
Network Working Group R. Finlayson
Request for Comments: 2771 LIVE.COM
Category: Informational February 2000

 An Abstract API for Multicast Address Allocation

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This document describes the "abstract service interface" for the
 dynamic multicast address allocation service, as seen by
 applications. While it does not describe a concrete API (i.e., for a
 specific programming language), it describes - in abstract terms -
 the semantics of this service, including the guarantees that it makes
 to applications.

 Additional documents (not necessarily products of the IETF) would
 describe concrete APIs for this service.

1. Introduction

 Applications are the customers of a multicast address allocation
 service, so a definition of this service should include not only the
 inter-node network protocols that are used to implement it, but also
 the ’protocol’ that applications use to access the service. While
 APIs ("application programming interfaces") for specific programming
 languages (or operating systems) are outside the domain of the IETF,
 it is appropriate for us to define - in abstract terms - the semantic
 interface that this service presents to applications. Specific APIs
 would then be based upon this abstract service interface.

 Note that it is possible to implement the multicast address
 allocation service in at least two different ways. The first (and
 perhaps most common) way is for end nodes to allocate addresses by
 communicating with a separate "Address Allocation Server" node, using
 the "Host to Address Allocation Server" network protocol (MADCAP)
 [1][7]. Alternatively, an "Address Allocation Server" implementation

Finlayson Informational [Page 1]

RFC 2771 Abstract API for Multicast Address Allocation February 2000

 might be co-located (along with one or more applications) on an end
 node, in which case some other, internal, mechanism might be used to
 access the server. In either case, however, the abstract service
 interface (and, presumably, any specific APIs) would remain the same.

 The remainder of this document describes the abstract interface.

 Note that this interface is intended only for the allocation of
 dynamic multicast addresses, as used by the traditional multicast
 service model [2]. Future multicast service models might allocate or
 assign multicast addresses in other ways, but this is outside the
 scope of this document.

2. Abstract Data Types

 The interface described below uses the following abstract data types:

 - AddressFamily: e.g., IPv4 or IPv6

 - MulticastAddress: An actual multicast address (i.e., that could
 subsequently be used as the destination of a datagram)

 - MulticastAddressSet: A set of "MulticastAddress"es

 - LanguageTag: The code for a (human) language, as defined in [4]

 - Scope: An "administrative scope" [3] from which multicast
 addresses are to be allocated. Each scope is a
 "MulticastAddressSet", with an associated set of
 (character-string) names - indexed by "LanguageTag". (Each
 language tag has at most one corresponding name, per
 scope.) For each scope, a (language tag, name) pair may be
 defined to be the ’default’ name for this scope. (See the
 section "Querying the name of a scope" below.)

 (An implementation of this abstract data type might also
 include other information, such as a default TTL for the
 scope.)

 - Time: An (absolute) event time. This is used for specifying the
 "lifetime" of multicast addresses: the period of time during
 which allocated multicast addresses are guaranteed to be
 available. (It is also used to specify the desired start
 time for an "advance allocation".)

Finlayson Informational [Page 2]

RFC 2771 Abstract API for Multicast Address Allocation February 2000

 Note that a concrete API might prefer to specify some of
 these times as relative times (i.e., relative to the current
 time-of-day), rather than absolute time. (Relative times
 have the advantage of not requiring clock synchronization.)

 - Lease: A compound data type that describes the result of a
 (successful) multicast address allocation. It consists of:

 - [MulticastAddressSet] The set of addresses that were
 allocated;

 - [AddressFamily] The address family of these addresses

 - [Time] The lifetime of these addresses (the same for
 each address)

 - [Time] The "start time" of the allocation. (See the
 discussion of "advance allocation" below.) (A concrete
 API would likely also include a MADCAP "Lease
 Identifier" [1].)

 - NestingRelationship: A binary data type that describes whether or
 not two scopes nest. Two scopes nest if
 traffic sent sent to a multicast group within
 one scope could be seen by all hosts present
 within the other scope were they to join the
 multicast group within the first scope. This
 value would be "False" for overlapping scopes
 where only some (or none) of the hosts within
 the second scope could see traffic sent to an
 address due to the presence of an
 administratively scoped boundary. In cases
 where the first and second scopes are
 topologically identical this value would be
 "True."

 - Status: A result code.

Finlayson Informational [Page 3]

RFC 2771 Abstract API for Multicast Address Allocation February 2000

3. The Abstract Interface

3.1 Allocating multicast addresses:

 alloc_multicast_addr(in AddressFamily family,
 in Scope scope,
 in Integer minDesiredAddresses,
 in Integer maxDesiredAddresses,
 in Time minDesiredStartTime,
 in Time maxDesiredStartTime,
 in Time minDesiredLifetime,
 in Time maxDesiredLifetime,
 out Lease multicastAddressSetLease,
 out Status status)

 This operation attempts to allocate a set of multicast addresses (the
 size of this set is in the range [minDesiredAddresses,
 maxDesiredAddresses]) within the given address family and scope, and
 within a given range of desired lifetimes. ("minDesiredStartTime"
 and "maxDesiredStartTime" are used to specify "advance allocation";
 this is described in more detail below.)

