (as described in Section 6.1).

Applications may use PF I NET6 sockets to open TCP connections to | Pv4d
nodes, or send UDP packets to | Pv4 nodes, by sinply encoding the
destination’s | Pv4 address as an | Pv4-napped | Pv6 address, and
passi ng that address, within a sockaddr_in6 structure, in the
connect () or sendto() call. \When applications use PF_I NET6 sockets
to accept TCP connections from | Pv4 nodes, or receive UDP packets
fromIlPv4 nodes, the systemreturns the peer’s address to the
application in the accept(), recvfrom(), or getpeernane() call using
a sockaddr_in6 structure encoded this way.

Few applications will likely need to know which type of node they are
interoperating with. However, for those applications that do need to
know, the IN6_|I S ADDR VAMAPPED() nacro, defined in Section 6.7, is
provi ded.

3.8 |Pv6 Wl dcard Address

VWil e the bind() function allows applications to select the source IP
address of UDP packets and TCP connections, applications often want
the systemto select the source address for them Wth |IPv4, one
specifies the address as the synbolic constant | NADDR_ANY (cal |l ed the
"wi | dcard" address) in the bind() call, or sinply omts the bind()
entirely.

Since the I Pv6 address type is a structure (struct in6_addr), a
synbolic constant can be used to initialize an | Pv6 address vari abl e,
but cannot be used in an assignnent. Therefore systens provide the

| Pv6 wildcard address in two forns.

The first version is a global variable naned "in6addr_any" that is an
in6_addr structure. The extern declaration for this variable is
defined in <netinet/in.h>:

extern const struct in6_addr in6addr_any;

Glligan, et. al. I nf or mat i onal [Page 11]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Applications use in6addr_any simlarly to the way they use | NADDR ANY
in |Pv4. For exanple, to bind a socket to port nunber 23, but Iet
the system sel ect the source address, an application could use the
foll owi ng code

struct sockaddr i n6 sin6;

sin6.sin6_fanily = AF_|I NET6;

sin6.sin6_flowi nfo = O;

sin6.sin6_port = htons(23);

sin6. si n6_addr = in6addr_any; /* structure assignnment */

if tbind(s, (struct sockaddr *) &sin6, sizeof(sing)) == -1)

The other version is a synbolic constant nanmed | NGADDR _ANY_I NI T and
is defined in <netinet/in.h> This constant can be used to
initialize an in6_addr structure:

struct in6_addr anyaddr = | NGADDR_ANY_I NI T;

Note that this constant can be used ONLY at declaration tine. It can
not be used to assign a previously declared in6_addr structure. For
exanple, the follow ng code will not work

/* This is the WRONG way to assign an unspecified address */
struct sockaddr _in6 sin6;

sin6.sin6_addr = I NGADDR ANY INIT; /* will NOT conpile */

Be aware that the | Pv4 | NADDR xxx constants are all defined in host
byte order but the | Pv6 | N6ADDR xxx constants and the | Pv6
i n6addr _xxx externals are defined in network byte order

3.9 I Pv6 Loopback Address

Applications may need to send UDP packets to, or originate TCP
connections to, services residing on the local node. In IPv4, they
can do this by using the constant |Pv4 address | NADDR LOOPBACK in
their connect(), sendto(), or sendmsg() call

| Pv6 al so provides a | oopback address to contact |ocal TCP and UDP

services. Like the unspecified address, the |Pv6 | oopback address is
provided in two forns -- a global variable and a synbolic constant.

Glligan, et. al. I nf or mat i onal [Page 12]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

The gl obal variable is an in6_addr structure naned
"in6addr _| oopback." The extern declaration for this variable is
defined in <netinet/in.h>:

extern const struct in6_addr in6addr_| oopback

Appl i cations use in6addr_| copback as they woul d use | NADDR LOOPBACK
in | Pv4 applications (but beware of the byte ordering difference
nmentioned at the end of the previous section). For exanple, to open
a TCP connection to the local telnet server, an application could use
the foll ow ng code

struct sockaddr i n6 sin6;

sin6.sin6_fanily = AF_I NET6;

sin6.sin6 _flowinfo = 0;

si n6. si n6_port ht ons(23);

si n6. si n6_addr i n6addr _| oopback; /* structure assignnent */

if kcbnnect(s, (struct sockaddr *) &sin6, sizeof(sing)) == -1)

The synbolic constant is naned | NGADDR LOOPBACK INIT and is defined
in <netinet/in.h> It can be used at declaration time ONLY; for
exanpl e:

struct in6_addr | oopbackaddr = | N6ADDR_LOOPBACK | NI T;

Li ke | N6ADDR ANY_INI T, this constant cannot be used in an assi gnment
to a previously declared | Pv6 address vari abl e.

3.10 Portability Additions

One sinple addition to the sockets APl that can hel p application
witers is the "struct sockaddr_storage". This data structure can
simplify witing code portable across nultiple address fanilies and
platforns. This data structure is designed with the follow ng goals.

- It has a large enough inplenmentation specific maxi numsize to
store the desired set of protocol specific socket address data
structures. Specifically, it is at |least |arge enough to
acconmodat e sockaddr _in and sockaddr in6 and possibly other
protocol specific socket addresses too.

- It is aligned at an appropriate boundary so protocol specific
socket address data structure pointers can be cast to it and
access their fields w thout alignnment problems. (e.g. pointers
to sockaddr i n6 and/or sockaddr_in can be cast to it and access
fields w thout alignnent problens).

Glligan, et. al. I nf or mat i onal [Page 13]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

- It has the initial field(s) isonorphic to the fields of the
"struct sockaddr" data structure on that inplenentation which
can be used as a discrinmnants for deriving the protocol in use.
These initial field(s) would on nost inplenentations either be a
single field of type "sa famly_ t" (isonmorphic to sa_famly
field, 16 bits) or two fields of type uint8 t and sa famly_t
respectively, (isonorphic to sa_len and sa fanmly t, 8 bits
each).

An exanpl e i nmpl enentati on design of such a data structure would be as

fol | ows.
/*
* Desired design of maxi mum size and al i gnnent
*/

#define _SS MAXSI ZE 128 /* Inplenmentation specific max size */
#define _SS ALIGNSIZE (sizeof (int64_t))
/* Inplenentation specific desired alignment */

/ *

* Definitions used for sockaddr_storage structure paddi ngs design

*/
#define _SS PAD1SI ZE (_SS_ALIGNSI ZE - sizeof (sa_famly_t))
#define _SS PAD2SI ZE (_SS_MAXSI ZE - (sizeof (sa_famly_ t)+

_SS PAD1SI ZE + _SS _ALI GNSI ZE))
struct sockaddr _storage {

sa famly t ss fanily; /* address family */
/* Following fields are inplenentation specific */
char __Ss_padl[_SS PAD1SI ZE];

/* 6 byte pad, this is to nake inplenentation
/* specific pad up to alignnent field that */
/* follows explicit in the data structure */

int6é4_t _ ss_align; /* field to force desired structure */
/* storage alignment */
char __Ss_pad2[_SS_PAD2SI ZE] ;

/* 112 byte pad to achieve desired size, */
/* _SS MAXSI ZE val ue minus size of ss famly */
/* _ss padl, __ss align fields is 112 */

On inpl enent ati ons where sockaddr data structure includes a "sa_len"
field this data structure would | ook |ike this:

