
Network Working Group D. Durham, Ed.
Request for Comments: 2748 Intel
Category: Standards Track J. Boyle
 Level 3
 R. Cohen
 Cisco
 S. Herzog
 IPHighway
 R. Rajan
 AT&T
 A. Sastry
 Cisco
 January 2000

 The COPS (Common Open Policy Service) Protocol

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC-2119].

Abstract

 This document describes a simple client/server model for supporting
 policy control over QoS signaling protocols. The model does not make
 any assumptions about the methods of the policy server, but is based
 on the server returning decisions to policy requests. The model is
 designed to be extensible so that other kinds of policy clients may
 be supported in the future. However, this document makes no claims
 that it is the only or the preferred approach for enforcing future
 types of policies.

Durham, et al. Standards Track [Page 1]

RFC 2748 COPS January 2000

Table Of Contents

 1. Introduction..3
 1.1 Basic Model..4
 2. The Protocol..6
 2.1 Common Header..6
 2.2 COPS Specific Object Formats...................................8
 2.2.1 Handle Object (Handle).......................................9
 2.2.2 Context Object (Context).....................................9
 2.2.3 In-Interface Object (IN-Int)................................10
 2.2.4 Out-Interface Object (OUT-Int)..............................11
 2.2.5 Reason Object (Reason)......................................12
 2.2.6 Decision Object (Decision)..................................12
 2.2.7 LPDP Decision Object (LPDPDecision).........................14
 2.2.8 Error Object (Error)..14
 2.2.9 Client Specific Information Object (ClientSI)...............15
 2.2.10 Keep-Alive Timer Object (KATimer)..........................15
 2.2.11 PEP Identification Object (PEPID)..........................16
 2.2.12 Report-Type Object (Report-Type)...........................16
 2.2.13 PDP Redirect Address (PDPRedirAddr)........................16
 2.2.14 Last PDP Address (LastPDPAddr).............................17
 2.2.15 Accounting Timer Object (AcctTimer)........................17
 2.2.16 Message Integrity Object (Integrity).......................18
 2.3 Communication...19
 2.4 Client Handle Usage...21
 2.5 Synchronization Behavior......................................21
 3. Message Content..22
 3.1 Request (REQ) PEP -> PDP.....................................22
 3.2 Decision (DEC) PDP -> PEP....................................24
 3.3 Report State (RPT) PEP -> PDP................................25
 3.4 Delete Request State (DRQ) PEP -> PDP........................25
 3.5 Synchronize State Request (SSQ) PDP -> PEP...................26
 3.6 Client-Open (OPN) PEP -> PDP.................................26
 3.7 Client-Accept (CAT) PDP -> PEP...............................27
 3.8 Client-Close (CC) PEP -> PDP, PDP -> PEP.....................28
 3.9 Keep-Alive (KA) PEP -> PDP, PDP -> PEP.......................28
 3.10 Synchronize State Complete (SSC) PEP -> PDP..................29
 4. Common Operation...29
 4.1 Security and Sequence Number Negotiation......................29
 4.2 Key Maintenance...31
 4.3 PEP Initialization..31
 4.4 Outsourcing Operations..32
 4.5 Configuration Operations......................................32
 4.6 Keep-Alive Operations...33
 4.7 PEP/PDP Close...33
 5. Security Considerations..33
 6. IANA Considerations..34

Durham, et al. Standards Track [Page 2]

RFC 2748 COPS January 2000

 7. References...35
 8. Author Information and Acknowledgments.........................36
 9. Full Copyright Statement.......................................38

1. Introduction

 This document describes a simple query and response protocol that can
 be used to exchange policy information between a policy server
 (Policy Decision Point or PDP) and its clients (Policy Enforcement
 Points or PEPs). One example of a policy client is an RSVP router
 that must exercise policy-based admission control over RSVP usage
 [RSVP]. We assume that at least one policy server exists in each
 controlled administrative domain. The basic model of interaction
 between a policy server and its clients is compatible with the
 framework document for policy based admission control [WRK].

 A chief objective of this policy control protocol is to begin with a
 simple but extensible design. The main characteristics of the COPS
 protocol include:

 1. The protocol employs a client/server model where the PEP sends
 requests, updates, and deletes to the remote PDP and the PDP
 returns decisions back to the PEP.

 2. The protocol uses TCP as its transport protocol for reliable
 exchange of messages between policy clients and a server.
 Therefore, no additional mechanisms are necessary for reliable
 communication between a server and its clients.

 3. The protocol is extensible in that it is designed to leverage
 off self-identifying objects and can support diverse client
 specific information without requiring modifications to the
 COPS protocol itself. The protocol was created for the general
 administration, configuration, and enforcement of policies.

 4. COPS provides message level security for authentication, replay
 protection, and message integrity. COPS can also reuse existing
 protocols for security such as IPSEC [IPSEC] or TLS to
 authenticate and secure the channel between the PEP and the
 PDP.

 5. The protocol is stateful in two main aspects: (1)
 Request/Decision state is shared between client and server and
 (2) State from various events (Request/Decision pairs) may be
 inter-associated. By (1) we mean that requests from the client
 PEP are installed or remembered by the remote PDP until they
 are explicitly deleted by the PEP. At the same time, Decisions
 from the remote PDP can be generated asynchronously at any time

Durham, et al. Standards Track [Page 3]

RFC 2748 COPS January 2000

 for a currently installed request state. By (2) we mean that
 the server may respond to new queries differently because of
 previously installed Request/Decision state(s) that are
 related.

 6. Additionally, the protocol is stateful in that it allows the
 server to push configuration information to the client, and
 then allows the server to remove such state from the client
 when it is no longer applicable.

1.1 Basic Model

 +----------------+
 | |
 | Network Node | Policy Server
 | |
 | +-----+ | COPS +-----+
 | | PEP |<-----|-------------->| PDP |
 | +-----+ | +-----+
 | ^ |
 | | |
 | \-->+-----+ |
 | | LPDP| |
 | +-----+ |
 | |
 +----------------+

 Figure 1: A COPS illustration.

 Figure 1 Illustrates the layout of various policy components in a
 typical COPS example (taken from [WRK]). Here, COPS is used to
 communicate policy information between a Policy Enforcement Point
 (PEP) and a remote Policy Decision Point (PDP) within the context of
 a particular type of client. The optional Local Policy Decision Point
 (LPDP) can be used by the device to make local policy decisions in
 the absence of a PDP.

 It is assumed that each participating policy client is functionally
 consistent with a PEP [WRK]. The PEP may communicate with a policy
 server (herein referred to as a remote PDP [WRK]) to obtain policy
 decisions or directives.

 The PEP is responsible for initiating a persistent TCP connection to
 a PDP. The PEP uses this TCP connection to send requests to and
 receive decisions from the remote PDP. Communication between the PEP
 and remote PDP is mainly in the form of a stateful request/decision
 exchange, though the remote PDP may occasionally send unsolicited

Durham, et al. Standards Track [Page 4]

RFC 2748 COPS January 2000

 decisions to the PEP to force changes in previously approved request
 states. The PEP also has the capacity to report to the remote PDP
 that it has successfully completed performing the PDP’s decision
 locally, useful for accounting and monitoring purposes. The PEP is
 responsible for notifying the PDP when a request state has changed on
 the PEP. Finally, the PEP is responsible for the deletion of any
 state that is no longer applicable due to events at the client or
 decisions issued by the server.

 When the PEP sends a configuration request, it expects the PDP to
 continuously send named units of configuration data to the PEP via
 decision messages as applicable for the configuration request. When a
 unit of named configuration data is successfully installed on the
 PEP, the PEP should send a report message to the PDP confirming the
 installation. The server may then update or remove the named
 configuration information via a new decision message. When the PDP
 sends a decision to remove named configuration data from the PEP, the
 PEP will delete the specified configuration and send a report message
 to the PDP as confirmation.

 The policy protocol is designed to communicate self-identifying
 objects which contain the data necessary for identifying request
 states, establishing the context for a request, identifying the type
 of request, referencing previously installed requests, relaying
 policy decisions, reporting errors, providing message integrity, and
 transferring client specific/namespace information.

 To distinguish between different kinds of clients, the type of client
 is identified in each message. Different types of clients may have
 different client specific data and may require different kinds of
 policy decisions. It is expected that each new client-type will have
 a corresponding usage draft specifying the specifics of its
 interaction with this policy protocol.

