
Network Working Group A. Chiu
Request for Comments: 2755 M. Eisler
Category: Informational B. Callaghan
 Sun Microsystems
 January 2000

 Security Negotiation for WebNFS

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This document describes a protocol for a WebNFS client [RFC2054] to
 negotiate the desired security mechanism with a WebNFS server
 [RFC2055] before the WebNFS client falls back to the MOUNT v3
 protocol [RFC1813]. This document is provided so that people can
 write compatible implementations.

Table of Contents

 1. Introduction .. 2
 2. Security Negotiation Multi-component LOOKUP 3
 3 Overloaded Filehandle 4
 3.1 Overloaded NFS Version 2 Filehandle 5
 3.2 Overloaded NFS Version 3 Filehandle 6
 4. WebNFS Security Negotiation 6
 5. Security Considerations 10
 6. References .. 10
 7. Acknowledgements .. 10
 8. Authors’ Addresses .. 11
 9. Full Copyright Statement 12

Chiu, et al. Informational [Page 1]

RFC 2755 Security Negotiation for WebNFS January 2000

1. Introduction

 The MOUNT protocol is used by an NFS client to obtain the necessary
 filehandle for data access. MOUNT versions 1 and 2 [RFC1094] return
 NFS version 2 filehandles, whereas MOUNT version 3 [RFC1813] returns
 NFS version 3 filehandles.

 Among the existing versions of the MOUNT protocol, only the MOUNT v3
 provides an RPC procedure (MOUNTPROC3_MNT) which facilitates security
 negotiation between an NFS v3 client and an NSF v3 server. When this
 RPC procedure succeeds (MNT3_OK) the server returns to the client an
 array of security mechanisms it supports for the specified pathname,
 in addition to an NFS v3 filehandle.

 A security mechanism referred to in this document is a generalized
 security flavor which can be an RPC authentication flavor [RFC1831]
 or a security flavor referred to in the RPCSEC_GSS protocol
 [RFC2203]. A security mechanism is represented as a four-octet
 integer.

 No RPC procedures are available for security negotiation in versions
 1 or 2 of the MOUNT protocol.

 The NFS mount command provides a "sec=" option for an NFS client to
 specify the desired security mechanism to use for NFS transactions.
 If this mount option is not specified, the default action is to use
 the default security mechanism over NFS v2 mounts, or to negotiate a
 security mechanism via the MOUNTPROC3_MNT procedure of MOUNT v3 and
 use it over NFS v3 mounts. In the latter, the client picks the first
 security mechanism in the array returned from the server that is also
 supported on the client.

 As specified in RFC 2054, a WebNFS client first assumes that the
 server supports WebNFS and uses the publsc filehandle as the initial
 filehandle for data access, eliminating the need for the MOUNT
 protocol. The WebNFS client falls back to MOUNT if the server does
 not support WebNFS.

 Since a WebNFS client does not use MOUNT initially, the
 MOUNTPROC3_MNT procedure of MOUNT v3 is not available for security
 negotiation until the WebNFS client falls back to MOUNT. A viable
 protocol needs to be devised for the WebNFS client to negotiate
 security mechanisms with the server in the absence of the
 MOUNTPROC3_MNT procedure.

Chiu, et al. Informational [Page 2]

RFC 2755 Security Negotiation for WebNFS January 2000

 The WebNFS security negotiation protocol must meet the following
 requirements:

 - Must work seamlessly with NFS v2 and v3, and the WebNFS
 protocols

 - Must be backward compatible with servers that do not support
 this negotiation

 - Minimum number of network turnarounds (latency)

 This document describes the WebNFS security negotiation protocol
 developed by Sun Microsystems, Inc. Terminology and definitions from
 RFCs 2054 and 2055 are used in this document. The reader is expected
 to be familiar with them.

2. Security Negotiation Multi-component LOOKUP

 The goal of the WebNFS security negotiation is to allow a WebNFS
 client to identify a security mechanism which is used by the WebNFS
 server to protect a specified path and is also supported by the
 client. The WebNFS client initiates the negotiation by sending the
 WebNFS server the path. The WebNFS server responds with the array of
 security mechanisms it uses to secure the specified path. From the
 array of security mechanisms the WebNFS client selects the first one
 that it also supports.

 Without introducing a new WebNFS request, the WebNFS security
 negotiation is achieved by modifying the request and response of the
 existing multi-component LOOKUP (MCL) operation [RFC2055]. Note that
 the MCL operation is accomplished using the LOOKUP procedure
 (NFSPROC3_LOOKUP for NFS v3 and NFSPROC_LOOKUP for NFS v2). This and
 the next sections describe how the MCL request and response are
 modified to facilitate WebNFS security negotiation.