/*
* Definitions used for sockaddr_storage structure paddi ngs design
*/
#define _SS PAD1SI ZE (_SS_ALI G\SI ZE -
(sizeof (uint8_t) + sizeof (sa_famly_t))
#define _SS PAD2SI ZE (_SS MAXSI ZE - (sizeof (sa family t)+

Glligan, et. al. I nf or mat i onal [Page 14]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

_SS_PADLSI ZE + _SS_ALI GNSI ZE))

struct sockaddr_storage {

ui nt 8_t __ss_len; /* address length */
sa_famly t _ ss fanily; /* address famly */
/* Following fields are inplenentation specific */
char __ss_padl[_SS PAD1SI ZE];
/* 6 byte pad, this is to nake inplenentation
/* specific pad up to alignnent field that */
/* follows explicit in the data structure */
int64 t _ss_align; /* field to force desired structure */
/* storage alignment */
char __ss_pad2[_SS PAD2SI ZE] ;
/* 112 byte pad to achieve desired size, */
/* _SS MAXSI ZE val ue mnus size of ss_len, */
/* _ss family, __ss padl, _ ss align fields is 112 */
The above exanple inplenentation illustrates a data structure which
will align on a 64 bit boundary. An inplenentation specific field
" ss align" along "__ss padl" is used to force a 64-bit alignnent

whi ch covers proper alignnment good enough for needs of sockaddr_in6
(I Pv6), sockaddr_in (1Pv4) address data structures. The size of
padding fields _ ss _padl depends on the chosen alignnment boundary.
The size of padding field _ ss pad2 depends on the val ue of overal
size chosen for the total size of the structure. This size and
alignment are represented in the above exanpl e by inplenentation
specific (not required) constants _SS MAXSI ZE (chosen val ue 128) and
_SS ALI GNMENT (with chosen value 8). Constants _SS PAD1SI ZE (deri ved
val ue 6) and _SS PAD2SI ZE (derived value 112) are also for
illustration and not required. The inplenentation specific
definitions and structure field nanes above start with an underscore
to denote inplenentation private nanespace. Portable code is not
expected to access or reference those fields or constants.

The sockaddr _storage structure solves the problem of declaring
storage for automatic variables which is | arge enough and aligned
enough for storing socket address data structure of any famly. For
exanple, code with a file descriptor and w thout the context of the
address fam |y can pass a pointer to a variable of this type where a
pointer to a socket address structure is expected in calls such as
get peernane() and determ ne the address famly by accessing the
received content after the call

The sockaddr _storage structure may al so be useful and applied to
certain other interfaces where a generic socket address |arge enough
and aligned for use with nultiple address fanmilies nmay be needed. A
di scussion of those interfaces is outside the scope of this docunent.

Glligan, et. al. I nf or mat i onal [Page 15]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Al so, nuch existing code assunes that any socket address structure
can fit in a generic sockaddr structure. Wile this has been true
for 1 Pv4 socket address structures, it has always been false for Unix
domai n socket address structures (but in practice this has not been a
problem) and it is also false for 1 Pv6 socket address structures
(which can be a problenm.

So now an application can do the foll ow ng:

struct sockaddr_storage __ss;
struct sockaddr i n6 *sin6;
sin6é = (struct sockaddr _in6 *) & ss;

4. Interface ldentification

This APl uses an interface index (a small positive integer) to
identify the local interface on which a nulticast group is joined
(Section 5.3). Additionally, the advanced APl [4] uses these sane
interface indexes to identify the interface on which a datagramis
received, or to specify the interface on which a datagramis to be
sent.

Interfaces are normally known by names such as "le0", "sl1", "ppp2"
and the like. On Berkel ey-derived inplenentations, when an interface
is made known to the system the kernel assigns a unique positive

i nteger value (called the interface index) to that interface. These
are small positive integers that start at 1. (Note that 0 is never
used for an interface index.) There may be gaps so that there is no
current interface for a particular positive interface index.

This APl defines two functions that map between an interface nane and
index, a third function that returns all the interface nanmes and

i ndexes, and a fourth function to return the dynanic nenory all ocated
by the previous function. How these functions are inplenented is
left up to the inplenentation. 4.4BSD inplenentations can inpl enent
these functions using the existing sysctl() function with the
NET_RT | FLI ST conmand. O her inplenentations may wish to use ioctl ()
for this purpose.

4.1 Nane-to-I|ndex

The first function naps an interface nane into its corresponding
i ndex.

#i nclude <net/if. h>

unsigned int if_nanetoindex(const char *ifnane);

Glligan, et. al. I nf or mat i onal [Page 16]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

If the specified interface nane does not exist, the return value is
0, and errno is set to ENXIO If there was a systemerror (such as
runni ng out of nenory), the return value is O and errno is set to the
proper value (e.g., ENOVEM .

4.2 | ndex-to- Nane

The second function maps an interface index into its correspondi ng
nane.

#i nclude <net/if.h>
char *if_indextonane(unsigned int ifindex, char *ifnane);

The ifnane argunment nust point to a buffer of at |east |F_NAMESI ZE
bytes into which the interface nane corresponding to the specified
index is returned. (IF_NAMESIZE is also defined in <net/if.h> and
its value includes a ternmnating null byte at the end of the
interface nane.) This pointer is also the return value of the
function. |If there is no interface corresponding to the specified
index, NULL is returned, and errno is set to ENXIO, if there was a
systemerror (such as running out of menory), if_indextonanme returns
NULL and errno would be set to the proper value (e.g., ENOVEM .

4.3 Return All Interface Nanes and | ndexes

The if_nanei ndex structure holds the information about a single
interface and is defined as a result of including the <net/if.h>
header .

struct if_nanei ndex {
unsi gned i nt if index; [/* 1, 2, ... */
char *i f_nane; /* null term nated nane: "leO", ... */

b

The final function returns an array of if_nanei ndex structures, one
structure per interface.

struct if_naneindex *if_namei ndex(void);
The end of the array of structures is indicated by a structure with
an if_index of 0 and an if_name of NULL. The function returns a NULL
poi nter upon an error, and would set errno to the appropriate val ue.
The menory used for this array of structures along with the interface

nanes pointed to by the if_name nmenbers is obtained dynamically.
This menory is freed by the next function

Glligan, et. al. I nf or mat i onal [Page 17]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

4.4 Free Menory

The following function frees the dynanmic nenory that was all ocated by
i f _nanei ndex() .

#i ncl ude <net/if.h>
void if_freenanei ndex(struct if_namei ndex *ptr);

The argunent to this function nust be a pointer that was returned by
i f _nanei ndex() .

Currently net/if.h doesn’t have prototype definitions for functions
and it is recomended that these definitions be defined in net/if.h
as well and the struct if_namnei ndex{}.

5. Socket Options

A nunber of new socket options are defined for IPv6. Al of these
new options are at the |PPROTO IPV6 |evel. That is, the "level"
paraneter in the getsockopt() and setsockopt() calls is | PPROTO I PV6
when using these options. The constant nane prefix IPV6_ is used in
all of the new socket options. This serves to clearly identify these
options as applying to | Pv6.

The declaration for | PPROTO | PV6, the new | Pv6 socket options, and
rel ated constants defined in this section are obtained by including
t he header <netinet/in.h>.

