Net wor k Wor ki ng Group P. Hof f man
Request for Comments: 2781 Internet Mail Consortium
Cat egory: | nformational F. Yergeau
Al'is Technol ogi es

February 2000

UTF- 16, an encodi ng of | SO 10646
Status of this Meno

This neno provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2000). Al Rights Reserved.
1. Introduction

Thi s docunent describes the UTF-16 encodi ng of Uni code/ | SO 10646,
addresses the issues of serializing UTF-16 as an octet stream for
transm ssion over the Internet, discusses MM charset naning as
described in [CHARSET- REG, and contains the registration for three
M ME charset paraneter val ues: UTF-16BE (big-endian), UTF-16LE
(little-endian), and UTF-16.

1.1 Background and notivation

The Uni code Standard [UNI CODE] and | SO | EC 10646 [1 SO 10646] jointly
define a coded character set (CCS), hereafter referred to as Uni code
whi ch enconpasses nost of the world s witing systens [WORKSHOP]
UTF-16, the object of this specification, is one of the standard ways
of encodi ng Unicode character data; it has the characteristics of
encoding all currently defined characters (in plane 0, the BMP) in
exactly two octets and of being able to encode all other characters
likely to be defined (the next 16 planes) in exactly four octets.

The Uni code Standard further defines additional character properties
and other application details of great interest to inplenentors. Up
to the present time, changes in Unicode and anendnents to | SO'| EC
10646 have tracked each other, so that the character repertoires and
code point assignnents have renmained in sync. The rel evant
standardi zati on committees have commtted to maintain this very
useful synchronism as well as not to assign characters outside of
the 17 planes accessible to UTF-16.

Hof f man & Yer geau I nf or mat i onal [Page 1]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

The I ETF policy on character sets and | anguages [CHARPQOLI CY] says
that | ETF protocols MJUST be able to use the UTF-8 character encoding
scheme [UTF-8]. Sone products and network standards al ready specify
UTF-16, naking it an inportant encoding for the Internet. This
docunent is not an update to the [CHARPOLI CY] docunent, only a
description of the UTF-16 encodi ng.

1.2 Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [MUSTSHOULD] .

Throughout this document, character val ues are shown in hexadeci mal
notation. For exanple, "0x013C' is the character whose value is the
character assigned the integer value 316 (decimal) in the CCS

2. UTF-16 definition

UTF-16 is described in the Unicode Standard, version 3.0 [UN CODE]
The definitive reference is Annex Q of 1SQ IEC 10646-1 [SO 10646].
The rest of this section sunmarizes the definition is sinple terns.

In 1SO 10646, each character is assigned a nunber, which Unicode
calls the Unicode scalar value. This nunber is the same as the UCS-4
val ue of the character, and this docunent will refer to it as the
"character value" for brevity. In the UTF-16 encoding, characters are
represented using either one or two unsigned 16-bit integers,
dependi ng on the character value. Serialization of these integers for
transmi ssion as a byte streamis discussed in Section 3.

The rul es for how characters are encoded in UTF-16 are:

- Characters with values | ess than 0x10000 are represented as a
single 16-bit integer with a value equal to that of the character
numnber .

- Characters with val ues between 0x10000 and Ox10FFFF are
represented by a 16-bit integer with a value between 0xD800 and
OxDBFF (within the so-called high-half zone or high surrogate
area) followed by a 16-bit integer with a val ue between 0xDC00 and
OxDFFF (within the so-called lowhalf zone or |ow surrogate area).

- Characters with values greater than Ox10FFFF cannot be encoded in
UTF- 16.

Not e: Val ues bet ween 0xD300 and OxDFFF are specifically reserved for
use with UTF-16, and don't have any characters assigned to them

Hof f man & Yer geau I nf or mat i onal [Page 2]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

2.1 Encodi ng UTF-16

Encodi ng of a single character froman | SO 10646 character value to
UTF- 16 proceeds as follows. Let U be the character number, no greater
t han Ox10FFFF.

1) If U < 0x10000, encode U as a 16-bit unsigned integer and
term nate.

2) Let U = U - 0x10000. Because Uis less than or equal to Ox10FFFF,
U nust be less than or equal to OxFFFFF. That is, U can be
represented in 20 bits.