 For ease of reference, the modified MCL request is henceforth
 referred to as SNEGO-MCL (security negotiation multi-component
 LOOKUP) request.

 A multi-component LOOKUP request [RFC2055] is composed of a public
 filehandle and a multi-component path:

 For Canonical Path:

 LOOKUP FH=0x0, "/a/b/c"

Chiu, et al. Informational [Page 3]

RFC 2755 Security Negotiation for WebNFS January 2000

 For Native Path:

 LOOKUP FH=0x0, 0x80 "a:b:c"

 A multi-component path is either an ASCII string of slash separated
 components or a 0x80 character followed by a native path. Note that
 a multi-component LOOKUP implies the use of the public filehandle in
 the LOOKUP.

 Similar to the MCL request, a SNEGO-MCL request consists of a public
 filehandle and a pathname. However, the pathname is uniquely
 composed, as described below, to distinguish it from other pathnames.

 The pathname used in a SNEGO-MCL is the regular WebNFS multi-
 component path prefixed with two octets. The first prefixed octet is
 the 0x81 non-ascii character, similar to the 0x80 non-ascii character
 for the native paths. This octet represents client’s indication to
 negotiate security mechanisms. It is followed by the security index
 octet which stores the current value of the index into the array of
 security mechanisms to be returned from the server. The security
 index always starts with one and gets incremented as negotiation
 continues. It is then followed by the pathname, either an ASCII
 string of slash separated canonical components or 0x80 and a native
 path.

 A security negotiation multi-component LOOKUP request looks like
 this:

 For Canonical Path:

 LOOKUP FH=0x0, 0x81 <sec-index> "/a/b/c"

 For Native Path:

 LOOKUP FH=0x0, 0x81 <sec-index> 0x80 "a:b:c"

 In the next section we will see how the MCL response is modified for
 WebNFS security negotiation.

3. Overloaded Filehandle

 As described in RFC2054, if a multi-component LOOKUP request
 succeeds, the server responds with a valid filehandle:

 LOOKUP FH=0x0, "a/b/c"
 ----------->
 <-----------
 FH=0x3

Chiu, et al. Informational [Page 4]

RFC 2755 Security Negotiation for WebNFS January 2000

 NFS filehandles are used to uniquely identify a particular file or
 directory on the server and are opaque to the client. The client
 neither examines a filehandle nor has any knowledge of its contents.
 Thus, filehandles make an ideal repository for the server to return
 the array of security mechanisms to the client in response to a
 SNEGO-MCL request.

 To a successful SNEGO-MCL request the server responds, in place of
 the filehandle, with an array of integers that represents the valid
 security mechanisms the client must use to access the given path. A
 length field is introduced to store the size (in octets) of the array
 of integers.

 As the filehandles are limited in size (32 octets for NFS v2 and up
 to 64 octets for NFS v3), it can happen that there are more security
 mechanisms than the filehandles can accommodate. To circumvent this
 problem, a one-octet status field is introduced which indicates
 whether there are more security mechanisms (1 means yes, 0 means no)
 that require the client to perform another SNEGO-MCL to get them.

 To summarize, the response to a SNEGO-MCL request contains, in place
 of the filehandle, the length field, the status field, and the array
 of security mechanisms:

 FH: length, status, {sec_1 sec_2 ... sec_n}

 The next two sub-sections describe how NFS v2 and v3 filehandles are
 "overloaded" to carry the length and status fields and the array of
 security mechanisms.

3.1 Overloaded NFS Version 2 Filehandle

 A regular NFS v2 filehandle is defined in RFC1094 as an opaque value
 occupying 32 octets:

 1 2 3 4 32
 +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+
 | | | | | | | | | ... | | | | | | | |
 +---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+

 An overloaded NFS v2 filehandle looks like this:

 1 2 3 4 5 8 32
 +---+---+---+---+---+---+---+---+ +---+---+---+---+ +---+---+
 | l | s | | | sec_1 | ... | sec_n | ... | | |
 +---+---+---+---+---+---+---+---+ +---+---+---+---+ +---+---+

Chiu, et al. Informational [Page 5]

RFC 2755 Security Negotiation for WebNFS January 2000

 Note that the first four octets of an overloaded NFS v2 filehandle
 contain the length octet, the status octet, and two padded octets to
 make them XDR four-octet aligned. The length octet l = 4 * n, where
 n is the number of security mechanisms sent in the current overloaded
 filehandle. Apparently, an overloaded NFS v2 filehandle can carry up
 to seven security mechanisms.