5.1 Unicast Hop Linmt

A new set sockopt() option controls the hop Iinmt used in outgoing
uni cast |1 Pv6 packets. The name of this option is | PV6_UN CAST_HOPS,
and it is used at the I PPROTO | PV6 | ayer. The follow ng exanple
illustrates how it is used:

int hoplinmt = 10;

if (setsockopt(s, |IPPROTO | PV6, |PV6_UN CAST_HOPS,
(char *) &hoplimt, sizeof(hoplimt)) == -1)
perror ("setsockopt |PV6_UN CAST_HOPS");

When the 1 PV6_UNI CAST HOPS option is set with setsockopt(), the
option value given is used as the hop Ilimt for all subsequent

uni cast packets sent via that socket. |If the option is not set, the
system sel ects a default value. The integer hop linmt value (called
X) is interpreted as foll ows:

Glligan, et. al. I nf or mat i onal [Page 18]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

X < -1: return an error of EINVAL
X == -1: use kernel default

0 <= x <= 255: use x

X >= 256: return an error of ElI NVAL

The 1 PV6_UNI CAST_HOPS option may be used with getsockopt() to
deternmine the hop linmt value that the systemw |l use for subsequent
uni cast packets sent via that socket. For exanple:

int hoplinmt;
size_t len = sizeof (hoplimt);

i f (getsockopt(s, |IPPROTO |IPV6, |PV6_UN CAST_ HOPS
(char *) &hoplinit, & en) == -1)
perror("getsockopt |PV6_UN CAST_HOPS");
el se
printf("Using %d for hop limt.\n", hoplinmt);

5.2 Sendi ng and Receiving Milticast Packets

| Pv6 applications may send UDP mul ti cast packets by sinply specifying
an | Pv6 multicast address in the address argument of the sendto()
functi on.

Three socket options at the | PPROTO | PV6 | ayer control sonme of the
paraneters for sending nulticast packets. Setting these options is
not required: applications may send nulticast packets w thout using
these options. The setsockopt() options for controlling the sending
of multicast packets are summarized below. These three options can
al so be used with getsockopt().

| PV6_MULTI CAST_I| F

Set the interface to use for outgoing nulticast packets. The
argunent is the index of the interface to use

Argunment type: unsigned int

| PV6_MULTI CAST_HOPS
Set the hop Iimt to use for outgoing nulticast packets. (Note
a separate option - |IPV6_UN CAST HOPS - is provided to set the

hop linmt to use for outgoing unicast packets.)

The interpretation of the argunent is the same as for the
| PV6_UNI CAST_HOPS opti on

Glligan, et. al. I nf or mat i onal [Page 19]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

X < -1: return an error of EINVAL
X == -1: use kernel default

0 <= x <= 255: use x

X >= 256: return an error of ElI NVAL

If I PV6_MILTI CAST HOPS is not set, the default is 1
(sanme as | Pv4 today)

Argument type: int
| PV6_MULTI CAST_LOOP
If a nulticast datagramis sent to a group to which the sending

host itself belongs (on the outgoing interface), a copy of the
datagramis | ooped back by the I P layer for local delivery if

this option is set to 1. |If this optionis set to 0 a copy
is not | ooped back. O her option values return an error of
El NVAL.

If 1PV6_MILTI CAST LOOP is not set, the default is 1 (I oopback
same as | Pv4 today).

Argument type: unsigned int
The reception of multicast packets is controlled by the two
set sockopt () options summarized below. An error of EOPNOTSUPP is
returned if these two options are used with getsockopt().
| PV6_JO N_GROUP
Join a nulticast group on a specified local interface. If the
interface index is specified as 0, the kernel chooses the |oca
interface. For exanple, sone kernels |ook up the nulticast
group in the normal 1Pv6 routing table and using the resulting
i nterface.
Argunent type: struct ipve_nreq
| PV6_LEAVE_GROUP
Leave a nulticast group on a specified interface.

Argunent type: struct ipv6_nreq

The argunent type of both of these options is the ipv6_nreq structure,
defined as a result of including the <netinet/in.h> header;

Glligan, et. al. I nf or mat i onal [Page 20]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

struct ipv6_nreq {
struct in6_addr ipvénr_nultiaddr; /* IPv6 nulticast addr */
unsi gned i nt i pvénr_interface; /* interface index */

s

Note that to receive nulticast datagrans a process nust join the

mul ticast group and bind the UDP port to which datagrans will be
sent. Sone processes also bind the multicast group address to the
socket, in addition to the port, to prevent other datagrans destined
to that sanme port frombeing delivered to the socket.

6. Library Functions

New library functions are needed to performa variety of operations
with | Pv6 addresses. Functions are needed to | ookup | Pv6 addresses
in the Domain Name System (DNS). Both forward | ookup (nodename-to-
address translation) and reverse | ookup (address-to-nodenane

transl ation) need to be supported. Functions are also needed to
convert | Pv6 addresses between their binary and textual form

W note that the two existing functions, gethostbynanme() and
get host byaddr (), are left as-is. New functions are defined to handl e
both I Pv4 and | Pv6 addresses.

6.1 Nodenane-to- Address Transl ati on

The conmonly used function gethostbyname() is inadequate for nany
applications, first because it provides no way for the caller to
speci fy anything about the types of addresses desired (IPv4 only,

| Pv6 only, |Pv4-nmapped IPv6 are OK, etc.), and second because nany

i mpl enentations of this function are not thread safe. RFC 2133
defined a function naned gethostbynanme2() but this function was al so
i nadequate, first because its use required setting a global option
(RES_USE | NET6) when | Pv6 addresses were required, and second because
a flag argument is needed to provide the caller with additiona
control over the types of addresses required.

The following function is new and nust be thread safe:

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

struct hostent *geti pnodebynanme(const char *nanme, int af, int flags
int *error_num;

The nane argunment can be either a node name or a nuneric address

string (i.e., a dotted-decinmal |Pv4 address or an | Pv6 hex address).
The af argunent specifies the address fanmly, either AF_INET or

Glligan, et. al. I nf or mat i onal [Page 21]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

AF _INET6. The error_numvalue is returned to the caller, via a
pointer, with the appropriate error code in error_num to support
thread safe error code returns. error_numwll be set to one of the
foll owi ng val ues:

HOST_NOT_FOUND
No such host is known.

NO_ADDRESS
The server recogni sed the request and the nane but no address is
avai |l abl e. Another type of request to the nane server for the
domai n night return an answer.

NO_RECOVERY
An unexpected server failure occurred which cannot be recovered.

TRY_AGAI N

A tenmporary and possibly transient error occurred, such as a
failure of a server to respond.

The flags argunent specifies the types of addresses that are searched
for, and the types of addresses that are returned. W note that a
special flags value of Al _DEFAULT (defined bel ow) shoul d handl e nost
applications.

That is, porting sinple applications to use |Pv6 replaces the cal

hpt r get host bynane(nane) ;
with
hptr = geti pnodebynane(nane, AF_| NET6, Al _DEFAULT, &error_nunj;

and changes any subsequent error diagnosis code to use error_num
i nstead of externally declared variables, such as h_errno.

Applications desiring finer control over the types of addresses

searched for and returned, can specify other conbinations of the
flags argunent.