3) Initialize two 16-bit unsigned integers, W and W2, to OxD800 and
0xDC00, respectively. These integers each have 10 bits free to
encode the character value, for a total of 20 bits.

4) Assign the 10 high-order bits of the 20-bit U to the 10 | ow order
bits of WL and the 10 |l oworder bits of U to the 10 | ow order
bits of W2. Ternmninate.

Graphically, steps 2 through 4 |ook like:

U = YYYYYYYYYYXXXXXXXXXX
WL = 110110yyyyyyyyyy
W2 = 11011IXXXXXXXXXX

2.2 Decoding UTF-16

Decodi ng of a single character fromUTF-16 to an | SO 10646 character
val ue proceeds as follows. Let WL be the next 16-bit integer in the
sequence of integers representing the text. Let W2 be the (eventual)
next integer follow ng W.

1) If W < 0xD800 or WL > OxDFFF, the character value Uis the val ue
of WL. Term nate.

2) Determine if W is between 0xD800 and OxDBFF. If not, the sequence
is in error and no valid character can be obtained using W.
Term nat e.

3) If there is no W2 (that is, the sequence ends with W), or if W
is not between 0xDCOO and OxDFFF, the sequence is in error
Ter m nat e.

4) Construct a 20-bit unsigned integer U, taking the 10 | ow order

bits of WL as its 10 high-order bits and the 10 | ow order bits of
W as its 10 | ow order bits.

Hof f man & Yer geau I nf or mat i onal [Page 3]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

5) Add 0x10000 to U to obtain the character value U. Term nate.

Note that steps 2 and 3 indicate errors. Error recovery is not
specified by this docunent. Wen termnating with an error in steps 2
and 3, it may be wise to set Uto the value of WL to help the caller
di agnose the error and not |lose information. Al so note that a string
decodi ng al gorithm as opposed to the single-character decodi ng
descri bed above, need not terminate upon detection of an error, if
proper error reporting and/or recovery is provided.

3. Labelling UTF-16 text

Appendi x A of this specification contains registrations for three

M ME charsets: "UTF-16BE", "UTF-16LE", and "UTF-16". M ME charsets
represent the conbination of a CCS (a coded character set) and a CES
(a character encoding schene). Here the CCS is Unicode/l SO 10646 and
the CES is the same in all three cases, except for the serialization
order of the octets in each character, and the external determ nation
of which serialization is used.

This section describes which of the three labels to apply to a stream
of text. Section 4 describes howto interpret the labels on a stream
of text.

3.1 Definition of big-endian and little-endian

Hi storically, conputer hardware has processed two-octet entities such
as 16-bit integers in one of two ways. So-called "big-endian"

har dwar e handl es two-octet entities with the higher-order octet

first, that is at the lower address in nenory; when witten out to
disk or to a network interface (serializing), the high-order octet
thus appears first in the data stream On the other hand, "Little-
endi an" hardware handl es two-octet entities with the | ower-order
octet first. Hardware of both kinds is conmon today.

For exanple, the unsigned 16-bit integer that represents the decim
nunber 258 is 0x0102. The big-endian serialization of that nunber is
the octet 0x01 followed by the octet 0x02. The little-endian
serialization of that number is the octet 0x02 foll owed by the octet
0x01. The following C code fragnment denonstrates a way to wite 16-
bit quantities to a file in big-endian order, irrespective of the
hardware’s native byte order.

void wite_be(unsigned short u, FILE f) /* assume short is 16 bits */

{
putc(u >> 8, f); /* out put high-order byte */
putc(u & OxFF, f); /* then | ow order */

}

Hof f man & Yer geau I nf or mat i onal [Page 4]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

The term "network byte order"” has been used in many RFCs to indicate
bi g-endi an serialization, although that termhas yet to be formally

defined in a standards-track docunent. Although | SO 10646 prefers

bi g-endi an serialization (section 6.3 of [I1SO 10646]), little-endian
order is also sonetines used on the Internet.