 The context of each request corresponds to the type of event that
 triggered it. The COPS Context object identifies the type of request
 and message (if applicable) that triggered a policy event via its
 message type and request type fields. COPS identifies three types of
 outsourcing events: (1) the arrival of an incoming message (2)
 allocation of local resources, and (3) the forwarding of an outgoing
 message. Each of these events may require different decisions to be
 made. The content of a COPS request/decision message depends on the
 context. A fourth type of request is useful for types of clients that
 wish to receive configuration information from the PDP. This allows a
 PEP to issue a configuration request for a specific named device or
 module that requires configuration information to be installed.

Durham, et al. Standards Track [Page 5]

RFC 2748 COPS January 2000

 The PEP may also have the capability to make a local policy decision
 via its Local Policy Decision Point (LPDP) [WRK], however, the PDP
 remains the authoritative decision point at all times. This means
 that the relevant local decision information must be relayed to the
 PDP. That is, the PDP must be granted access to all relevant
 information to make a final policy decision. To facilitate this
 functionality, the PEP must send its local decision information to
 the remote PDP via an LPDP decision object. The PEP must then abide
 by the PDP’s decision as it is absolute.

 Finally, fault tolerance is a required capability for this protocol,
 particularly due to the fact it is associated with the security and
 service management of distributed network devices. Fault tolerance
 can be achieved by having both the PEP and remote PDP constantly
 verify their connection to each other via keep-alive messages. When a
 failure is detected, the PEP must try to reconnect to the remote PDP
 or attempt to connect to a backup/alternative PDP. While
 disconnected, the PEP should revert to making local decisions. Once a
 connection is reestablished, the PEP is expected to notify the PDP of
 any deleted state or new events that passed local admission control
 after the connection was lost. Additionally, the remote PDP may
 request that all the PEP’s internal state be resynchronized (all
 previously installed requests are to be reissued). After failure and
 before the new connection is fully functional, disruption of service
 can be minimized if the PEP caches previously communicated decisions
 and continues to use them for some limited amount of time. Sections
 2.3 and 2.5 detail COPS mechanisms for achieving reliability.

2. The Protocol

 This section describes the message formats and objects exchanged
 between the PEP and remote PDP.

2.1 Common Header

 Each COPS message consists of the COPS header followed by a number of
 typed objects.

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 |Version| Flags| Op Code | Client-type |
 +--------------+--------------+--------------+--------------+
 | Message Length |
 +--------------+--------------+--------------+--------------+

 Global note: //// implies field is reserved, set to 0.

Durham, et al. Standards Track [Page 6]

RFC 2748 COPS January 2000

 The fields in the header are:
 Version: 4 bits
 COPS version number. Current version is 1.

 Flags: 4 bits
 Defined flag values (all other flags MUST be set to 0):
 0x1 Solicited Message Flag Bit
 This flag is set when the message is solicited by
 another COPS message. This flag is NOT to be set
 (value=0) unless otherwise specified in section 3.

 Op Code: 8 bits
 The COPS operations:
 1 = Request (REQ)
 2 = Decision (DEC)
 3 = Report State (RPT)
 4 = Delete Request State (DRQ)
 5 = Synchronize State Req (SSQ)
 6 = Client-Open (OPN)
 7 = Client-Accept (CAT)
 8 = Client-Close (CC)
 9 = Keep-Alive (KA)
 10= Synchronize Complete (SSC)

 Client-type: 16 bits

 The Client-type identifies the policy client. Interpretation of
 all encapsulated objects is relative to the client-type. Client-
 types that set the most significant bit in the client-type field
 are enterprise specific (these are client-types 0x8000 -
 0xFFFF). (See the specific client usage documents for particular
 client-type IDs). For KA Messages, the client-type in the header
 MUST always be set to 0 as the KA is used for connection
 verification (not per client session verification).

 Message Length: 32 bits
 Size of message in octets, which includes the standard COPS
 header and all encapsulated objects. Messages MUST be aligned on
 4 octet intervals.

Durham, et al. Standards Track [Page 7]

RFC 2748 COPS January 2000

2.2 COPS Specific Object Formats

 All the objects follow the same object format; each object consists
 of one or more 32-bit words with a four-octet header, using the
 following format:

 0 1 2 3
 +-------------+-------------+-------------+-------------+
 | Length (octets) | C-Num | C-Type |
 +-------------+-------------+-------------+-------------+
 | |
 // (Object contents) //
 | |
 +-------------+-------------+-------------+-------------+

 The length is a two-octet value that describes the number of octets
 (including the header) that compose the object. If the length in
 octets does not fall on a 32-bit word boundary, padding MUST be added
 to the end of the object so that it is aligned to the next 32-bit
 boundary before the object can be sent on the wire. On the receiving
 side, a subsequent object boundary can be found by simply rounding up
 the previous stated object length to the next 32-bit boundary.

 Typically, C-Num identifies the class of information contained in the
 object, and the C-Type identifies the subtype or version of the
 information contained in the object.

 C-num: 8 bits
 1 = Handle
 2 = Context
 3 = In Interface
 4 = Out Interface
 5 = Reason code
 6 = Decision
 7 = LPDP Decision
 8 = Error
 9 = Client Specific Info
 10 = Keep-Alive Timer
 11 = PEP Identification
 12 = Report Type
 13 = PDP Redirect Address
 14 = Last PDP Address
 15 = Accounting Timer
 16 = Message Integrity

 C-type: 8 bits
 Values defined per C-num.

Durham, et al. Standards Track [Page 8]

RFC 2748 COPS January 2000

2.2.1 Handle Object (Handle)

 The Handle Object encapsulates a unique value that identifies an
 installed state. This identification is used by most COPS operations.
 A state corresponding to a handle MUST be explicitly deleted when it
 is no longer applicable. See Section 2.4 for details.

 C-Num = 1

 C-Type = 1, Client Handle.

 Variable-length field, no implied format other than it is unique from
 other client handles from the same PEP (a.k.a. COPS TCP connection)
 for a particular client-type. It is always initially chosen by the
 PEP and then deleted by the PEP when no longer applicable. The client
 handle is used to refer to a request state initiated by a particular
 PEP and installed at the PDP for a client-type. A PEP will specify a
 client handle in its Request messages, Report messages and Delete
 messages sent to the PDP. In all cases, the client handle is used to
 uniquely identify a particular PEP’s request for a client-type.

 The client handle value is set by the PEP and is opaque to the PDP.
 The PDP simply performs a byte-wise comparison on the value in this
 object with respect to the handle object values of other currently
 installed requests.

2.2.2 Context Object (Context)

 Specifies the type of event(s) that triggered the query. Required for
 request messages. Admission control, resource allocation, and
 forwarding requests are all amenable to client-types that outsource
 their decision making facility to the PDP. For applicable client-
 types a PEP can also make a request to receive named configuration
 information from the PDP. This named configuration data may be in a
 form useful for setting system attributes on a PEP, or it may be in
 the form of policy rules that are to be directly verified by the PEP.

 Multiple flags can be set for the same request. This is only allowed,
 however, if the set of client specific information in the combined
 request is identical to the client specific information that would be
 specified if individual requests were made for each specified flag.

 C-num = 2, C-Type = 1

Durham, et al. Standards Track [Page 9]

RFC 2748 COPS January 2000

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | R-Type | M-Type |
 +--------------+--------------+--------------+--------------+

 R-Type (Request Type Flag)

 0x01 = Incoming-Message/Admission Control request
 0x02 = Resource-Allocation request
 0x04 = Outgoing-Message request
 0x08 = Configuration request

 M-Type (Message Type)

 Client Specific 16 bit values of protocol message types

2.2.3 In-Interface Object (IN-Int)

 The In-Interface Object is used to identify the incoming interface on
 which a particular request applies and the address where the received
 message originated. For flows or messages generated from the PEP’s
 local host, the loop back address and ifindex are used.

 This Interface object is also used to identify the incoming
 (receiving) interface via its ifindex. The ifindex may be used to
 differentiate between sub-interfaces and unnumbered interfaces (see
 RSVP’s LIH for an example). When SNMP is supported by the PEP, this
 ifindex integer MUST correspond to the same integer value for the
 interface in the SNMP MIB-II interface index table.

