
Network Working Group Y. Yaacovi
Request for Comments: 2589 Microsoft
Category: Standards Track M. Wahl
 Innosoft International, Inc.
 T. Genovese
 Microsoft
 May 1999

 Lightweight Directory Access Protocol (v3):
 Extensions for Dynamic Directory Services

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

1. Abstract

 This document defines the requirements for dynamic directory services
 and specifies the format of request and response extended operations
 for supporting client-server interoperation in a dynamic directories
 environment.

 The Lightweight Directory Access Protocol (LDAP) [1] supports
 lightweight access to static directory services, allowing relatively
 fast search and update access. Static directory services store
 information about people that persists in its accuracy and value over
 a long period of time.

 Dynamic directory services are different in that they store
 information that only persists in its accuracy and value when it is
 being periodically refreshed. This information is stored as dynamic
 entries in the directory. A typical use will be a client or a person
 that is either online - in which case it has an entry in the
 directory, or is offline - in which case its entry disappears from
 the directory. Though the protocol operations and attributes used by
 dynamic directory services are similar to the ones used for static
 directory services, clients that store dynamic information in the
 directory need to periodically refresh this information, in order to
 prevent it from disappearing. If dynamic entries are not refreshed

Yaacovi, et al. Standards Track [Page 1]

RFC 2589 LDAPv3 Extensions for Dynamic Directory Services May 1999

 within a given timeout, they will be removed from the directory. For
 example, this will happen if the client that set them goes offline.

 A flow control mechanism from the server is also described that
 allows a server to inform clients how often they should refresh their
 presence.

2. Requirements

 The protocol extensions must allow accessing dynamic information in a
 directory in a standard LDAP manner, to allow clients to access
 static and dynamic information in the same way.

 By definition, dynamic entries are not persistent and clients may go
 away gracefully or not. The proposed extensions must offer a way for
 a server to tell if entries are still valid, and to do this in a way
 that is scalable. There also must be a mechanism for clients to
 reestablish their entry with the server.

 There must be a way for clients to find out, in a standard LDAP
 manner, if servers support the dynamic extensions.

 Finally, to allow clients to broadly use the dynamic extensions, the
 extensions need to be registered as standard LDAP extended
 operations.

3. Description of Approach

 The Lightweight Directory Access Protocol (LDAP) [1] permits
 additional operation requests and responses to be added to the
 protocol. This proposal takes advantage of these to support
 directories which contain dynamic information in a manner which is
 fully integrated with LDAP.

 The approach described in this proposal defines dynamic entries in
 order to allow implementing directories with dynamic information. An
 implementation of dynamic directories, must be able to support
 dynamic directory entries.

3.1. Dynamic Entries and the dynamicObject object class

 A dynamic entry is an object in the directory tree which has a time-
 to-live associated with it. This time-to-live is set when the entry
 is created. The time-to-live is automatically decremented, and when
 it expires the dynamic entry disappears. By invoking the refresh
 extended operation (defined below) to re-set the time-to-live, a
 client can cause the entry to remain present a while longer.

Yaacovi, et al. Standards Track [Page 2]

RFC 2589 LDAPv3 Extensions for Dynamic Directory Services May 1999

 A dynamic entry is created by including the objectClass value given
 in section 5 in the list of attributes when adding an entry. This
 method is subject to standard access control restrictions.

 The extended operation covered here, allows a client to refresh a
 dynamic entry by invoking, at intervals, refresh operations
 containing that entry’s name. Dynamic entries will be treated the
 same as non-dynamic entries when processing search, compare, add,
 delete, modify and modifyDN operations. However if clients stop
 sending refresh operations for an entry, then the server will
 automatically and without notification remove that entry from the
 directory. This removal will be treated the same as if the entry had
 been deleted by an LDAP protocol operation.

 There is no way to change a static entry into a dynamic one and
 vice-versa. If the client is using Modify with an objectClass of
 dynamicObject on a static entry, the server must return a service
 error either "objectClassModsProhibited" (if the server does not
 allow objectClass modifications at all) or "objectClassViolation" (if
 the server does allow objectClass modifications in general).