3.2 Byte order nmark (BOM

The Uni code Standard and | SO 10646 define the character "ZERO W DTH
NON- BREAKI NG SPACE" (OxFEFF), which is also known informally as "BYTE
ORDER MARK" (abbreviated "BOM'). The latter nane hints at a second
possi bl e usage of the character, in addition to its normal use as a
genui ne "ZERO W DTH NON- BREAKI NG SPACE" within text. This usage,
suggested by Uni code section 2.4 and | SO 10646 Annex F (informative),
is to prepend a OXFEFF character to a stream of Unicode characters as
a "signature"; a receiver of such a serialized stream may then use
the initial character both as a hint that the stream consists of

Uni code characters and as a way to recogni ze the serialization order
In serialized UTF-16 prepended with such a signature, the order is
big-endian if the first two octets are OxFE foll owed by OxFF; if they
are OxFF foll owed by OXFE, the order is little-endian. Note that
OXFFFE is not a Unicode character, precisely to preserve the

useful ness of OXFEFF as a byte-order mark

It is inmportant to understand that the character OXFEFF appearing at
any position other than the beginning of a stream MJST be interpreted
with the semantics for the zero-w dth non-breaking space, and MJST
NOT be interpreted as a byte-order mark. The contrapositive of that
statement is not always true: the character OxFEFF in the first
position of a stream MAY be interpreted as a zero-w dth non-breaking
space, and is not always a byte-order nark. For exanple, if a process
splits a UTF-16 string into many parts, a part might begin wth
OXFEFF because there was a zero-w dth non-breaki ng space at the

begi nni ng of that substring.

The Uni code standard further suggests than an initial OxXFEFF
character may be stripped before processing the text, the rationale
bei ng that such a character in initial position may be an artifact of
t he encodi ng (an encodi ng signhature), not a genuine intended "ZERO
W DTH NON- BREAKI NG SPACE". Note that such stripping mght affect an
external process at a different layer (such as a digital signature or
a count of the characters) that is relying on the presence of all
characters in the stream

In particular, in UTF-16 plain text it is likely, but not certain,
that an initial OXFEFF is a signature. \When concatenating two
strings, it is inmportant to strip out those signatures, because
otherwi se the resulting string may contain an uni ntended "ZERO W DTH

Hof f man & Yer geau I nf or mat i onal [Page 5]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

NON- BREAKI NG SPACE" at the connection point. Al so, sone
specifications mandate an initial OxXFEFF character in objects

| abel l ed as UTF-16 and specify that this signature is not part of the
obj ect.

3.3 Choosing a | abel for UTF-16 text

Any | abel ling application that uses UTF-16 character encodi ng, and
explicitly labels the text, and knows the serialization order of the
characters in text, SHOULD | abel the text as either "UTF-16BE" or
"UTF- 16LE", whichever is appropriate based on the endi anness of the
text. This allows applications processing the text, but unable to

| ook inside the text, to know the serialization definitively.

Text in the "UTF-16BE" charset MJST be serialized with the octets
whi ch make up a single 16-bit UTF-16 val ue in big-endian order.
Systens | abelling UTF-16BE text MJST NOT prepend a BOMto the text.

Text in the "UTF-16LE" charset MJST be serialized with the octets
whi ch make up a single 16-bit UTF-16 value in little-endian order
Systens | abelling UTF-16LE text MJST NOT prepend a BOMto the text.

Any | abelling application that uses UTF-16 character encoding, and
puts an explicit charset |abel on the text, and does not know the
serialization order of the characters in text, MJST | abel the text as
"UTF- 16", and SHOULD neke sure the text starts wth OxFEFF

An exception to the "SHOULD' rule of using "UTF-16BE" or "UTF-16LE"
woul d occur with docunent formats that nandate a BOMin UTF-16 text,
thereby requiring the use of the "UTF- 16" tag only.

4. Interpreting text |abels

When a program sees text | abelled as "UTF-16BE", "UTF-16LE", or

"UTF- 16", it can nake sonme assunptions, based on the labelling rules
given in the previous section. These assunptions allow the programto
then process the text.