3.2 Overloaded NFS Version 3 Filehandle

 A regular NFS v3 filehandle is defined in RFC1813 as a variable
 length opaque value occupying up to 64 octets. The length of the
 filehandle is indicated by an integer value contained in a four octet
 value which describes the number of valid octets that follow:

 1 4
+---+---+---+---+
| len |
+---+---+---+---+

 1 4 up to 64
+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+---+
| | | | | | | | | | | | | ... | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+---+

An overloaded NFS v3 filehandle looks like the following:

 1 4
+---+---+---+---+
| len |
+---+---+---+---+

 1 4 5 8
+---+---+---+---+---+---+---+---+ +---+---+---+---+
| s | | | | sec_1 | ... | sec_n |
+---+---+---+---+---+---+---+---+ +---+---+---+---+

 Here, len = 4 * (n+1). Again, n is the number of security mechanisms
 contained in the current overloaded filehandle. Three octets are
 padded after the status octet to meet the XDR four-octet alignment
 requirement. An overloaded NFS v3 filehandle can carry up to fifteen
 security mechanisms.

4. WebNFS Security Negotiation

 With the SNEGO-MCL request and the overloaded NFS v2 and v3
 filehandles defined above, the following diagram depicts the WebNFS
 security negotiation protocol:

Chiu, et al. Informational [Page 6]

RFC 2755 Security Negotiation for WebNFS January 2000

 Client Server
 ------ ------

 LOOKUP FH=0x0, 0x81 <sec-index> "path"
 ----------->
 <-----------
 FH: length, status, {sec_1 sec_2 ... sec_n}

 where
 0x81 represents client’s indication to negotiate security
 mechanisms with the server,

 path is either an ASCII string of slash separated components or
 0x80 and a native path,

 sec-index, one octet, contains the index into the array of
 security mechanisms the server uses to protect the specified path,

 status, one octet, indicates whether there are more security
 mechanisms (1 means yes, 0 means no) that require the client to
 perform another SNEGO-MCL to get them,

 length (one octet for NFS v2 and four octets for NFS v3) describes
 the number of valid octets that follow,

 {sec_1 sec_2 ... sec_n} represents the array of security
 mechanisms. As noted earlier, each security mechanism is
 represented by a four-octet integer.

 Here is an example showing the WebNFS security negotiation protocol
 with NFS v2. In the example it is assumed the server shares /export
 with 10 security mechanisms {0x3900 0x3901 0x3902 ... 0x3909} on the
 export, two SNEGO-MCL requests would be needed for the client to get
 the complete security information:

 LOOKUP FH=0x0, 0x81 0x01 "/export"
 ----------->
 <-----------
 0x1c, 0x01, {0x3900 0x3901 0x3902 0x3903 0x3904 0x3905 0x3906}

 LOOKUP FH=0x0, 0x81 0x08 "/export"
 ----------->
 <-----------
 0x0c, 0x00, {0x3907 0x3908 0x3909}

Chiu, et al. Informational [Page 7]

RFC 2755 Security Negotiation for WebNFS January 2000

 The order of the security mechanisms returned in an overloaded
 filehandle implies preferences, i.e., one is more recommended than
 those following it. The ordering is the same as that returned by the
 MOUNT v3 protocol.

 The following shows a typical scenario which illustrates how the
 WebNFS security negotiation is accomplished in the course of
 accessing publicly shared filesystems.

 Normally, a WebNFS client first makes a regular multi-component
 LOOKUP request using the public filehandle to obtain the filehandle
 for the specified path. Since the WebNFS client does not have any
 prior knowledge as to how the path is protected by the server the
 default security mechanism is used in this first multi-component
 LOOKUP. If the default security mechanism does not meet server’s
 requirements, the server replies with the AUTH_TOOWEAK RPC
 authentication error, indicating that the default security mechanism
 is not valid and the WebNFS client needs to use a stronger one.

 Upon receiving the AUTH_TOOWEAK error, to find out what security
 mechanisms are required to access the specified path the WebNFS
 client sends a SNEGO-qMCL request, using the default security
 mechanism.

 If the SNEGO-MCL request succeeds the server responds with the
 filehandle overloaded with the array of security mechanisms required
 for the specified path. If the server does not support WebNFS
 security negotiation, the SNEGO-MCL request fails with NFSERR_IO for
 NFS v2 or NFS3ERR_IO for NFS v3 [RFC2055].

