Net wor k Wor ki ng Group A. Chiu
Request for Comments: 2695 Sun M crosyst ens
Cat egory: | nformational Sept ember 1999

Aut henti cati on Mechani sns for ONC RPC
Status of this Meno

This meno provides information for the Internet conmunity. It does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C The Internet Society (1999). Al Rights Reserved.
ABSTRACT

Thi s docunent describes two authentication nmechani sns created by Sun
M crosystens that are commonly used in conjunction with the ONC
Renote Procedure Call (ONC RPC Version 2) protocol.

WARNI NG

The DH aut hentication as defined in Section 2 in this docunent refers
to the authentication nmechanismw th flavor AUTH DH currently
implemented in ONC RPC. It uses the underlying Diffie-Hellmn

al gorithm for key exchange. The DH authentication defined in this
document is flawed due to the selection of a small prine for the BASE
field (Section 2.5). To avoid the flaw a new DH aut henti cati on
mechani sm coul d be defined with a larger prine. However, the new DH
aut hentication would not be interoperable with the existing DH

aut henti cati on.

As illustrated in [10], a large nunber of attacks are possible on ONC
RPC system servi ces that use non-secure authentication nechani sns.

O her secure authentication nmechani snms need to be devel oped for ONC
RPC. RFC 2203 describes the RPCSEC GSS ONC RPC security flavor, a
secure authenticati on nechani smthat enables RPC protocols to use
Ceneric Security Service Application ProgramlInterface (RFC 2078) to
provi de security services, integrity and privacy, that are

i ndependent of the underlying security nechani sns.

Chi u I nf or mat i onal [Page 1]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

Tabl e of Contents

1. IntroducCtion 2
2. Diffie-Hellman Authentication 2
2.0 NaM NG .o 3
2.2 DH Authentication Verifiers 3
2.3 Nicknanmes and O ock Synchronization 5
2.4 DH Authentication Protocol Specification 5
2.4.1 The Full Network Nane Credential and Verifier (Cient) .. 6
2.4.2 The N cknanme Credential and Verifier (Client) 8
2.4.3 The N cknanme Verifier (Server) 9
2.5 Diffie-Hellman Encryption 9
3. Kerberos-based Authentication 10
3oL NaM NG oo 11
3.2 Kerberos-based Authentication Protocol Specification 11
3.2.1 The Full Network Nane Credential and Verifier (Cient) . 12
3.2.2 The N cknanme Credential and Verifier (Client) 14
3.2.3 The Nickname Verifier (Server) 15
3.2.4 Kerberos-specific Authentication Status Values 15
4. Security Considerations 16
5. REFERENCES 16
6. AUTHOR S ADDRESSttt e e e e 17
7. FULL COPYRI GHT STATEMENT e e 18

1. Introduction

The ONC RPC protocol provides the fields necessary for a client to
identify itself to a service, and vice-versa, in each call and reply
message. Security and access control nechanisns can be built on top
of this nessage authentication. Several different authentication
protocol s can be supported.

Thi s docunent specifies two authentication protocols created by Sun
M crosystens that are commonly used: Diffie-Hellman (DH)
aut henti cati on and Kerberos (Version 4) based authentication.

As a prerequisite to reading this docunent, the reader is expected to
be fanmliar with [1] and [2]. This docunent uses terninology and
definitions from[1] and [2].

2. Diffie-Hellman Authentication
System aut hentication (defined in [1]) suffers from sone probl ens.

It is very UNI X oriented, and can be easily faked (there is no
attenpt to provide cryptographically secure authentication).

Chi u I nf or mat i onal [Page 2]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

DH aut henticati on was created to address these problens. However, it

has been conprom sed [9] due to the selection of a snall length for
the prinme in the ONC RPC i nplenmentation. Wile the information
provided here will be useful for inplenentors to ensure

interoperability with existing applications that use DH
authentication, it is strongly recomended that new applications use
nore secure authentication, and that existing applications that
currently use DH authentication mgrate to nore robust authentication
nmechani sns.

2.1 Nam ng

The client is addressed by a sinple string of characters instead of
by an operating systemspecific integer. This string of characters
is known as the "netname" or network nane of the client. The server
is not allowed to interpret the contents of the client’s nane in any
other way except to identify the client. Thus, netnanes should be
uni que for every client in the Internet.

