
Network Working Group C. Villamizar
Request for Comments: 2769 Avici Systems
Category: Standards Track C. Alaettinoglu
 R. Govindan
 ISI
 D. Meyer
 Cisco
 February 2000

 Routing Policy System Replication

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

Abstract

 The RIPE database specifications and RPSL define languages used as
 the basis for representing information in a routing policy system. A
 repository for routing policy system information is known as a
 routing registry. A routing registry provides a means of exchanging
 information needed to address many issues of importance to the
 operation of the Internet. The implementation and deployment of a
 routing policy system must maintain some degree of integrity to be of
 any use. The Routing Policy System Security RFC [3] addresses the
 need to assure integrity of the data by proposing an authentication
 and authorization model. This document addresses the need to
 distribute data over multiple repositories and delegate authority for
 data subsets to other repositories without compromising the
 authorization model established in Routing Policy System Security
 RFC.

Villamizar, et al. Standards Track [Page 1]

RFC 2769 Routing Policy System Replication February 2000

Table of Contents

 1 Overview . 3
 2 Data Representation . 4
 3 Authentication and Authorization 5
 4 Repository Hierarchy . 6
 5 Additions to RPSL . 6
 5.1 repository object . 7
 5.2 delegated attribute 9
 5.3 integrity attribute 10
 6 Interactions with a Repository or Mirror 11
 6.1 Initial Transaction Submission 12
 6.2 Redistribution of Transactions 12
 6.3 Transaction Commit and Confirmation 12
 7 Data Format Summaries, Transaction Encapsulation and Processing 13
 7.1 Transaction Submit and Confirm 13
 7.2 Redistribution of Transactions 16
 7.3 Redistribution Protocol Description 16
 7.3.1 Explicitly Requesting Transactions 21
 7.3.2 Heartbeat Processing 22
 7.4 Transaction Commit 23
 7.5 Database Snapshot . 24
 7.6 Authenticating Operations 25
 A Examples . 27
 A.1 Initial Object Submission and Redistribution 27
 A.2 Transaction Redistribution Encoding 29
 A.3 Transaction Protocol Encoding 31
 A.4 Transaction Redistribution 32
 B Technical Discussion . 35
 B.1 Server Processing . 35
 B.1.1 getting connected 35
 B.1.2 rolling transaction logs forward and back 35
 B.1.3 committing or disposing of transactions 36
 B.1.4 dealing with concurrency 36
 B.2 Repository Mirroring for Redundancy 36
 B.3 Trust Relationships 37
 B.4 A Router as a Minimal Mirror 38
 B.5 Dealing with Errors 38
 C Deployment Considerations 39
 D Privacy of Contact Information 39
 References . 40
 Security Considerations . 41
 Authors’ Addresses . 41
 Full Copyright Statement . 42

Villamizar, et al. Standards Track [Page 2]

RFC 2769 Routing Policy System Replication February 2000

1 Overview

 A routing registry must maintain some degree of integrity to be of
 any use. The IRR is increasingly used for purposes that have a
 stronger requirement for data integrity and security. There is also
 a desire to further decentralize the IRR. This document proposes a
 means of decentralizing the routing registry in a way that is
 consistent with the usage of the IRR and which avoids compromising
 data integrity and security even if the IRR is distributed among less
 trusted repositories.

 Two methods of authenticating the routing registry information have
 been proposed.

 authorization and authentication checks on transactions: The
 integrity of the routing registry data is insured by repeating
 authorization checks as transactions are processed. As
 transactions are flooded each remote registry has the option to
 repeat the authorization and authentication checks. This scales
 with the total number of changes to the registry regardless of how
 many registries exist. When querying, the integrity of the
 repository must be such that it can be trusted. If an
 organization is unwilling to trust any of the available
 repositories or mirrors they have the option to run their own
 mirror and repeat authorization checks at that mirror site.
 Queries can then be directed to a mirror under their own
 administration which presumably can be trusted.

 signing routing registry objects: An alternate which appears on the
 surface to be attractive is signing the objects themselves.
 Closer examination reveals that the approach of signing objects by
 itself is flawed and when used in addition to signing transactions
 and rechecking authorizations as changes are made adds nothing.
 In order for an insertion of critical objects such as inetnums and
 routes to be valid, authorization checks must be made which allow
 the insertion. The objects on which those authorization checks
 are made may later change. In order to later repeat the
 authorization checks the state of other objects, possibly in other
 repositories would have to be known. If the repository were not
 trusted then the change history on the object would have to be
 traced back to the object’s insertion. If the repository were not
 trusted, the change history of any object that was depended upon
 for authorization would also have to be rechecked. This trace
 back would have to go back to the epoch or at least to a point
 where only trusted objects were being relied upon for the
 authorizations. If the depth of the search is at all limited,
 authorization could be falsified simply by exceeding the search
 depth with a chain of authorization references back to falsified

Villamizar, et al. Standards Track [Page 3]

RFC 2769 Routing Policy System Replication February 2000

 objects. This would be grossly inefficient. Simply verifying
 that an object is signed provides no assurance that addition of
 the object addition was properly authorized.

 A minor distinction is made between a repository and a mirror. A
 repository has responsibility for the initial authorization and
 authentication checks for transactions related to its local objects
 which are then flooded to adjacent repositories. A mirror receives
 flooded transactions from remote repositories but is not the
 authoritative source for any objects. From a protocol standpoint,
 repositories and mirrors appear identical in the flooding topology.

 Either a repository or a mirror may recheck all or a subset of
 transactions that are flooded to it. A repository or mirror may
 elect not to recheck authorization and authentication on transactions
 received from a trusted adjacency on the grounds that the adjacent
 repository is trusted and would not have flooded the information
 unless authorization and authentication checks had been made.

 If it can be arranged that all adjacencies are trusted for a given
 mirror, then there is no need to implement the code to check
 authorization and authentication. There is only a need to be able to
 check the signatures on the flooded transactions of the adjacent
 repository. This is an important special case because it could allow
 a router to act as a mirror. Only changes to the registry database
 would be received through flooding, which is a very low volume. Only
 the signature of the adjacent mirror or repository would have to be
 checked.

2 Data Representation

 RPSL provides a complete description of the contents of a routing
 repository [1]. Many RPSL data objects remain unchanged from the
 RIPE, and RPSL references the RIPE-181 specification as recorded in
 RFC-1786 [2]. RPSL provides external data representation. Data may
 be stored differently internal to a routing registry. The integrity
 of the distributed registry data requires the use of the
 authorization and authentication additions to RPSL described in [3].

 Some additions to RPSL are needed to locate all of the repositories
 after having located one of them and to make certain parameters
 selectable on a per repository basis readily available. These
 additions are described in Section 5.

 Some form of encapsulation must be used to exchange data. The de-
 facto encapsulation has been that which the RIPE tools accept, a
 plain text file or plain text in the body of an RFC-822 formatted
 mail message with information needed for authentication derived from

Villamizar, et al. Standards Track [Page 4]

RFC 2769 Routing Policy System Replication February 2000

 the mail headers. Merit has slightly modified this using the PGP
 signed portion of a plain text file or PGP signed portion of the body
 of a mail message.

 The exchange that occurs during flooding differs from the initial
 submission. In order to repeat the authorization checks the state of
 all repositories containing objects referenced by the authorization
 checks needs to be known. To accomplish this a sequence number is
 associated with each transaction in a repository and the flooded
 transactions must contain the sequence number of each repository on
 which authorization of the transaction depends.

 In order to repeat authorization checks it must be possible to
 retrieve back revisions of objects. How this is accomplished is a
 matter local to the implementation. One method which is quite simple
 is to keep the traversal data structures to all current objects even
 if the state is deleted, keep the sequence number that the version of
 the object became effective and keep back links to prior versions of
 the objects. Finding a prior version of an object involves looking
 back through the references until the sequence number of the version
 of the object is less than or equal to the sequence number being
 searched for.

 The existing very simple forms of encapsulation are adequate for the
 initial submission of a database transaction and should be retained
 as long as needed for backward compatibility. A more robust
 encapsulation and submission protocol, with optional confirmation is
 defined in Section 6.1. An encapsulation suitable for exchange of
 transaction between repositories is addressed in Section 6. Query
 encapsulation and protocol is outside the scope of this document.

3 Authentication and Authorization

 Control must be exercised over who can make changes and what changes
 they can make. The distinction of who vs what separates
 authentication from authorization.

 o Authentication is the means to determine who is attempting to make
 a change.

 o Authorization is the determination of whether a transaction
 passing a specific authentication check is allowed to perform a
 given operation.

 A submitted transaction contains a claimed identity. Depending on
 the type of transaction, the authorization will depend on related
 objects.

