
Network Working Group R. Hedberg
Request for Comment: 2657 Catalogix
Category: Experimental August 1999

 LDAPv2 Client vs. the Index Mesh

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 LDAPv2 clients as implemented according to RFC 1777 [1] have no
 notion on referral. The integration between such a client and an
 Index Mesh, as defined by the Common Indexing Protocol [2], heavily
 depends on referrals and therefore needs to be handled in a special
 way. This document defines one possible way of doing this.

1. Background

 During the development of the Common Indexing Protocol (CIP), one of
 the underlying assumptions was that the interaction between clients
 and the Index Mesh Servers [1] would heavily depend on the passing of
 referrals. Protocols like LDAPv2 [2] that lack this functionality
 need to compensate for it by some means. The way chosen in this memo
 is to add more intelligence into the client. There are two reasons
 behind this decision. First, this is not a major enhancement that is
 needed and secondly, that the intelligence when dealing with the
 Index Mesh, with or the knowledge about referrals, eventually has to
 go into the client.

2. The clients view of the Index Mesh

 If a LDAPv2 client is going to be able to interact with the Index
 Mesh, the Mesh has to appear as something that is understandable to
 the client. Basically, this consists of representing the index
 servers and their contained indexes in a defined directory
 information tree (DIT) [3,4] structure and a set of object classes
 and attribute types that have been proven to be useful in this
 context.

Hedberg Experimental [Page 1]

RFC 2657 LDAPv2 vs. Index Mesh August 1999

2.1 The CIP Object Classes

 Object class descriptions are written according to the BNF defined in
 [5].

2.1.1 cIPIndex

 The cIPIndex objectClass, if present in a entry, allows it to hold
 one indexvalue and information connected to this value.

 (1.2.752.17.3.9
 NAME ’cIPIndex’
 SUP ’top’
 STRUCTURAL
 MUST (extendedDSI $ idx)
 MAY (indexOCAT)
)

2.1.2 cIPDataSet

 The cIPDataSet objectClass, if present in a entry, allows it to hold
 information concerning one DataSet.

 (1.2.752.17.3.10
 NAME ’cIPDataSet’
 SUP ’top’
 STRUCTURAL
 MUST (dSI $ searchBase)
 MAY (indexOCAT $ description $ indexType $
 accessPoint $ protocolVersion $ polledBy $
 updateIntervall $ securityOption $
 supplierURI $ consumerURI $ baseURI $
 attributeNamespace $ consistencyBase
)
)

2.2 The CIP attributeTypes

 The attributes idx, indexOCAT, extendedDSI, description,
 cIPIndexType, baseURI, dSI are used by a client accessing the index
 server. The other attributes (accesspoint, protocolVersion,
 polledBy, updateIntervall, consumerURI, supplierURI and
 securityOption, attributeNamespace, consistencyBase) are all for
 usage in server to server interactions.

Hedberg Experimental [Page 2]

RFC 2657 LDAPv2 vs. Index Mesh August 1999

2.2.1 idx

 The index value, normally used as part of the RDN.

 (1.2.752.17.1.20
 NAME ’idx’
 EQUALITY caseIgnoreIA5Match
 SYNTAX IA5String
 SINGLE-VALUE
)

2.2.2 dSI

 DataSet Identifier, a unique identifier for one particular set of
 information. This should be an OID, but stored in a stringformat.

 (1.2.752.17.1.21
 NAME ’dSI’
 EQUALITY caseIgnoreIA5Match
 SYNTAX IA5String
)

2.2.3 indexOCAT

 Describes the type of data that is stored in this entry, by using
 objectcClasses and attributeTypes. The information is stored as a
 objectClass name followed by a space and then an attributeType name.
 A typical example when dealing with whitepages information would be
 "person cn".

 (1.2.752.17.1.28
 NAME ’indexOCAT’
 EQUALITY caseIgnoreIA5Match
 SYNTAX IA5String
)

2.2.5 supplierURI

 A URI describing which protocols, hostnames and ports should be used
 by an indexserver to interact with servers carrying indexinformation
 representing this dataSet.