It is up to each operating system s inplenmentation of DH

aut hentication to generate netnanes for its users that insure this
uni queness when they call upon renote servers. Operating systens

al ready know how to distinguish users local to their systens. It is
usually a sinple matter to extend this nmechanismto the network. For
exanple, a UNI X(tn) user at Sun with a user |ID of 515 m ght be
assigned the foll ow ng netnanme: "unix.515@un.conf'. This netnane
contains three itens that serve to insure it is unique. Coing
backwards, there is only one naning domain called "sun.coni in the
Internet. Wthin this domain, there is only one UNIl X(tn) user wth
user I D 515. However, there nay be anot her user on another operating
system for exanple VM5, within the sane nam ng domain that, by

coi nci dence, happens to have the same user ID. To insure that these
two users can be distinguished we add the operating system nane. So
one user is "unix.515@un. con and the other is "vns.515@un. coni'.
The first field is actually a nam ng nethod rather than an operating
system nane. It happens that today there is al nbost a one-to-one
correspondence between nani ng net hods and operating systens. |If the
world could agree on a nanming standard, the first field could be the
nane of that standard, instead of an operating system nane.

2.2 DH Authentication Verifiers

Unl i ke System aut hentication, DH authentication does have a verifier
so the server can validate the client’s credential (and vice-versa).
The contents of this verifier are primarily an encrypted tinmestanp.
The server can decrypt this timestanp, and if it is within an
accepted range relative to the current tinme, then the client nust
have encrypted it correctly. The only way the client could encrypt

Chi u I nf or mat i onal [Page 3]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

it correctly is to know the "conversation key" of the RPC session
and if the client knows the conversation key, then it nust be the
real client.

The conversation key is a DES [5] key which the client generates and
passes to the server in the first RPC call of a session. The
conversation key is encrypted using a public key schene in this first
transaction. The particular public key schene used in DH
authentication is Diffie-Hellman [3] with 192-bit keys. The details
of this encryption method are described later.

The client and the server need the sanme notion of the current tinme in
order for all of this to work, perhaps by using the Network Tinme
Protocol [4]. |If network tine synchronization cannot be guaranteed,
then the client can deternmine the server’s tine before beginning the
conversation using a time request protocol

The way a server determines if a client tinestanp is valid is
somewhat conplicated. For any other transaction but the first, the
server just checks for two things:

(1) the tinestanp is greater than the one previously seen fromthe
same client. (2) the tinmestanp has not expired.

Atimestanp is expired if the server’s tine is later than the sum of
the client’s tinmestanp plus what is known as the client’s "ttl"
(standing for "tinme-to-live" - you can think of this as the lifetinme
for the client’s credential). The "ttl" is a nunber the client
passes (encrypted) to the server in its first transaction

In the first transaction, the server checks only that the tinestanp
has not expired. Al so, as an added check, the client sends an
encrypted itemin the first transaction known as the "ttl verifier"
whi ch must be equal to the tine-to-live mnus 1, or the server wll
reject the credential. |If either check fails, the server rejects the
credential with an authentication status of AUTH BADCRED, however if
the tinestanp is earlier than the previous one seen, the server
returns an authentication status of AUTH REJECTEDCRED

The client too nmust check the verifier returned fromthe server to be
sure it is legitimate. The server sends back to the client the
tinmestanp it received fromthe client, mnus one second, encrypted
with the conversation key. |If the client gets anything different
than this, it will reject it, returning an AUTH | NVALI DRESP

aut hentication status to the user.

Chi u I nf or mat i onal [Page 4]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

2.3 Nicknames and C ock Synchronization

After the first transaction, the server’s DH authenticati on subsystem
returns in its verifier to the client an integer "nicknanme" which the
client may use in its further transactions instead of passing its

net name. The ni cknane could be an index into a table on the server

whi ch stores for each client its netname, decrypted conversation key
and ttl.

Though they originally were synchronized, the client’s and server’s
cl ocks can get out of synchronization again. Wen this happens the
server returns to the client an authentication status of

AUTH REJECTEDVERF at which point the client should attenpt to
resynchroni ze

A client may al so get an AUTH BADCRED error when using a nicknane
that was previously valid. The reason is that the server’s nicknane
table is alimted size, and it may flush entries whenever it wants.
A client should resend its original full name credential in this case
and the server will give it a new nickname. |f a server crashes, the
entire nickname table gets flushed, and all clients will have to
resend their original credentials.