Villamizar, et al. Standards Track [Page 5]

RFC 2769 Routing Policy System Replication February 2000

 The "mnt-by", "mnt-routes", or "mnt-lower" attributes in those
 related objects reference "maintainer" objects. Those maintainer
 objects contain "auth" attributes. The auth attributes contain an
 authorization method and data which generally contains the claimed
 identity and some form of public encryption key used to authenticate
 the claim.

 Authentication is done on transactions. Authentication should also
 be done between repositories to insure the integrity of the
 information exchange. In order to comply with import, export, and
 use restrictions throughout the world no encryption capability is
 specified. Transactions must not be encrypted because it may be
 illegal to use decryption software in some parts of the world.

4 Repository Hierarchy

 With multiple repositories, "repository" objects are needed to
 propagate the existence of new repositories and provide an automated
 means to determine the supported methods of access and other
 characteristics of the repository. The repository object is
 described in Section 5.

 In each repository there should be a special repository object named
 ROOT. This should point to the root repository or to a higher level
 repository. This is to allow queries to be directed to the local
 repository but refer to the full set of registries for resolution of
 hierarchically allocated objects.

 Each repository may have an "expire" attribute. The expire attribute
 is used to determine if a repository must be updated before a local
 transaction that depends on it can proceed.

 The repository object also contains attributes describing the access
 methods and supported authentication methods of the repository. The
 "query-address" attribute provides a host name and a port number used
 to direct queries. The "response-auth-type" attribute provides the
 authentication types that may be used by the repository when
 responding to queries. The "submit-address" attribute provides a
 host name and a port number used to submit objects to the repository.
 The "submit-auth-type" attribute provides the authentication types
 that may be used by the repository when responding to submissions.

5 Additions to RPSL

 There are very few additions to RPSL defined here. The additions to
 RPSL are referred to as RPSL "objects". They reside in the
 repository database and can be retrieved with ordinary queries.
 Objects consist of "attributes", which are name/value pairs.

Villamizar, et al. Standards Track [Page 6]

RFC 2769 Routing Policy System Replication February 2000

 Attributes may be mandatory or optional. They may be single or
 multiple. One or more attributes may be part of a key field. Some
 attributes may have the requirement of being unique.

 Most of the data formats described in this document are
 encapsulations used in transaction exchanges. These are referred to
 as "meta-objects". These "meta-objects", unlike RPSL "objects" do
 not reside in the database but some must be retained in a transaction
 log. A similar format is used to represent "meta-objects". They
 also consist of "attributes" which are name/value pairs.

 This section contains all of the additions to RPSL described in this
 document. This section describes only RPSL objects. Other sections
 described only meta-objects.

5.1 repository object

 A root repository must be agreed upon. Ideally such a repository
 would contain only top level delegations and pointers to other
 repositories used in these delegations. It would be wise to allow
 only cryptographically strong transactions in the root repository
 [3].

 The root repository contains references to other repositories. An
 object of the following form identifies another repository.

 repository: RIPE
 query-address: whois://whois.ripe.net
 response-auth-type: PGPKEY-23F5CE35 # pointer to key-cert object
 response-auth-type: none
 remarks: you can request rsa signature on queries
 remarks: PGP required on submissions
 submit-address: mailto://auto-dbm@ripe.net
 submit-address: rps-query://whois.ripe.net:43
 submit-auth-type: pgp-key, crypt-pw, mail-from
 remarks: these are the authentication types supported
 mnt-by: maint-ripe-db
 expire: 0000 04:00:00
 heartbeat-interval: 0000 01:00:00
 ...
 remarks: admin and technical contact, etc
 source: IANA

Villamizar, et al. Standards Track [Page 7]

RFC 2769 Routing Policy System Replication February 2000

 The attributes of the repository object are listed below.

 repository key mandatory single
 query-address mandatory multiple
 response-auth-type mandatory multiple
 submit-address mandatory multiple
 submit-auth-type mandatory multiple
 repository-cert mandatory multiple
 expire mandatory single
 heartbeat-interval mandatory single
 descr optional multiple
 remarks optional multiple
 admin-c mandatory multiple
 tech-c mandatory multiple
 notify optional multiple
 mnt-by mandatory multiple
 changed mandatory multiple
 source mandatory single

 In the above object type only a small number of the attribute types
 are new. These are:

 repository This attribute provides the name of the repository. This
 is the key field for the object and is single and must be globally
 unique. This is the same name used in the source attribute of all
 objects in that repository.

 query-address This attribute provides a url for directing queries.
 "rps-query" or "whois" can be used as the protocol identifier.

 response-auth-type This attribute provides an authentication type
 that may be used by the repository when responding to user
 queries. Its syntax and semantics is same as the auth attribute
 of the maintainer class.

 submit-address This attribute provides a url for submitting objects
 to the repository.

 submit-auth-type This attribute provides the authentication types
 that are allowed by the repository for users when submitting
 registrations.

 repository-cert This attribute provides a reference to a public key
 certificate in the form of an RPSL key-cert object. This
 attribute can be multiple to allow the repository to use more than
 one method of signature.

Villamizar, et al. Standards Track [Page 8]

RFC 2769 Routing Policy System Replication February 2000

 heartbeat-interval Heartbeat meta-objects are sent by this
 repository at the rate of one heartbeat meta-object per the
 interval indicated. The value of this attribute shall be
 expressed in the form "dddd hh:mm:ss", where the "dddd" represents
 days, "hh" represents hours, "mm" minutes and "ss" seconds.

 expire If no heartbeat or new registrations are received from a
 repository for expire period, objects from this repository should
 be considered non-authoritative, and cannot be used for
 authorization purposes. The value of this attribute shall be
 expressed in the form "dddd hh:mm:ss", where the "dddd" represents
 days, "hh" represents hours, "mm" minutes and "ss" seconds. This
 value should be bigger than heartbeat-interval.

 Please note that the "heartbeat" meta-objects mentioned above, like
 other meta-objects described in this document are part of the
 protocol to exchange information but are not placed in the database
 itself. See Section 7.3.2 for a description of the heartbeat meta-
 object.

 The remaining attributes in the repository object are defined in
 RPSL.

5.2 delegated attribute

 For many RPSL object types a particular entry should appear only in
 one repository. These are the object types for which there is a
 natural hierarchy, "as-block", "aut-num", "inetnum", and "route". In
 order to facilitate putting an object in another repository, a
 "delegated" attribute is added.

 delegated The delegated attribute is allowed in any object type with
 a hierarchy. This attribute indicates that further searches for
 object in the hierarchy must be made in one or more alternate
 repositories. The current repository may be listed. The ability
 to list more than one repository serves only to accommodate
 grandfathered objects (those created prior to using an
 authorization model). The value of a delegated attribute is a
 list of repository names.

 If an object contains a "delegated" attribute, an exact key field
 match of the object may also be contained in each repository listed
 in the "delegated" attribute. For the purpose of authorizing changes
 only the "mnt-by" in the object in the repository being modified is
 considered.

Villamizar, et al. Standards Track [Page 9]

RFC 2769 Routing Policy System Replication February 2000

 The following is an example of the use of a "delegated" attribute.

 inetnum: 193.0.0.0 - 193.0.0.255
 delegated: RIPE
 ...
 source: IANA

 This inetnum simply delegates the storage of any more specific
 inetnum objects overlapping the stated range to the RIPE repository.
 An exact match of this inetnum may also exist in the RIPE repository
 to provide hooks for the attributes referencing maintainer objects.
 In this case, when adding objects to the RIPE repository, the "mnt-
 lower", "mnt-routes", and "mnt-by" fields in the IANA inetnum object
 will not be considered, instead the values in the RIPE copy will be
 used.

5.3 integrity attribute

 The "integrity" attribute can be contained in any RPSL object. It is
 intended solely as a means to facilitate a transition period during
 which some data has been moved from repositories prior to the use of
 a strong authorization model and is therefore questionable, or when
 some repositories are not properly checking authorization.

 The "integrity" attribute may have the values "legacy", "no-auth",
 "auth-failed", or "authorized". If absent, the integrity is
 considered to be "authorized". The integrity values have the
 following meanings:

 legacy: This data existed prior to the use of an adequate
 authorization model. The data is highly suspect.

 no-auth: This data was added to a repository during an initial
 transition use of an authorization model but authorization
 depended on other objects whose integrity was not "authorized".
 Such an addition is being allowed during the transition but would
 be disallowed later.

 auth-failed: The authoritative repository is not checking
 authorization. Had it been doing so, authorization would have
 failed. This attribute may be added by a repository that is
 mirroring before placing the object in its local storage, or can
 add this attribute to an encapsulating meta-object used to further
 propagate the transaction. If the failure to enforce
 authorization is intentional and part of a transition (for
 example, issuing warnings only), then the authoritative repository
 may add this attribute to the encapsulating meta-object used to
 further propagate the transaction.