 Note: The ifindex specified in the In-Interface is typically relative
 to the flow of the underlying protocol messages. The ifindex is the
 interface on which the protocol message was received.

 C-Num = 3

 C-Type = 1, IPv4 Address + Interface

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | IPv4 Address format |
 +--------------+--------------+--------------+--------------+
 | ifindex |
 +--------------+--------------+--------------+--------------+

 For this type of the interface object, the IPv4 address specifies the
 IP address that the incoming message came from.

Durham, et al. Standards Track [Page 10]

RFC 2748 COPS January 2000

 C-Type = 2, IPv6 Address + Interface

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | |
 + +
 | |
 + IPv6 Address format +
 | |
 + +
 | |
 +--------------+--------------+--------------+--------------+
 | ifindex |
 +--------------+--------------+--------------+--------------+

 For this type of the interface object, the IPv6 address specifies the
 IP address that the incoming message came from. The ifindex is used
 to refer to the MIB-II defined local incoming interface on the PEP as
 described above.

2.2.4 Out-Interface Object (OUT-Int)

 The Out-Interface is used to identify the outgoing interface to which
 a specific request applies and the address for where the forwarded
 message is to be sent. For flows or messages destined to the PEP’s
 local host, the loop back address and ifindex are used. The Out-
 Interface has the same formats as the In-Interface Object.

 This Interface object is also used to identify the outgoing
 (forwarding) interface via its ifindex. The ifindex may be used to
 differentiate between sub-interfaces and unnumbered interfaces (see
 RSVP’s LIH for an example). When SNMP is supported by the PEP, this
 ifindex integer MUST correspond to the same integer value for the
 interface in the SNMP MIB-II interface index table.

 Note: The ifindex specified in the Out-Interface is typically
 relative to the flow of the underlying protocol messages. The ifindex
 is the one on which a protocol message is about to be forwarded.

 C-Num = 4

 C-Type = 1, IPv4 Address + Interface

 Same C-Type format as the In-Interface object. The IPv4 address
 specifies the IP address to which the outgoing message is going. The
 ifindex is used to refer to the MIB-II defined local outgoing
 interface on the PEP.

Durham, et al. Standards Track [Page 11]

RFC 2748 COPS January 2000

 C-Type = 2, IPv6 Address + Interface

 Same C-Type format as the In-Interface object. For this type of the
 interface object, the IPv6 address specifies the IP address to which
 the outgoing message is going. The ifindex is used to refer to the
 MIB-II defined local outgoing interface on the PEP.

2.2.5 Reason Object (Reason)

 This object specifies the reason why the request state was deleted.
 It appears in the delete request (DRQ) message. The Reason Sub-code
 field is reserved for more detailed client-specific reason codes
 defined in the corresponding documents.

 C-Num = 5, C-Type = 1

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Reason-Code | Reason Sub-code |
 +--------------+--------------+--------------+--------------+

 Reason Code:
 1 = Unspecified
 2 = Management
 3 = Preempted (Another request state takes precedence)
 4 = Tear (Used to communicate a signaled state removal)
 5 = Timeout (Local state has timed-out)
 6 = Route Change (Change invalidates request state)
 7 = Insufficient Resources (No local resource available)
 8 = PDP’s Directive (PDP decision caused the delete)
 9 = Unsupported decision (PDP decision not supported)
 10= Synchronize Handle Unknown
 11= Transient Handle (stateless event)
 12= Malformed Decision (could not recover)
 13= Unknown COPS Object from PDP:
 Sub-code (octet 2) contains unknown object’s C-Num
 and (octet 3) contains unknown object’s C-Type.

2.2.6 Decision Object (Decision)

 Decision made by the PDP. Appears in replies. The specific non-
 mandatory decision objects required in a decision to a particular
 request depend on the type of client.

Durham, et al. Standards Track [Page 12]

RFC 2748 COPS January 2000

 C-Num = 6
 C-Type = 1, Decision Flags (Mandatory)

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Command-Code | Flags |
 +--------------+--------------+--------------+--------------+

 Commands:
 0 = NULL Decision (No configuration data available)
 1 = Install (Admit request/Install configuration)
 2 = Remove (Remove request/Remove configuration)

 Flags:
 0x01 = Trigger Error (Trigger error message if set)
 Note: Trigger Error is applicable to client-types that
 are capable of sending error notifications for signaled
 messages.

 Flag values not applicable to a given context’s R-Type or
 client-type MUST be ignored by the PEP.

 C-Type = 2, Stateless Data

 This type of decision object carries additional stateless
 information that can be applied by the PEP locally. It is a
 variable length object and its internal format SHOULD be
 specified in the relevant COPS extension document for the given
 client-type. This object is optional in Decision messages and is
 interpreted relative to a given context.

 It is expected that even outsourcing PEPs will be able to make
 some simple stateless policy decisions locally in their LPDP. As
 this set is well known and implemented ubiquitously, PDPs are
 aware of it as well (either universally, through configuration,
 or using the Client-Open message). The PDP may also include this
 information in its decision, and the PEP MUST apply it to the
 resource allocation event that generated the request.

 C-Type = 3, Replacement Data

 This type of decision object carries replacement data that is to
 replace existing data in a signaled message. It is a variable
 length object and its internal format SHOULD be specified in the
 relevant COPS extension document for the given client-type. It is
 optional in Decision messages and is interpreted relative to a
 given context.

Durham, et al. Standards Track [Page 13]

RFC 2748 COPS January 2000

 C-Type = 4, Client Specific Decision Data

 Additional decision types can be introduced using the Client
 Specific Decision Data Object. It is a variable length object and
 its internal format SHOULD be specified in the relevant COPS
 extension document for the given client-type. It is optional in
 Decision messages and is interpreted relative to a given context.

 C-Type = 5, Named Decision Data

 Named configuration information is encapsulated in this version
 of the decision object in response to configuration requests. It
 is a variable length object and its internal format SHOULD be
 specified in the relevant COPS extension document for the given
 client-type. It is optional in Decision messages and is
 interpreted relative to both a given context and decision flags.

2.2.7 LPDP Decision Object (LPDPDecision)

 Decision made by the PEP’s local policy decision point (LPDP). May
 appear in requests. These objects correspond to and are formatted the
 same as the client specific decision objects defined above.

 C-Num = 7

 C-Type = (same C-Type as for Decision objects)

2.2.8 Error Object (Error)

 This object is used to identify a particular COPS protocol error.
 The error sub-code field contains additional detailed client specific
 error codes. The appropriate Error Sub-codes for a particular
 client-type SHOULD be specified in the relevant COPS extensions
 document.

 C-Num = 8, C-Type = 1

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Error-Code | Error Sub-code |
 +--------------+--------------+--------------+--------------+

 Error-Code:

 1 = Bad handle
 2 = Invalid handle reference
 3 = Bad message format (Malformed Message)
 4 = Unable to process (server gives up on query)

Durham, et al. Standards Track [Page 14]

RFC 2748 COPS January 2000

 5 = Mandatory client-specific info missing
 6 = Unsupported client-type
 7 = Mandatory COPS object missing
 8 = Client Failure
 9 = Communication Failure
 10= Unspecified
 11= Shutting down
 12= Redirect to Preferred Server
 13= Unknown COPS Object:
 Sub-code (octet 2) contains unknown object’s C-Num
 and (octet 3) contains unknown object’s C-Type.
 14= Authentication Failure
 15= Authentication Required

2.2.9 Client Specific Information Object (ClientSI)

 The various types of this object are required for requests, and used
 in reports and opens when required. It contains client-type specific
 information.

 C-Num = 9,

 C-Type = 1, Signaled ClientSI.

 Variable-length field. All objects/attributes specific to a client’s
 signaling protocol or internal state are encapsulated within one or
 more signaled Client Specific Information Objects. The format of the
 data encapsulated in the ClientSI object is determined by the
 client-type.

 C-Type = 2, Named ClientSI.

 Variable-length field. Contains named configuration information
 useful for relaying specific information about the PEP, a request, or
 configured state to the PDP server.

2.2.10 Keep-Alive Timer Object (KATimer)

 Times are encoded as 2 octet integer values and are in units of
 seconds. The timer value is treated as a delta.