 A dynamic entry may be removed by the client using the delete
 operation. This operation will be subject to access control
 restrictions.

 A non-dynamic entry cannot be added subordinate to a dynamic entry:
 the server must return an appropriate update or service error if this
 is attempted.

 The support of dynamic attributes of an otherwise static object, are
 outside the scope of this document.

3.2 Dynamic meetings (conferences)

 The way dynamicObject is defined, it has a time-to-live associated
 with it, and that’s about it. Though the most common dynamic object
 is a person object, there is no specific type associated with the
 dynamicObject as defined here. By the use of the dynamic object’s
 attributes, one can make this object represent practically anything.

 Specifically, Meetings (conferences) can be represented by dynamic
 objects. While full-featured meeting support requires special
 semantics and handling by the server (and is not in the scope of this
 document), the extensions described here, provide basic meetings
 support. A meeting object can be refreshed by the meeting
 participants, and when it is not, the meeting entry disappears. The
 one meeting type that is naturally supported by the dynamic
 extensions is creator-owned meeting.

Yaacovi, et al. Standards Track [Page 3]

RFC 2589 LDAPv3 Extensions for Dynamic Directory Services May 1999

3.2.1 Creator-owned meetings

 Creator-owned meetings are created by a client that sets the time-
 to-live attribute for the entry, and it is this client’s
 responsibility to refresh the meeting entry, so that it will not
 disappear. Others might join the meeting, by modifying the
 appropriate attribute, but they are not allowed to refresh the entry.
 When the client that created the entry goes away, it can delete the
 meeting entry, or it might disappear when its time-to-live expires.
 This is consistent with the common model for dynamicObject as
 described above.

4. Protocol Additions

4.1 Refresh Request

 Refresh is a protocol operation sent by a client to tell the server
 that the client is still alive and the dynamic directory entry is
 still accurate and valuable. The client sends a Refresh request
 periodically based on the value of the client refresh period (CRP).
 The server can request that the client change this value. As long as
 the server receives a Refresh request within the timeout period, the
 directory entry is guaranteed to persist on the server. Client
 implementers should be aware that since the intervening network
 between the client and server is unreliable, a Refresh request packet
 may be delayed or lost while in transit. If this occurs, the entry
 may disappear, and the client will need to detect this and re-add the
 entry.

 A client may request this operation by transmitting an LDAP PDU
 containing an ExtendedRequest. An LDAP ExtendedRequest is defined as
 follows:

 ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
 requestName [0] LDAPOID,
 requestValue [1] OCTET STRING OPTIONAL }

 The requestName field must be set to the string
 "1.3.6.1.4.1.1466.101.119.1".

 The requestValue field will contain as a value the DER-encoding of
 the following ASN.1 data type:

 SEQUENCE {
 entryName [0] LDAPDN,
 requestTtl [1] INTEGER
 }

Yaacovi, et al. Standards Track [Page 4]

RFC 2589 LDAPv3 Extensions for Dynamic Directory Services May 1999

 The entryName field is the UTF-8 string representation of the name of
 the dynamic entry [3]. This entry must already exist.

 The requestTtl is a time in seconds (between 1 and 31557600) that the
 client requests that the entry exists in the directory before being
 automatically removed. Servers are not required to accept this value
 and might return a different TTL value to the client. Clients must
 be able to use this server-dictated value as their CRP.

4.2 Refresh Response

 If a server implements this extension, then when the request is made
 it will return an LDAP PDU containing an ExtendedResponse. An LDAP
 ExtendedResponse is defined as follows:

 ExtendedResponse ::= [APPLICATION 24] SEQUENCE {
 COMPONENTS OF LDAPResult,
 responseName [10] LDAPOID OPTIONAL,
 response [11] OCTET STRING OPTIONAL }

 The responseName field contains the same string as that present in
 the request.

