
Network Working Group S . Herzog, Ed.
Request for Comments: 2749 IPHighway
Category: Standards Track J. Boyle
 Level3
 R. Cohen
 Cisco
 D. Durham
 Intel
 R. Rajan
 AT&T
 A. Sastry
 Cisco
 January 2000

 COPS usage for RSVP

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This document describes usage directives for supporting COPS policy
 services in RSVP environments.

Table of Contents

 1 Introduction..2
 2 RSVP values for COPS objects....................................2
 2.1 Common Header, client-type...................................2
 2.2 Context Object (Context).....................................3
 2.3 Client Specific Information (ClientSI).......................4
 2.4 Decision Object (Decision)...................................4
 3 Operation of COPS for RSVP PEPs.................................6
 3.1 RSVP flows...6
 3.2 Expected Associations for RSVP Requests......................6
 3.3 RSVP’s Capacity Admission Control: Commit and Delete.........7
 3.4 Policy Control Over PathTear and ResvTear....................7

Herzog, et al. Standards Track [Page 1]

RFC 2749 COPS usage for RSVP January 2000

 3.5 PEP Caching COPS Decisions...................................7
 3.6 Using Multiple Context Flags in a single query...............8
 3.7 RSVP Error Reporting...9
 4 Security Considerations...9
 5 Illustrative Examples, Using COPS for RSVP......................9
 5.1 Unicast Flow Example...9
 5.2 Shared Multicast Flows......................................11
 6 References...14
 7 Author Information and Acknowledgments.........................15
 8 Full Copyright Statement.......................................17

1 Introduction

 The Common Open Policy Service (COPS) protocol is a query response
 protocol used to exchange policy information between a network policy
 server and a set of clients [COPS]. COPS is being developed within
 the RSVP Admission Policy Working Group (RAP WG) of the IETF,
 primarily for use as a mechanism for providing policy-based admission
 control over requests for network resources [RAP].

 This document is based on and assumes prior knowledge of the RAP
 framework [RAP] and the basic COPS [COPS] protocol. It provides
 specific usage directives for using COPS in outsourcing policy
 control decisions by RSVP clients (PEPs) to policy servers (PDPs).

 Given the COPS protocol design, RSVP directives are mainly limited to
 RSVP applicability, interoperability and usage guidelines, as well as
 client specific examples.

2 RSVP values for COPS objects

 The usage of several COPS objects is affected when used with the RSVP
 client type. This section describes these objects and their usage.

2.1 Common Header, client-type

 RSVP is COPS client-type 1

Herzog, et al. Standards Track [Page 2]

RFC 2749 COPS usage for RSVP January 2000

2.2 Context Object (Context)

 The semantics of the Context object for RSVP is as follows:

 R-Type (Request Type Flag)

 Incoming-Message request

 This context is used when the PEP receives an incoming RSVP
 message. The PDP may decide to accept or reject the incoming
 message and may also apply other decision objects to it. If the
 incoming message is rejected, RSVP should treat it as if it
 never arrived.

 Resource-Allocation request

 This context is used when the PEP is about to commit local
 resources to an RSVP flow (admission control). This context
 applies to Resv messages only. The decision whether to commit
 local resources is made for the merge of all reservations
 associated with an RSVP flow (which have arrived on a
 particular interface, potentially from several RSVP Next-Hops).

 Outgoing-Message request (forwarding an outgoing RSVP message)

 This context is used when the PEP is about to forward an
 outgoing RSVP message. The PDP may decide to allow or deny the
 outgoing message, as well as provide an outgoing policy data
 object.

 M-Type (Message Type)

 The M-Type field in the Context Object identifies the applicable RSVP
 message type. M-Type values are identical to the values used in the
 "msg type" field in the RSVP header [RSVP].

 The following RSVP message types are supported in COPS:

 Path
 Resv
 PathErr
 ResvErr

 Other message types such as PathTear, ResvTear, and Resv Confirm are
 not supported. The list of supported message types can only be
 extended in later versions of RSVP and/or later version of this
 document.

Herzog, et al. Standards Track [Page 3]

RFC 2749 COPS usage for RSVP January 2000

2.3 Client Specific Information (ClientSI)

 All objects that were received in an RSVP message are encapsulated
 inside the Client Specific Information Object (Signaled ClientSI)
 sent from the PEP to the remote PDP (see Section 3.1. on multiple
 flows packed in a single RSVP message).