Glligan, et. al. I nf or mat i onal [Page 22]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

A flags of O inplies a strict interpretation of the af argunent:

- If flags is O and af is AF_INET, then the caller wants only
| Pv4 addresses. A query is made for A records. |If successful
the 1 Pv4 addresses are returned and the h_| ength nmenber of the
hostent structure will be 4, else the function returns a NULL
poi nter.

- If flags is O and if af is AF_INET6, then the caller wants only
| Pv6 addresses. A query is made for AAAA records. |If
successful, the I Pv6 addresses are returned and the h_l ength
nmenber of the hostent structure will be 16, else the function
returns a NULL pointer

O her constants can be logically-ORed into the flags argunment, to
nmodi fy the behavi or of the function

- If the Al_VAMAPPED flag is specified along with an af of
AF _INET6, then the caller will accept |Pv4-nmapped | Pv6
addresses. That is, if no AAAA records are found then a query
is made for A records and any found are returned as |Pv4-napped
| Pv6 addresses (h_length will be 16). The Al _VAMAPPED flag is
i gnored unl ess af equal s AF_I NET6.

- The Al _ALL flag is used in conjunction with the A _VAMAPPED
flag, and is only used with the IPv6 address fanily. Wen Al _ALL
is logically or'd with Al _VAMAPPED flag then the caller wants
all addresses: IPv6 and | Pv4-mapped I Pv6. A query is first made
for AAAA records and if successful, the |IPv6 addresses are
returned. Another query is then nade for A records and any found
are returned as | Pv4-nmapped | Pv6 addresses. h_length will be 16.
Only if both queries fail does the function return a NULL pointer
This flag is ignored unless af equals AF_I NET6.

- The Al _ADDRCONFI G flag specifies that a query for AAAA records
shoul d occur only if the node has at |east one | Pv6 source
address configured and a query for A records should occur only
if the node has at |east one | Pv4 source address configured.

For exanple, if the node has no | Pv6 source addresses
configured, and af equals AF_I NET6, and the node nane being
| ooked up has both AAAA and A records, then

(a) if only Al _ADDRCONFI G is specified, the function
returns a NULL pointer

(b) if Al_ADDRCONFI G | Al _VAMAPPED is specified, the A
records are returned as |Pv4-mapped | Pv6 addresses;

Glligan, et. al. I nf or mat i onal [Page 23]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

The special flags value of Al _DEFAULT is defined as
#define Al _DEFAULT (Al _VANMAPPED | Al _ADDRCONFI G

We noted that the geti pnodebynane() function nust allow the nane
argunent to be either a node nane or a literal address string (i.e.
a dotted-decinal |Pv4 address or an | Pv6 hex address). This saves
applications fromhaving to call inet_pton() to handle litera
address strings.

There are four scenarios based on the type of literal address string
and the value of the af argunent.

The two sinple cases are:

When nanme is a dotted-decimal |Pv4 address and af equals AF_I NET, or
when nanme is an I Pv6 hex address and af equals AF_INET6. The nenbers
of the returned hostent structure are: h_nane points to a copy of the
nane argunment, h _aliases is a NULL pointer, h_addrtype is a copy of
the af argument, h_length is either 4 (for AF_INET) or 16 (for

AF_|I NET6), h_addr_list[0] is a pointer to the 4-byte or 16-byte

bi nary address, and h_addr list[1] is a NULL pointer.

When nane is a dotted-decimal |Pv4 address and af equal s AF_| NET6,
and flags equals Al _VAMAPPED, an |Pv4-napped | Pv6 address is

returned: h_nane points to an |IPv6 hex address containing the | Pv4-
mapped | Pv6 address, h_aliases is a NULL pointer, h_addrtype is
AF_INET6, h_length is 16, h_addr_list[0] is a pointer to the 16-byte
bi nary address, and h_addr _list[1] is a NULL pointer. I|f Al _VAMAPPED
is set (wth or without Al _ALL) return |IPv4-napped otherwi se return
NULL.

It is an error when nanme is an | Pv6 hex address and af equals
AF_INET. The function’s return value is a NULL pointer and error_num
equal s HOST_NOT_FQUND

6.2 Address-To- Nodenane Transl ation

The follow ng function has the same argunents as the existing
get host byaddr () function, but adds an error nunber.

#i ncl ude <sys/socket. h> #i ncl ude <netdb. h>

struct hostent *geti pnodebyaddr(const void *src, size t len
int af, int *error_num;

Glligan, et. al. I nf or mat i onal [Page 24]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

As with getipnodebynane(), getipnodebyaddr() nust be thread safe.

The error_numvalue is returned to the caller with the appropriate
error code, to support thread safe error code returns. The follow ng
error conditions may be returned for error_num

HOST_NOT_FOUND
No such host is known.
NO ADDRESS

The server recogni zed the request and the nane but no address
is available. Another type of request to the nane server for
the donmain mght return an answer.

NO_RECOVERY

An unexpected server failure occurred which cannot be
recover ed.

TRY_AGAI N

A temporary and possibly transient error occurred, such as a
failure of a server to respond.

One possible source of confusion is the handling of |Pv4-mapped | Pv6
addresses and | Pv4-conpati bl e | Pv6 addresses, but the follow ng |ogic
shoul d apply.

1. If af is AF_INET6, and if len equals 16, and if the | Pv6
address is an | Pv4-mapped | Pv6 address or an | Pv4-conpati bl e
| Pv6 address, then skip over the first 12 bytes of the |Pv6
address, set af to AF_INET, and set len to 4.

2. If af is AF_INET, |ookup the nane for the given |Pv4 address
(e.g., query for a PTRrecord in the in-addr.arpa donain).

3. If af is AF_INET6, |ookup the nanme for the given |Pv6 address
(e.g., query for a PTRrecord in the ip6.int domain).

4. 1If the function is returning success, then the single address
that is returned in the hostent structure is a copy of the
first argunent to the function with the sane address fanmly
that was passed as an argument to this function

Glligan, et. al. I nf or mat i onal [Page 25]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Al'l four steps listed are perforned, in order. Also note that the

| Pv6 hex addresses "::" and "::1" MJST NOT be treated as |Pv4-
conpati bl e addresses, and if the address is "::", HOST_NOI_FOUND MJST
be returned and a query of the address not perforned.

Also for the macro in section 6.7 IN6_IS ADDR VACOVPAT MUST return
false for "::" and "::1".

6.3 Freeing nenory for getipnodebyname and geti pnodebyaddr
The hostent structure does not change fromits existing definition
This structure, and the information pointed to by this structure, are
dynanically allocated by geti pnodebynane and geti pnodebyaddr. The
following function frees this nenory:

#i ncl ude <net db. h>
voi d freehostent(struct hostent *ptr);

6.4 Protocol -1 ndependent Nodenane and Service Nane Transl ation
Nodename-t o- address translation is done in a protocol -i ndependent
fashi on using the getaddrinfo() function that is taken fromthe
Institute of Electrical and Electronic Engineers (IEEE) POSI X 1003. 1g
(Protocol Independent Interfaces) draft specification [3].

The official specification for this function will be the final PGCSIX
standard, with the follow ng additional requirenments:

- getaddrinfo() (along with the getnaneinfo() function described
in the next section) nmust be thread safe.

- The Al _NUMERI CHOST is new with this docunment.