2.4 DH Authentication Protocol Specification

There are two kinds of credentials: one in which the client uses its
full network nanme, and one in which it uses its "nickname" (just an
unsigned integer) given to it by the server. The client nust use its
fullnane in its first transaction with the server, in which the
server will return to the client its nicknane. The client nay use
its nickname in all further transactions with the server. There is no
requi renent to use the nicknanme, but it is wise to use it for

per f or mance reasons.

The following definitions are used for describing the protocol
enum aut hdh_naneki nd {

ADN_FULLNAME = 0,
ADN_NI CKNAME = 1

b

typedef opaque des bl ock[8]; /* 64-bit block of encrypted data */

const MAXNETNAMELEN = 255; /* maxi mum | ength of a netnanme */
The flavor used for all DH authentication credentials and verifiers

is "AUTH DH', with the nunerical value 3. The opaque data
constituting the client credential encodes the follow ng structure:

Chi u I nf or mat i onal [Page 5]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

uni on aut hdh_cred sw tch (aut hdh_naneki nd naneki nd) {
case ADN FULLNAME
aut hdh_f ul I name ful | nane;
case ADN_ NI CKNAME
aut hdh_ni cknanme ni cknane;
s

The opaque data constituting a verifier that acconpanies a client
credential encodes the follow ng structure:
uni on aut hdh_verf sw tch (authdh_naneki nd naneki nd) {
case ADN_FULLNAME
aut hdh_ful | nane_verf full nane_verf;

case ADN_ NI CKNAME
aut hdh_ni cknanme_verf ni cknane_verf;
s

The opaque data constituting a verifier returned by a server in
response to a client request encodes the follow ng structure:
struct authdh_server_verf;
These structures are described in detail bel ow

2.4.1 The Full Network Nanme Credential and Verifier (dient)

First, the client creates a conversation key for the session. Next,
the client fills out the follow ng structure:

o e o e oo +
| ti mestanp | tinestanp | | |
| seconds | micro seconds | ttl | ttl - 1
| 32 bits | 32 bits | 32 bits | 32 bits
o mmm emao o +
0 31 63 95 127

The fields are stored in XDR (external data representation) fornmat.
The tinestanp encodes the tinme since mdnight, January 1, 1970. These
128 bits of data are then encrypted in the DES CBC node, using the
conversation key for the session, and with an initialization vector
of 0. This yields:

N T +
I T I I I
| T1 T2 | W | w2

| 32 bits | 32 bits | 32 bits | 32 bits

o e m e +
0 31 63 95 127

Chi u I nf or mat i onal [Page 6]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

where T1, T2, WL, and W2 are all 32-bit quantities, and have sone
correspondence to the original quantities occupying their positions,
but are now interdependent on each other for proper decryption. The
64 bit sequence conprising Tl and T2 is denoted by T.

The full network nane credential is represented as follows using XDR
not ati on:

struct aut hdh_ful I name {

string nane<MAXNETNAMELEN>; /* netname of client */
des_bl ock key; /* encrypted conversation key */
opaque wi[4]; /* W */

The conversation key is encrypted using the "comobn key" using the
ECB node. The common key is a DES key that is derived fromthe
Diffie-Hell man public and private keys, and is described later.

The verifier is represented as foll ows:

struct aut hdh_ful |l name_verf {
des_bl ock tinmestanp; /* T (the 64 bits of T1 and T2) */
opaque w2[4]; /* W */

Note that all of the encrypted quantities (key, wl, w2, tinestanp) in
t he above structures are opaque.

The fullnanme credential and its associated verifier together contain
the network nanme of the client, an encrypted conversation key, the
ttl, a timestanp, and a ttl verifier that is one less than the ttl.

The ttl is actually the lifetime for the credential. The server will
accept the credential if the current server tine is "within" the time
indicated in the tinmestanp plus the ttl. Oherw se, the server

rejects the credential with an authentication status of AUTH BADCRED.
One way to insure that requests are not replayed would be for the
server to insist that tinmestanps are greater than the previous one
seen, unless it is the first transaction. |If the timestanp is
earlier than the previous one seen, the server returns an

aut henti cation status of AUTH REJECTEDCRED

The server returns a authdh_server_verf structure, which is described

in detail below. This structure contains a "nicknane", which nay be
used for subsequent requests in the current conversation

Chi u I nf or mat i onal [Page 7]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