 The PEP and PDP share RSVP state, and the PDP is assumed to implement
 the same RSVP functional specification as the PEP. In the case where
 a PDP detects the absence of objects required by [RSVP] it should
 return an <Error> in the Decision message indicating "Mandatory
 client-specific info missing". If, on the other hand, the PDP detects
 the absence of optional RSVP objects that are needed to approve the
 Request against current policies, the PDP should return a negative
 <Decision>.

 Unlike the Incoming and Outgoing contexts, "Resource Allocation" is
 not always directly associated with a specific RSVP message. In a
 multicast session, it may represent the merging of multiple incoming
 reservations. Therefore, the ClientSI object should specifically
 contain the SESSION and STYLE objects along with the merged FLOWSPEC,
 FILTERSPEC list, and SCOPE object (whenever relevant).

2.4 Decision Object (Decision)

 COPS provides the PDP with flexible controls over the PEP using
 RSVP’s response to messages. While accepting an RSVP message, PDPs
 may provide preemption priority, trigger warnings, replace RSVP
 objects, and much more, using Decision Commands, Flags, and Objects.

 DECISION COMMANDS

 Only two commands apply to RSVP

 Install

 Positive Response:
 Accept/Allow/Admit an RSVP message or local resource allocation.

 Remove

 Negative Response:
 Deny/Reject/Remove an RSVP message or local resource allocation.

Herzog, et al. Standards Track [Page 4]

RFC 2749 COPS usage for RSVP January 2000

 DECISION FLAGS

 The only decision flag that applies to RSVP:

 Trigger Error

 If this flag is set, RSVP should schedule a PathErr, in response
 to a Path message, or a ResvErr (in response of a Resv message).

 STATELESS POLICY DATA

 This object may include one or more policy elements (as specified for
 the RSVP Policy Data object [RSVP-EXT]) which are assumed to be well
 understood by the client’s LPDP. The PEP should consider these as an
 addition to the decision already received from the PDP (it can only
 add, but cannot override it).

 For example, given Policy Elements that specify a flow’s preemption
 priority, these elements may be included in an incoming Resv message
 or may be provided by the PDP responding to a query.

 Stateless objects must be well understood, but not necessarily
 supported by all PEPs. For example, assuming a standard policy
 element for preemption priority, it is perfectly legitimate for some
 PEPs not to support such preemption and to ignore it. The PDP must be
 careful when using such objects. In particular, it must be prepared
 for these objects to be ignored by PEPs.

 Stateless Policy Data may be returned in decisions and apply
 individually to each of the contexts flagged in REQ messages. When
 applied to Incoming, it is assumed to have been received as a
 POLICY_DATA object in the incoming message. When applied to Resource
 Allocation it is assumed to have been received on all merged incoming
 messages. Last, when applied to outgoing messages it is assumed to
 have been received in all messages contributing to the outgoing
 message.

 REPLACEMENT DATA

 The Replacement object may contain multiple RSVP objects to be
 replaced (from the original RSVP request). Typical replacement is
 performed on the "Forward Outgoing" request (for instance, replacing
 outgoing Policy Data), but is not limited, and can also be performed
 on other contexts (such as "Resources-Allocation Request"). In other
 cases, replacement of the RSVP FlowSpec object may be useful for
 controlling resources across a trusted zone (with policy ignorant

Herzog, et al. Standards Track [Page 5]

RFC 2749 COPS usage for RSVP January 2000

 nodes (PINs). Currently, RSVP clients are only required to allow
 replacement of three objects: POLICY_DATA, ERROR_SPEC, and FLOWSPEC,
 but could optionally support replacement of other objects.

 RSVP object replacement is performed in the following manner:

 If no Replacement Data decision appears in a decision message, all
 signaled objects are processed as if the PDP was not there. When an
 object of a certain C-Num appears, it replaces ALL the instances of
 C-Num objects in the RSVP message. If it appears empty (with a length
 of 4) it simply removes all instances of C-Num objects without adding
 anything.