 The response field will contain as a value the DER-encoding of the
 following ASN.1 data type:

 SEQUENCE {
 responseTtl [1] INTEGER
 }

 The responseTtl field is the time in seconds which the server chooses
 to have as the time-to-live field for that entry. It must not be any
 smaller than that which the client requested, and it may be larger.
 However, to allow servers to maintain a relatively accurate
 directory, and to prevent clients from abusing the dynamic
 extensions, servers are permitted to shorten a client-requested
 time-to-live value, down to a minimum of 86400 seconds (one day).

 If the operation was successful, the errorCode field in the
 standardResponse part of an ExtendedResponse will be set to success.

 In case of an error, the responseTtl field will have the value 0, and
 the errorCode field will contain an appropriate value, as follows: If
 the entry named by entryName could not be located, the errorCode
 field will contain "noSuchObject". If the entry is not dynamic, the
 errorCode field will contain "objectClassViolation". If the
 requester does not have permission to refresh the entry, the

Yaacovi, et al. Standards Track [Page 5]

RFC 2589 LDAPv3 Extensions for Dynamic Directory Services May 1999

 errorCode field will contain "insufficientAccessRights". If the
 requestTtl field is too large, the errorCode field will contain
 "sizeLimitExceeded".

 If a server does not implement this extension, it will return an LDAP
 PDU containing an ExtendedResponse, which contains only the
 standardResponse element (the responseName and response elements will
 be absent). The LDAPResult element will indicate the protocolError
 result code.

 This request is permitted to be invoked when LDAP is carried by a
 connectionless transport.

 When using a connection-oriented transport, there is no requirement
 that this operation be on the same particular connection as any
 other. A client may open multiple connections, or close and then
 reopen a connection.

4.3 X.500/DAP Modify(97)

 X.500/DAP servers can map the Refresh request and response operations
 into the X.500/DAP Modify(97) operation.

5. Schema Additions

 All dynamic entries must have the dynamicObject value in their
 objectClass attribute. This object class is defined as follows
 (using the ObjectClassDescription notation of [2]):

 (1.3.6.1.4.1.1466.101.119.2 NAME ’dynamicObject’
 DESC ’This class, if present in an entry, indicates that this entry
 has a limited lifetime and may disappear automatically when
 its time-to-live has reached 0. There are no mandatory
 attributes of this class, however if the client has not
 supplied a value for the entryTtl attribute, the server will
 provide one.’
 SUP top AUXILIARY)

 Furthermore, the dynamic entry must have the following operational
 attribute. It is described using the AttributeTypeDescription
 notation of [2]:

 (1.3.6.1.4.1.1466.101.119.3 NAME ’entryTtl’
 DESC ’This operational attribute is maintained by the server and
 appears to be present in every dynamic entry. The attribute
 is not present when the entry does not contain the
 dynamicObject object class. The value of this attribute is
 the time in seconds that the entry will continue to exist

Yaacovi, et al. Standards Track [Page 6]

RFC 2589 LDAPv3 Extensions for Dynamic Directory Services May 1999

 before disappearing from the directory. In the absence of
 intervening refresh operations, the values returned by
 reading the attribute in two successive searches are
 guaranteed to be nonincreasing. The smallest permissible
 value is 0, indicating that the entry may disappear without
 warning. The attribute is marked NO-USER-MODIFICATION since
 it may only be changed using the refresh operation.’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
 NO-USER-MODIFICATION USAGE dSAOperation)

 To allow servers to support dynamic entries in only a part of the
 DIT, the following operational attribute is defined. It is
 described using the AttributeTypeDescription notation of [2]:

 (1.3.6.1.4.1.1466.101.119.4 NAME ’dynamicSubtrees’
 DESC ’This operational attribute is maintained by the server and is
 present in the Root DSE, if the server supports the dynamic
 extensions described in this memo. The attribute contains a
 list of all the subtrees in this directory for which the
 server supports the dynamic extensions.’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 NO-USER-MODIFICATION
 USAGE dSAOperation)

6. Client and Server Requirements

6.1 Client Requirements

 Clients can find out if a server supports the dynamic extensions by
 checking the supportedExtension field in the root DSE, to see if the
 OBJECT IDENTIFIER described in section 4 is present. Since servers
 may select to support the dynamic extensions in only some of the
 subtrees of the DIT, clients must check the dynamicSubtrees
 operational attribute in the root DSE to find out if the dynamic
 extensions are supported on a specific subtree.