2.4.2 The N cknanme Credential and Verifier (Cient)

In transactions following the first, the client nay use the shorter
ni ckname credential and verifier for efficiency. First, the client
fills out the follow ng structure:

o m e e e e e eae oo +
| ti mestanp | tinestanp |
| seconds | micro seconds

| 32 bits | 32 bits |
o e e e e e e e e e e e e e e e e e m o +
0 31 63

The fields are stored in XDR (external data representation) fornmat.
These 64 bits of data are then encrypted in the DES ECB node, using
the conversation key for the session. This vyields:

o e e e e e e eeaaao- +
| (T1) | (T2) |
T
| 64 bits |
me e e e e e eececececacaaaaaaa +
0 31 63

The ni cknanme credential is represented as foll ows using XDR notation:

struct aut hdh_ni ckname {
unsi gned int ni cknane; /* nicknanme returned by server */
b

The nicknane verifier is represented as foll ows using XDR notation:

struct aut hdh_ni ckname_verf {
des_bl ock tinmestanp; /* T (the 64 bits of T1 and T2) */
opaque W 4]; /* Set to zero */

The ni cknane credential nay be reject by the server for severa
reasons. An authentication status of AUTH BADCRED i ndicates that the
ni ckname is no longer valid. The client should retry the request
using the full name credential. AUTH REJECTEDVERF indicates that the
ni cknane verifier is not valid. Again, the client should retry the
request using the fullnane credenti al

Chi u I nf or mat i onal [Page 8]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

2.4.3 The N cknanme Verifier (Server)
The server never returns a credential. It returns only one kind of
verifier, i.e., the nickname verifier. This has the follow ng XDR
representation:

struct authdh_server _verf {

des_block tinestanp verf; /* timestanp verifier (encrypted) */
unsi gned i nt ni cknane; /* new client nickname (unencrypted) */
s
The tinestanp verifier is constructed in exactly the sane way as the
client nicknane credential. The server sets the tinestanp value to

the value the client sent minus one second and encrypts it in DES ECB
node using the conversation key. The server also sends the client a
ni ckname to be used in future transactions (unencrypted).

2.5 Diffie-Hell man Encryption

In this schenme, there are two constants "BASE" and "MODULUS" [3].
The particul ar val ues Sun has chosen for these for the DH
aut henti cati on protocol are:

const BASE = 3;
const MODULUS = "d4a0ba0250b6f d2ec626e7ef d637df 76c716e22d0944b88b" ;

Note that the nodulus is represented above as a hexadeci mal string.

The way this scheme works is best explained by an exanple. Suppose
there are two people "A" and "B" who want to send encrypted nessages
to each other. So, A and B both generate "secret" keys at random

whi ch they do not reveal to anyone. Let these keys be represented as
SK(A) and SK(B). They also publish in a public directory their
"public" keys. These keys are conputed as foll ows:

PK(A)
PK(B)

(BASE ** SK(A)) nod MODULUS
(BASE ** SK(B)) nod MODULUS

The "**" notation is used here to represent exponentiation. Now, both
A and B can arrive at the "comon" key between them represented here
as CK(A, B), without revealing their secret keys.

Chi u I nf or mat i onal [Page 9]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

A conput es:
CK(A, B) = (PK(B) ** SK(A)) nmbd MODULUS
whi | e B conput es:
CK(A, B) = (PK(A) ** SK(B)) nod MODULUS
These two can be shown to be equival ent:
(PK(B) ** SK(A)) mpd MODULUS = (PK(A) ** SK(B)) mpd MODULUS

We drop the "nbd MODULUS' parts and assune nodulo arithnetic to sinplify
t hi ngs:

PK(B) ** SK(A) = PK(A) ** SK(B)

Then, replace PK(B) by what B conputed earlier and |ikew se for PK(A).
(BASE ** SK(B)) ** SK(A) = (BASE ** SK(A)) ** SK(B)

whi ch | eads to:
BASE ** (SK(A) * SK(B)) = BASE ** (SK(A) * SK(B))

This common key CK(A, B) is not used to encrypt the tinmestanps used
in the protocol. Rather, it is used only to encrypt a conversation
key which is then used to encrypt the tinmestanps. The reason for
doing this is to use the conmmon key as little as possible, for fear
that it could be broken. Breaking the conversation key is a far |ess
damagi ng, since conversations are relatively short-Iived.