 C-Num = 10,

 C-Type = 1, Keep-alive timer value

Durham, et al. Standards Track [Page 15]

RFC 2748 COPS January 2000

 Timer object used to specify the maximum time interval over which a
 COPS message MUST be sent or received. The range of finite timeouts
 is 1 to 65535 seconds represented as an unsigned two-octet integer.
 The value of zero implies infinity.

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | ////////////// | KA Timer Value |
 +--------------+--------------+--------------+--------------+

2.2.11 PEP Identification Object (PEPID)

 The PEP Identification Object is used to identify the PEP client to
 the remote PDP. It is required for Client-Open messages.

 C-Num = 11, C-Type = 1

 Variable-length field. It is a NULL terminated ASCII string that is
 also zero padded to a 32-bit word boundary (so the object length is a
 multiple of 4 octets). The PEPID MUST contain an ASCII string that
 uniquely identifies the PEP within the policy domain in a manner that
 is persistent across PEP reboots. For example, it may be the PEP’s
 statically assigned IP address or DNS name. This identifier may
 safely be used by a PDP as a handle for identifying the PEP in its
 policy rules.

2.2.12 Report-Type Object (Report-Type)

 The Type of Report on the request state associated with a handle:

 C-Num = 12, C-Type = 1

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | Report-Type | ///////////// |
 +--------------+--------------+--------------+--------------+

 Report-Type:
 1 = Success : Decision was successful at the PEP
 2 = Failure : Decision could not be completed by PEP
 3 = Accounting: Accounting update for an installed state

2.2.13 PDP Redirect Address (PDPRedirAddr)

 A PDP when closing a PEP session for a particular client-type may
 optionally use this object to redirect the PEP to the specified PDP
 server address and TCP port number:

Durham, et al. Standards Track [Page 16]

RFC 2748 COPS January 2000

 C-Num = 13,

 C-Type = 1, IPv4 Address + TCP Port
 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | IPv4 Address format |
 +--------------+--------------+--------------+--------------+
 | ///////////////////////// | TCP Port Number |
 +-----------------------------+-----------------------------+

 C-Type = 2, IPv6 Address + TCP Port
 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | |
 + +
 | |
 + IPv6 Address format +
 | |
 + +
 | |
 +--------------+--------------+--------------+--------------+
 | ///////////////////////// | TCP Port Number |
 +-----------------------------+-----------------------------+

2.2.14 Last PDP Address (LastPDPAddr)

 When a PEP sends a Client-Open message for a particular client-type
 the PEP SHOULD specify the last PDP it has successfully opened
 (meaning it received a Client-Accept) since the PEP last rebooted.
 If no PDP was used since the last reboot, the PEP will simply not
 include this object in the Client-Open message.

 C-Num = 14,

 C-Type = 1, IPv4 Address (Same format as PDPRedirAddr)

 C-Type = 2, IPv6 Address (Same format as PDPRedirAddr)

2.2.15 Accounting Timer Object (AcctTimer)

 Times are encoded as 2 octet integer values and are in units of
 seconds. The timer value is treated as a delta.

 C-Num = 15,

 C-Type = 1, Accounting timer value

Durham, et al. Standards Track [Page 17]

RFC 2748 COPS January 2000

 Optional timer value used to determine the minimum interval between
 periodic accounting type reports. It is used by the PDP to describe
 to the PEP an acceptable interval between unsolicited accounting
 updates via Report messages where applicable. It provides a method
 for the PDP to control the amount of accounting traffic seen by the
 network. The range of finite time values is 1 to 65535 seconds
 represented as an unsigned two-octet integer. A value of zero means
 there SHOULD be no unsolicited accounting updates.

 0 1 2 3
 +--------------+--------------+--------------+--------------+
 | ////////////// | ACCT Timer Value |
 +--------------+--------------+--------------+--------------+

2.2.16 Message Integrity Object (Integrity)

 The integrity object includes a sequence number and a message digest
 useful for authenticating and validating the integrity of a COPS
 message. When used, integrity is provided at the end of a COPS
 message as the last COPS object. The digest is then computed over all
 of a particular COPS message up to but not including the digest value
 itself. The sender of a COPS message will compute and fill in the
 digest portion of the Integrity object. The receiver of a COPS
 message will then compute a digest over the received message and
 verify it matches the digest in the received Integrity object.

 C-Num = 16,

 C-Type = 1, HMAC digest

 The HMAC integrity object employs HMAC (Keyed-Hashing for Message
 Authentication) [HMAC] to calculate the message digest based on a key
 shared between the PEP and its PDP.

 This Integrity object specifies a 32-bit Key ID used to identify a
 specific key shared between a particular PEP and its PDP and the
 cryptographic algorithm to be used. The Key ID allows for multiple
 simultaneous keys to exist on the PEP with corresponding keys on the
 PDP for the given PEPID. The key identified by the Key ID was used to
 compute the message digest in the Integrity object. All
 implementations, at a minimum, MUST support HMAC-MD5-96, which is
 HMAC employing the MD5 Message-Digest Algorithm [MD5] truncated to
 96-bits to calculate the message digest.

 This object also includes a sequence number that is a 32-bit unsigned
 integer used to avoid replay attacks. The sequence number is
 initiated during an initial Client-Open Client-Accept message
 exchange and is then incremented by one each time a new message is

Durham, et al. Standards Track [Page 18]

RFC 2748 COPS January 2000

 sent over the TCP connection in the same direction. If the sequence
 number reaches the value of 0xFFFFFFFF, the next increment will
 simply rollover to a value of zero.

 The variable length digest is calculated over a COPS message starting
 with the COPS Header up to the Integrity Object (which MUST be the
 last object in a COPS message) INCLUDING the Integrity object’s
 header, Key ID, and Sequence Number. The Keyed Message Digest field
 is not included as part of the digest calculation. In the case of
 HMAC-MD5-96, HMAC-MD5 will produce a 128-bit digest that is then to
 be truncated to 96-bits before being stored in or verified against
 the Keyed Message Digest field as specified in [HMAC]. The Keyed
 Message Digest MUST be 96-bits when HMAC-MD5-96 is used.

 0 1 2 3
 +-------------+-------------+-------------+-------------+
 | Key ID |
 +-------------+-------------+-------------+-------------+
 | Sequence Number |
 +-------------+-------------+-------------+-------------+
 | |
 + +
 | ...Keyed Message Digest... |
 + +
 | |
 +-------------+-------------+-------------+-------------+

2.3 Communication

 The COPS protocol uses a single persistent TCP connection between the
 PEP and a remote PDP. One PDP implementation per server MUST listen
 on a well-known TCP port number (COPS=3288 [IANA]). The PEP is
 responsible for initiating the TCP connection to a PDP. The location
 of the remote PDP can either be configured, or obtained via a service
 location mechanism [SRVLOC]. Service discovery is outside the scope
 of this protocol, however.

 If a single PEP can support multiple client-types, it may send
 multiple Client-Open messages, each specifying a particular client-
 type to a PDP over one or more TCP connections. Likewise, a PDP
 residing at a given address and port number may support one or more
 client-types. Given the client-types it supports, a PDP has the
 ability to either accept or reject each client-type independently.
 If a client-type is rejected, the PDP can redirect the PEP to an
 alternative PDP address and TCP port for a given client-type via
 COPS. Different TCP port numbers can be used to redirect the PEP to
 another PDP implementation running on the same server. Additional
 provisions for supporting multiple client-types (perhaps from

Durham, et al. Standards Track [Page 19]

RFC 2748 COPS January 2000

 independent PDP vendors) on a single remote PDP server are not
 provided by the COPS protocol, but, rather, are left to the software
 architecture of the given server platform.

 It is possible a single PEP may have open connections to multiple
 PDPs. This is the case when there are physically different PDPs
 supporting different client-types as shown in figure 2.

 +----------------+
 | |
 | Network Node | Policy Servers
 | |
 | +-----+ | COPS Client Type 1 +-----+
 | | |<-----|-------------------->| PDP1|
 | + PEP + | COPS Client Type 2 +-----+
 | | |<-----|---------\ +-----+
 | +-----+ | \----------| PDP2|
 | ^ | +-----+
 | | |
 | \-->+-----+ |
 | | LPDP| |
 | +-----+ |
 | |
 +----------------+

 Figure 2: Multiple PDPs illustration.