Villamizar, et al. Standards Track [Page 10]

RFC 2769 Routing Policy System Replication February 2000

 authorized: Authorization checks were passed. The maintainer
 contained a "referral-by" attribute, a form of authentication
 deemed adequate by the repository was used, and all objects that
 were needed for authorization were objects whose integrity was
 "authorized".

 Normally once an object is added to a repository another object
 cannot overwrite it unless authorized to do so by the maintainers
 referenced by the "mnt-by" attributes in the object itself. If the
 integrity attribute is anything but "authorized", an object can be
 overwritten or deleted by any transaction that would have been a
 properly authorized addition had the object of lesser integrity not
 existed.

 During such a transition grandfathered data and data added without
 proper authorization becomes advisory until a properly authorized
 addition occurs. After transition additions of this type would no
 longer be accepted. Those objects already added without proper
 authorization would remain but would be marked as candidates for
 replacement.

6 Interactions with a Repository or Mirror

 This section presents an overview of the transaction distribution
 mechanisms. The detailed format of the meta-objects for
 encapsulating and distributing transactions, and the rules for
 processing meta-objects are described in Section 7. There are a few
 different types of interactions between routing repositories or
 mirrors.

 Initial submission of transactions: Transactions may include
 additions, changes, and deletions. A transaction may operate on
 more than one object and must be treated as an atomic operation.
 By definition initial submission of transactions is not applicable
 to a mirror. Initial submission of transactions is described in
 Section 6.1.

 Redistribution of Transactions: The primary purpose of the
 interactions between registries is the redistribution of
 transactions. There are a number of ways to redistribute
 transactions. This is discussed in Section 6.2.

 Queries: Query interactions are outside the scope of this document.

 Transaction Commit and Confirmation: Repositories may optionally
 implement a commit protocol and a completion indication that gives
 the submitter of a transaction a response that indicates that a

Villamizar, et al. Standards Track [Page 11]

RFC 2769 Routing Policy System Replication February 2000

 transaction has been successful and will not be lost by a crash of
 the local repository. A submitter may optionally request such a
 confirmation. This is discussed in Section 6.3.

6.1 Initial Transaction Submission

 The simplest form of transaction submission is an object or set of
 objects submitted with RFC-822 email encapsulation. This form is
 still supported for backwards compatibility. A preferred form allows
 some meta-information to be included in the submission, such as a
 preferred form of confirmation. Where either encapsulation is used,
 the submitter will connect to a host and port specified in the
 repository object. This allows immediate confirmation. If an email
 interface similar to the interface provided by the existing RIPE code
 is desired, then an external program can provide the email interface.

 The encapsulation of a transaction submission and response is
 described in detail in Section 7.

6.2 Redistribution of Transactions

 Redistribution of transactions can be accomplished using one of:

 1. A repository snapshot is a request for the complete contents of a
 given repository. This is usually done when starting up a new
 repository or mirror or when recovering from a disaster, such as a
 disk crash.

 2. A transaction sequence exchange is a request for a specific set of
 transactions. Often the request is for the most recent sequence
 number known to a mirror to the last transactions. This is used
 in polling.

 3. Transaction flooding is accomplished through a unicast adjacency.

 This section describes the operations somewhat qualitatively. Data
 formats and state diagrams are provided in Section 7.

6.3 Transaction Commit and Confirmation

 If a submission requires a strong confirmation of completion, or if a
 higher degree of protection against false positive confirmation is
 desired as a matter of repository policy, a commit may be performed.

 A commit request is a request from the repository processing an
 initial transaction submission to another repository to confirm that
 they have been able to advance the transaction sequence up to the

Villamizar, et al. Standards Track [Page 12]

RFC 2769 Routing Policy System Replication February 2000

 sequence number immediately below the transaction in the request and
 are willing to accept the transaction in the request as a further
 advance in the sequence. This indicates that either the
 authorization was rechecked by the responding repository and passed
 or that the responding repository trusts the requesting repository
 and has accepted the transaction.

 A commit request can be sent to more than one alternate repository.
 One commit completion response is sufficient to respond to the
 submitter with a positive confirmation that the transaction has been
 completed. However, the repository or submitter may optionally
 require more than one.

7 Data Format Summaries, Transaction Encapsulation and Processing

 RIPE-181 [2] and RPSL [1] data is represented externally as ASCII
 text. Objects consist of a set of attributes. Attributes are
 name/value pairs. A single attribute is represented as a single line
 with the name followed by a colon followed by whitespace characters
 (space, tab, or line continuation) and followed by the value. Within
 a value all consecutive whitespace characters is equivalent to a
 single space. Line continuation is supported by putting a white
 space or ’+’ character to the beginning of the continuation lines.
 An object is externally represented as a sequence of attributes.
 Objects are separated by blank lines.

 Protocol interactions between registries are activated by passing
 "meta objects". Meta objects are not part of RPSL but conform to
 RPSL object representation. They serve mostly as delimiters to the
 protocol messages or to carry the request for an operation.

7.1 Transaction Submit and Confirm

 The de-facto method for submitting database changes has been via
 email. This method should be supported by an external application.
 Merit has added the pgp-from authentication method to the RADB
 (replaced by "pgpkey" in [4]), where the mail headers are essentially
 ignored and the body of the mail message must be PGP signed.

 This specification defines a different encapsulation for transaction
 submission. When submitting a group of objects to a repository, a
 user MUST append to that group of objects, exactly one "timestamp"
 and one or more "signature" meta-objects, in that order.

Villamizar, et al. Standards Track [Page 13]

RFC 2769 Routing Policy System Replication February 2000

 The "timestamp" meta-object contains a single attribute:

 timestamp This attribute is mandatory and single-valued. This
 attribute specifies the time at which the user submits the
 transaction to the repository. The format of this attribute is
 "YYYYMMDD hh:mm:ss [+/-]xx:yy", where "YYYY" specifies the four
 digit year, "MM" represents the month, "DD" the date, "hh" the
 hour, "mm" the minutes, "ss" the seconds of the timestamp, and
 "xx" and "yy" represents the hours and minutes respectively that
 that timestamp is ahead or behind UTC.

 A repository may reject a transaction which does not include the
 "timestamp" meta-object. The timestamp object is used to prevent
 replaying registrations. How this is actually used is a local
 matter. For example, a repository can accept a transaction only if
 the value of the timestamp attribute is greater than the timestamp
 attribute in the previous registration received from this user
 (maintainer), or the repository may only accept transactions with
 timestamps within its expire window.

 Each "signature" meta-object contains a single attribute:

 signature This attribute is mandatory and single-valued. This
 attribute, a block of free text, contains the signature
 corresponding to the authentication method used for the
 transaction. When the authentication method is a cryptographic
 hash (as in PGP-based authentication), the signature must include
 all text up to (but not including) the last blank line before the
 first "signature" meta-object.

 A repository must reject a transaction that does not include any
 "signature" meta-object.

 The group of objects submitted by the user, together with the
 "timestamp" and "signature" meta-objects, constitute the "submitted
 text" of the transaction.

 The protocol used for submitting a transaction, and for receiving
 confirmation of locally committed transactions, is not specified in
 this document. This protocol may define additional encapsulations
 around the submitted text. The rest of this section gives an example
 of one such protocol. Implementations are free to choose another
 encapsulation.

Villamizar, et al. Standards Track [Page 14]

RFC 2769 Routing Policy System Replication February 2000

 The meta-objects "transaction-submit-begin" and "transaction-submit-
 end" delimit a transaction. A transaction is handled as an atomic
 operation. If any part of the transaction fails none of the changes
 take effect. For this reason a transaction can only operate on a
 single database.

 A socket connection is used to request queries or submit
 transactions. An email interface may be provided by an external
 program that connects to the socket. A socket connection must use
 the "transaction-submit-begin" and "transaction-submit-end"
 delimiters but can request a legacy style confirmation. Multiple
 transactions may be sent prior to the response for any single
 transaction. Transactions may not complete in the order sent.

 The "transaction-submit-begin" meta-object may contain the following
 attributes.

 transaction-submit-begin This attribute is mandatory and single.
 The value of the attribute contains name of the database and an
 identifier that must be unique over the course of the socket
 connection.

 response-auth-type This attribute is optional and multiple. The
 remainder of the line specifies an authentication type that would
 be acceptable in the response. This is used to request a response
 cryptographically signed by the repository.

 transaction-confirm-type This attribute is optional and single. A
 confirmation type keyword must be provided. Keywords are "none",
 "legacy", "normal", "commit". The confirmation type can be
 followed by the option "verbose".

 The "transaction-submit-end meta-object consists of a single
 attribute by the same name. It must contain the same database name
 and identifier as the corresponding "transaction-submit-begin"
 attribute.

 Unless the confirmation type is "none" a confirmation is sent. If
 the confirmation type is "legacy", then an email message of the form
 currently sent by the RIPE database code will be returned on the
 socket (suitable for submission to the sendmail program).

 A "normal" confirmation does not require completion of the commit
 protocol. A "commit" confirmation does. A "verbose" confirmation
 may contain additional detail.