The conversation key is encrypted using 56-bit DES keys, yet the
common key is 192 bits. To reduce the nunber of bits, 56 bits are
selected fromthe common key as follows. The m ddl e-npbst 8-bytes are
sel ected fromthe common key, and then parity is added to the | ower
order bit of each byte, producing a 56-bit key with 8 bits of parity.

Only 48 bits of the 8-byte conversation key are used in the DH
Aut henti cation schene. The |east and nost significant bits of each
byte of the conversation key are unused.
3. Kerberos-based Authentication
Conceptual |y, Kerberos-based authentication is very sinmlar to DH

aut hentication. The major difference is, Kerberos-based
aut henti cation takes advantage of the fact that Kerberos tickets have

Chi u I nf or mat i onal [Page 10]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

encoded in themthe client name and the conversation key. This RFC
does not describe Kerberos name syntax, protocols and ticket fornats.
The reader is referred to [6], [7], and [8].

3.1 Nam ng

A Kerberos nanme contains three parts. The first is the principa
name, which is usually a user’s or service's nane. The second is the
i nstance, which in the case of a user is usually NULL. Sone users
may have privil eged instances, however, such as root or admin. In
the case of a service, the instance is the nane of the machi ne on
which it runs; that is, there can be an NFS service running on the
machi ne ABC, which is different fromthe NFS service running on the
machi ne XYZ. The third part of a Kerberos name is the realm The
real m corresponds to the Kerberos service providi ng aut hentication
for the principal. Wen witing a Kerberos name, the principal nane
is separated fromthe instance (if not NULL) by a period, and the
realm (if not the local realn) follows, preceded by an "@ sign. The
followi ng are exanpl es of valid Kerberos nanes:

billb

jis.admn

srz@cs.mt.edu

treese. root @t hena. mt. edu

3.2 Kerberos-based Authentication Protocol Specification

The Ker ber os-based authenticati on protocol described is based on
Ker ber os version 4.

There are two kinds of credentials: one in which the client uses its
full network nanme, and one in which it uses its "nicknanme" (just an
unsigned integer) given to it by the server. The client nust use its
fullnane in its first transaction with the server, in which the
server will return to the client its nicknane. The client may use
its nicknane in all further transactions with the server. There is no
requi renent to use the nickname, but it is wise to use it for

per f or mance reasons.

The followi ng definitions are used for describing the protocol
enum aut hker b4_naneki nd {
AKN_FULLNAME = 0,

AKN_NI CKNAME = 1
b

Chi u I nf or mat i onal [Page 11]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

The flavor used for all Kerberos-based authentication credentials and
verifiers is "AUTH KERB4", with nunerical value 4. The opaque data
constituting the client credential encodes the follow ng structure:

uni on aut hkerb4_cred switch (aut hkerb4_naneki nd nameki nd) {
case AKN_FULLNAME
aut hkerb4_ful I name ful | nane;
case AKN_NI CKNAME:
aut hker b4_ni ckname ni cknane;
s

The opaque data constituting a verifier that acconpanies a client
credential encodes the follow ng structure:

uni on aut hkerb4_verf switch (aut hkerb4_naneki nd nameki nd) {
case AKN_FULLNAME:
aut hkerb4_ful | nane_verf full name_verf;
case AKN_NI CKNAME
aut hker b4_ni cknane_verf ni cknane_verf;
s

The opaque data constituting a verifier returned by a server in
response to a client request encodes the follow ng structure:
struct authkerb4_server _verf;
These structures are described in detail bel ow

3.2.1 The Full Network Nanme Credential and Verifier (dient)
First, the client nust obtain a Kerberos ticket fromthe Kerberos
Server. The ticket contains a Kerberos session key, which wll

becone the conversation key. Next, the client fills out the
foll owi ng structure:

o e o e oo +
| ti mestanp | tinestanp | | |
| seconds | micro seconds | ttl | ttl - 1
| 32 bits | 32 bits | 32 bits | 32 bits
o mmm emao o +
0 31 63 95 127

The fields are stored in XDR (external data representation) fornmat.
The timestanp encodes the time since mdnight, January 1, 1970.
"ttl" is identical in neaning to the corresponding field in Diffie-
Hel | man aut hentication: the credential "tine-to-live" for the

Chi u I nf or mat i onal [Page 12]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

conversation being initiated. These 128 bits of data are then
encrypted in the DES CBC node, using the conversation key, and with
an initialization vector of 0. This vyields:

o e e e e e e e e e e e e e e e e e e memmama—a-- +
| T | | |
| T1 T2 | WL | W2

| 32 bits | 32 bits | 32 bits | 32 bits

ot o o eeeeaaoo-- +
0 31 63 95 127

where T1, T2, W, and W2 are all 32-bit quantities, and have sone
correspondence to the original quantities occupying their positions,
but are now i nterdependent on each other for proper decryption. The
64 bit sequence conprising Tl and T2 is denoted by T.