4.1 Interpreting text |abelled as UTF-16BE
Text labelled "UTF-16BE" can always be interpreted as being big-
endi an. The detection of an initial BOM does not affect de-

serialization of text |abelled as UTF-16BE. Fi nding OxFF foll owed by
OXFE is an error since there is no Unicode character OXFFFE

Hof f man & Yer geau I nf or mat i onal [Page 6]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

4.2 Interpreting text labelled as UTF- 16LE

Text labelled "UTF-16LE" can always be interpreted as being little-
endi an. The detection of an initial BOM does not affect de-
serialization of text |abelled as UTF-16LE. Fi nding OxFE foll owed by
OxFF is an error since there is no Unicode character OxFFFE, which
woul d be the interpretation of those octets under little-endian

or der.

4.3 Interpreting text |abelled as UTF-16

Text labelled with the "UTF- 16" charset night be serialized in either
big-endian or little-endian order. If the first two octets of the
text is OXFE followed by OxFF, then the text can be interpreted as
being big-endian. If the first two octets of the text is OxFF

foll owed by OxFE, then the text can be interpreted as being little-
endian. If the first two octets of the text is not OxFE foll owed by
OxFF, and is not OxFF followed by OXFE, then the text SHOULD be
interpreted as bei ng bi g-endi an

Al'l applications that process text with the "UTF-16" charset | abel
MUST be able to read at least the first two octets of the text and be
able to process those octets in order to deternmne the serialization
order of the text. Applications that process text with the "UTF-16"
charset |abel MJST NOT assune the serialization wthout first
checking the first two octets to see if they are a big-endian BOM a
little-endian BOM or not a BOM Al applications that process text
with the "UTF-16" charset |abel MJST be able to interpret both big-
endi an and little-endian text.

5. Exanpl es
For the sake of exanple, let’'s suppose that there is a hieroglyphic
character representing the Egyptian god Ra with character val ue
0x12345 (this character does not exist at present in Unicode).
The exanples here all evaluate to the phrase:
*:Ra
where the "*" represents the Ra hieroglyph (0x12345).

Text | abelled with UTF-16BE, w thout a BOM
D8 08 DF 45 00 3D 00 52 00 61

Text | abelled with UTF-16LE, wi thout a BOM
08 D8 45 DF 3D 00 52 00 61 00

Hof f man & Yer geau I nf or mat i onal [Page 7]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

Bi g-endi an text labelled with UTF-16, with a BOM
FE FF D8 08 DF 45 00 3D 00 52 00 61

Little-endian text |abelled with UTF-16, with a BOM
FF FE 08 D8 45 DF 3D 00 52 00 61 00

6. Versions of the standards

| SO I EC 10646 is updated fromtinme to time by published anendnents;
simlarly, different versions of the Unicode standard exist: 1.0,
1.1, 2.0, 2.1, and 3.0 as of this witing. Each new version repl aces
t he previous one, but inplenentations, and nore significantly data,
are not updated instantly.

In general, the changes ambunt to addi ng new characters, which does
not pose particular problenms with old data. Amendnent 5 to ISQ | EC
10646, however, has noved and expanded t he Korean Hangul bl ock

t her eby maki ng any previous data containing Hangul characters invalid
under the new version. Unicode 2.0 has the same difference from

Uni code 1.1. The official justification for allow ng such an

i nconpati bl e change was that no significant inplenmentations and data
cont ai ni ng Hangul existed, a statenent that is likely to be true but
remai ns unprovabl e. The incident has been dubbed the "Korean ness",
and the rel evant comittees have pl edged to never, ever again nake
such an inconpati bl e change.

New versions, and in particular any inconpatible changes, have
consequences regardi ng M ME character encoding |abels, to be
di scussed i n Appendi x A

7. | ANA Consi derations

IANA is to register the character sets found in Appendi xes A 1, A 2,
and A. 3 according to RFC 2278, using registration tenplates found in
t hose appendi xes.

8. Security Considerations

UTF-16 is based on the | SO 10646 character set, which is frequently
bei ng added to, as described in Section 6 and Appendi x A of this
docunent. Processors nust be able to handle characters that are not
defined at the tine that the processor was created in such a way as
to not allow an attacker to harm a recipient by including unknown
characters.