3 Operation of COPS for RSVP PEPs

3.1 RSVP flows

 Policy Control is performed per RSVP flow, which is defined by the
 atomic unit of an RSVP reservation (TC reservation). Reservation
 styles may also impact the definition of flows; a set of senders
 which are considered as a single flow for WF reservation are
 considered as a set of individual flows when FF style is used.

 Multiple FF flows may be packed into a single Resv message. A packed
 message must be unpacked where a separate request is issued for each
 of the packed flows as if they were individual RSVP messages. Each
 COPS Request should include the associated POLICY_DATA objects, which
 are, by default, all POLICY_DATA objects in the packed message.
 Sophisticated PEPs, capable of looking inside policy objects, may
 examine the POLICY_DATA or SCOPE object to narrow down the list of
 associated flows (as an optimization).

 Please note that the rules governing Packed RSVP message apply
 equally to the Incoming as well as the Outgoing REQ context.

3.2 Expected Associations for RSVP Requests

 When making a policy decision, the PDP may consider both Resv as well
 as its matching Path state (associated state). State association is
 straightforward in the common unicast case since the RSVP flow
 includes one Path state and one Resv state. In multicast cases this
 correspondence may be more complicated, as the match may be many-to-
 many. The COPS protocol assumes that the PDP is RSVP knowledgeable
 and capable of determining these associations based on the contents
 of the Client REQ message and especially the ClientSI object.

Herzog, et al. Standards Track [Page 6]

RFC 2749 COPS usage for RSVP January 2000

 For example, the PDP should be able to recognize activation and
 deactivation of RSVP blockade state following discrete events like
 the arrival of a ResvErr message (activate the blockade state) as
 well as the change in the outgoing Resv message.

3.3 RSVP’s Capacity Admission Control: Commit and Delete

 In RSVP, the admission of a new reservation requires both an
 administrative approval (policy control) and capacity admission
 control. After being approved by both, and after the reservation was
 successfully installed, the PEP notifies the remote PDP by sending a
 report message specifying the Commit type. The Commit type report
 message signals when billing should effectively begin and performing
 heavier delayed operations (e.g., debiting a credit card) is
 permissible by the PDP.

 If, instead, a PDP approved reservation fails admission due to lack
 of resources, the PEP must issue a no-commit report and fold back and
 send an updated request to its previous state (previously installed
 reservation). If no state was previously installed, the PEP should
 issue a delete (DRQ).

3.4 Policy Control Over PathTear and ResvTear

 PathTear and ResvTear messages are not controlled by this policy
 architecture. This relies on two assumptions: First, that MD-5
 authentication verifies that the Tear is received from the same node
 that sent the initial reservation, and second, that it is
 functionally equivalent to that node holding off refreshes for this
 reservation. When a ResvTear or PathTear is received at the PEP, all
 affected states installed on the PDP should either be deleted or
 updated by the PEP.

3.5 PEP Caching COPS Decisions

 Because COPS is a stateful protocol, refreshes for RSVP Path and Resv
 messages need not be constantly sent to the remote PDP. Once a
 decision has been returned for a request, the PEP can cache that
 decision and apply it to future refreshes. When the PEP detects a
 change in the corresponding Resv or Path message, it should update
 the PDP with the new request-state. PEPs may continue to use the
 cached state until receiving the PDP response. This case is very
 different from initial admission of a flow; given that valid
 credentials and authentication have already been established, the
 relatively long RSVP refresh period, and the short PEP-PDP response
 time, the tradeoff between expedient updates and attack prevention
 leans toward expediency. However, this is really a PEP choice, and is
 irrelevant to PDPs.

Herzog, et al. Standards Track [Page 7]

RFC 2749 COPS usage for RSVP January 2000

 If the connection is lost between the PEP and the PDP, the cached
 RSVP state may be retained for the RSVP timeout period to be used for
 previously admitted flows (but cannot be applied to new or updated
 state). If the connection can not be reestablished with the PDP or a
 backup PDP after the timeout period, the PEP is expected to purge all
 its cached decisions. Without applicable cached decision, the PEP
 must either reject the flow or resort to its LPDP (if available) for
 decisions.

 Once a connection is reestablished to a new (or the original) PDP the
 PDP may issue a SSQ request. In this case, the PEP must reissue
 requests that correspond to the current RSVP state (as if all the
 state has been updated recently). It should also include in its
 LPDPDecision the current (cached) decision regarding each such state.