The full network nane credential is represented as follows using XDR
not ati on:

struct authkerb4 full name {
opaque ticket <>; /* kerberos ticket for the server */
opaque wi[4]; /* WL */

The verifier is represented as foll ows:

struct authkerb4_full nane_verf {
des_bl ock tinmestanp; /* T (the 64 bits of T1 and T2) */
opaque w2[4]; /* W */

Note that all of the client-encrypted quantities (wl, w2, tinestanp)
in the above structures are opaque. The client does not encrypt the
Kerberos ticket for the server.

The fullnane credential and its associated verifier together contain
the Kerberos ticket (which contains the client nane and the
conversation key), the ttl, a tinestanp, and a ttl verifier that is
one less than the ttl. The ttl is actually the lifetine for the
credential. The server will accept the credential if the current
server tine is "within" the tine indicated in the timestanp plus the
ttl. Oherwise, the server rejects the credential with an

aut hentication status of AUTH BADCRED. One way to insure that
requests are not replayed would be for the server to insist that

ti mestanps are greater than the previous one seen, unless it is the
first transaction. |If the tinestanp is earlier than the previous one
seen, the server returns an authentication status of
AUTH_REJECTEDCRED

Chi u I nf or mat i onal [Page 13]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

The server returns a authkerb4 _server _verf structure, which is
described in detail below. This structure contains a "nicknane",
whi ch may be used for subsequent requests in the current session

3.2.2 The N cknane Credential and Verifier (Cient)
In transactions following the first, the client nmay use the shorter

ni cknanme credential and verifier for efficiency. First, the client
fills out the followi ng structure:

o e e e e e e e e e e e e e e e e e m o +
| ti mestanp | timestanp |
| seconds | micro seconds

| 32 bits | 32 bits |
o m e e e e e e e e a o a oo +
0 31 63

The fields are stored in XDR (external data representation) format.
These 64 bits of data are then encrypted in the DES ECB node, using
the conversation key for the session. This yields:

e e e e +
| (T1) | (T2) |
T
| 64 bits |
o e e e e eeee oo +
0 31 63

The ni cknane credential is represented as foll ows using XDR notation:

struct aut hkerb4_ni ckname {
unsi gned i nt nicknane; /* nicknane returned by server */
i

The ni cknane verifier is represented as foll ows using XDR notation:

struct authkerb4 _ni ckname_verf {
des_bl ock tinmestanp; /* T (the 64 bits of Tl and T2) */
opaque W 4]; /* Set to zero */

The ni cknane credential nmay be reject by the server for severa
reasons. An authentication status of AUTH BADCRED i ndicates that the
ni ckname is no longer valid. The client should retry the request
using the fullname credential. AUTH REJECTEDVERF indicates that the
ni cknanme verifier is not valid. Again, the client should retry the

Chi u I nf or mat i onal [Page 14]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

request using the fullnane credential. AUTH TI MEEXPI RE i ndi cat es
that the session’s Kerberos ticket has expired. The client should
initiate a new session by obtaining a new Kerberos ticket.

3.2.3 The N cknane Verifier (Server)

The server never returns a credential. It returns only one kind of
verifier, i.e., the nicknanme verifier. This has the follow ng XDR
representation:

struct authkerb4_server_verf {

s

des_block tinestanp verf; /* timestanp verifier (encrypted) */
unsi gned i nt ni cknane; /* new client nickname (unencrypted) */

The tinestanp verifier is constructed in exactly the sane way as the
client nicknanme credential. The server sets the tinestanp value to
the value the client sent mnus one second and encrypts it in DES ECB
node using the conversation key. The server also sends the client a
ni cknanme to be used in future transactions (unencrypted).