 When a TCP connection is torn down or is lost, the PDP is expected to
 eventually clean up any outstanding request state related to
 request/decision exchanges with the PEP. When the PEP detects a lost
 connection due to a timeout condition it SHOULD explicitly send a
 Client-Close message for each opened client-type containing an
 <Error> object indicating the "Communication Failure" Error-Code.
 Additionally, the PEP SHOULD continuously attempt to contact the
 primary PDP or, if unsuccessful, any known backup PDPs. Specifically
 the PEP SHOULD keep trying all relevant PDPs with which it has been
 configured until it can establish a connection. If a PEP is in
 communication with a backup PDP and the primary PDP becomes
 available, the backup PDP is responsible for redirecting the PEP back
 to the primary PDP (via a <Client-Close> message containing a
 <PDPRedirAddr> object identifying the primary PDP to use for each
 affected client-type). Section 2.5 details synchronization behavior
 between PEPs and PDPs.

Durham, et al. Standards Track [Page 20]

RFC 2748 COPS January 2000

2.4 Client Handle Usage

 The client handle is used to identify a unique request state for a
 single PEP per client-type. Client handles are chosen by the PEP and
 are opaque to the PDP. The PDP simply uses the request handle to
 uniquely identify the request state for a particular Client-Type over
 a particular TCP connection and generically tie its decisions to a
 corresponding request. Client handles are initiated in request
 messages and are then used by subsequent request, decision, and
 report messages to reference the same request state. When the PEP is
 ready to remove a local request state, it will issue a delete message
 to the PDP for the corresponding client handle. A handle MUST be
 explicitly deleted by the PEP before it can be used by the PEP to
 identify a new request state. Handles referring to different request
 states MUST be unique within the context of a particular TCP
 connection and client-type.

2.5 Synchronization Behavior

 When disconnected from a PDP, the PEP SHOULD revert to making local
 decisions. Once a connection is reestablished, the PEP is expected to
 notify the PDP of any events that have passed local admission
 control. Additionally, the remote PDP may request that all the PEP’s
 internal state be resynchronized (all previously installed requests
 are to be reissued) by sending a Synchronize State message.

 After a failure and before a new connection is fully functional,
 disruption of service can be minimized if the PEP caches previously
 communicated decisions and continues to use them for some appropriate
 length of time. Specific rules for such behavior are to be defined in
 the appropriate COPS client-type extension specifications.

 A PEP that caches state from a previous exchange with a disconnected
 PDP MUST communicate this fact to any PDP with which it is able to
 later reconnect. This is accomplished by including the address and
 TCP port of the last PDP for which the PEP is still caching state in
 the Client-Open message. The <LastPDPAddr> object will only be
 included for the last PDP with which the PEP was completely in sync.
 If the service interruption was temporary and the PDP still contains
 the complete state for the PEP, the PDP may choose not to synchronize
 all states. It is still the responsibility of the PEP to update the
 PDP of all state changes that occurred during the disruption of
 service including any states communicated to the previous PDP that
 had been deleted after the connection was lost. These MUST be
 explicitly deleted after a connection is reestablished. If the PDP
 issues a synchronize request the PEP MUST pass all current states to
 the PDP followed by a Synchronize State Complete message (thus

Durham, et al. Standards Track [Page 21]

RFC 2748 COPS January 2000

 completing the synchronization process). If the PEP crashes and loses
 all cached state for a client-type, it will simply not include a
 <LastPDPAddr> in its Client-Open message.

3. Message Content

 This section describes the basic messages exchanged between a PEP and
 a remote PDP as well as their contents. As a convention, object
 ordering is expected as shown in the BNF for each COPS message unless
 otherwise noted. The Integrity object, if included, MUST always be
 the last object in a message. If security is required and a message
 was received without a valid Integrity object, the receiver MUST send
 a Client-Close message for Client-Type=0 specifying the appropriate
 error code.

3.1 Request (REQ) PEP -> PDP

 The PEP establishes a request state client handle for which the
 remote PDP may maintain state. The remote PDP then uses this handle
 to refer to the exchanged information and decisions communicated over
 the TCP connection to a particular PEP for a given client-type.

 Once a stateful handle is established for a new request, any
 subsequent modifications of the request can be made using the REQ
 message specifying the previously installed handle. The PEP is
 responsible for notifying the PDP whenever its local state changes so
 the PDP’s state will be able to accurately mirror the PEP’s state.

Durham, et al. Standards Track [Page 22]

RFC 2748 COPS January 2000

 The format of the Request message is as follows:

 <Request Message> ::= <Common Header>
 <Client Handle>
 <Context>
 [<IN-Int>]
 [<OUT-Int>]
 [<ClientSI(s)>]
 [<LPDPDecision(s)>]
 [<Integrity>]

 <ClientSI(s)> ::= <ClientSI> | <ClientSI(s)> <ClientSI>

 <LPDPDecision(s)> ::= <LPDPDecision> |
 <LPDPDecision(s)> <LPDPDecision>

 <LPDPDecision> ::= [<Context>]
 <LPDPDecision: Flags>
 [<LPDPDecision: Stateless Data>]
 [<LPDPDecision: Replacement Data>]
 [<LPDPDecision: ClientSI Data>]
 [<LPDPDecision: Named Data>]

 The context object is used to determine the context within which all
 the other objects are to be interpreted. It also is used to determine
 the kind of decision to be returned from the policy server. This
 decision might be related to admission control, resource allocation,
 object forwarding and substitution, or configuration.

 The interface objects are used to determine the corresponding
 interface on which a signaling protocol message was received or is
 about to be sent. They are typically used if the client is
 participating along the path of a signaling protocol or if the client
 is requesting configuration data for a particular interface.

 ClientSI, the client specific information object, holds the client-
 type specific data for which a policy decision needs to be made. In
 the case of configuration, the Named ClientSI may include named
 information about the module, interface, or functionality to be
 configured. The ordering of multiple ClientSIs is not important.

 Finally, LPDPDecision object holds information regarding the local
 decision made by the LPDP.

 Malformed Request messages MUST result in the PDP specifying a
 Decision message with the appropriate error code.

Durham, et al. Standards Track [Page 23]

RFC 2748 COPS January 2000

3.2 Decision (DEC) PDP -> PEP

 The PDP responds to the REQ with a DEC message that includes the
 associated client handle and one or more decision objects grouped
 relative to a Context object and Decision Flags object type pair. If
 there was a protocol error an error object is returned instead.

 It is required that the first decision message for a new/updated
 request will have the solicited message flag set (value = 1) in the
 COPS header. This avoids the issue of keeping track of which updated
 request (that is, a request reissued for the same handle) a
 particular decision corresponds. It is important that, for a given
 handle, there be at most one outstanding solicited decision per
 request. This essentially means that the PEP SHOULD NOT issue more
 than one REQ (for a given handle) before it receives a corresponding
 DEC with the solicited message flag set. The PDP MUST always issue
 decisions for requests on a particular handle in the order they
 arrive and all requests MUST have a corresponding decision.

 To avoid deadlock, the PEP can always timeout after issuing a request
 that does not receive a decision. It MUST then delete the timed-out
 handle, and may try again using a new handle.

 The format of the Decision message is as follows:

 <Decision Message> ::= <Common Header>
 <Client Handle>
 <Decision(s)> | <Error>
 [<Integrity>]

 <Decision(s)> ::= <Decision> | <Decision(s)> <Decision>

 <Decision> ::= <Context>
 <Decision: Flags>
 [<Decision: Stateless Data>]
 [<Decision: Replacement Data>]
 [<Decision: ClientSI Data>]
 [<Decision: Named Data>]

 The Decision message may include either an Error object or one or
 more context plus associated decision objects. COPS protocol problems
 are reported in the Error object (e.g. an error with the format of
 the original request including malformed request messages, unknown
 COPS objects in the Request, etc.). The applicable Decision object(s)
 depend on the context and the type of client. The only ordering
 requirement for decision objects is that the required Decision Flags
 object type MUST precede the other Decision object types per context
 binding.

Durham, et al. Standards Track [Page 24]

RFC 2748 COPS January 2000

3.3 Report State (RPT) PEP -> PDP

 The RPT message is used by the PEP to communicate to the PDP its
 success or failure in carrying out the PDP’s decision, or to report
 an accounting related change in state. The Report-Type specifies the
 kind of report and the optional ClientSI can carry additional
 information per Client-Type.