- Al fields in socket address structures returned by
getaddrinfo() that are not filled in through an explicit
argunent (e.g., sin6_flowinfo and sin_zero) nust be set to O.
(This nmakes it easier to conpare socket address structures.)

- getaddrinfo() nust fill in the length field of a socket address
structure (e.g., sin6_len) on systens that support this field.

We are providing this independent description of the function because
PCSI X standards are not freely available (as are | ETF docunents).

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

Glligan, et. al. I nf or mat i onal [Page 26]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

i nt getaddrinfo(const char *nodenanme, const char *servnane,
const struct addrinfo *hints,
struct addrinfo **res);

The addrinfo structure is defined as a result of including the
<net db. h> header.

struct addrinfo {

i nt ai _flags; /* Al _PASSI VE, Al _CANONNAME, Al _NUVERI CHOST */
i nt ai _famly; [* PF_xxx */

i nt ai _socktype; [* SOCK xxx */

i nt ai_protocol; /* 0 or IPPROTO xxx for IPv4 and | Pv6 */
size_t ai_addrlen; /* length of ai_addr */

char *ai _canonnane; /* canoni cal name for nodenane */
struct sockaddr *ai _addr; /* binary address */
struct addrinfo *ai _next; /* next structure in linked list */

i
The return value fromthe function is 0 upon success or a nonzero
error code. The followi ng names are the nonzero error codes from
getaddrinfo(), and are defined in <netdb. h>:

EAl _ADDRFAM LY address fam ly for nodenane not supported

EAl _AGAI N tenporary failure in name resol ution

EAl _BADFLAGS invalid value for ai_flags

EAl _FAI L non-recoverable failure in name resol ution
EAl _FAM LY ai _famly not supported

EAl _ MEMORY menory allocation failure

EAI _NODATA no address associ ated wi th nodenane

EAl _ NONAMVE nodenane nor servnane provided, or not known
EAl _SERVI CE servnane not supported for ai_socktype

EAl _SOCKTYPE ai _socktype not supported

EAl _SYSTEM systemerror returned in errno

The nodenane and servnane argunents are pointers to null-term nated
strings or NULL. One or both of these two argunents nust be a non-
NULL pointer. In the nornmal client scenario, both the nodenane and
servnane are specified. |In the normal server scenario, only the
servnane is specified. A non-NULL nodenane string can be either a
node nane or a nuneric host address string (i.e., a dotted-decinal

| Pv4 address or an |IPv6 hex address). A non-NULL servname string can
be either a service nanme or a deci mal port nunber.

The caller can optionally pass an addrinfo structure, pointed to by
the third argunent, to provide hints concerning the type of socket
that the caller supports. In this hints structure all nenbers other
than ai _flags, ai_famly, ai_socktype, and ai_protocol nust be zero
or a NULL pointer. A value of PF_UNSPEC for ai_famly nmeans the

Glligan, et. al. I nf or mat i onal [Page 27]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

caller will accept any protocol famly. A value of 0 for ai_socktype
nmeans the caller will accept any socket type. A value of 0 for

ai _protocol nmeans the caller will accept any protocol. For exanple,
if the caller handles only TCP and not UDP, then the ai_socktype
menber of the hints structure should be set to SOCK STREAM when
getaddrinfo() is called. |If the caller handles only |IPv4d and not

| Pv6, then the ai _family nenber of the hints structure should be set
to PF_INET when getaddrinfo() is called. |If the third argunent to
getaddrinfo() is a NULL pointer, this is the sanme as if the caller
had filled in an addrinfo structure initialized to zero with
ai_famly set to PF_UNSPEC

Upon successful return a pointer to a linked Iist of one or nore
addrinfo structures is returned through the final argunent. The
call er can process each addrinfo structure in this list by follow ng
the ai _next pointer, until a NULL pointer is encountered. 1In each
returned addrinfo structure the three nenbers ai_famly, ai_socktype,
and ai _protocol are the corresponding argunents for a call to the
socket () function. |In each addrinfo structure the ai _addr nenber
points to a filled-in socket address structure whose length is
specified by the ai _addrl en nenber

If the Al _PASSIVE bit is set in the ai_flags nmenber of the hints
structure, then the caller plans to use the returned socket address
structure in a call to bind(). In this case, if the nodenane
argument is a NULL pointer, then the IP address portion of the socket
address structure will be set to | NADDR_ANY for an |Pv4 address or

| N6ADDR_ ANY INIT for an | Pv6 address.

If the AI_PASSIVE bit is not set in the ai_flags nmenber of the hints
structure, then the returned socket address structure will be ready
for a call to connect() (for a connection-oriented protocol) or

ei ther connect(), sendto(), or sendnsg() (for a connectionless
protocol). In this case, if the nodenanme argunent is a NULL pointer,
then the I P address portion of the socket address structure will be
set to the | oopback address.

If the Al _CANONNAME bit is set in the ai_flags nenber of the hints
structure, then upon successful return the ai _canonnane nenber of the

first addrinfo structure in the linked list will point to a null-
term nated string containing the canoni cal nane of the specified
nodenare.

If the Al _NUMERI CHOST bit is set in the ai_flags nmenber of the hints
structure, then a non-NULL nodenane string nust be a nuneric host
address string. Oherwise an error of EAl_NONAME is returned. This
flag prevents any type of nanme resolution service (e.g., the DNS)
frombeing called

Glligan, et. al. I nf or mat i onal [Page 28]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Al'l of the information returned by getaddrinfo() is dynamcally

al l ocated: the addrinfo structures, and the socket address structures
and canoni cal node nane strings pointed to by the addrinfo
structures. To return this information to the systemthe function
freeaddrinfo() is called:

#i ncl ude <sys/socket. h> #i ncl ude <netdb. h>
void freeaddrinfo(struct addrinfo *ai);

The addrinfo structure pointed to by the ai argunent is freed, along
with any dynam c storage pointed to by the structure. This operation
is repeated until a NULL ai _next pointer is encountered.

To aid applications in printing error nmessages based on the EAl _xxx
codes returned by getaddrinfo(), the follow ng function is defined.

#i ncl ude <sys/socket. h> #i ncl ude <netdb. h>
char *gai_strerror(int ecode);

The argunent is one of the EAl _xxx values defined earlier and the
return value points to a string describing the error. |f the
argunent is not one of the EAl _xxx values, the function still returns
a pointer to a string whose contents indicate an unknown error.

6.5 Socket Address Structure to Nodenane and Service Nane

The POSI X 1003. 1g specification includes no function to performthe
reverse conversion fromgetaddrinfo(): to | ook up a nodenane and
service nanme, given the binary address and port. Therefore, we
define the follow ng function:

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

i nt getnanei nfo(const struct sockaddr *sa, socklen_t salen
char *host, size_t hostlen,
char *serv, size_t servlen
int flags);

This function |ooks up an | P address and port nunber provided by the
caller in the DNS and systemspecific database, and returns text
strings for both in buffers provided by the caller. The function

i ndi cates successful conpletion by a zero return value; a non-zero
return value indicates failure

Glligan, et. al. I nf or mat i onal [Page 29]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

The first argunent, sa, points to either a sockaddr_in structure (for
| Pv4) or a sockaddr_in6 structure (for |Pv6) that holds the IP
address and port nunber. The salen argunment gives the length of the
sockaddr _in or sockaddr _in6 structure.