 If the address allocation succeeds, the result is returned in
 "multicastAddressSetLease" (with "status" = OK).

 During the lifetime of this lease, the allocation service will make a
 "best-effort" attempt to not allocate any of these addresses to
 others. (However, once the lease’s lifetime has expired, any of its
 addresses can be allocated to others.)

 Multicast addresses are allocated for a limited lifetime. An
 application may attempt to extend this lifetime, but this operation
 may fail. Therefore, an application must be prepared for the
 possibility it will not be able to use the same addresses for as long
 as it desires. In particular, the application must be prepared to
 either quit early (because its original multicast address assignments
 have expired), or, alternatively, to occasionally ’renumber’ its
 multicast addresses (in some application or higher-level-protocol
 dependent way), by making a new allocation. However, if an
 application needs to consider ’renumbering’, it will always know this
 in advance, at the time it acquired its current address(es) - by
 checking the lifetime in the returned lease. An application will
 never need to be notified asynchronously of the need to ’renumber’.

Finlayson Informational [Page 4]

RFC 2771 Abstract API for Multicast Address Allocation February 2000

 Possible errors:

 - bad address family
 - bad scope
 - bad desired number of addresses (e.g., max < min)
 - bad desired lifetimes (e.g., max < min)
 - errors with the two "start time" parameters (see
 "Advance allocation" below)
 - no addresses can be allocated (for the requested parameters)

 An allocation attempt can also fail with a result "status" code of
 TRY_LATER, indicating that the requested allocation cannot be made at
 this time, but that it might succeed if the caller retries the
 attempt at some future time. (This future time is returned in the
 "start time" field of the

 "multicastAddressSetLease";
 the other parts of this lease are undefined.)

 Note that a concrete (i.e., programming language-specific) API for
 multicast address allocation will probably include additional,
 specialized variants of this general allocation operation. For
 instance, it may include separate operations for:

 - allocating only a single address
 (i.e., minDesiredAddresses = maxDesiredAddresses = 1);
 - (attempting to) allocate an address with a single, fixed
 lifetime (i.e., minDesiredLifetime = maxDesiredLifetime);
 - (attempting to) allocate an address for immediate use
 (i.e., minDesiredStartTime = maxDesiredStartTime = ’now’)

3.2 Changing multicast addresses’ lifetime:

 change_multicast_addr_lifetime(in Lease multicastAddressSetLease,
 in Time minDesiredLifetime,
 in Time maxDesiredLifetime,
 out Time lifetime)

 This operation attempts to change the lifetime of previously
 allocated multicast addresses. Unless an error occurs, it returns
 the new lifetime (which might remain unchanged).

 Possible errors:

 - bad address family
 - bad durations (e.g., max < min)

Finlayson Informational [Page 5]

RFC 2771 Abstract API for Multicast Address Allocation February 2000

 - the addresses’ lifetime could not be changed
 (and the existing lifetime was not in the requested range
 [minDesiredLifetime,maxDesiredLifetime])
 - the addresses were not ones that we had allocated
 (see section 5.9) - or they have already expired

3.3 Deallocating multicast addresses:

 deallocate_multicast_addr(in Lease multicastAddressSetLease) This
 operation attempts to deallocate previously allocated multicast
 addresses.

 Possible errors:

 - bad address family
 - the addresses were not ones that we had allocated
 (or they have already expired)

3.4 Querying the set of usable multicast address scopes:

 get_multicast_addr_scopes(in AddressFamily family,
 out "set of" Scope)

 This operation returns the set of administrative multicast address
 scopes that are defined for this node.

 Possible errors:

 - bad address family

3.5 Querying the name of a scope:

 get_scope_name(in Scope scope,
 in LanguageTag language,
 out String name,
 out LanguageTag languageForName)

 This operation returns a character-string name for a given scope. If
 the scope has a name in the specified "language", then this name (and
 language) is returned. Otherwise, the scope’s default (language,
 name) pair is returned.

 Possible errors:

 - bad scope.

Finlayson Informational [Page 6]

RFC 2771 Abstract API for Multicast Address Allocation February 2000

3.6 Querying the nesting state of known usable multicast address scopes:

 get_scope_nesting_state(in "set of" Scope,
 out "matrix of" NestingRelationship)

 Possible errors:

 - bad scope.
 - nesting state undetermined at this time.

 This operation would return a matrix that shows the
 current nesting relationships between the supplied
 set of scopes which would have previously been supplied
 via the get_multicast_addr_scopes(...) function.

3.7 Querying the set of scopes that a given scope is known to nest inside:

 get_larger_scopes(in Scope,
 out "set of" Scope)

 This operation returns the set of administrative multicast
 address scopes that are known to encompass the supplied
 Scope.