 (1.2.752.17.1.22
 NAME ’supplierURI’
 EQUALITY caseIgnoreIA5Match
 SYNTAX IA5String
)

Hedberg Experimental [Page 3]

RFC 2657 LDAPv2 vs. Index Mesh August 1999

2.2.6 baseURI

 The attribute value for this attribute is a LDAP URI. One can
 envisage other URI syntaxes, if the client knows about more access
 protocols besides LDAP, and the interaction between the client and
 the server can not use referrals for some reason.

 (1.2.752.17.1.26
 NAME ’baseURI’
 EQUALITY caseExactIA5Match
 SYNTAX IA5String
)

2.2.7 protocolVersion

 At present, the Common Indexing Protocol version should be 3.

 (1.2.752.17.1.27
 NAME ’protocolVersion’
 EQUALITY numericStringMatch
 SYNTAX numericString
)

2.2.8 cIPIndexType

 The type of index Object that is used to pass around index
 information.

 (1.2.752.17.1.29
 NAME ’cIPIndexType’
 EQUALITY caseIgnoreIA5Match
 SYNTAX IA5String
)

2.2.10 polledBy

 The Distinguished Name of Index servers that polls data from this
 indexserver.

 (1.2.752.17.1.30
 NAME ’polledBy’
 EQUALITY distinguishedNameMatch
 SYNTAX DN
)

Hedberg Experimental [Page 4]

RFC 2657 LDAPv2 vs. Index Mesh August 1999

2.2.11 updateIntervall

 The maximum duration in seconds between the generation of two updates
 by the supplier server.

 (1.2.752.17.1.31
 Name ’updateIntervall’
 EQUALITY numericStringMatch
 SYNTAX numericString
 SINGLE-VALUE
)

2.2.12 securityOption

 Whether and how the supplier server should sign and encrypt the
 update before sending it to the consumer server.

 (1.2.752.17.1.32
 NAME ’securityOption’
 EQUALITY caseIgnoreIA5Match
 SYNTAX IA5String
 SINGLE-VALUE
)

2.2.13 extendedDSI

 DataSet Identifier possibly followed by a space and a taglist, the
 later as specified by [6].

 (1.2.752.17.1.33
 NAME ’extendedDSI’
 EQUALITY caseIgnoreIA5Match
 SYNTAX IA5String
)

2.2.14 consumerURI

 A URI describing which means a server can accept indexinformation.
 An example being a mailto URI for MIME email based index transport.

 (1.2.752.17.1.34
 NAME ’consumerURI’
 EQUALITY caseExactIA5Match
 SYNTAX IA5String
)

Hedberg Experimental [Page 5]

RFC 2657 LDAPv2 vs. Index Mesh August 1999

2.2.15 attributeNamespace

 Any consumer supplier pair has to agree on what attribute that should
 be used and also possibly the meaning of the attributenames. The
 value of this attribute should, for example, be a URI pointing to a
 document wherein the agreement is described.

 (1.2.752.17.1.35 NAME ’attributeNamespace’ EQUALITY
 caseExactIA5Match SYNTAX IA5String
)

2.2.16 consistencyBase

 This attribute is specifically used by consumer supplier pairs that
 use the tagged index object [6].

 (1.2.752.17.1.36
 NAME ’consistencyBase’
 EQUALITY caseExactIA5Match
 SYNTAX IA5String
)

3. The interaction between a client and the Index Mesh

 A client interaction with the Index Mesh consists of a couple of
 rather well defined actions. The first being to find a suitable index
 to start with, then to transverse the Index Mesh and finally to query
 the servers holding the original data. Note when reading this text
 that what is discussed here is the client’s perception of the DIT,
 how it is in fact implemented is not discussed.