Processors that handl e any type of text, including text encoded as

UTF-16, nust be vigilant in checking for control characters that
m ght reprogram a display term nal or keyboard. Simlarly, processors

Hof f man & Yer geau I nf or mat i onal [Page 8]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

that interpret text entities (such as | ooking for enbedded
programi ng code), nust be careful not to execute the code wi thout
first alerting the recipient.

Text in UTF-16 nmay contain special characters, such as the OBJECT
REPLACEMENT CHARACTER (OxFFFC), that night cause external processing,
depending on the interpretation of the processing program and the
availability of an external data streamthat woul d be executed. This
external processing may have side-effects that allow the sender of a
nmessage to attack the receiving system

| mpl enentors of UTF-16 need to consider the security aspects of how
they handle illegal UTF-16 sequences (that is, sequences involving
surrogate pairs that have illegal values or unpaired surrogates). It
is conceivable that in sonme circunstances an attacker woul d be able
to exploit an incautious UTF-16 parser by sending it an octet
sequence that is not permitted by the UTF-16 syntax, causing it to
behave in sonme anonal ous fashion

9. References

[CHARPCLI CY] Alvestrand, H, "IETF Policy on Character Sets and
Languages", BCP 18, RFC 2277, January 1998.

[CHARSET- REG Freed, N. and J. Postel, "IANA Charset Registration
Procedures"”, BCP 19, RFC 2278, January 1998.

[HTTP-1. 1] Fielding, R, Gettys, J., Mgul, J., Frystyk, H,
Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext
Transfer Protocol -- HITP/1.1", RFC 2616, June 1999.

[1 SO 10646] | SO | EC 10646-1: 1993. International Standard --
I nformati on technol ogy -- Universal Miltiple-Cctet
Coded Character Set (UCS) -- Part 1: Architecture and
Basic Multilingual Plane. 22 anmendnents and two
techni cal corrigenda have been published up to now.
UTF-16 is described in Annex Q published as Amendnent
1. Many other anendnents are currently at various
stages of standardization. A second edition is in
preparation, probably to be published in 2000; in this
new edition, UTF-16 will probably be described in Annex
C

[MUSTSHOULD] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

[UNI CODE] The Uni code Consortium "The Unicode Standard --
Version 3.0", |SBN 0-201-61633-5. Described at

Hof f man & Yer geau I nf or mat i onal [Page 9]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

10.

<ht t p: // ww. uni code. or g/ uni code/ st andar d/ ver si ons/ Uni code3. 0. ht nl >.

[UTF- 8] Yergeau, F., "UTF-8, a transformation format of |SO
10646", RFC 2279, January 1998.

[WORKSHOP] Weider, C, Preston, C, Sinonsen, K, Avestrand, H,
Atkinson, R, Crispin., M and P. Svanberg, "Report of
the | AB Character Set Wrkshop", RFC 2130, April 1997.

Acknow edgrent s

Deborah Goldsmith wote a great deal of the initial wording for this
specification. Martin Duerst proposed nunerous significant changes.
O her significant contributors include:

Mati Al |l ouche
Walt Daniels
Mar k Davi s

Ned Freed
Asmus Freytag
LI oyd Hononi chl
Dan Kegel

Mur at a Makot o
Larry Masinter
Mar kus Scher er
Kel d Si nobnsen
Ken Wi st er

Some of the text in this specification was copied from][UTF-8], and
that docunent was worked on by many people. Please see the

acknow edgnents section in that docunent for nore people who nay have
contributed indirectly to this docunent.

Hof f man & Yer geau I nf or mat i onal [Page 10]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

A. Charset registrations

This meno is meant to serve as the basis for registration of three

M ME charsets [CHARSET-REG . The proposed charsets are "UTF- 16BE"
"UTF- 16LE", and "UTF-16". These strings | abel objects containing text
consisting of characters fromthe repertoire of 1SQO|EC 10646
including all anendnents at |east up to anendnent 5 (Korean bl ock),
encoded to a sequence of octets using the encoding and serialization
schemes outlined above.

Note that "UTF-16BE", "UTF-16LE", and "UTF-16" are NOT suitable for
use in nedia types under the "text" top-level type, because they do
not encode line endings in the way required for MM "text" media
types. An exception to this is HITP, which uses a M ME-1i ke
mechani sm but is exenpt fromthe restrictions on the text top-Ileve
type (see section 19.4.2 of HTTP 1.1 [HTTP-1.1]).