 Possible errors:

 - bad scope.
 - nesting state undetermined at this time.

3.8 Querying the set of scopes that are known to nest inside a given scope:

 get_smaller_scopes(in Scope,
 out "set of" Scope)

 This operation returns the set of administrative multicast address
 scopes that are known to nest inside the supplied Scope (NB this
 would include those scopes that are topologically identical to the
 supplied scope).

 Possible errors:

 - bad scope.
 - nesting state undetermined at this time.

Finlayson Informational [Page 7]

RFC 2771 Abstract API for Multicast Address Allocation February 2000

3.9 Note: The decision as to who is allowed to deallocate (or change
 the lifetime of) a previously allocated multicast address set lease
 is implementation-specific, and depends upon the security policy of
 the host system. Thus it is not specified in this abstract API.
 One possible starting point, however, is the following:

 A previously allocated multicast address can be deallocated (or
 have its lifetime queried or changed) by the same "principal", and
 on the same node, as that which originally allocated it.
 ("principal" might, for example, be a "user" in the host operating
 system.)

3.10 Advance allocation

 By specifying "minDesiredStartTime = maxDesiredStartTime = ’now’",
 the address allocation operation - "alloc_multicast_addr" -
 described above can be used to request a set of multicast
 addresses that can be used *immediately* (and until their lifetime
 expires). During this whole time, the addresses are not available
 for allocation to others.

 It is also possible - using the "minDesiredStartTime" and
 "maxDesiredStartTime" parameters - to allocate multicast addresses
 in advance - i.e., so that they have a future "start time" as
 well as an expiration time. Before the start time, the multicast
 addresses may be allocated to others.

 Advance allocation is convenient for allocating addresses for
 events that begin far in the future - e.g., several weeks or
 months away. Without advance allocation, it would be necessary to
 allocate addresses for a long period of time - even when it will
 not be used. Such a request would not only be a wasteful use of
 the multicast address space, but it may also be difficult to
 implement (especially since address allocations are expected to
 remain valid in spite of topology changes).

 Advance allocation requests can produce the following errors (in
 addition to those defined earlier):

 - bad start time durations (e.g., max < min)
 - requested start times conflict with requested lifetimes
 (i.e., min start time > max lifetime)

Finlayson Informational [Page 8]

RFC 2771 Abstract API for Multicast Address Allocation February 2000

 The following operation is also defined:

 change_multicast_addr_start_time(in Lease multicastAddressSetLease,
 in Time minDesiredStartTime,
 in Time maxDesiredStartTime,
 out Time startTime)

 This operation attempts to change the start time of previously
 allocated multicast addresses. Unless an error occurs, it returns
 the new start time (which might remain unchanged).

 Possible errors: the same as "change_multicast_addr_lifetime"

4. Security Considerations

 As noted in section 5.9 above, each implementation of this abstract
 API should define a security policy that specifies when (and by whom)
 previously allocated multicast addresses can be deallocated (or
 queried, or have their lifetime changed).

 Because multicast addresses are a finite resource, there is a
 potential for a "denial of service" attack by allocating a large
 number of multicast addresses without deallocating them. Preventing
 such an attack, however, is not the role of the API, but rather by
 the underlying MAAS ("Multicast Address Allocation Server(s)" [6]).

5. Acknowledgements

 Many thanks to other participants in the "MALLOC" working group - in
 particular Steve Hanna, Dave Thaler, Roger Kermode, and Pavlin
 Radoslavov - for their valuable comments.

6. References

 [1] Hanna, S., Patel, B. and M. Shah, "Multicast Address Dynamic
 Client Allocation Protocol (MADCAP)", RFC 2730, December 1999.

 [2] Deering, S., "Host Extensions for IP Multicasting", STD 5, RFC
 1112, August 1989.

 [3] Meyer, D., "Administratively Scoped IP Multicast", BCP 23, RFC
 2365, July, 1998.

 [4] Alvestrand, H., "Tags for the Identification of Languages", RFC
 1766, March 1995.

Finlayson Informational [Page 9]

RFC 2771 Abstract API for Multicast Address Allocation February 2000

 [5] Handley, M. and V. Jacobson, "SDP: Session Description Protocol",
 RFC 2327, April 1998.

 [6] Estrin, D., Handley, M. and D. Thaler, "The Internet Multicast
 Address Allocation Architecture", Work in Progress.

 [7] Kermode, R., "MADCAP Multicast Scope Nesting State Option", Work
 in Progress.

7. Author’s Address

 Ross Finlayson,
 Live Networks, Inc. (LIVE.COM)

 EMail: finlayson@live.com
 WWW: http://www.live.com/

Finlayson Informational [Page 10]

RFC 2771 Abstract API for Multicast Address Allocation February 2000

8. Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Finlayson Informational [Page 11]