3.6 Using Multiple Context Flags in a single query

 RSVP is a store-and-forward control protocol where messages are
 processed in three distinctive steps (input, resource allocation, and
 output). Each step requires a separate policy decision as indicated
 by context flags (see Section 2.2). In many cases, setting multiple
 context flags for bundling two or three operations together in one
 request may significantly optimize protocol operations.

 The following rules apply for setting multiple Context flags:

 a. Multiple context flags can be set only in two generic cases, which
 represent a substantial portion of expected COPS transactions, and
 can be guaranteed not to cause ambiguity.

 Unicast FF:

 [Incoming + Allocation + Outgoing]

 Multicast with only one Resv message received on the interface

 [Incoming + Allocation]

 b. Context events are ordered by time since every message must first
 be processed as Incoming, then as Resource allocation and only
 then as Outgoing. When multiple context flags are set, all
 ClientSI objects included in the request are assumed to be
 processed according to the latest flag. This rule applies both to
 the request (REQ) context as well as to the decision (DEC)
 context.

Herzog, et al. Standards Track [Page 8]

RFC 2749 COPS usage for RSVP January 2000

 For example, when combining Incoming + Allocation for an incoming
 Resv message, the flowspec included in the ClientSI would be the
 one corresponding to the Resource-Allocation context (TC).

 c. Each decision is bound to a context object, which determines which
 portion of the request context it applies to. When individual
 decisions apply to different sub-groups of the context, the PDP
 should send each group of decision objects encapsulated by the
 context flags object with the context flags applicable to these
 objects set (see the examples in Section 5).

3.7 RSVP Error Reporting

 RSVP uses the ERROR_SPEC object in PathErr and ResvErr messages to
 report policy errors. While the contents of the ERROR_SPEC object are
 defined in [RSVP,RSVP-EXT], the PDP is in the best position to
 provide its contents (sub-codes). This is performed in the following
 manner: First, the PEP (RSVP) queries the PDP before sending a
 PathErr or ResvErr, and then the PDP returns the constructed
 ERROR_SPEC in the Replacement Data Decision Object.

4 Security Considerations

 This document relies on COPS for its signaling and its security.
 Please refer to section "Security Considerations" in [COPS].

 Security for RSVP messages is provided by inter-router MD5
 authentication [MD5], assuming a chain-of-trust model. A likely
 deployment scenario calls for PEPs to be deployed only at the network
 edge (boundary nodes) while the core of the network (backbone)
 consists of PIN nodes. In this scenario MD5 trust (authentication) is
 established between boundary (non-neighboring) PEPs. Such trust can
 be achieved through internal signing (integrity) of the Policy Data
 object itself, which is left unmodified as it passes through PIN
 nodes (see [RSVP-EXT]).

5 Illustrative Examples, Using COPS for RSVP

 This section details both typical unicast and multicast scenarios.

5.1 Unicast Flow Example

 This section details the steps in using COPS for controlling a
 Unicast RSVP flow. It details the contents of the COPS messages with
 respect to Figure 1.

Herzog, et al. Standards Track [Page 9]

RFC 2749 COPS usage for RSVP January 2000

 PEP (router)
 +-----------------+
 | |
 R1 ------------+if1 if2+------------ S1
 | |
 +-----------------+

 Figure 1: Unicast Example: a single PEP view

 The PEP router has two interfaces (if1, if2). Sender S1 sends to
 receiver R1.

 A Path message arrives from S1:

 PEP --> PDP REQ := <Handle A> <Context: in & out, Path>
 <In-Interface if2> <Out-Interface if1>
 <ClientSI: all objects in Path message>

 PDP --> PEP DEC := <Handle A> <Context: in & out, Path>
 <Decision: Command, Install>

 A Resv message arrives from R1:

 PEP --> PDP REQ := <Handle B>
 <Context: in & allocation & out, Resv>
 <In-Interface if1> <Out-Interface if2>
 <ClientSI: all objects in Resv message>

 PDP --> PEP DEC := <Handle B>
 <Context: in, Resv>
 <Decision: command, Install>
 <Context: allocation, Resv>
 <Decision: command, Install>
 <Decision: Stateless, Priority=7>
 <Context: out, Resv>
 <Decision: command, Install>
 <Decision: replacement, POLICY-DATA1>

 PEP --> PDP RPT := <Handle B>
 <Report type: commit>

 Notice that the Decision was split because of the need to specify
 different decision objects for different context flags.