It is noteworthy that the | abels described here do not contain a
version identification, referring generically to | SO IEC 10646. This
is intentional, the rationale being as follows:

A M ME charset is designed to give just the information needed to
interpret a sequence of bytes received on the wire into a sequence of
characters, nothing nore (see RFC 2045, section 2.2, in [MMg). As
Il ong as a character set standard does not change inconpati bly,
versi on nunmbers serve no purpose, because one gai ns nothing by
learning fromthe tag that new y assigned characters may be received
that one doesn’t know about. The tag itself doesn’'t teach anything
about the new characters, which are going to be received anyway.

Hence, as long as the standards evol ve conpatibly, the apparent
advant age of having labels that identify the versions is only that,
apparent. But there is a disadvantage to such version-dependent

| abel s: when an ol der application receives data acconpani ed by a
newer, unknown |abel, it may fail to recognize the |abel and be
conpletely unable to deal with the data, whereas a generic, known

| abel woul d have triggered nostly correct processing of the data,
which may well not contain any new characters.

The "Korean nmess" (1SO'| EC 10646 anendnment 5) is an inconpatible
change, in principle contradicting the appropriateness of a version

i ndependent M ME charset as described above. But the conpatibility
probl em can only appear with data containi ng Korean Hangul characters
encoded according to Unicode 1.1 (or equivalently ISO|EC 10646

bef ore amendnent 5), and there is arguably no such data to worry
about, this being the very reason the inconpatible change was deened
accept abl e.

Hof f man & Yer geau I nf or mat i onal [Page 11]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

In practice, then, a version-independent |abel is warranted, provided
the label is understood to refer to all versions after Amendnment 5,
and provided no inconpatible change actually occurs. Should
i nconpati bl e changes occur in a later version of |1SQOI|EC 10646, the
M ME charsets defined here will stay aligned with the previous
version until and unless the | ETF specifically deci des otherwi se.

A. 1 Registration for UTF-16BE

To: ietf-charsets@ana.org
Subj ect: Registration of new charset

Charset name(s): UTF-16BE
Publ i shed specification(s): This specification

Suitable for use in MM content types under the
"text" top-level type: No

Person & email address to contact for further information:
Paul Hof f man <phof f man@ nt. or g>
Francoi s Yergeau <fyergeau@lis. conpr

A. 2 Registration for UTF- 16LE

To: ietf-charsets@ana.org
Subj ect: Registration of new charset

Charset name(s): UTF-16LE
Publ i shed specification(s): This specification

Suitable for use in M ME content types under the
"text" top-level type: No

Person & enmmil address to contact for further information:
Paul Hof f man <phof f man@ nt. or g>
Francoi s Yergeau <fyergeau@lis. conp

A. 3 Registration for UTF-16

To: ietf-charsets@ana.org
Subj ect: Registration of new charset

Charset name(s): UTF-16

Publ i shed specification(s): This specification

Hof f man & Yer geau I nf or mat i onal [Page 12]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

Suitable for use in M ME content types under the
"text" top-level type: No

Person & emnil address to contact for further infornation:
Paul Hof f man <phof f man@ nt. or g>
Francoi s Yergeau <fyergeau@lis. conp

Aut hors’ Addresses
Paul Hof f man
Internet Mail Consortium
127 Segre Pl ace
Santa Cruz, CA 95060 USA
EMai | : phof f man@nt. org
Francoi s Yer geau
Al'is Technol ogi es
100, boul. Al exis-N hon, Suite 600
Montreal QC HAM 2P2 Canada

EMai | : fyergeau@lis.com

Hof f man & Yer geau I nf or mat i onal [Page 13]

RFC 2781 UTF- 16, an encodi ng of | SO 10646 February 2000

Ful I Copyright Statenent
Copyright (C) The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
others, and derivative works that comment on or otherwi se explain it
or assist in its inplenentation may be prepared, copied, published
and distributed, in whole or in part, w thout restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into | anguages other than
Engl i sh.

The linited perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

Hof f man & Yer geau I nf or mat i onal [Page 14]