3.1 Finding a Index Mesh

 This approach depends on the fact that every index server partaking
 in an Index Mesh is represented in the DIT by a entry of the type
 cIPDataSet, and has a distinguished name (DN) which most significant
 relative distinguished name (RDN) has the attributetype dSI.
 Therefore, finding a suitable indexserver to start the search from is
 a matter of searching the DIT at a suitable place for objects with
 the objectClass cIPIndexObject. Every found entry can then be
 evaluated by looking at the description value as well as the
 indexOCAT value. The description string should be a human readable
 and understandable text that describes what the index server is
 indexing. An example of such a string could be, "This index covers
 all employees at Swedish Universities and University Colleges that
 has an email account". The indexOCAT attribute supplies information
 about which kind of entries and which attributes within these entries
 that the index information has emanated from. For example, if the

Hedberg Experimental [Page 6]

RFC 2657 LDAPv2 vs. Index Mesh August 1999

 indexOCAT attribute value is "person cn", one can deduce that this is
 an index over persons and not over roles, and that it is the
 attribute commonName that is indexed.

3.2 Searching the mesh

 Each index server has its information represented in the DIT as a
 very flat tree. In fact, it is only one level deep.

 0 Indexservers cIPDataSet
 /|\
 / | \
 / | \
 0 0
 cIPDataSet entries cIPIndex entries
 one for each DataSet one for each index value
 that this server has that this indexserver
 gathered indexes from. has.

 A search then consists of a set of searches. The first being the
 search for the index entries that contains an indexvalue that matches
 what the user is looking for, and the second a search based on the
 DSI information in the extendedDSI attribute values returned from the
 first search. In the case of the the cIPIndexType being tagged-
 index, the taglists should be compared to find which DSI it might be
 useful to pose further queries to.

 When doing these types of searches, the client should be aware of the
 fact that the index values disregarding their origin (attributeTypes)
 always are stored in the index server as values of the idx attribute.

 The object of the second search is to get information on the
 different DataSet involved, and should normally be performed as a
 read. Since the DataSet information probably will remain quite stable
 over time, this information lends itself very well to caching. If at
 this stage there is more than one DataSet involved, the User
 interface might use the description value to aid the user in choosing
 which one to proceed with. The content of the searchBase value of
 the DataSet tells the client whether it represents another index
 server (the most significant part of the dn is a dSI attribute) or if
 it is a end server.

Hedberg Experimental [Page 7]

RFC 2657 LDAPv2 vs. Index Mesh August 1999

3.3 Querying the end server

 When finally reaching the end server/servers that probably has the
 sought for information, the information in the indexOCAT attribute
 can be used to produce an appropriate filter. If a search for "Rol*"
 in an index having an indexOCAT attribute value of "person cn"
 returns an idx entry with the idx value of "Roland", then an
 appropriate filter to use might be "&(|(cn=* roland *)(cn=roland
)(cn= roland))(objectclass=person)". A complete example of a
 search process is given in Appendix A.

4. Security Considerations

 Since this memo deals with client behavior, it does not add anything
 that either enhances or diminishes the security features that exists
 in LDAPv2.

5. Internationalization

 As with security, this memo neither enhances or diminishes the
 handling of internationalization in LDAPv2.

6. References

 [1] Yeong, W., Howes, T. and S. Kille, "Lightweight Directory Access
 Protocol", RFC 1777, March 1995.

 [2] Allen, J. and M. Mealling "The Architecture of the Common
 Indexing Protocol (CIP)", RFC 2651, August 1999.

 [3] The Directory: Overview of Concepts, Models and Service. CCITT
 Recommendation X.500, 1988.

 [4] Information Processing Systems -- Open Systems Interconnection --
 The Directory: Overview of Concepts, Models and Service. ISO/IEC
 JTC 1/SC21; International Standard 9594-1, 1988.

 [5] Wahl, M., Coulbeck, A., Howes, T. and S. Kille, "Lightweight
 Directory Access Protocol (v3): Attribute Syntax Definitions",
 RFC 2252, December 1997.

 [6] Hedberg, R., Greenblatt, B., Moats, R. and M. Wahl, "A Tagged
 Index Object for use in the Common Indexing Protocol", RFC 2654,
 August 1999.

Hedberg Experimental [Page 8]

RFC 2657 LDAPv2 vs. Index Mesh August 1999

7. Author’s Address

 Roland Hedberg
 Catalogix
 Dalsveien 53
 0387 Oslo, Norway

 Phone: +47 23 08 29 96
 EMail: roland@catalogix.ac.se

Hedberg Experimental [Page 9]

RFC 2657 LDAPv2 vs. Index Mesh August 1999

Appendix A - Sample Session

 Below is a sample of a session between a LDAPv2 client and an index
 server mesh as specified in this memo.

