
Network Working Group J. Mogul
Request for Comments: 2783 Compaq WRL
Category: Informational D. Mills
 University of Delaware
 J. Brittenson
 Sun
 J. Stone
 Stanford
 U. Windl
 Universitaet Regensburg
 March 2000

 Pulse-Per-Second API for UNIX-like Operating Systems, Version 1.0

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 RFC 1589 describes a UNIX kernel implementation model for high-
 precision time-keeping. This model is meant for use in conjunction
 with the Network Time Protocol (NTP, RFC 1305), or similar time
 synchronization protocols. One aspect of this model is an accurate
 interface to the high-accuracy, one pulse-per-second (PPS) output
 typically available from precise time sources (such as a GPS or GOES
 receiver). RFC 1589 did not define an API for managing the PPS
 facility, leaving implementors without a portable means for using PPS
 sources. This document specifies such an API.

Mogul, et al. Informational [Page 1]

RFC 2783 Pulse-Per-Second API March 2000

Table of Contents

 1 Introduction... 2
 2 Data types for representing timestamps......................... 4
 2.1 Resolution... 4
 2.2 Time scale... 5
 3 API.. 5
 3.1 PPS abstraction.. 6
 3.2 New data structures.. 7
 3.3 Mode bit definitions... 10
 3.4 New functions.. 12
 3.4.1 New functions: obtaining PPS sources....................... 13
 3.4.2 New functions: setting PPS parameters...................... 14
 3.4.3 New functions: access to PPS timestamps.................... 16
 3.4.4 New functions: disciplining the kernel timebase............ 18
 3.5 Compliance rules... 20
 3.5.1 Functions.. 20
 3.5.2 Mode bits.. 20
 3.6 Examples... 21
 4 Security Considerations.. 24
 5 Acknowledgements... 24
 6 References... 25
 7 Authors’ Addresses... 26
 A. Extensions and related APIs................................... 27
 A.1 Extension: Parameters for the "echo" mechanism............... 27
 A.2 Extension: Obtaining information about external clocks....... 27
 A.3 Extension: Finding a PPS source.............................. 28
 B. Example implementation: PPSDISC Line discipline............... 29
 B.1 Example.. 29
 C. Available implementations..................................... 30
 Full Copyright Statement... 31

1 Introduction

 RFC 1589 [4] describes a model and programming interface for generic
 operating system software that manages the system clock and timer
 functions. The model provides improved accuracy and stability for
 most workstations and servers using the Network Time Protocol (NTP)
 [3] or similar time synchronization protocol. The model supports the
 use of external timing sources, such as the precision pulse-per-
 second (PPS) signals typically available from precise time sources
 (such as a GPS or GOES receiver).

 However, RFC 1589 did not define an application programming interface
 (API) for the PPS facility. This document specifies such an
 interface, for use with UNIX (or UNIX-like) operating systems. Such
 systems often conform to the "Single UNIX Specification" [5],
 sometimes known as POSIX.

Mogul, et al. Informational [Page 2]

RFC 2783 Pulse-Per-Second API March 2000

 One convenient means to provide a PPS signal to a computer system is
 to connect that signal to a modem-control pin on a serial-line
 interface to the computer. The Data Carrier Detect (DCD) pin is
 frequently used for this purpose. Typically, the time-code output of
 the time source is transmitted to the computer over the same serial
 line. The computer detects a signal transition on the DCD pin,
 usually by receiving an interrupt, and records a timestamp as soon as
 possible.

 Although existing practice has focussed on the use of serial lines
 and DCD transitions, PPS signals might also be delivered by other
 kinds of devices. The API specified in this document does not
 require the use of a serial line, although it may be somewhat biased
 in that direction.

 The typical use of this facility is for the operating system to
 record ("capture") a high-resolution timestamp as soon as possible
 after it detects a PPS signal transition (usually indicated by an
 interrupt). This timestamp can then be made available, with less
 stringent delay constraints, to time-related software. The software
 can compare the captured timestamp to the received time-code to
 accurately discover the offset between the system clock and the
 precise time source.