Villamizar, et al. Standards Track [Page 15]

RFC 2769 Routing Policy System Replication February 2000

 A transaction confirmation is returned as a "transaction-confirm"
 meta-object. The "transaction-confirm" meta-object may have the
 following attributes.

 transaction-confirm This attribute is mandatory and single. It
 contains the database name and identifier associated with the
 transaction.

 confirmed-operation This attribute is optional and multiple. It
 contains one of the keywords "add", "delete" or "modify" followed
 by the object type and key fields of the object operated on.

 commit-status This attribute is mandatory and single. It contains
 one of the keywords "succeeded, "error", or "held". The "error"
 keyword may be followed by an optional text string. The "held"
 keyword is returned when a repository containing a dependent
 object for authorization has expired.

7.2 Redistribution of Transactions

 In order to redistribute transactions, each repository maintains a
 TCP connection with one or more other repositories. After locally
 committing a submitted transaction, a repository assigns a sequence
 number to the transaction, signs and encapsulates the transaction,
 and then sends one copy to each neighboring (or "peer") repository.
 In turn, each repository authenticates the transaction (as described
 in Section 7.6), may re-sign the transaction and redistributes the
 transaction to its neighbors. We use the term "originating
 repository" to distinguish the repository that redistributes a
 locally submitted transaction.

 This document also specifies two other methods for redistributing
 transactions to other repositories: a database snapshot format used
 for initializing a new registry, and a polling technique used by
 mirrors.

 In this section, we first describe how a repository may encapsulate
 the submitted text of a transaction. We then describe the protocol
 for flooding transactions or polling for transactions, and the
 database snapshot contents and format.

7.3 Redistribution Protocol Description

 The originating repository must first authenticate a submitted
 transaction using methods described in [3].

Villamizar, et al. Standards Track [Page 16]

RFC 2769 Routing Policy System Replication February 2000

 Before redistributing a transaction, the originating repository must
 encapsulate the submitted text of the transaction with several meta-
 objects, which are described below.

 The originating repository must prepend the submitted text with
 exactly one "transaction-label" meta-object. This meta-object
 contains the following attributes:

 transaction-label This attribute is mandatory and single. The value
 of this attribute conforms to the syntax of an RPSL word, and
 represents a globally unique identifier for the database to which
 this transaction is added.

 sequence This attribute is mandatory and single. The value of this
 attribute is an RPSL integer specifying the sequence number
 assigned by the originating repository to the transaction.
 Successive transactions distributed by the same originating
 repository have successive sequence numbers. The first
 transaction originated by a registry is assigned a sequence number
 1. Each repository must use sequence numbers drawn from a range
 at least as large as 64 bit unsigned integers.

 timestamp This attribute is mandatory and single-valued. This
 attribute specifies the time at which the originating repository
 encapsulates the submitted text. The format of this attribute is
 "YYYYMMDD hh:mm:ss [+/-]xx:yy", where "YYYY" specifies the four
 digit year, "MM" represents the month, "DD" the date, "hh" the
 hour, "mm" the minutes, "ss" the seconds of the timestamp, and
 "xx" and "yy" represents the hours and minutes respectively that
 that timestamp is ahead or behind UTC.

 integrity This attribute is optional and single-valued. It may have
 the values "legacy", "no-auth", "auth-failed", or "authorized".
 If absent, the integrity is considered to be "authorized".

 The originating repository may append to the submitted text one or
 more "auth-dependency" meta-objects. These meta-objects are used to
 indicate which other repositories’ objects were used by the
 originating registry to authenticate the submitted text. The "auth-
 dependency" meta-objects should be ordered from the most preferred
 repository to the least preferred repository. This order is used by
 a remote repository to tie break between the multiple registrations
 of an object with the same level of integrity. The "auth-dependency"
 meta-object contains the following attributes:

 auth-dependency This attribute mandatory and single-valued. It
 equals a repository name from which an object is used to
 authorize/authenticate this transaction.

Villamizar, et al. Standards Track [Page 17]

RFC 2769 Routing Policy System Replication February 2000

 sequence This attribute mandatory and single-valued. It equals the
 transaction sequence number of the dependent repository known at
 the originating repository at the time of processing this
 transaction.

 timestamp This attribute mandatory and single-valued. It equals the
 timestamp of the dependent repository known at the originating
 repository at the time of processing this transaction.

 If the originating repository needs to modify submitted objects in a
 way that the remote repositories can not re-create, it can append an
 "override-objects" meta-object followed by the modified versions of
 these objects. An example modification can be auto assignment of NIC
 handles. The "override-objects" meta-object contains the following
 attributes:

 override-objects A free text remark.

 Other repositories may or may not honor override requests, or limit
 the kinds of overrides they allow.

 Following this, the originating repository must append exactly one
 "repository-signature" meta-object. The "repository-signature"
 meta-object contains the following attributes:

 repository-signature This attribute is mandatory and single-valued.
 It contains the name of the repository.

 integrity This attribute is optional and single-valued. It may have
 the values "legacy", "no-auth", "auth-failed", or "authorized".
 If absent, the value is same as the value in the transaction-
 label. If a different value is used, the value here takes
 precedence.

 signature This attribute is optional and single-valued. This
 attribute, a block of free text, contains the repository’s
 signature using the key in the repository-cert attribute of the
 repository object. When the authentication method is a
 cryptographic hash (as in PGP-based authentication), the signature
 must include all text upto (but not including) this attribute.
 That is, the "repository-signature" and "integrity" attributes of
 this object are included. This attribute is optional since
 cryptographic authentication may not be available everywhere.
 However, its use where it is available is highly recommended.

 A repository must reject a redistributed transaction that does not
 include any "repository-signature" meta-object.

Villamizar, et al. Standards Track [Page 18]

RFC 2769 Routing Policy System Replication February 2000

 The transaction-label, the submitted text, the dependency objects,
 the override-objects, the overridden objects, and the repository’s
 signature together constitute what we call the "redistributed text".

 In preparation for redistributing the transaction to other
 repositories, the originating repository must perform the following
 protocol encapsulation. This protocol encapsulation may involve
 transforming the redistributed text according to one of the
 "transfer-method"s described below.

 The transformed redistributed text is first prepended with exactly
 one "transaction-begin" meta-object. One newline character separates
 this meta-object from the redistributed text. This meta-object has
 the following attributes:

 transaction-begin This attribute is mandatory and single. The value
 of this attribute is the length, in bytes, of the transformed
 redistributed text.

 transfer-method This attribute is optional and single-valued. Its
 value is either "gzip", or "plain". The value of the attribute
 describes the kind of text encoding that the repository has
 performed on the redistributed text. If this attribute is not
 specified, its value is assumed to be "plain". An implementation
 must be capable of encoding and decoding both of these types.

 The "transaction-begin" meta-object and the transformed redistributed
 text constitute what we call the "transmitted text". The originating
 repository may distribute the transmitted text to one or more peer
 repositories.

 When a repository receives the transmitted text of a transaction, it
 must perform the following steps. After performing the following
 steps, a transaction may be marked successful or failed.

 1. It must decapsulate the "transaction-begin" meta-object, then
 decode the original redistributed text according to the value of
 the transfer-method attribute specified in the "transaction-begin"
 meta-object.

 2. It should then extract the "transaction-label" meta-object from
 the transmitted text. If this transaction has already been
 processed, or is currently being held, the repository must
 silently discard this incarnation of the same transaction.

 3. It should verify that the signature of the originating repository
 matches the first "repository-signature" meta-object in the
 redistributed text following the "auth-dependency" meta-objects.

Villamizar, et al. Standards Track [Page 19]

RFC 2769 Routing Policy System Replication February 2000

 4. If not all previous (i.e., those with a lower sequence number)
 transactions from the same repository have been received or
 completely processed, the repository must "hold" this transaction.

 5. It may check whether any subsequent "repository-signature" meta-
 objects were appended by a trusted repository. If so, this
 indicates that the trusted repository verified the transaction’s
 integrity and marked its conclusion in the integrity attribute of
 this object. The repository may verify the trusted repositories
 signature and also mark the transaction with the same integrity,
 and skip the remaining steps.

 6. It should verify the syntactic correctness of the transaction. An
 implementation may allow configurable levels of syntactic
 conformance with RPSL [1]. This enables RPSL extensions to be
 incrementally deployed in the distributed registry scheme.

 7. The repository must authorize and authenticate this transaction.
 To do this, it may need to reference objects and transactions from
 other repositories. If these objects are not available, the
 repository must "hold" this transaction as described in Section
 7.6, until it can be authorized and authenticated later. In order
 to verify authorization/authentication of this transaction, the
 repository must not use an object from a repository not mentioned
 in an "auth-dependency" meta-object. The repository should also
 only use the latest objects (by rolling back to earlier versions
 if necessary) which are within the transaction sequence numbers of
 the "auth-dependency" meta-objects.