The function returns the nodenane associated with the | P address in
the buffer pointed to by the host argunment. The caller provides the
size of this buffer via the hostlen argunent. The service nane
associated with the port nunber is returned in the buffer pointed to
by serv, and the servlen argunment gives the length of this buffer.
The caller specifies not to return either string by providing a zero
value for the hostlen or servlen argunents. OQherwi se, the caller
nmust provide buffers |arge enough to hold the nodenane and the
service nane, including the ternminating null characters.

Unfortunately nost systenms do not provide constants that specify the
maxi mum si ze of either a fully-qualified domain name or a service
nane. Therefore to aid the application in allocating buffers for
these two returned strings the follow ng constants are defined in
<net db. h>:

#define NI _MAXHOST 1025
#defi ne NI _MAXSERV 32

The first value is actually defined as the constant MAXDNAME in recent
versions of BIND s <arpal/ nameser. h> header (ol der versions of Bl ND
define this constant to be 256) and the second is a guess based on the
services listed in the current Assigned Nunbers RFC.

The final argunent is a flag that changes the default actions of this
function. By default the fully-qualified domain name (FQN) for the
host is looked up in the DNS and returned. |If the flag bit N _NOFCQDN
is set, only the nodenane portion of the FQDN is returned for |oca
host s.

If the flag bit NI _NUVERI CHOST is set, or if the host’s nane cannot be
|l ocated in the DNS, the nuneric formof the host’s address is returned
instead of its nane (e.g., by calling inet_ntop() instead of

geti pnodebyaddr()). |If the flag bit NI_NAMEREQD is set, an error is
returned if the host’s nanme cannot be |ocated in the DNS

If the flag bit NIl _NUVERI CSERV is set, the nuneric formof the service
address is returned (e.g., its port nunber) instead of its nane. The
two NI _NUMERI Cxxx flags are required to support the "-n" flag that
many conmands provi de.

Glligan, et. al. I nf or mat i onal [Page 30]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Afifth flag bit, NI _DGRAM specifies that the service is a datagram
service, and causes getservbyport() to be called with a second
argument of "udp" instead of its default of "tcp". This is required
for the few ports (e.g. 512-514) that have different services for UDP
and TCP

These NI _xxx flags are defined in <netdb.h> along with the Al _xxx
flags already defined for getaddrinfo().

6. 6 Address Conversion Functions

The two functions inet_addr() and inet_ntoa() convert an |Pv4 address
between binary and text form |Pv6 applications need sinilar
functions. The followi ng two functions convert both IPv6 and | Pv4
addr esses:

#i ncl ude <sys/socket. h>
#i ncl ude <arpal/inet.h>

int inet_pton(int af, const char *src, void *dst);

const char *inet_ntop(int af, const void *src,
char *dst, size_t size);

The inet_pton() function converts an address in its standard text
presentation forminto its numeric binary form The af argunent
specifies the fanmily of the address. Currently the AF_I NET and
AF_INET6 address fanilies are supported. The src argument points to
the string being passed in. The dst argument points to a buffer into
whi ch the function stores the nuneric address. The address is
returned in network byte order. Inet_pton() returns 1 if the
conversion succeeds, O if the input is not a valid |IPv4 dotted-
decinmal string or a valid | Pv6 address string, or -1 with errno set
to EAFNOSUPPORT if the af argument is unknown. The calling
application nust ensure that the buffer referred to by dst is large
enough to hold the nuneric address (e.g., 4 bytes for AF_INET or 16
bytes for AF_I NET6).

If the af argument is AF_INET, the function accepts a string in the
standard | Pv4 dotted-deci mal form

ddd. ddd. ddd. ddd

where ddd is a one to three digit deci mal nunber between 0 and 255.
Note that many inplenentations of the existing inet_addr() and
inet_aton() functions accept nonstandard input: octal nunbers,
hexadeci mal nunbers, and fewer than four numbers. inet_pton() does
not accept these fornats.

Glligan, et. al. I nf or mat i onal [Page 31]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

If the af argunment is AF_|INET6, then the function accepts a string in
one of the standard IPv6 text forns defined in Section 2.2 of the
addressing architecture specification [2].

The inet_ntop() function converts a numeric address into a text
string suitable for presentation. The af argunent specifies the
famly of the address. This can be AF_INET or AF INET6. The src
argunent points to a buffer holding an | Pv4 address if the af
argunent is AF_INET, or an I Pv6 address if the af argunent is

AF_I NET6, the address nust be in network byte order. The dst
argunent points to a buffer where the function will store the
resulting text string. The size argunent specifies the size of this
buffer. The application nust specify a non-NULL dst argunent. For

| Pv6 addresses, the buffer nmust be at |east 46-octets. For |Pv4
addresses, the buffer nust be at |east 16-octets. 1In order to allow
applications to easily declare buffers of the proper size to store

| Pv4 and | Pv6 addresses in string form the follow ng two constants
are defined in <netinet/in.h>:

#define | NET_ADDRSTRLEN 16
#define | NET6_ADDRSTRLEN 46

The inet_ntop() function returns a pointer to the buffer containing
the text string if the conversion succeeds, and NULL otherw se. Upon
failure, errno is set to EAFNOSUPPORT if the af argunent is invalid or
ENOSPC i f the size of the result buffer is inadequate

6.7 Address Testing Macros
The following nacros can be used to test for special |Pv6 addresses.

#i ncl ude <netinet/in. h>

int IN6_IS ADDR UNSPECI FI ED (const struct in6_addr *);
int IN6_IS ADDR LOOPBACK (const struct in6_addr *);
int IN6_IS ADDR MJLTI CAST (const struct in6_addr *);
int IN6_|S ADDR LI NKLOCAL (const struct in6_addr *);
int IN6_|S ADDR SI TELOCAL (const struct in6_addr *);
int IN6_IS_ ADDR VAMAPPED (const struct in6_addr *

int IN6_I'S ADDR VACOVPAT (const struct in6_addr *);
int IN6_|IS ADDR MC NODELOCAL(const struct in6_addr *);
i nt IN6_IS ADDR MC LI NKLOCAL(const struct in6_addr *);
int IN6_|IS ADDR MC SI TELOCAL(const struct in6_addr *);
int IN6_IS_ ADDR MC_ORGLOCAL (const struct in6_addr *);
int IN6_IS ADDR MC_GLOBAL (const struct in6_addr *);

Glligan, et. al. I nf or mat i onal [Page 32]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

The first seven nmacros return true if the address is of the specified
type, or false otherwise. The last five test the scope of a

mul ticast address and return true if the address is a nulticast
address of the specified scope or false if the address is either not
a multicast address or not of the specified scope. Note that
IN6_|'S ADDR LI NKLOCAL and IN6_ IS ADDR SI TELOCAL return true only for
the two | ocal -use | Pv6 unicast addresses. These two nmacros do not
return true for IPv6 nmulticast addresses of either |ink-local scope
or site-local scope.

7. Summary of New Definitions

The following Iist summari zes the constants, structure, and extern
definitions discussed in this neno, sorted by header.