3.2.4 Kerberos-specific Authentication Status Val ues

The server may return to the client one of the following errors in
the aut hentication status field:

enum aut h_stat {

Chi u

I

* kerberos errors
*/
AUTH KERB_GENERIC = 8, /* Any Kerberos-specific error other
than the follow ng */
AUTH TI MEEXPI RE = 9, /* The client’s ticket has expired */
AUTH TKT_FI LE = 10, /* The server was unable to find the
ticket file. The client should
create a new session by obtaining a
new ticket */
AUTH _DECCDE = 11, /* The server is unable to decode the
authenticator of the client’s ticket */
AUTH _NET_ADDR = 12 /* The network address of the client
does not match the address contai ned
in the ticket */

/* and nore to be defined */

I nf or mat i onal [Page 15]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

4. Security Considerations

The DH aut hentication nmechani sm and the Kerberos V4 authentication
mechani sm are described in this docunent only for informationa
pur poses.

In addition to the weakness pointed out earlier in this docunent (see
WARNI NG on page 1), the two security nechani sns described herein | ack
the support for integrity and privacy data protection. It is strongly
recommended that new applications use nore secure nechani snms, and
that existing applications nmigrate to nore robust nechanisns.

The RPCSEC GSS ONC RPC security flavor, specified in RFC 2203, all ows
applications built on top of RPC to access security nmechani sns t hat
adhere to the GSS-API specification. It provides a GSS-APlI based
security framework that allows for strong security nmechanisnms. RFC
1964 describes the Kerberos Version 5 GSS-API security mechani sm
which provides integrity and privacy, in addition to authentication
RFC 2623 [14] describes how Kerberos V5 is pluggued i nto RPCSEC GSS,
and how the Version 2 and Version 3 of the NFS protocol use Kerberos
V5 via RPCSEC _GSS. The RPCSEC _GSS/ GSS- APl / Ker ber os-V5 stack provi des
a robust security mechanismfor applications that require strong
protection.

5. REFERENCES

[1] Srinivasan, R, "Renote Procedure Call Protocol Version 2", RFC
1831, August 1995.

[2] Srinivasan, R, "XDR External Data Representation Standard"
RFC 1832, August 1995.

[3] Diffie & Hellman, "New Directions in Cryptography", |EEE
Transactions on Information Theory | T-22, Novenber 1976.

[4] MIlls, D, "Network Tinme Protocol (Version 3)", RFC 1305, March
1992.

[5] National Bureau of Standards, "Data Encryption Standard"
Federal Information Processing Standards Publication 46, January
1977.

[6] Mller, S., Neuman, C., Schiller, J. and J. Saltzer, "Section

E. 2.1: Kerberos Authentication and Authorization Systent,
Decenber 1987.

Chi u I nf or mat i onal [Page 16]

RFC 2695

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

Steiner, J., Neuman, C. and J. Schiller, "Kerberos: An
Aut hentication Service for Open Network Systens", pp. 191-202 in
Useni x Conference Proceedi ngs, Dallas, Texas, February, 1988.

Kohl, J. and C. Neuman, "The Kerberos Network Authentication
Service (V5)", RFC 1510, Septenber 1993.

La Macchia, B. A, and dlyzko, A M, "Conputation of Discrete
Logarithns in Prinme Fields", pp. 47-62 in "Designs, Codes and
Crypt ography", Kl uwer Academ ¢ Publishers, 1991

Cheswi ck, WR., and Bellovin, SSM, "Firewalls and Internet
Security," Addi son-Wsley, 1995.

Linn, J., "The Kerberos Version 5 GSS-API Mechanism', RFC 1964,
June 1996.

Linn, J., "Generic Security Service Application Program
Interface, Version 2", RFC 2078, January 1997.
Eisler, M, Chiu, A, and Ling, L., "RPCSEC GSS Protoco

Speci fication", RFC 2203, Septenber 1997.

Eisler, M, "NFS Version 2 and Version 3 Security Issues and the
NFS Protocol’s Use of RPCSEC GSS and Kerberos V5", RFC 2623,
June 1999.

6. AUTHOR S ADDRESS

Al ex Chiu

Sun M crosystens, |nc.
901 San Antoni o Road
Pal o Alto, CA 94303

Phone: +1 (650) 786-6465
EMai | : al ex. chi u@ng. sun. com

Chi u

I nf or mat i onal [Page 17]

RFC 2695 Aut hent i cati on Mechani snms for ONC RPC Sept ember 1999

7. Full Copyright Statenent
Copyright (C) The Internet Society (1999). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Chi u I nf or mat i onal [Page 18]