Herzog, et al. Standards Track [Page 10]

RFC 2749 COPS usage for RSVP January 2000

 Time Passes, the PDP changes its decision:

 PDP --> PEP DEC := <Handle B>
 <Context: allocation, Resv>
 <Decision: command, Install>
 <Decision: Stateless, Priority=3>

 Because the priority is too low, the PEP preempts the flow:

 PEP --> PDP DRQ := <Handle B>
 <Reason Code: Preempted>

 Time Passes, the sender S1 ceases to send Path messages:

 PEP --> PDP DRQ := <Handle A>
 <Reason: Timeout>

5.2 Shared Multicast Flows

 This section details the steps in using COPS for controlling a
 multicast RSVP flow. It details the contents of the COPS messages
 with respect to Figure 2.

 PEP (router)
 +-----------------+
 | |
 R1-------------+ if1 if3 +--------- S1
 | |
 R2----+ | |
 | | |
 +--------+ if2 if4 +--------- S2
 | | |
 R3----+ +-----------------+

 Figure 2: Multicast example: a single PEP view

 Figure 2 shows an RSVP PEP (router) which has two senders (S1, S2)
 and three receivers (R1, R2, R3) for the same multicast session.
 Interface if2 is connected to a shared media. In this example, we
 assume that the multicast membership is already in place. No previous
 RSVP messages were received, and the first to arrive is a Path
 message on interface if3 from sender S1:

 PEP --> PDP REQ := <Handle A> <Context: in, Path>
 <In-interface if3>
 <ClientSI: all objects in incoming Path>

Herzog, et al. Standards Track [Page 11]

RFC 2749 COPS usage for RSVP January 2000

 PDP --> PEP DEC := <Handle A> <Context: in, Path>
 <Decision: command, Install>

 The PEP consults its forwarding table, and finds two outgoing
 interface for the path (if1, if2). The exchange below is for
 interface if1, another exchange would likewise be completed for if2
 using the new handle B2.

 PEP --> PDP REQ := <Handle B1> <Context: out, Path>
 <Out-interface if1>
 <clientSI: all objects in outgoing Path>

 PDP --> PEP DEC := <Handle B1>
 <Context: out, Path>
 <Decision: command, Install>
 <Decision: Replacement, POLICY-DATA1>

 Here, the PDP decided to allow the forwarding of the Path message and
 provided the appropriate policy-data object for interface if1.

 Next, a WF Resv message from receiver R2 arrives on interface if2.

 PEP --> PDP REQ := <Handle C> <Context: in & allocation, Resv>
 <In-interface if2>
 <ClientSI: all objects in Resv message
 including RSpec1 >

 PDP --> PEP DEC := <Handle C>
 <Context: in, Resv>
 <Decision: command, Install>
 <Context: allocation, Resv>
 <Decision: command, Install>
 <Decision: Stateless, priority=5>

 PEP --> PDP RPT := <handle C> <Commit>

 Here, the PDP approves the reservation and assigned it preemption
 priority of 5. The PEP responded with a commit report.

 The PEP needs to forward the Resv message upstream toward S1:

 PEP --> PDP REQ := <Handle E> <Context: out, Resv>
 <out-interface if3>
 <Client info: all objects in outgoing Resv>

Herzog, et al. Standards Track [Page 12]

RFC 2749 COPS usage for RSVP January 2000

 PDP --> PEP DEC := <Handle E>
 <Context: out, Resv>
 <Decision: command, Install>
 <Decision: replacement, POLICY-DATA2>

 Note: The Context object is part of this DEC message even though it
 may look redundant since the REQ specified only one context flag.

 Next, a new WF Resv message from receiver R3 arrives on interface if2
 with a higher RSpec (Rspec2). Given two reservations arrived on if2,
 it cannot perform a request with multiple context flags, and must
 issue them separately.

 The PEP re-issues an updated handle C REQ with a new context object
 <Context: in , Resv>, and receives a DEC for handle C.