 A non-originating repository must redistribute a failed transaction
 in order not to cause a gap in the sequence. (If the transaction was
 to fail at the originating registry, it would simply not be assigned
 a sequence number).

 To the redistributed text of a transaction, a repository may append
 another "repository-signature" meta-object. This indicates that the
 repository has verified the transaction’s integrity and marked it in
 the "integrity" attribute of this object. The signature covers the
 new redistributed text from (and including) the transaction-label
 object to this object’s signature attribute (including the
 "repository-signature" and "integrity" attributes of this object, but
 excluding the "signature" attribute). The original redistributed
 text, together with the new "repository-signature" meta-object
 constitutes the modified redistributed text.

 To redistribute a successful or failed transaction, the repository
 must encapsulate the (original or modified) redistributed text with a
 "transaction-begin" object. This step is essentially the same as

Villamizar, et al. Standards Track [Page 20]

RFC 2769 Routing Policy System Replication February 2000

 that performed by the originating repository (except that the
 repository is free to use a different "transfer-method" from the one
 that was in the received transaction.

7.3.1 Explicitly Requesting Transactions

 A repository may also explicitly request one or more transactions
 belonging to a specified originating repository. This is useful for
 catching up after a repository has been off-line for a period of
 time. It is also useful for mirrors which intermittently poll a
 repository for recently received transactions.

 To request a range of transactions from a peer, a repository must
 send a "transaction-request" meta-object to the peer. A
 "transaction-request" meta-object may contain the following
 attributes:

 transaction-request This attribute is mandatory and single. It
 contains the name of the database whose transactions are being
 requested.

 sequence-begin This attribute is optional and single. It contains
 the sequence number of the first transaction being requested.

 sequence-end This attribute is optional and single. It contains the
 sequence number of the last transaction being requested.

 Upon receiving a "transaction-request" object, a repository performs
 the following actions. If the "sequence-begin" attribute is not
 specified, the repository assumes the request first sequence number
 to be 1. The last sequence number is the lesser of the value of the
 "sequence-end" attributed and the highest completed transaction in
 the corresponding database. The repository then, in order, transmits
 the requested range of transactions. Each transaction is prepared
 exactly according to the rules for redistribution specified in
 Section 7.3.

 After transmitting all the transactions, the peer repository must
 send a "transaction-response" meta-object. This meta-object has the
 following attributes:

 transaction-response This attribute is mandatory and single. It
 contains the name of the database whose transactions are were
 requested.

Villamizar, et al. Standards Track [Page 21]

RFC 2769 Routing Policy System Replication February 2000

 sequence-begin This attribute is optional and mandatory. It
 contains the value of the "sequence-begin" attribute in the
 original request. It is omitted if the corresponding attribute
 was not specified in the original request.

 sequence-end This attribute is optional and mandatory. It contains
 the value of the "sequence-end" attribute in the original request.
 It is omitted if the corresponding attribute was not specified in
 the original request.

 After receiving a "transaction-response" meta-object, a repository
 may tear down the TCP connection to its peer. This is useful for
 mirrors that intermittently resynchronize transactions with a
 repository. If the TCP connection stays open, repositories exchange
 subsequent transactions according to the redistribution mechanism
 specified in Section 7.3. While a repository is responding to a
 transaction-request, it MAY forward heartbeats and other transactions
 from the requested repository towards the requestor.

7.3.2 Heartbeat Processing

 Each repository that has originated at least one transaction must
 periodically send a "heartbeat" meta-object. The interval between
 two successive transmissions of this meta-object is configurable but
 must be less than 1 day. This meta-object serves to indicate the
 liveness of a particular repository. The repository liveness
 determines how long transactions are held (See Section 7.6).

 The "heartbeat" meta-object contains the following attributes:

 heartbeat This attribute is mandatory and single. It contains the
 name of the repository which originates this meta-object.

 sequence This attribute is mandatory and single. It contains the
 highest transaction sequence number that has been assigned by the
 repository.

 timestamp This attribute is mandatory and single. It contains the
 time at which this meta-object was generated. The format of this
 attribute is "YYYYMMDD hh:mm:ss [+/-]xx:yy", where "YYYY"
 specifies the four digit year, "MM" represents the month, "DD" the
 date, "hh" the hour, "mm" the minutes, "ss" the seconds of the
 timestamp, and "xx" and "yy" represents the hours and minutes
 respectively that that timestamp is ahead or behind UTC.

 Upon receiving a heartbeat meta-object, a repository must first check
 the timestamp of the latest previously received heartbeat message.
 If that timestamp exceeds the timestamp in the received heartbeat

Villamizar, et al. Standards Track [Page 22]

RFC 2769 Routing Policy System Replication February 2000

 message, the repository must silently discard the heartbeat message.
 Otherwise, it must record the timestamp and sequence number in the
 heartbeat message, and redistribute the heartbeat message, without
 modification, to each of its peer repositories.

 If the heartbeat message is from a repository previously unknown to
 the recipient, the recipient may send a "transaction-request" to one
 or more of its peers to obtain all transactions belonging to the
 corresponding database. If the heartbeat message contains a sequence
 number higher than the highest sequence number processed by the
 recipient, the recipient may send a "transaction-request" to one or
 more of its peers to obtain all transactions belonging to the
 corresponding database.

7.4 Transaction Commit

 Submitters may require stronger confirmation of commit for their
 transactions (Section 6.3). This section describes a simple
 request-response protocol by which a repository may provide this
 stronger confirmation, by verifying if one or more other repositories
 have committed the transaction. Implementation of this request-
 response protocol is optional.

 After it has redistributed a transaction, the originating repository
 may request a commit confirmation from one or more peer repositories
 by sending to them a "commit-request" meta-object. The "commit-
 request" contains two attributes:

 commit-request This attribute is mandatory and single. It contains
 the name of the database for whom a commit confirmation is being
 requested.

 sequence This attribute is mandatory and single. It contains the
 transaction sequence number for which a commit confirmation is
 being requested.

 A repository that receives a "commit-request" must not redistribute
 the request. It must delay the response until the corresponding
 transaction has been processed. For this reason, the repository must
 keep state about pending commit requests. It should discard this
 state if the connection to the requester is lost before the response
 is sent. In that event, it is the responsibility of the requester to
 resend the request.

 Once a transaction has been processed (Section 7.3), a repository
 must check to see if there exists any pending commit request for the
 transaction. If so, it must send a "commit-response" meta-object to
 the requester. This meta-object has three attributes:

Villamizar, et al. Standards Track [Page 23]

RFC 2769 Routing Policy System Replication February 2000

 commit-response This attribute is mandatory and single. It contains
 the name of the database for whom a commit response is being sent.

 sequence This attribute is mandatory and single. It contains the
 transaction sequence number for which a commit response is being
 sent.

 commit-status This attribute is mandatory and single. It contains
 one of the keywords "held", "error", or "succeeded". The "error"
 keyword may be followed by an optional text string. The "held"
 keyword is returned when a repository containing a dependent
 object for authorization has expired.

7.5 Database Snapshot

 A database snapshot provides a complete copy of a database. It is
 intended only for repository initialization or disaster recovery. A
 database snapshot is an out of band mechanism. A set of files are
 created periodically at the source repository. These files are then
 transferred to the requestor out of band (e.g. ftp transfer). The
 objects in these files are then registered locally.

 A snapshot of repository X contains the following set of files:

 X.db This file contains the RPSL objects of repository X, separated
 by blank lines. In addition to the RPSL objects and blank lines,
 comment lines can be present. Comment lines start with the
 character ’#’. The comment lines are ignored. The file X.db ends
 in a special comment line "# eof".

 X.<class>.db This optional file if present contains the RPSL objects
 in X.db that are of class <class>. The format of the file is same
 as that of X.db.

 X.transaction-label This file contains a transaction-label object
 that records the timestamp and the latest sequence number of the
 repository at the time of the snapshot.

 Each of these files can be optionally compressed uzing gzip. This is
 signified by appending the suffix .gz to the file name. Each of
 these files can optionally be PGP signed. In this case, the detached
 signature with ASCII armoring and platform-independent text mode is
 stored in a file whose name is constructed by appending .sig to the
 file name of the file being signed.

 In order to construct a repository’s contents from a snapshot, a
 repository downloads these files. After uncompressing and checking
 signatures, the repository records these objects in its database. No

Villamizar, et al. Standards Track [Page 24]

RFC 2769 Routing Policy System Replication February 2000

 RPS authorization/authentication is done on these objects. The
 transaction-label object provides the seed for the replication
 protocol to receive the follow on transactions from this repository.
 Hence, it is not crucial to download an up to the minute snapshot.