 Once a dynamic entry has been created, clients are responsible for
 invoking the refresh extended operation, in order to keep that entry
 present in the directory.

 Clients must not expect that a dynamic entry will be present in the
 DIT after it has timed out, however it must not require that the
 server remove the entry immediately (some servers may only process
 timing out entries at intervals). If the client wishes to ensure the
 entry does not exist it should issue a RemoveRequest for that entry.

 Initially, a client needs to know how often it should send refresh
 requests to the server. This value is defined as the CRP (Client
 Refresh Period) and is set by the server based on the entryTtl.

Yaacovi, et al. Standards Track [Page 7]

RFC 2589 LDAPv3 Extensions for Dynamic Directory Services May 1999

 Since the LDAP AddRequest operation is left unchanged and is not
 modified in this proposal to return this value, a client must issue a
 Refresh extended operation immediately after an Add that created a
 dynamic entry. The Refresh Response will return the CRP (in
 responseTtl) to the client.

 Clients must not issue the refresh request for dynamic entries which
 they have not created. If an anonymous client attempts to do so, a
 server is permitted to return insufficientAccessRights (50) in the
 RefreshResponse, enforcing the client to bind first. Please note that
 servers which allow anonymous clients to create and refresh dynamic
 entries will not be able to enforce the above.

 Clients should always be ready to handle the case in which their
 entry timed out. In such a case, the Refresh operation will fail
 with an error code such as noSuchObject, and the client is expected
 to re-create its entry.

 Clients should be prepared to experience refresh operations failing
 with protocolError, even though the add and any previous refresh
 requests succeeded. This might happen if a proxy between the client
 and the server goes down, and another proxy is used which does not
 support the Refresh extended operation.

6.2 Server Requirements

 Servers are responsible for removing dynamic entries when they time
 out. Servers are not required to do this immediately.

 Servers must enforce the structural rules listed in above section 3.

 Servers must ensure that the operational attribute described in
 section 5 is present in dynamic entries

 Servers may permit anonymous users to refresh entries. However, to
 eliminate the possibility of a malicious use of the Refresh
 operation, servers may require the refreshing client to bind first. A
 server implementation can achieve this by presenting ACLs on the
 entryTtl attribute, and returning insufficientAccessRights (50) in
 the RefreshResponse, if the client is not allowed to refresh the
 entry. Doing this, though, might have performance implications on the
 server and might impact the server’s scalability.

 Servers may require that a client which attempts to create a dynamic
 entry have a remove permission for that entry.

 Servers which implement the dynamic extensions must have the OBJECT
 IDENTIFIER, described above in section 4 for the request and

Yaacovi, et al. Standards Track [Page 8]

RFC 2589 LDAPv3 Extensions for Dynamic Directory Services May 1999

 response, present as a value of the supportedExtension field in the
 root DSE. They must also have as values in the attributeTypes and
 objectClasses attributes of their subschema subentries, the
 AttributeTypeDescription and ObjectClassDescription from section 5.

 Servers can limit the support of the dynamic extensions to only some
 of the subtrees in the DIT. Servers indicate for which subtrees they
 support the extensions, by specifying the OIDs for the supported
 subtrees in the dynamicSubtrees attribute described in section 5. If
 a server supports the dynamic extensions for all naming contexts it
 holds, the dynamicSubtrees attribute may be absent.

7. Implementation issues

7.1 Storage of dynamic information

 Dynamic information is expected to change very often. In addition,
 Refresh requests are expected to arrive at the server very often.
 Disk-based databases that static directory services often use are
 likely inappropriate for storing dynamic information. We recommend
 that server implementations store dynamic entries in memory
 sufficient to avoid paging. This is not a requirement.