 Depending on the size of the array of security mechanisms, the WebNFS
 client may have to make more SNEGO-MCL requests to get the complete
 array.

 For successful SNEGO-MCL requests, the WebNFS client retrieves the
 array of security mechanisms from the overloaded filehandle, selects
 an appropriate one, and issues a regular multi-component LOOKUP using
 the selected security mechanism to acquire the filehandle.

 All subsequent NFS requests are then made using the selected security
 mechanism and the filehandle.

 The following depicts the scenario outlined above. It is assumed
 that the server shares /export/home as follows:

 share -o sec=sec_1:sec_2:sec_3,public /export/home

Chiu, et al. Informational [Page 8]

RFC 2755 Security Negotiation for WebNFS January 2000

 and AUTH_SYS is the client’s default security mechanism and is not
 one of {sec_1, sec_2, sec_3}.

 Client Server
 ------ ------

 LOOKUP FH=0x0, "/export/home"
 AUTH_SYS
 ----------->
 <-----------
 AUTH_TOOWEAK

 LOOKUP FH=0x0, 0x81 0x01 "/export/home"
 AUTH_SYS
 ----------->
 <-----------
 overloaded FH: length, status, {sec_1 sec_2 sec_3}

 LOOKUP FH=0x0, "/export/home"
 sec_n
 ----------->
 <-----------
 FH = 0x01

 NFS request with FH=0x01
 sec_n
 ----------->
 <-----------
 ...

 In the above scenario, the first request is a regular multi-component
 LOOKUP which fails with the AUTH_TOOWEAK error. The client then
 issues a SNEGO-MCL request to get the security information.

 There are WebNFS implementations that allow the public filehandle to
 work with NFS protocol procedures other than LOOKUP. For those
 WebNFS implementations, if the first request is not a regular multi-
 component LOOKUP and it fails with AUTH_TOOWEAK, the client should
 issue a SNEGO-MCL with

 0x81 0x01 "."

 as the path to get the security information.

Chiu, et al. Informational [Page 9]

RFC 2755 Security Negotiation for WebNFS January 2000

5. Security Considerations

 The reader may note that no mandatory security mechanisms are
 specified in the protocol that the client must use in making SNEGO-
 MCL requests. Normally, the client uses the default security
 mechanism configured on his system in the first SNEGO-MCL request.
 If the default security mechanism is not valid the server replies
 with the AUTH_TOOWEAK error. In this case the server does not return
 the array of security mechanisms to the client. The client can then
 make another SNEGO-MCL request using a stronger security mechanism.
 This continues until the client hits a valid one or has exhausted all
 the supported security mechanisms.

6. References

 [RFC1094] Sun Microsystems, Inc., "NFS: Network File System Protocol
 Specification", RFC 1094, March 1989.
 http://www.ietf.org/rfc/rfc1094.txt

 [RFC1813] Callaghan, B., Pawlowski, B. and P. Staubach, "NFS Version
 3 Protocol Specification", RFC 1813, June 1995.
 http://www.ietf.org/rfc/rfc1813.txt

 [RFC2054] Callaghan, B., "WebNFS Client Specification", RFC 2054,
 October 1996. http://www.ietf.org/rfc/rfc2054.txt

 [RFC2055] Callaghan, B., "WebNFS Server Specification", RFC 2055,
 October 1996. http://www.ietf.org/rfc/rfc2055.txt

 [RFC2203] Eisler, M., Chiu, A. and Ling, L., "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997.
 http://www.ietf.org/rfc/rfc2203.txt

7. Acknowledgements

 This specification was extensively brainstormed and reviewed by the
 NFS group of Solaris Software Division.

Chiu, et al. Informational [Page 10]

RFC 2755 Security Negotiation for WebNFS January 2000

8. Authors’ Addresses

 Alex Chiu
 Sun Microsystems, Inc.
 901 San Antonio Road
 Palo Alto, CA 94303

 Phone: +1 (650) 786-6465
 EMail: alex.chiu@Eng.sun.com

 Mike Eisler
 Sun Microsystems, Inc.
 901 San Antonio Road
 Palo Alto, CA 94303

 Phone: +1 (719) 599-9026
 EMail: michael.eisler@Eng.sun.com

 Brent Callaghan
 Sun Microsystems, Inc.
 901 San Antonio Road
 Palo Alto, CA 94303

 Phone: +1 (650) 786-5067
 EMail: brent.callaghan@Eng.sun.com

Chiu, et al. Informational [Page 11]

RFC 2755 Security Negotiation for WebNFS January 2000

9. Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Chiu, et al. Informational [Page 12]