 For every DEC message containing a configuration context that is
 received by a PEP, the PEP MUST generate a corresponding Report State
 message with the Solicited Message flag set describing its success or
 failure in applying the configuration decision. In addition,
 outsourcing decisions from the PDP MAY result in a corresponding
 solicited Report State from the PEP depending on the context and the
 type of client. RPT messages solicited by decisions for a given
 Client Handle MUST set the Solicited Message flag and MUST be sent in
 the same order as their corresponding Decision messages were
 received. There MUST never be more than one Report State message
 generated with the Solicited Message flag set per Decision.

 The Report State may also be used to provide periodic updates of
 client specific information for accounting and state monitoring
 purposes depending on the type of the client. In such cases the
 accounting report type should be specified utilizing the appropriate
 client specific information object.

 <Report State> ::== <Common Header>
 <Client Handle>
 <Report-Type>
 [<ClientSI>]
 [<Integrity>]

3.4 Delete Request State (DRQ) PEP -> PDP

 When sent from the PEP this message indicates to the remote PDP that
 the state identified by the client handle is no longer
 available/relevant. This information will then be used by the remote
 PDP to initiate the appropriate housekeeping actions. The reason code
 object is interpreted with respect to the client-type and signifies
 the reason for the removal.

 The format of the Delete Request State message is as follows:

 <Delete Request> ::= <Common Header>
 <Client Handle>
 <Reason>
 [<Integrity>]

Durham, et al. Standards Track [Page 25]

RFC 2748 COPS January 2000

 Given the stateful nature of COPS, it is important that when a
 request state is finally removed from the PEP, a DRQ message for this
 request state is sent to the PDP so the corresponding state may
 likewise be removed on the PDP. Request states not explicitly deleted
 by the PEP will be maintained by the PDP until either the client
 session is closed or the connection is terminated.

 Malformed Decision messages MUST trigger a DRQ specifying the
 appropriate erroneous reason code (Bad Message Format) and any
 associated state on the PEP SHOULD either be removed or re-requested.
 If a Decision contained an unknown COPS Decision Object, the PEP MUST
 delete its request specifying the Unknown COPS Object reason code
 because the PEP will be unable to comply with the information
 contained in the unknown object. In any case, after issuing a DRQ,
 the PEP may retry the corresponding Request again.

3.5 Synchronize State Request (SSQ) PDP -> PEP

 The format of the Synchronize State Query message is as follows:

 <Synchronize State> ::= <Common Header>
 [<Client Handle>]
 [<Integrity>]

 This message indicates that the remote PDP wishes the client (which
 appears in the common header) to re-send its state. If the optional
 Client Handle is present, only the state associated with this handle
 is synchronized. If the PEP does not recognize the requested handle,
 it MUST immediately send a DRQ message to the PDP for the handle that
 was specified in the SSQ message. If no handle is specified in the
 SSQ message, all the active client state MUST be synchronized with
 the PDP.

 The client performs state synchronization by re-issuing request
 queries of the specified client-type for the existing state in the
 PEP. When synchronization is complete, the PEP MUST issue a
 synchronize state complete message to the PDP.

3.6 Client-Open (OPN) PEP -> PDP

 The Client-Open message can be used by the PEP to specify to the PDP
 the client-types the PEP can support, the last PDP to which the PEP
 connected for the given client-type, and/or client specific feature
 negotiation. A Client-Open message can be sent to the PDP at any time
 and multiple Client-Open messages for the same client-type are
 allowed (in case of global state changes).

Durham, et al. Standards Track [Page 26]

RFC 2748 COPS January 2000

 <Client-Open> ::= <Common Header>
 <PEPID>
 [<ClientSI>]
 [<LastPDPAddr>]
 [<Integrity>]

 The PEPID is a symbolic, variable length name that uniquely
 identifies the specific client to the PDP (see Section 2.2.11).

 A named ClientSI object can be included for relaying additional
 global information about the PEP to the PDP when required (as
 specified in the appropriate extensions document for the client-
 type).

 The PEP may also provide a Last PDP Address object in its Client-Open
 message specifying the last PDP (for the given client-type) for which
 it is still caching decisions since its last reboot. A PDP can use
 this information to determine the appropriate synchronization
 behavior (See section 2.5).

 If the PDP receives a malformed Client-Open message it MUST generate
 a Client-Close message specifying the appropriate error code.

3.7 Client-Accept (CAT) PDP -> PEP

 The Client-Accept message is used to positively respond to the
 Client-Open message. This message will return to the PEP a timer
 object indicating the maximum time interval between keep-alive
 messages. Optionally, a timer specifying the minimum allowed interval
 between accounting report messages may be included when applicable.

 <Client-Accept> ::= <Common Header>
 <KA Timer>
 [<ACCT Timer>]
 [<Integrity>]

 If the PDP refuses the client, it will instead issue a Client-Close
 message.

 The KA Timer corresponds to maximum acceptable intermediate time
 between the generation of messages by the PDP and PEP. The timer
 value is determined by the PDP and is specified in seconds. A timer
 value of 0 implies no secondary connection verification is necessary.

 The optional ACCT Timer allows the PDP to indicate to the PEP that
 periodic accounting reports SHOULD NOT exceed the specified timer
 interval per client handle. This allows the PDP to control the rate
 at which accounting reports are sent by the PEP (when applicable).

Durham, et al. Standards Track [Page 27]

RFC 2748 COPS January 2000

 In general, accounting type Report messages are sent to the PDP when
 determined appropriate by the PEP. The accounting timer merely is
 used by the PDP to keep the rate of such updates in check (i.e.
 Preventing the PEP from blasting the PDP with accounting reports).
 Not including this object implies there are no PDP restrictions on
 the rate at which accounting updates are generated.

 If the PEP receives a malformed Client-Accept message it MUST
 generate a Client-Close message specifying the appropriate error
 code.

3.8 Client-Close (CC) PEP -> PDP, PDP -> PEP

 The Client-Close message can be issued by either the PDP or PEP to
 notify the other that a particular type of client is no longer being
 supported.

 <Client-Close> ::= <Common Header>
 <Error>
 [<PDPRedirAddr>]
 [<Integrity>]

 The Error object is included to describe the reason for the close
 (e.g. the requested client-type is not supported by the remote PDP or
 client failure).

 A PDP MAY optionally include a PDP Redirect Address object in order
 to inform the PEP of the alternate PDP it SHOULD use for the client-
 type specified in the common header.

3.9 Keep-Alive (KA) PEP -> PDP, PDP -> PEP

 The keep-alive message MUST be transmitted by the PEP within the
 period defined by the minimum of all KA Timer values specified in all
 received CAT messages for the connection. A KA message MUST be
 generated randomly between 1/4 and 3/4 of this minimum KA timer
 interval. When the PDP receives a keep-alive message from a PEP, it
 MUST echo a keep-alive back to the PEP. This message provides
 validation for each side that the connection is still functioning
 even when there is no other messaging.

 Note: The client-type in the header MUST always be set to 0 as the KA
 is used for connection verification (not per client session
 verification).

 <Keep-Alive> ::= <Common Header>
 [<Integrity>]

Durham, et al. Standards Track [Page 28]

RFC 2748 COPS January 2000

 Both client and server MAY assume the TCP connection is insufficient
 for the client-type with the minimum time value (specified in the CAT
 message) if no communication activity is detected for a period
 exceeding the timer period. For the PEP, such detection implies the
 remote PDP or connection is down and the PEP SHOULD now attempt to
 use an alternative/backup PDP.

3.10 Synchronize State Complete (SSC) PEP -> PDP

 The Synchronize State Complete is sent by the PEP to the PDP after
 the PDP sends a synchronize state request to the PEP and the PEP has
 finished synchronization. It is useful so that the PDP will know when
 all the old client state has been successfully re-requested and,
 thus, the PEP and PDP are completely synchronized. The Client Handle
 object only needs to be included if the corresponding Synchronize
 State Message originally referenced a specific handle.

 <Synchronize State Complete> ::= <Common Header>
 [<Client Handle>]
 [<Integrity>]

4. Common Operation

 This section describes the typical exchanges between remote PDP
 servers and PEP clients.