 After successfully playing a snapshot, it is possible that a
 repository may receive a transaction from a third repository that has
 a dependency on an earlier version of one of the objects in the
 snapshot. This can only happen within the expire period of the
 repository being downloaded, plus any possible network partition
 period. This dependency is only important if the repository wants to
 re-verify RPS authorization/authentication. There are three allowed
 alternatives in this case. The simplest alternative is for the
 repository to accept the transaction and mark it with integrity "no-
 auth". The second choice is to only peer with trusted repositories
 during this time period, and accept the transaction with the same
 integrity as the trusted repository (possibly as "authorized"). The
 most preferred alternative is not to download an up to the minute
 snapshot, but to download an older snapshot, at minimum twice the
 repositories expire time, in practice few days older. Upon replaying
 an older snapshot, the replication protocol will fetch the more
 current transactions from this repository. Together they provide the
 necessary versions of objects to re-verify rps
 authorization/authentication.

7.6 Authenticating Operations

 The "signature" and "repository-signature" meta-objects represent
 signatures. Where multiple of these objects are present, the
 signatures should be over the original contents, not over other
 signatures. This allows signatures to be checked in any order.

 A maintainer can also sign a transaction using several authentication
 methods (some of which may be available in some repositories only).

 In the case of PGP, implementations should allow the signatures of
 the "signature" and "repository-signature" meta-objects to be either
 the detached signatures produced by PGP or regular signatures
 produced by PGP. In either case, ASCII armoring and platform-
 independent text mode should be used.

 Note that the RPSL objects themselves are not signed but the entire
 transaction body is signed. When exchanging transactions among
 registries, the meta-objects (e.g. "auth-dependency") prior to the
 first "repository-signature" meta object in the redistributed text
 are also signed over.

Villamizar, et al. Standards Track [Page 25]

RFC 2769 Routing Policy System Replication February 2000

 Transactions must remain intact, including the signatures, even if an
 authentication method provided by the submitter is not used by a
 repository handling the message. An originating repository may chose
 to remove clear text passwords signatures from a transaction, and
 replace it with the keyword "clear-text-passwd" followed by the
 maintainer’s id.

 signature: clear-text-passwd <maintainer-name>

 Note that this does not make the system less secure since clear text
 password is an indication of total trust to the originating
 repository by the maintainer.

 A repository may sign a transaction that it verified. If at any
 point the signature of a trusted repository is encountered, no
 further authorization or authentication is needed.

Villamizar, et al. Standards Track [Page 26]

RFC 2769 Routing Policy System Replication February 2000

A Examples

 RPSL provides an external representation of RPSL objects and
 attributes. An attribute is a name/value pair. RPSL is line
 oriented. Line continuation is supported, however most attributes
 fit on a single line. The attribute name is followed by a colon,
 then any amount of whitespace, then the attribute value. An example
 of the ASCII representation of an RPSL attribute is the following:

 route: 140.222.0.0/16

 An RPSL object is a set of attributes. Objects are separated from
 each other by one or more blank lines. An example of a complete RPSL
 object follows:

 route: 140.222.0.0/16
 descr: ANS Communications
 origin: AS1673
 member-of: RS-ANSOSPFAGGREGATE
 mnt-by: ANS
 changed: tck@ans.net 19980115
 source: ANS

A.1 Initial Object Submission and Redistribution

 Figure 1 outlines the steps involved in submitting an object and the
 initial redistribution from the authoritative registry to its flooding
 peers.

 If the authorization check requires objects from other repositories,
 then the sequence numbers of the local copies of those databases is
 required for mirrors to recheck the authorization.

 To simply resubmit the object from the prior example, the submitter or
 a client application program acting on the submitter’s behalf must
 submit a transaction. The legacy method was to send PGP signed email.
 The preferred method is for an interactive program to encapsulate a
 request between "transaction-submit-begin" and
 "transaction-submit-end" meta-objects and encapsulate that as a
 signed block as in the following example:

Villamizar, et al. Standards Track [Page 27]

RFC 2769 Routing Policy System Replication February 2000

 +--------------+
 | Transaction |
 | signed by |
 | submitter |
 +--------------+
 |
 | 1
 v
 +---------------------+ 2
 | Primary repository |---->+----------+
 | identified by | | database |
 | RPSL source |<----+----------+
 +---------------------+ 3
 |
 | 4
 v
 +----------------+
 | Redistributed |
 | transaction |
 +----------------+

 1. submit object
 2. authorization check
 3. sequence needed for authorization
 4. redistribute

 Figure 1: Initial Object Submission and Redistribution

 transaction-submit-begin: ANS 1
 response-auth-type: PGP
 transaction-confirm-type: normal

 route: 140.222.0.0/16
 descr: ANS Communications
 origin: AS1673
 member-of: RS-ANSOSPFAGGREGATE
 mnt-by: ANS
 changed: curtis@ans.net 19990401
 source: ANS

 timestamp: 19990401 10:30:00 +08:00

Villamizar, et al. Standards Track [Page 28]

RFC 2769 Routing Policy System Replication February 2000

 signature:
 + -----BEGIN PGP SIGNATURE-----
 + Version: PGP for Personal Privacy 5.0
 + MessageID: UZi4b7kjlzP7rb72pATPywPxYfQj4gXI
 +
 + iQCVAwUANsrwkP/OhQ1cphB9AQFOvwP/Ts8qn3FRRLQQHKmQGzy2IxOTiF0QXB4U
 + Xzb3gEvfeg8NWhAI32zBw/D6FjkEw7P6wDFDeok52A1SA/xdP5wYE8heWQmMJQLX
 + Avf8W49d3CF3qzh59UC0ALtA5BjI3r37ubzTf3mgtw+ONqVJ5+lB5upWbqKN9zqv
 + PGBIEN3/NlM=
 + =c93c
 + -----END PGP SIGNATURE-----

 transaction-submit-end: ANS 1

 The signature covers the everything after the first blank line after
 the "transaction-submit-begin" object to the last blank line before
 the "signature" meta-object. If multiple signatures are needed, it
 would be quite easy to email this block and ask the other party to
 add a signature-block and return or submit the transaction. Because
 of delay in obtaining multiple signatures the accuracy of the
 "timestamp" cannot be strictly enforced. Enforcing accuracy to
 within the "expire" time of the database might be a reasonable
 compromise. The tradeoff is between convenience, allowing a longer
 time to obtain multiple signatures, and increased time of exposure to
 replay attack.

 The ANS repository would look at its local database and make
 authorization checks. If the authorization passes, then the sequence
 number of any other database needed for the authorization is
 obtained.

 If this operation was successful, then a confirmation would be
 returned. The confirmation would be of the form:

 transaction-confirm: ANS 1
 confirmed-operation: change route 140.222.0.0/16 AS1673
 commit-status: commit
 timestamp: 19990401 10:30:10 +05:00

A.2 Transaction Redistribution Encoding

 Having passed the authorization check the transaction is given a
 sequence number and stored in the local transaction log and is then
 flooded. The meta-object flooded to another database would be signed
 by the repository and would be of the following form:

Villamizar, et al. Standards Track [Page 29]

RFC 2769 Routing Policy System Replication February 2000

 transaction-label: ANS
 sequence: 6666
 timestamp: 19990401 13:30:10 +05:00
 integrity: authorized

 route: 140.222.0.0/16
 descr: ANS Communications
 origin: AS1673
 member-of: RS-ANSOSPFAGGREGATE
 mnt-by: ANS
 changed: curtis@ans.net 19990401
 source: ANS

 timestamp: 19990401 10:30:00 +08:00

 signature:
 + -----BEGIN PGP SIGNATURE-----
 + Version: PGP for Personal Privacy 5.0
 + MessageID: UZi4b7kjlzP7rb72pATPywPxYfQj4gXI
 +
 + iQCVAwUANsrwkP/OhQ1cphB9AQFOvwP/Ts8qn3FRRLQQHKmQGzy2IxOTiF0QXB4U
 + Xzb3gEvfeg8NWhAI32zBw/D6FjkEw7P6wDFDeok52A1SA/xdP5wYE8heWQmMJQLX
 + Avf8W49d3CF3qzh59UC0ALtA5BjI3r37ubzTf3mgtw+ONqVJ5+lB5upWbqKN9zqv
 + PGBIEN3/NlM=
 + =c93c
 + -----END PGP SIGNATURE-----

 auth-dependency: ARIN
 sequence: 555
 timestamp: 19990401 13:30:08 +05:00

 auth-dependency: RADB
 sequence: 4567
 timestamp: 19990401 13:27:54 +05:00

 repository-signature: ANS
 signature:
 + -----BEGIN PGP SIGNATURE-----
 + Version: PGP for Personal Privacy 5.0
 + MessageID: UZi4b7kjlzP7rb72pATPywPxYfQj4gXI
 +
 + iQCVAwUANsrwkP/OhQ1cphB9AQFOvwP/Ts8qn3FRRLQQHKmQGzy2IxOTiF0QXB4U
 + Xzb3gEvfeg8NWhAI32zBw/D6FjkEw7P6wDFDeok52A1SA/xdP5wYE8heWQmMJQLX
 + Avf8W49d3CF3qzh59UC0ALtA5BjI3r37ubzTf3mgtw+ONqVJ5+lB5upWbqKN9zqv
 + PGBIEN3/NlM=
 + =c93c
 + -----END PGP SIGNATURE-----

Villamizar, et al. Standards Track [Page 30]

RFC 2769 Routing Policy System Replication February 2000

 Note that the repository-signature above is a detached signature for
 another file and is illustrative only. The repository-signature
 covers from the "transaction-label" meta-object (including) to the
 last blank line before the first "repository-signature" meta-object
 (excluding the last blank line and the "repository-signature"
 object).