<net/if.h> | F_NAVESI ZE
<net/if.h> struct if_nanei ndex{};
<net db. h> Al _ ADDRCONFI G
<net db. h> Al _DEFAULT
<net db. h> Al _ALL

<net db. h> Al _CANONNAMVE
<net db. h> Al _NUMERI CHOST
<net db. h> Al _PASSI VE
<net db. h> Al _VAMAPPED
<net db. h> EAl _ADDRFAM LY
<net db. h> EAl _AGAI N

<net db. h> EAl _BADFLAGS
<net db. h> EAl _FAI L

<net db. h> EAl _FAM LY
<net db. h> EAl _ MEMORY
<net db. h> EAl _NODATA
<net db. h> EAl _ NONAME
<net db. h> EAl _SERVI CE
<net db. h> EAl _SOCKTYPE
<net db. h> EAl _SYSTEM
<net db. h> NI _ DGRAM

<net db. h> NI _ MAXHOST
<net db. h> NI _MAXSERV
<net db. h> NI _NAVEREQD
<net db. h> NI _NOFCDN

<net db. h> NI _NUMERI CHOST
<net db. h> NI _NUMERI CSERV
<net db. h> struct addrinfo{};

<netinet/in.h> |N6ADDR ANY INIT
<netinet/in.h> | N6ADDR LOOPBACK INIT
<netinet/in.h> | NET6_ADDRSTRLEN

Glligan, et. al. I nf or mat i onal [Page 33]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

<netinet/in.h> | NET_ADDRSTRLEN

<netinet/in.h> |PPROTO | PV6

<netinet/in.h> [|PV6_JO N GROUP

<netinet/in.h> |PV6_LEAVE GROUP

<netinet/in.h> |PV6_MILTI CAST_HOPS

<netinet/in.h> |PV6_MILTICAST_IF

<netinet/in.h> |PV6_MJILTI CAST_LOOP

<netinet/in.h> |PV6_UN CAST HOPS

<netinet/in.h> SIN6_LEN

<netinet/in.h> extern const struct in6_addr in6addr_any;
<netinet/in.h> extern const struct in6_addr in6addr_| oopback
<netinet/in.h> struct in6_addr{};

<netinet/in.h> struct ipv6 _nreq{};

<netinet/in.h> struct sockaddr in6{};

<sys/socket.h> AF_|I NET6
<sys/socket.h> PF_I NET6
<sys/socket.h> struct sockaddr st orage;

The following Iist sumrmarizes the function and nmacro prototypes
di scussed in this neno, sorted by header

<arpal/inet.h> int inet_pton(int, const char *, void *);
<arpal/inet. h> const char *inet_ntop(int, const void *,
char *, size_t);

<net/if.h> char *if_indextonane(unsigned int, char *);
<net/if.h> unsi gned int if_nanetoi ndex(const char *);
<net/if.h> void if_freenanei ndex(struct if_nanei ndex *);
<net/if.h> struct if_naneindex *if_nanei ndex(void);

<net db. h> i nt getaddrinfo(const char *, const char *,

const struct addrinfo *,
struct addrinfo **);

<net db. h> i nt getnanei nfo(const struct sockaddr *, socklen_t,
char *, size t, char *, size_ t, int);

<net db. h> void freeaddrinfo(struct addrinfo *);

<net db. h> char *gai_strerror(int);

<net db. h> struct hostent *geti pnodebyname(const char *, int, int,
int *);

<net db. h> struct hostent *getipnodebyaddr(const void *, size_t,
int, int *);

<net db. h> voi d freehostent(struct hostent *);

<netinet/in.h> int IN6_IS _ADDR LI NKLOCAL(const struct in6_addr *);

<netinet/in.h> int IN6_IS ADDR LOOPBACK(const struct in6_addr *);

<netinet/in.h> int IN6_IS ADDR MC GLOBAL(const struct in6_addr *);

<netinet/in.h> int IN6_ IS ADDR MC LI NKLOCAL(const struct in6_addr *);

Glligan, et. al. I nf or mat i onal [Page 34]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

<neti
<neti
<neti
<net i
<neti
<neti
<neti
<neti

net/in.h> int IN6_IS ADDR MC NODELOCAL(const struct in6_addr *);
net/in.h> int IN6_IS ADDR MC CRG.OCAL(const struct in6_addr *);
net/in.h> int IN6_IS ADDR MC SI TELOCAL(const struct in6_addr *);
net/in.h> int IN6_IS ADDR_ . MULTI CAST(const struct in6_addr *);
net/in.h> int IN6_IS ADDR SI TELOCAL(const struct in6_addr *);
net/in.h> int IN6_IS ADDR UNSPECI FI ED(const struct in6_addr *);
net/in.h> int IhB_IS ADDR VACOWPAT(const struct in6_addr *);
net/in.h> int IN6_IS ADDR VAMAPPED(const struct in6_addr *);

8. Security Considerations

| Pv6 provides a nunber of new security nechani sns, nmany of which need
to be accessible to applications. Conpanion nenos detailing the
extensions to the socket interfaces to support |Pv6 security are
being witten.

9. Year 2000 Consi derations

There are no issues for this neno concerning the Year 2000 issue
regardi ng the use of dates.

Changes From RFC 2133

Changes nade in the March 1998 Edition (-01 draft):

Glli

Changed all "hostname" to "nodenane" for consistency with other
| Pv6 documents.

Section 3.3: changed commrent for sin6_flowinfo to be "traffic
class & flow i nfo" and updated correspondi ng text description to
current definition of these two fields.

Section 3.10 ("Portability Additions") is new

Section 6: a new paragraph was added reiterating that the existing
get host bynane() and get hostbyaddr() are not changed.

Section 6.1: change gethostbynane3() to getnodebynane(). Add

Al _DEFAULT to handle majority of applications. Renaned

Al _V6ADDRCONFI G t o Al _ADDRCONFI G and define it for A records and
| Pv4 addresses too. Defined exactly what getnodebyname() nust
return if the nanme argunent is a nuneric address string.

Section 6.2: change gethostbyaddr() to getnodebyaddr(). Reword
items 2 and 3 in the description of how to handle |IPv4-nmapped and
| Pv4- conpatibl e addresses to "l ookup a nane" for a given address,
i nstead of specifying what type of DNS query to issue.

gan, et. al. I nf or mat i onal [Page 35]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Section 6.3: added two nore requirenents to getaddrinfo().

Section 7: added the follow ng constants to the list for
<netdb. h>: Al _ADDRCONFI G Al _ALL, and Al _VAMAPPED. Add union
sockaddr _union and SA LENto the lists for <sys/socket. h>.

Updat ed references.
Changes made in the Novenber 1997 Edition (-00 draft):

The data types have been changed to conformwith Draft 6.6 of the
Posi x 1003. 1g standard.

Section 3.2: data type of s6_addr changed to "uint8 t".

Section 3.3: data type of sin6_fanmly changed to "sa famly_ t".
data type of sin6_port changed to "in_port_t", data type of
sin6_flow nfo changed to "uint32_t".

Section 3.4: sanme as Section 3.3, plus data type of sin6_len
changed to "uint8_t".

Section 6.2: first argument of gethostbyaddr() changed from "const
char *" to "const void *" and second argunent changed from"int"
to "size t".

Section 6.4: second argunment of getnaneinfo() changed from
"size t" to "socklen_t".

The wordi ng was changed when new structures were defined, to be
nore explicit as to which header nust be included to define the
structure:

Section 3.2 (in6_addr{}), Section 3.3 (sockaddr_in6{}), Section
3.4 (sockaddr_in6{}), Section 4.3 (if_naneindex{}), Section 5.3
(ipve_nreq{}), and Section 6.3 (addrinfo{}).