4.1 Security and Sequence Number Negotiation

 COPS message security is negotiated once per connection and covers
 all communication over a particular connection. If COPS level
 security is required, it MUST be negotiated during the initial
 Client-Open/Client-Accept message exchange specifying a Client-Type
 of zero (which is reserved for connection level security negotiation
 and connection verification).

 If a PEP is not configured to use COPS security with a PDP it will
 simply send the PDP Client-Open messages for the supported Client-
 Types as specified in section 4.3 and will not include the Integrity
 object in any COPS messages.

 Otherwise, security can be initiated by the PEP if it sends the PDP a
 Client-Open message with Client-Type=0 before opening any other
 Client-Type. If the PDP receives a Client-Open with a Client-Type=0
 after another Client-Type has already been opened successfully it
 MUST return a Client-Close message (for Client-Type=0) to that PEP.
 This first Client-Open message MUST specify a Client-Type of zero and
 MUST provide the PEPID and a COPS Integrity object. This Integrity
 object will contain the initial sequence number the PEP requires the

Durham, et al. Standards Track [Page 29]

RFC 2748 COPS January 2000

 PDP to increment during subsequent communication after the initial
 Client-Open/Client-Accept exchange and the Key ID identifying the
 algorithm and key used to compute the digest.

 Similarly, if the PDP accepts the PEP’s security key and algorithm by
 validating the message digest using the identified key, the PDP MUST
 send a Client-Accept message with a Client-Type of zero to the PEP
 carrying an Integrity object. This Integrity object will contain the
 initial sequence number the PDP requires the PEP to increment during
 all subsequent communication with the PDP and the Key ID identifying
 the key and algorithm used to compute the digest.

 If the PEP, from the perspective of a PDP that requires security,
 fails or never performs the security negotiation by not sending an
 initial Client-Open message with a Client-Type=0 including a valid
 Integrity object, the PDP MUST send to the PEP a Client-Close message
 with a Client-Type=0 specifying the appropriate error code.
 Similarly, if the PDP, from the perspective of a PEP that requires
 security, fails the security negotiation by not sending back a
 Client-Accept message with a Client-Type=0 including a valid
 Integrity object, the PEP MUST send to the PDP a Client-Close message
 with a Client-Type=0 specifying the appropriate error code. Such a
 Client-Close message need not carry an integrity object (as the
 security negotiation did not yet complete).

 The security initialization can fail for one of several reasons: 1.
 The side receiving the message requires COPS level security but an
 Integrity object was not provided (Authentication Required error
 code). 2. A COPS Integrity object was provided, but with an
 unknown/unacceptable C-Type (Unknown COPS Object error code
 specifying the unsupported C-Num and C-Type). 3. The message digest
 or Key ID in the provided Integrity object was incorrect and
 therefore the message could not be authenticated using the identified
 key (Authentication Failure error code).

 Once the initial security negotiation is complete, the PEP will know
 what sequence numbers the PDP expects and the PDP will know what
 sequence numbers the PEP expects. ALL COPS messages must then include
 the negotiated Integrity object specifying the correct sequence
 number with the appropriate message digest (including the Client-
 Open/Client-Accept messages for specific Client-Types). ALL
 subsequent messages from the PDP to the PEP MUST result in an
 increment of the sequence number provided by the PEP in the Integrity
 object of the initial Client-Open message. Likewise, ALL subsequent
 messages from the PEP to the PDP MUST result in an increment of the
 sequence number provided by the PDP in the Integrity object of the
 initial Client-Accept message. Sequence numbers are incremented by
 one starting with the corresponding initial sequence number. For

Durham, et al. Standards Track [Page 30]

RFC 2748 COPS January 2000

 example, if the sequence number specified to the PEP by the PDP in
 the initial Client-Accept was 10, the next message the PEP sends to
 the PDP will provide an Integrity object with a sequence number of
 11... Then the next message the PEP sends to the PDP will have a
 sequence number of 12 and so on. If any subsequent received message
 contains the wrong sequence number, an unknown Key ID, an invalid
 message digest, or is missing an Integrity object after integrity was
 negotiated, then a Client-Close message MUST be generated for the
 Client-Type zero containing a valid Integrity object and specifying
 the appropriate error code. The connection should then be dropped.

4.2 Key Maintenance

 Key maintenance is outside the scope of this document, but COPS
 implementations MUST at least provide the ability to manually
 configure keys and their parameters locally. The key used to produce
 the Integrity object’s message digest is identified by the Key ID
 field. Thus, a Key ID parameter is used to identify one of
 potentially multiple simultaneous keys shared by the PEP and PDP. A
 Key ID is relative to a particular PEPID on the PDP or to a
 particular PDP on the PEP. Each key must also be configured with
 lifetime parameters for the time period within which it is valid as
 well as an associated cryptographic algorithm parameter specifying
 the algorithm to be used with the key. At a minimum, all COPS
 implementations MUST support the HMAC-MD5-96 [HMAC][MD5]
 cryptographic algorithm for computing a message digest for inclusion
 in the Keyed Message Digest of the Integrity object which is appended
 to the message.

 It is good practice to regularly change keys. Keys MUST be
 configurable such that their lifetimes overlap allowing smooth
 transitions between keys. At the midpoint of the lifetime overlap
 between two keys, senders should transition from using the current
 key to the next/longer-lived key. Meanwhile, receivers simply accept
 any identified key received within its configured lifetime and reject
 those that are not.

4.3 PEP Initialization

 Sometime after a connection is established between the PEP and a
 remote PDP and after security is negotiated (if required), the PEP
 will send one or more Client-Open messages to the remote PDP, one for
 each client-type supported by the PEP. The Client-Open message MUST
 contain the address of the last PDP with which the PEP is still
 caching a complete set of decisions. If no decisions are being cached
 from the previous PDP the LastPDPAddr object MUST NOT be included in
 the Client-Open message (see Section 2.5). Each Client-Open message
 MUST at least contain the common header noting one client-type

Durham, et al. Standards Track [Page 31]

RFC 2748 COPS January 2000

 supported by the PEP. The remote PDP will then respond with separate
 Client-Accept messages for each of the client-types requested by the
 PEP that the PDP can also support.

 If a specific client-type is not supported by the PDP, the PDP will
 instead respond with a Client-Close specifying the client-type is not
 supported and will possibly suggest an alternate PDP address and
 port. Otherwise, the PDP will send a Client-Accept specifying the
 timer interval between keep-alive messages and the PEP may begin
 issuing requests to the PDP.

4.4 Outsourcing Operations

 In the outsourcing scenario, when the PEP receives an event that
 requires a new policy decision it sends a request message to the
 remote PDP. What specifically qualifies as an event for a particular
 client-type SHOULD be specified in the specific document for that
 client-type. The remote PDP then makes a decision and sends a
 decision message back to the PEP. Since the request is stateful, the
 request will be remembered, or installed, on the remote PDP. The
 unique handle (unique per TCP connection and client-type), specified
 in both the request and its corresponding decision identifies this
 request state. The PEP is responsible for deleting this request state
 once the request is no longer applicable.

 The PEP can update a previously installed request state by reissuing
 a request for the previously installed handle. The remote PDP is then
 expected to make new decisions and send a decision message back to
 the PEP. Likewise, the server MAY change a previously issued decision
 on any currently installed request state at any time by issuing an
 unsolicited decision message. At all times the PEP module is expected
 to abide by the PDP’s decisions and notify the PDP of any state
 changes.

4.5 Configuration Operations

 In the configuration scenario, as in the outsourcing scenario, the
 PEP will make a configuration request to the PDP for a particular
 interface, module, or functionality that may be specified in the
 named client specific information object. The PDP will then send
 potentially several decisions containing named units of configuration
 data to the PEP. The PEP is expected to install and use the
 configuration locally. A particular named configuration can be
 updated by simply sending additional decision messages for the same
 named configuration. When the PDP no longer wishes the PEP to use a
 piece of configuration information, it will send a decision message
 specifying the named configuration and a decision flags object with

Durham, et al. Standards Track [Page 32]

RFC 2748 COPS January 2000

 the remove configuration command. The PEP SHOULD then proceed to
 remove the corresponding configuration and send a report message to
 the PDP that specifies it has been deleted.