 We expect LDAP servers to be able to store static and dynamic
 entries. If an LDAP server does not support dynamic entries, it
 should respond with an error code such as objectClassViolation.

7.2 Client refresh behavior

 In some cases, the client might not get a Refresh response. This may
 happen as a result of a server crash after receiving the Refresh
 request, the TCP/IP socket timing out in the connection case, or the
 UDP packet getting lost in the connection-less case.

 It is recommended that in such a case, the client will retry the
 Refresh operation immediately, and if this Refresh request does not
 get a response as well, it will resort to its original Refresh cycle,
 i.e. send a Refresh request at its Client Refresh Period (CRP).

7.3 Configuration of refresh times

 We recommend that servers will provide administrators with the
 ability to configure the default client refresh period (CRP), and
 also a minimum and maximum CRP values. This, together with allowing
 administrators to request that the server will not change the CRP
 dynamically, will allow administrators to set CRP values which will
 enforce a low refresh traffic, or - on the other extreme, an highly
 up-to-date directory.

Yaacovi, et al. Standards Track [Page 9]

RFC 2589 LDAPv3 Extensions for Dynamic Directory Services May 1999

8. Replication

 Replication is only partially addressed in this memo. There is a
 separate effort in progress at the IETF on replication of static and
 dynamic directories.

 it is allowed to replicate a dynamic entry or a static entry with
 dynamic attributes. Since the entryTtl is expressed as a relative
 time (how many seconds till the entry will expire), replicating it
 means that the replicated entry will be "off" by the replication
 time.

9. Localization

 The are no localization issues for this extended operation.

10. Security Considerations

 Standard LDAP security rules and support apply for the extensions
 described in this document, and there are no special security issues
 for these extensions. Please note, though, that servers may permit
 anonymous clients to refresh entries which they did not create.
 Servers are also permitted to control a refresh access to an entry by
 requiring clients to bind before issuing a RefreshRequest. This will
 have implications on the server performance and scalability.

 Also, Care should be taken in making use of information obtained from
 directory servers that has been supplied by client, as it may now be
 out of date. In many networks, for example, IP addresses are
 automatically assigned when a host connects to the network, and may
 be reassigned if that host later disconnects. An IP address obtained
 from the directory may no longer be assigned to the host that placed
 the address in the directory. This issue is not specific to LDAP or
 dynamic directories.

11. Acknowledgments

 Design ideas included in this document are based on those discussed
 in ASID and other IETF Working Groups.

Yaacovi, et al. Standards Track [Page 10]

RFC 2589 LDAPv3 Extensions for Dynamic Directory Services May 1999

12. Authors’ Addresses

 Yoram Yaacovi
 Microsoft
 One Microsoft way
 Redmond, WA 98052
 USA

 Phone: +1 206-936-9629
 EMail: yoramy@microsoft.com

 Mark Wahl
 Innosoft International, Inc.
 8911 Capital of Texas Hwy #4140
 Austin, TX 78759
 USA

 Email: M.Wahl@innosoft.com

 Tony Genovese
 Microsoft
 One Microsoft way
 Redmond, WA 98052
 USA

 Phone: +1 206-703-0852
 EMail: tonyg@microsoft.com

13. Bibliography

 [1] Wahl, M., Howes, T. and S. Kille, "Lightweight Directory Access
 Protocol (Version 3)", RFC 2251, December 1997.

 [2] Wahl, M. Coulbeck, A., Howes, T. and S. Kille, "Lightweight
 Directory Access Protocol (v3): Attribute Syntax Definitions",
 RFC 2252, December 1997.

 [3] Wahl, M. and S. Kille, "Lightweight Directory Access Protocol
 (v3): UTF-8 String Representation of Distinguished Names", RFC
 2253, December 1997.

Yaacovi, et al. Standards Track [Page 11]

RFC 2589 LDAPv3 Extensions for Dynamic Directory Services May 1999

14. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Yaacovi, et al. Standards Track [Page 12]