Section 4: NET_RT_LI ST changed to NET_RT_I FLI ST.

Section 5.1: The | PV6_ADDRFORM socket option was renoved.
Section 5.3: Added a note that an option value other than 0 or 1
for 1 PV6_MILTI CAST LOOP returns an error. Added a note that

| PV6_MULTI CAST_I F, 1 PV6_MILTI CAST_HOPS, and | PV6_MJILTI CAST_LOOP

can al so be used w th getsockopt (), but |PV6_ADD MEMBERSH P and
| PV6_DROP_MEMBERSHI P cannot be used with getsockopt ().

Glligan, et. al. I nf or mat i onal [Page 36]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Section 6.1: Renpbved the description of gethostbynane2() and its
associ ated RES USE | NET6 option, replacing it with
get host byname3() .

Section 6.2: Added requirenent that gethostbyaddr() be thread
safe. Reworded step 4 to avoid using the RES USE | NET6 option

Section 6.3: Added the requirenent that getaddrinfo() and
get nanei nfo() be thread safe. Added the Al _NUMERI CHOST fl ag.

Section 6.6: Added clarification about IN6_IS ADDR LI NKLOCAL and
I N6_I S _ADDR_SI TELOCAL nmcr os.

Changes nmade to the draft -01 specification Sept 98
Changed priority to traffic class in the spec.
Added the need for scope identification in section 2. 1.

Added sin6_scope_id to struct sockaddr in6 in sections 3.3 and
3. 4.

Changed 3.10 to use generic storage structure to support hol ding
| Pv6 addresses and renoved the SA LEN macro.

Di stingui shed between invalid i nput parameters and system fail ures
for Interface ldentification in Section 4.1 and 4. 2.

Added defaults for nulticast operations in section 5.2 and changed
the names from ADD to JO N and DROP to LEAVE to be consistent with
| Pv6 nulticast term nol ogy.

Changed get nodebynane to geti pnodebynane, getnodebyaddr to
geti pnodebyaddr, and added MI safe error code to function
paranmeters in section 6.

Moved freehostent to its own sub-section after getipnodebyaddr now
6.3 (so this bunps all remaining sections in section 6.

Clarified the use of Al _ALL and Al _VAMAPPED that these are
dependent on the AF paraneter and nust be used as a conjunction in
section 6. 1.

Renoved the restriction that literal addresses cannot be used with
a flags argunent in section 6.1.

Added Year 2000 Section to the draft

Glligan, et. al. I nf or mat i onal [Page 37]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Del eted Reference to the follow ng because the attached is del eted
fromthe ID directory and has expired. But the logic fromthe

af orenmenti oned draft still applies, so that was kept in Section
6.2 bullets after 3rd paragraph.

[7] P. Vixie, "Reverse Nane Lookups of Encapsul ated | Pv4
Addresses in | Pv6", Internet-Draft, <draft-vixie-ipng-
i pv4ptr-00.txt> My 1996.

Deleted the following reference as it is no |onger referenced.
And the draft has expired.

[3] D. McDonald, "A Sinple IP Security APl Extension to BSD
Sockets", Internet-Draft, <draft-ncdonal d-sinple-ipsec-api-
01.txt>, March 1997.

Deleted the following reference as it is no |onger referenced.

[4] C Metz, "Network Security APl for Sockets",
Internet-Draft, <draft-netz-net-security-api-01.txt>, January
1998.

Update current references to current status.
Added al i gnnent notes for in6_addr and sin6_addr.

Carified further that Al _VAMAPPED nust be used with a dotted |Pv4
literal address for getipnodebynane(), when address famly is
AF_| NET6.

Added text to clarify "::" and "::1" when used by
geti pnodebyaddr ().

Acknow edgrent s

Thanks to the nany people who nade suggestions and provi ded feedback
to this docunent, including: Wrner Al nmesberger, Ran Atkinson, Fred
Baker, Dave Borman, Andrew Cherenson, Al ex Conta, Al an Cox, Steve
Deering, Richard Draves, Francis Dupont, Robert Elz, Marc Hasson, Tom
Her bert, Bob Hi nden, Wan-Yen Hsu, Christian Huitema, Koji | mada,

Mar kus Jork, Ron Lee, Alan Lloyd, Charles Lynn, Dan MDonal d, Dave
Mtton, Thomas Narten, Josh Oshorne, Craig Partridge, Jean-Luc

Ri chier, Erik Scoredos, Keith Sklower, Matt Thonas, Harvey Thonpson,
Dean D. Throop, Karen Tracey, G@enn Trewitt, Paul Vixie, David

Wait zman, Carl WIIians, and Kazu Yamanot o,

Glligan, et. al. I nf or mat i onal [Page 38]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

The getaddrinfo() and getnaneinfo() functions are taken from an
earlier Internet Draft by Keith Sklower. As noted in that draft,
WlliamDurst, Steven Wse, Mchael Karels, and Eric Al man provided
many useful discussions on the subject of protocol-independent nane-
to-address translation, and reviewed early versions of Keith

Skl ower’s original proposal. Eric Allnman inplenented the first
prototype of getaddrinfo(). The observation that specifying the pair
of name and service would suffice for connecting to a service

i ndependent of protocol details was nade by Marshall Rose in a
proposal to X/ Open for a "Uniform Network |nterface".

Craig Metz, Jack McCann, Erik Nordmark, TimHartrick, and Mikesh
Kacker made many contributions to this docunent. Ranesh Govi ndan
made a nunmber of contributions and co-authored an earlier version of
this meno.

Ref er ences

[1] Deering, S. and R Hinden, "Internet Protocol, Version 6 (I|Pv6)
Speci fication", RFC 2460, Decenber 1998.

[2] Hinden, R and S. Deering, "IP Version 6 Addressing
Architecture", RFC 2373, July 1998.

[3] [IEEE, "Protocol Independent Interfaces", |EEE Std 1003. 1g, DRAFT
6.6, March 1997.

[4] Stevens, W and M Thomas, "Advanced Sockets APl for |Pv6", RFC
2292, February 1998.

Glligan, et. al. I nf or mat i onal [Page 39]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Aut hors’ Addr esses

Robert E. G Iligan
FreeGat e Corporation
1208 E. Arques Ave.
Sunnyval e, CA 94086

Phone: +1 408 617 1004
EMail: gilligan@reegate.com

Susan Thonson

Bel | Communi cati ons Research
MRE 2P-343, 445 South Street
Morristown, NJ 07960

Phone: +1 201 829 4514
EMai | : set @ hunper. bell core. com

Ji m Bound

Compag Conput er Cor porati on
110 Spitbrook Road ZK3-3/Ul4
Nashua, NH 03062-2698

Phone: +1 603 884 0400
EMai | : bound@k3. dec. com

W Richard Stevens
1202 E. Paseo del Zorro
Tucson, AZ 85718-2826

Phone: +1 520 297 9416
EMai | : rstevens@ohal a. com

Glligan, et. al. I nf or mat i onal [Page 40]

RFC 2553 Basi ¢ Socket |nterface Extensions for |Pv6 March 1999

Ful I Copyright Statenent
Copyright (C) The Internet Society (1999). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Glligan, et. al. I nf or mat i onal [Page 41]