 In all cases, the PEP MAY notify the remote PDP of the local status
 of an installed state using the report message where appropriate.
 The report message is to be used to signify when billing can begin,
 what actions were taken, or to produce periodic updates for
 monitoring and accounting purposes depending on the client. This
 message can carry client specific information when needed.

4.6 Keep-Alive Operations

 The Keep-Alive message is used to validate the connection between the
 client and server is still functioning even when there is no other
 messaging from the PEP to PDP. The PEP MUST generate a COPS KA
 message randomly within one-fourth to three-fourths the minimum KA
 Timer interval specified by the PDP in the Client-Accept message. On
 receiving a Keep-Alive message from the PEP, the PDP MUST then
 respond to this Keep-Alive message by echoing a Keep-Alive message
 back to the PEP. If either side does not receive a Keep-Alive or any
 other COPS message within the minimum KA Timer interval from the
 other, the connection SHOULD be considered lost.

4.7 PEP/PDP Close

 Finally, Client-Close messages are used to negate the effects of the
 corresponding Client-Open messages, notifying the other side that the
 specified client-type is no longer supported/active. When the PEP
 detects a lost connection due to a keep-alive timeout condition it
 SHOULD explicitly send a Client-Close message for each opened
 client-type specifying a communications failure error code. Then the
 PEP MAY proceed to terminate the connection to the PDP and attempt to
 reconnect again or try a backup/alternative PDP. When the PDP is
 shutting down, it SHOULD also explicitly send a Client-Close to all
 connected PEPs for each client-type, perhaps specifying an
 alternative PDP to use instead.

5. Security Considerations

 The COPS protocol provides an Integrity object that can achieve
 authentication, message integrity, and replay prevention. All COPS
 implementations MUST support the COPS Integrity object and its
 mechanisms as described in this document. To ensure the client (PEP)
 is communicating with the correct policy server (PDP) requires
 authentication of the PEP and PDP using a shared secret, and
 consistent proof that the connection remains valid. The shared secret
 minimally requires manual configuration of keys (identified by a Key

Durham, et al. Standards Track [Page 33]

RFC 2748 COPS January 2000

 ID) shared between the PEP and its PDP. The key is used in
 conjunction with the contents of a COPS message to calculate a
 message digest that is part of the Integrity object. The Integrity
 object is then used to validate all COPS messages sent over the TCP
 connection between a PEP and PDP.

 Key maintenance is outside the scope of this document beyond the
 specific requirements discussed in section 4.2. In general, it is
 good practice to regularly change keys to maintain security.
 Furthermore, it is good practice to use localized keys specific to a
 particular PEP such that a stolen PEP will not compromise the
 security of an entire administrative domain.

 The COPS Integrity object also provides sequence numbers to avoid
 replay attacks. The PDP chooses the initial sequence number for the
 PEP and the PEP chooses the initial sequence number for the PDP.
 These initial numbers are then incremented with each successive
 message sent over the connection in the corresponding direction. The
 initial sequence numbers SHOULD be chosen such that they are
 monotonically increasing and never repeat for a particular key.

 Security between the client (PEP) and server (PDP) MAY be provided by
 IP Security [IPSEC]. In this case, the IPSEC Authentication Header
 (AH) SHOULD be used for the validation of the connection;
 additionally IPSEC Encapsulation Security Payload (ESP) MAY be used
 to provide both validation and secrecy.

 Transport Layer Security [TLS] MAY be used for both connection-level
 validation and privacy.

6. IANA Considerations

 The Client-type identifies the policy client application to which a
 message refers. Client-type values within the range 0x0001-0x3FFF are
 reserved Specification Required status as defined in [IANA-
 CONSIDERATIONS]. These values MUST be registered with IANA and their
 behavior and applicability MUST be described in a COPS extension
 document.

 Client-type values in the range 0x4000 - 0x7FFF are reserved for
 Private Use as defined in [IANA-CONSIDERATIONS]. These Client-types
 are not tracked by IANA and are not to be used in standards or
 general-release products, as their uniqueness cannot be assured.

 Client-type values in the range 0x8000 - 0xFFFF are First Come First
 Served as defined in [IANA-CONSIDERATIONS]. These Client-types are
 tracked by IANA but do not require published documents describing
 their use. IANA merely assures their uniqueness.

Durham, et al. Standards Track [Page 34]

RFC 2748 COPS January 2000

 Objects in the COPS Protocol are identified by their C-Num and C-Type
 values. IETF Consensus as identified in [IANA-CONSIDERATIONS] is
 required to introduce new values for these numbers and, therefore,
 new objects into the base COPS protocol.

 Additional Context Object R-Types, Reason-Codes, Report-Types,
 Decision Object Command-Codes/Flags, and Error-Codes MAY be defined
 for use with future Client-types, but such additions require IETF
 Consensus as defined in [IANA-CONSIDERATIONS].

 Context Object M-Types, Reason Sub-Codes, and Error Sub-codes MAY be
 defined relative to a particular Client-type following the same IANA
 considerations as their respective Client-type.

7. References

 [RSVP] Braden, R., Zhang, L., Berson, S., Herzog, S.
 and S. Jamin, "Resource ReSerVation Protocol
 (RSVP) Version 1 - Functional Specification",
 RFC 2205, September 1997.

 [WRK] Yavatkar, R., Pendarakis, D. and R. Guerin, "A
 Framework for Policy-Based Admission Control",
 RFC 2753, January 2000.

 [SRVLOC] Guttman, E., Perkins, C., Veizades, J. and M.
 Day, "Service Location Protocol , Version 2",
 RFC 2608, June 1999.

 [INSCH] Shenker, S. and J. Wroclawski, "General
 Characterization Parameters for Integrated
 Service Network Elements", RFC 2215, September
 1997.

 [IPSEC] Atkinson, R., "Security Architecture for the
 Internet Protocol", RFC 2401, August 1995.

 [HMAC] Krawczyk, H., Bellare, M. and R. Canetti,
 "HMAC: Keyed-Hashing for Message
 Authentication", RFC 2104, February 1997.

 [MD5] Rivest, R., "The MD5 Message-Digest Algorithm",
 RFC 1321, April 1992.

 [RSVPPR] Braden, R. and L. Zhang, "Resource ReSerVation
 Protocol (RSVP) - Version 1 Message Processing
 Rules", RFC 2209, September 1997.

Durham, et al. Standards Track [Page 35]

RFC 2748 COPS January 2000

 [TLS] Dierks T. and C. Allen, "The TLS Protocol
 Version 1.0", RFC 2246, January 1999.

 [IANA] http://www.isi.edu/in-
 notes/iana/assignments/port-numbers

 [IANA-CONSIDERATIONS] Alvestrand, H. and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in
 RFCs", BCP 26, RFC 2434, October 1998.

8. Author Information and Acknowledgments

 Special thanks to Andrew Smith and Timothy O’Malley our WG Chairs,
 Raj Yavatkar, Russell Fenger, Fred Baker, Laura Cunningham, Roch
 Guerin, Ping Pan, and Dimitrios Pendarakis for their valuable
 contributions.

 Jim Boyle
 Level 3 Communications
 1025 Eldorado Boulevard
 Broomfield, CO 80021

 Phone: 720.888.1192
 EMail: jboyle@Level3.net

 Ron Cohen
 CISCO Systems
 4 Maskit St.
 Herzeliya Pituach 46766 Israel

 Phone: +972.9.9700064
 EMail: ronc@cisco.com

 David Durham
 Intel
 2111 NE 25th Avenue
 Hillsboro, OR 97124

 Phone: 503.264.6232
 EMail: David.Durham@intel.com

Durham, et al. Standards Track [Page 36]

RFC 2748 COPS January 2000

 Raju Rajan
 AT&T Shannon Laboratory
 180 Park Avenue
 P.O. Box 971
 Florham Park, NJ 07932-0971

 EMail: rajan@research.att.com

 Shai Herzog
 IPHighway, Inc.
 55 New York Avenue
 Framingham, MA 01701

 Phone: 508.620.1141
 EMail: herzog@iphighway.com

 Arun Sastry
 Cisco Systems
 4 The Square
 Stockley Park
 Uxbridge, Middlesex UB11 1BN
 UK

 Phone: +44-208-756-8693
 EMail: asastry@cisco.com

Durham, et al. Standards Track [Page 37]

RFC 2748 COPS January 2000

9. Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Durham, et al. Standards Track [Page 38]