 The original question of the session is to find the email address of
 a person by the name, "Roland Hedberg", who is working at "Umea
 University" in Sweden.

 Step 1.

 A singlelevel search with the baseaddress "c=SE" and the filter
 "(objectclass=cipDataset)" was issued.

 The following results were received:

 DN: dSI=1.2.752.17.5.0,c=SE
 dsi= 1.2.752.17.5.0
 description= "index over employees with emailaddresses within Swedish
 higher education"
 indexOCAT= "cn person"
 cIPIndexType= "x-tagged-index-1" ;
 searchBase= "dsi=1.2.752.17.5.0,c=SE"
 protocolVersion = 3

 DN: dSI=1.2.752.23.1.3,c=SE
 dsi= 1.2.752.23.1.3
 description= "index over Swedish lawyers"
 indexOCAT= "cn person"
 cIPIndexType= "x-tagged-index-1" ;
 searchBase= "dsi=1.2.752.23.1.3,c=SE"
 protocolVersion = 3

 Step 2.

 Since the first index seemed to cover the interesting population, a
 single level search with the baseaddress "dsi=1.2.752.17.5.0,c=SE"
 and the filter "(|(idx=roland)(idx=hedberg))" was issued.

 The following results were received:

 DN: idx=Roland,dSI=1.2.752.17.5.0,c=SE
 idx= Roland
 extendedDSI= 1.2.752.17.5.10 1,473,612,879,1024
 extendedDSI= 1.2.752.17.5.14 35,78,150,200
 extendedDSI= 1.2.752.17.5.16 187,2031,3167,5284,6034-6040
 extendedDSI= 1.2.752.17.5.17 17

Hedberg Experimental [Page 10]

RFC 2657 LDAPv2 vs. Index Mesh August 1999

 DN: idx=Hedberg,dSI=1.2.752.17.5.0,c=SE
 idx= Hedberg
 extendedDSI= 1.2.752.17.5.8 24,548-552,1066
 extendedDSI= 1.2.752.17.5.10 473,512,636,777,1350
 extendedDSI= 1.2.752.17.5.14 84,112,143,200
 extendedDSI= 1.2.752.17.5.15 1890-1912
 extendedDSI= 1.2.752.17.5.17 44

 A comparison between the two sets of extendedDSIs shows that two
 datasets 1.2.752.17.5.10 and 1.2.752.17.5.14 contains persons named
 "Roland" and "Hedberg". Therefore, the next step would be to see what
 the datasets represent. A comparison like this should normally not
 be left to the user.

 Step. 3

 Two baselevel searches, one for
 "dsi=1.2.752.17.5.10,dsi=1.2.752.17.5.0,c=SE" and the other for
 "dsi=1.2.752.17.5.14,dsi=1.2.752.17.5.0,c=SE" with the filter
 "(objectclass=cipdataset)" were issued.

 The following results were received:

 DN: dSI=1.2.752.17.5.10,dSI=1.2.752.17.5.0,c=SE
 dsi= 1.2.752.17.5.10
 description= "Employees at Umea University,Sweden"
 indexOCAT= "person cn"
 searchBase= "o=Umea Universitet,c=SE"

 respectively

 DN: dSI=1.2.752.17.5.14,dSI=1.2.752.17.5.0,c=SE
 dsi= 1.2.752.17.5.14
 description= "Employees at Lund University,Sweden"
 indexOCAT= "person cn"
 searchBase= "o=Lunds Universitet,c=SE"

 Step 4

 Based on the descriptions for the two datasets, "1.2.752.17.5.10" was
 chosen as the best to proceed with. From the searchbase attribute
 value, it was clear that this was a base server. The query now has
 to be somewhat modified. One possibility would be to issue a query
 with the baseobject "o=Umea Universitet,c=SE" and the filter
 "(&(cn=Roland Hedberg)(objectclass=person))"

Hedberg Experimental [Page 11]

RFC 2657 LDAPv2 vs. Index Mesh August 1999

Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Hedberg Experimental [Page 12]