 PEP --> PDP REQ := <Handle F> <Context: in , Resv>
 <In-interface if2>
 <ClientSI: all objects in Resv message
 including RSpec2 >

 PDP --> PEP DEC := <Handle F> <Context: in , Resv>
 <Decision: command, Install>

 PEP --> PDP REQ := <Handle G> <Context: allocation, Resv>
 <In-interface if2>
 <ClientSI: all objects in merged Resv
 including RSpec2 >

 PDP --> PEP DEC := <Handle G>
 <Context: allocation, Resv>
 <Decision: command, Install>
 <Decision: Stateless, Priority=5>

 PEP --> PDP RPT := <handle G> <Commit>

 Given the change in incoming reservations, the PEP needs to forward a
 new outgoing Resv message upstream toward S1. This repeats exactly
 the previous interaction of Handle E, except that the ClientSI
 objects now reflect the merging of two reservations.

 If an ResvErr arrives from S1, the PEP maps it to R3 only (because it
 has a higher flowspec: Rspec2) the following takes place:

 PEP --> PDP REQ := <Handle H> <Context: in, ResvErr>
 <In-interface if3>
 <ClientSI: all objects in incoming ResvErr>

Herzog, et al. Standards Track [Page 13]

RFC 2749 COPS usage for RSVP January 2000

 PDP --> PEP DEC := <Handle H> <Context: in, ResvErr>
 <Decision: command, Install>

 PEP --> PDP REQ := <Handle I> <Context: out, ResvErr>
 <Out-interface if2>
 <ClientSI: all objects in outgoing ResvErr>

 PDP --> PEP DEC := <Handle I>
 <Context: out, ResvErr>
 <Decision: command, Install>
 <Decision: Replacement, POLICY-DATA3>

 When S2 joins the session by sending a Path message, incoming and
 outgoing Path requests are issued for the new Path. A new outgoing
 Resv request would be sent to S2.

6 References

 [RSVP-EXT] Herzog, S., "RSVP Extensions for Policy Control", RFC
 2750, January 2000.

 [RAP] Yavatkar, R., Pendarakis, D. and R. Guerin, "A Framework
 for Policy Based Admission Control", RFC 2753, January
 2000.

 [COPS] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja, R. and
 A. Sastry, "The COPS (Common Open Policy Service)
 Protocol", RFC 2748, January 2000.

 [RSVP] Braden, R., Zhang, L., Berson, S., Herzog, S. and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) - Functional
 Specification", RFC 2205, September 1997.

Herzog, et al. Standards Track [Page 14]

RFC 2749 COPS usage for RSVP January 2000

7 Author Information and Acknowledgments

 Special thanks to Andrew Smith and Timothy O’Malley our WG Chairs,
 Fred Baker, Laura Cunningham, Russell Fenger, Roch Guerin, Ping Pan,
 and Raj Yavatkar, for their valuable contributions.

 Jim Boyle
 Level 3 Communications
 1025 Eldorado Boulevard
 Broomfield, CO 80021

 Phone: 720.888.1192
 EMail: jboyle@Level3.net

 Ron Cohen
 CISCO Systems
 4 Maskit St.
 Herzeliya Pituach 46766 Israel

 Phone: 972.9.9700064
 EMail: ronc@cisco.com

 David Durham
 Intel
 2111 NE 25th Avenue
 Hillsboro, OR 97124

 Phone: 503.264.6232
 EMail: David.Durham@intel.com

 Raju Rajan
 AT&T Labs Research
 180 Park Ave., P.O. Box 971
 Florham Park, NJ 07932

 Phone: 973.360.7229
 EMail: raju@research.att.com

Herzog, et al. Standards Track [Page 15]

RFC 2749 COPS usage for RSVP January 2000

 Shai Herzog
 IPHighway, Inc.
 55 New York Avenue
 Framingham, MA 01701

 Phone: 508.620.1141
 EMail: herzog@iphighway.com

 Arun Sastry
 Cisco Systems
 4 The Square
 Stockley Park
 Uxbridge, Middlesex UB11 1BN
 UK

 Phone: +44-208-756-8693
 EMail: asastry@cisco.com

Herzog, et al. Standards Track [Page 16]

RFC 2749 COPS usage for RSVP January 2000

8 Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Herzog, et al. Standards Track [Page 17]