A.3 Transaction Protocol Encoding

 transaction-begin: 1276
 transfer-method: plain

 transaction-label: ANS
 sequence: 6666
 timestamp: 19990401 13:30:10 +05:00
 integrity: authorized

 route: 140.222.0.0/16
 descr: ANS Communications
 origin: AS1673
 member-of: RS-ANSOSPFAGGREGATE
 mnt-by: ANS
 changed: curtis@ans.net 19990401
 source: ANS

 timestamp: 19990401 10:30:00 +08:00

 signature:
 + -----BEGIN PGP SIGNATURE-----
 + Version: PGP for Personal Privacy 5.0
 + MessageID: UZi4b7kjlzP7rb72pATPywPxYfQj4gXI
 +
 + iQCVAwUANsrwkP/OhQ1cphB9AQFOvwP/Ts8qn3FRRLQQHKmQGzy2IxOTiF0QXB4U
 + Xzb3gEvfeg8NWhAI32zBw/D6FjkEw7P6wDFDeok52A1SA/xdP5wYE8heWQmMJQLX
 + Avf8W49d3CF3qzh59UC0ALtA5BjI3r37ubzTf3mgtw+ONqVJ5+lB5upWbqKN9zqv
 + PGBIEN3/NlM=
 + =c93c
 + -----END PGP SIGNATURE-----

 auth-dependency: ARIN
 sequence: 555
 timestamp: 19990401 13:30:08 +05:00

 auth-dependency: RADB
 sequence: 4567
 timestamp: 19990401 13:27:54 +05:00

Villamizar, et al. Standards Track [Page 31]

RFC 2769 Routing Policy System Replication February 2000

 repository-signature: ANS
 signature:
 + -----BEGIN PGP SIGNATURE-----
 + Version: PGP for Personal Privacy 5.0
 + MessageID: UZi4b7kjlzP7rb72pATPywPxYfQj4gXI
 +
 + iQCVAwUANsrwkP/OhQ1cphB9AQFOvwP/Ts8qn3FRRLQQHKmQGzy2IxOTiF0QXB4U
 + Xzb3gEvfeg8NWhAI32zBw/D6FjkEw7P6wDFDeok52A1SA/xdP5wYE8heWQmMJQLX
 + Avf8W49d3CF3qzh59UC0ALtA5BjI3r37ubzTf3mgtw+ONqVJ5+lB5upWbqKN9zqv
 + PGBIEN3/NlM=
 + =c93c
 + -----END PGP SIGNATURE-----

 Before the transaction is sent to a peer, the repository prepends a
 "transaction-begin" meta-object. The value of the "transaction-
 begin" attribute is the number of octets in the transaction, not
 counting the "transaction-begin" meta-object and the first blank line
 after it.

 Separating transaction-begin and transaction-label objects enables
 different encodings at different flooding peerings.

A.4 Transaction Redistribution

 The last step in Figure 1 was redistributing the submitter’s
 transaction through flooding (or later through polling). Figure 2
 illustrates the further redistribution of the transaction.

 If the authorization check was repeated, the mirror may optionally
 add a repository-signature before passing the transaction any
 further. A "signature" can be added within that block. The previous
 signatures should not be signed.

 Figure 3 illustrates the special case referred to as a "lightweight
 mirror". This is specifically intended for routers.

 The lightweight mirror must trust the mirror from which it gets a
 feed. This is a safe assumption if the two are under the same
 administration (the mirror providing the feed is a host owned by the
 same ISP who owns the routers). The lightweight mirror simply checks
 the signature of the adjacent repository to insure data integrity.

Villamizar, et al. Standards Track [Page 32]

RFC 2769 Routing Policy System Replication February 2000

 +----------------+
 | Redistributed |
 | transaction |
 +----------------+
 |
 | 1
 v
 +--------------------+ 2
 | |---->+----------+
 | Mirror repository | | database |
 | |<----+----------+
 +--------------------+ 3
 |
 | 4
 v
 +------------------+
 |+----------------+|
 || Redistributed ||
 || transaction ||
 |+----------------+|
 | Optional |
 | signature |
 +------------------+

 1. redistribute transaction
 2. recheck authorization against full DB at the
 time of the transaction using sequence numbers
 3. authorization pass/fail
 4. optionally sign then redistribute

 Figure 2: Further Transaction Redistribution

Villamizar, et al. Standards Track [Page 33]

RFC 2769 Routing Policy System Replication February 2000

 +----------------+
 | Redistributed |
 | transaction |
 +----------------+
 | 1
 v
 +--------------------+ 2
 | |---->+----------+
 | Mirror repository | | database |
 | |<----+----------+
 +--------------------+ 3
 | 4
 v
 +----------------+
 | Redistributed |
 | transaction |
 +----------------+
 | 5
 v
 +--------------------+
 | Lightweight | 6 +----------+
 | Mirror repository |---->| database |
 | (router?) | +----------+
 +--------------------+

 1. redistribute transaction
 2. recheck authorization against full DB at the
 time of the transaction using sequence numbers
 3. authorization pass/fail
 4. sign and redistribute
 5. just check mirror signature
 6. apply change with no authorization check

 Figure 3: Redistribution to Lightweight Mirrors

Villamizar, et al. Standards Track [Page 34]

RFC 2769 Routing Policy System Replication February 2000

B Technical Discussion

B.1 Server Processing

 This document does not mandate any particular software design,
 programming language choice, or underlying database or underlying
 operating system. Examples are given solely for illustrative
 purposes.

B.1.1 getting connected

 There are two primary methods of communicating with a repository
 server. E-mail can be sent to the server. This method may be
 deprecated but at least needs to be supported during transition. The
 second method is preferred, connect directly to a TCP socket.

 Traditionally the whois service is supported for simple queries. It
 might be wise to retain the whois port connection solely for simple
 queries and use a second port not in the reserved number space for
 all other operations including queries except those queries using the
 whois unstructured single line query format.

 There are two styles of handling connection initiation is the
 dedicated daemon, in the style of BSD sendmail, or launching through
 a general purpose daemon such as BSD inetd. E-mail is normally
 handled sequentially and can be handled by a front end program which
 will make the connection to a socket in the process as acting as a
 mail delivery agent.

B.1.2 rolling transaction logs forward and back

 There is a need to be able to easily look back at previous states of
 any database in order to repeat authorization checks at the time of a
 transaction. This is difficult to do with the RIPE database
 implementation, which uses a sequentially written ASCII file and a
 set of Berkeley DB maintained index files for traversal. At the very
 minimum, the way in which deletes or replacements are implemented
 would need to be altered.

 In order to easily support a view back at prior versions of objects,
 the sequence number of the transaction at which each object was
 entered would need to be kept with the object. A pointer would be
 needed back to the previous state of the object. A deletion would
 need to be implemented as a new object with a deleted attribute,
 replacing the previous version of the object but retaining a pointer
 back to it.

Villamizar, et al. Standards Track [Page 35]

RFC 2769 Routing Policy System Replication February 2000

 A separate transaction log needs to be maintained. Beyond some age,
 the older versions of objects and the the older transaction log
 entries can be removed although it is probably wise to archive them.

B.1.3 committing or disposing of transactions

 The ability to commit large transaction, or reject them as a whole
 poses problems for simplistic database designs. This form of commit
 operation can be supported quite easily using memory mapped files.
 The changes can be made in virtual memory only and then either
 committed or disposed of.

B.1.4 dealing with concurrency

 Multiple connections may be active. In addition, a single connection
 may have multiple outstanding operations. It makes sense to have a
 single process or thread coordinate the responses for a given
 connection and have multiple processes or threads each tending to a
 single operation. The operations may complete in random order.

 Locking on reads is not essential. Locking before write access is
 essential. The simplest approach to locking is to lock at the
 database granularity or at the database and object type granularity.
 Finer locking granularity can also be implemented. Because there are
 multiple databases, deadlock avoidance must be considered. The usual
 deadlock avoidance mechanism is to acquire all necessary locks in a
 single operation or acquire locks in a prescribed order.

B.2 Repository Mirroring for Redundancy

 There are numerous reasons why the operator of a repository might
 mirror their own repository. Possibly the most obvious are
 redundancy and the relative ease of disaster recovery. Another
 reason might be the widespread use of a small number of
 implementations (but more than one) and the desire to insure that the
 major repository software releases will accept a transaction before
 fully committing to the transaction.

 The operation of a repository mirror used for redundancy is quite
 straightforward. The transactions of the primary repository host can
 be immediately fed to the redundant repository host. For tighter
 assurances that false positive confirmations will be sent, as a
 matter of policy the primary repository host can require commit
 confirmation before making a transaction sequence publicly available.

 There are many ways in which the integrity of local data can be
 assured regardless of a local crash in the midst of transaction disk
 writes. For example, transactions can be implemented as memory

Villamizar, et al. Standards Track [Page 36]

RFC 2769 Routing Policy System Replication February 2000

 mapped file operations, with disk synchronization used as the local
 commit mechanism, and disposal of memory copies of pages used to
 handle commit failures. The old pages can be written to a separate
 file, the new pages written into the database. The transaction can
 be logged and old pages file can then be removed. In the event of a
 crash, the existence of a old pages file and the lack of a record of
 the transaction completing would trigger a transaction roll back by
 writing the old pages back to the database file.

 The primary repository host can still sustain severe damage such as a
 disk crash. If the primary repository host becomes corrupted, the
 use of a mirror repository host provides a backup and can provide a
 rapid recovery from disaster by simply reversing roles.

 If a mirror is set up using a different software implementation with
 commit mirror confirmation required, any transaction which fails due
 a software bug will be deferred indefinitely allowing other
 transactions to proceed rather than halting the remote processing of
 all transactions until the bug is fixed everywhere.

B.3 Trust Relationships

 If all repositories trust each other then there is never a need to
 repeat authorization checks. This enables a convenient interim step
 for deployment prior to the completion of software supporting that
 capability. The opposite case is where no repository trusts any
 other repository. In this case, all repositories must roll forward
 transactions gradually, checking the authorization of each remote
 transaction.

 It is likely that repositories will trust a subset of other
 repositories. This trust can reduce the amount of processing a
 repository required to maintain mirror images of the full set of
 data. For example, a subset of repositories might be trustworthy in
 that they take reasonable security measures, the organizations
 themselves have the integrity not to alter data, and these
 repositories trust only a limited set of similar repositories. If
 any one of these repositories receives a transaction sequence and
 repeats the authorization checks, other major repositories which
 trusts that repository need not repeat the checks. In addition,
 trust need not be mutual to reap some benefit in reduced processing.

 As a transaction sequence is passed from repository to repository
 each repository signs the transaction sequence before forwarding it.
 If a receiving repository finds that any trusted repository has
 signed the transaction sequence it can be considered authorized since
 the trusted repository either trusted a preceding repository or
 repeated the authorization checks.

Villamizar, et al. Standards Track [Page 37]

RFC 2769 Routing Policy System Replication February 2000

B.4 A Router as a Minimal Mirror

 A router could serve as a minimal repository mirror. The following
 simplifications can be made.

 1. No support for repeating authorization checks or transaction
 authentication checks need be coded in the router.

 2. The router must be adjacent only to trusted mirrors, generally
 operated by the same organization.

 3. The router would only check the authentication of the adjacent
 repository mirrors.

 4. No support for transaction submission or query need be coded in
 the router. No commit support is needed.

 5. The router can dispose of any object types or attributes not
 needed for configuration of route filters.

 The need to update router configurations could be significantly
 reduced if the router were capable of acting as a limited repository
 mirror.

 A significant amount of non-volatile storage would be needed. There
 are currently an estimated 100 transactions per day. If storage were
 flash memory with a limited number of writes, or if there were some
 other reason to avoid writing to flash, the router could only update
 the non-volatile copy every few days. A transaction sequence request
 can be made to get an update in the event of a crash, returning only
 a few hundred updates after losing a few days of deferred writes.
 The routers can still take a frequent or continuous feed of
 transactions.

 Alternately, router filters can be reconfigured periodically as they
 are today.

B.5 Dealing with Errors

 If verification of an authorization check fails, the entire
 transaction must be rejected and no further advancement of the
 repository can occur until the originating repository corrects the
 problem. If the problem is due to a software bug, the offending
 transaction can be removed manually once the problem is corrected.
 If a software bug exists in the receiving software, then the

Villamizar, et al. Standards Track [Page 38]

RFC 2769 Routing Policy System Replication February 2000

 transaction sequence is stalled until the bug is corrected. It is
 better for software to error on the side of denying a transaction
 than acceptance, since an error on the side of acceptance will
 require later removal of the effects of the transaction.

C Deployment Considerations

 This section described deployment considerations. The intention is
 to raise issues rather than to provide a deployment plan.

 This document calls for a transaction exchange mechanism similar to
 but not identical to the existing "near real time mirroring"
 supported by the code base widely used by the routing registries. As
 an initial step, the transaction exchange can be implemented without
 the commit protocol or the ability to recheck transaction
 authorization. This is a fairly minimal step from the existing
 capabilities.

 The transition can be staged as follows:

 1. Modify the format of "near real time mirroring" transaction
 exchange to conform to the specifications of this document.

 2. Implement commit protocol and confirmation support.

 3. Implement remote recheck of authorization. Prior to this step all
 repositories must be trusted.

 4. Allow further decentralization of the repositories.

D Privacy of Contact Information

 The routing registries have contained contact information. The
 redistribution of this contact information has been a delicate issue
 and in some countries has legal implications.

 The person and role objects contain contact information. These
 objects are referenced by NIC-handles. There are some attributes
 such as the "changed" and "notify" attributes that require an email
 address. All of the fields that currently require an email address
 must also accept a NIC-handle.

 The person and role objects should not be redistributed by default.
 If a submission contains an email address in a field such as a
 changed field rather than a NIC-handle the submitter should be aware
 that they are allowing that email address to be redistributed and

Villamizar, et al. Standards Track [Page 39]

RFC 2769 Routing Policy System Replication February 2000

 forfeiting any privacy. Repositories which do not feel that prior
 warnings of this forfeiture are sufficient legal protection should
 reject the submission requesting that a NIC-handle be used.

 Queries to role and person objects arriving at a mirror must be
 referred to the authoritative repository where whatever
 authentication, restrictions, or limitations deemed appropriate by
 that repository can be enforced directly.

 Software should make it possible to restrict the redistribution of
 other entire object types as long as those object types are not
 required for the authorization of additions of other object types.
 It is not possible to redistribute objects with attributes removed or
 altered since this would invalidate the submitter’s signature and
 make subsequent authentication checks impossible. Repositories
 should not redistribute a subset of the objects of a given type.

 Software should also not let a transaction contain both
 redistributable (e.g. policy objects) and non-redustributable
 objects (e.g. person) since there is no way to verify the signature
 of these transactions without the non-redustributable objects.

 When redistributing legacy data, contact information in attributes
 such as "changed" and "notify" should be stripped to maintain
 privacy. The "integrity" attribute on these objects should already
 be set to "legacy" indicating that their origin is questionable, so
 the issue of not being able to recheck signatures is not as
 significant.

References

 [1] Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D.,
 Meyer, D., Bates, T., Karrenberg, D. and M. Terpstra, "Routing
 Policy Specification Language", RFC 2622, June 1999.

 [2] Bates, T., Gerich, E., Joncheray, L., Jouanigot, J-M.,
 Karrenberg, D., Terpstra, M. and J. Yu, "Representation of IP
 Routing Policies in a Routing Registry (ripe-81++)", RFC 1786,
 March 1995.

 [3] Villamizar, C., Alaettinoglu, C., Meyer, D. and S. Murphy,
 "Routing Policy System Security", RFC 2725, June 1999.

 [4] Zsako, J., "PGP Authentication for RIPE Database Updates", RFC
 2726, December 1999.

Villamizar, et al. Standards Track [Page 40]

RFC 2769 Routing Policy System Replication February 2000

Security Considerations

 An authentication and authorization model for routing policy object
 submission is provided by [3]. Cryptographic authentication is
 addressed by [4]. This document provides a protocol for the exchange
 of information among distributed routing registries such that the
 authorization model provided by [3] can be adhered to by all
 registries and any deviation (hopefully accidental) from those rules
 on the part of a registry can be identified by other registries or
 mirrors.

Authors’ Addresses

 Curtis Villamizar
 Avici Systems
 EMail: curtis@avici.com

 Cengiz Alaettinoglu
 ISI
 EMail: cengiz@ISI.EDU

 Ramesh Govindan
 ISI
 EMail: govindan@ISI.EDU

 David M. Meyer
 Cisco
 EMail: dmm@cisco.com

Villamizar, et al. Standards Track [Page 41]

RFC 2769 Routing Policy System Replication February 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Villamizar, et al. Standards Track [Page 42]