 The operating system may also deliver the PPS event to a kernel
 procedure, called the "in-kernel PPS consumer." One example would be
 the "hardpps()" procedure, described in RFC 1589, which is used to
 discipline the kernel’s internal timebase.

 The API specified in this document allows for one or more signal
 sources attached to a computer system to provide PPS inputs, at the
 option of user-level software. User-level software may obtain
 signal-transition timestamps for any of these PPS sources. User-
 level software may optionally specify at most one of these PPS
 sources to be used to discipline the system’s internal timebase.

 Although the primary purpose of this API is for capturing true
 pulse-per-second events, the API may also be used for accurately
 timestamping events of other periods, or even aperiodic events, when
 these can be expressed as signal transitions.

 This document does not define internal details of how the API must be
 implemented, and does not specify constraints on the accuracy,
 resolution, or latency of the PPS feature. However, the utility of
 this feature is inversely proportional to the delay (and variance of
 delay), and implementors are encouraged to take this seriously.

Mogul, et al. Informational [Page 3]

RFC 2783 Pulse-Per-Second API March 2000

 In principle, the rate of events to be captured, or the frequency of
 the signals, can range from once per day (or less often) to several
 thousand per second. However, since in most implementations the
 timestamping function will be implemented as a processor interrupt at
 a relatively high priority, it is prudent to limit the rate of such
 events. This may be done either by mechanisms in the hardware that
 generates the signals, or by the operating system.

2 Data types for representing timestamps

 Computer systems use various representations of time. Because this
 API is concerned with the provision of high-accuracy, high-resolution
 time information, the choice of representation is significant. (Here
 we consider only binary representations, not human-format
 representations.)

 The two interesting questions are:

 1. what is the resolution of the representation?

 2. what time scale is represented?

 These questions often lead to contentious arguments. Since this API
 is intended for use with NTP and POSIX-compliant systems, however, we
 can limit the choices to representations compatible with existing NTP
 and POSIX practice, even if that practice is considered "wrong" in
 some quarters.

2.1 Resolution

 In the NTP protocol, "timestamps are represented as a 64-bit unsigned
 fixed-point number, in seconds relative to 0h on 1 January 1900. The
 integer part is in the first 32 bits and the fraction part in the
 last 32 bits [...] The precision of this representation is about 200
 picoseconds" [3].

 However, most computer systems cannot measure time to this resolution
 (this represents a clock rate of 5 GHz). The POSIX gettimeofday()
 function returns a "struct timeval" value, with a resolution of 1
 microsecond. The POSIX clock_gettime() function returns a "struct
 timespec" value, with a resolution of 1 nanosecond.

 This API uses an extensible representation, but defaults to the
 "struct timespec" representation.

Mogul, et al. Informational [Page 4]

RFC 2783 Pulse-Per-Second API March 2000

2.2 Time scale

 Several different time scales have been proposed for use in computer
 systems. UTC and TAI are the two obvious candidates.

 Some people would prefer the use of TAI, which is identical to UTC
 except that it does not correct for leap seconds. Their preference
 for TAI stems from the difficulty of computing precise time
 differences when leap seconds are involved, especially when using
 times in the future (for which the exact number of leap seconds is,
 in general, unknowable).

 However, POSIX and NTP both use UTC, albeit with different base
 dates. Given that support for TAI would, in general, require other
 changes to the POSIX specification, this API uses the POSIX base date
 of 00:00 January 1, 1970 UTC, and conforms to the POSIX use of the
 UTC time scale.

3 API

 A PPS facility can be used in two different ways:

 1. An application can obtain a timestamp, using the system’s
 internal timebase, for the most recent PPS event.

 2. The kernel may directly utilize PPS events to discipline its
 internal timebase, thereby providing highly accurate time to
 all applications.

 This API supports both uses, individually or in combination. The
 timestamping feature may be used on any number of PPS sources
 simultaneously; the timebase-disciplining feature may be used with at
 most one PPS source.

 Although the proper implementation of this API requires support from
 the kernel of a UNIX system, this document defines the API in terms
 of a set of library routines. This gives the implementor some
 freedom to divide the effort between kernel code and library code
 (different divisions might be appropriate on microkernels and
 monolithic kernels, for example).

Mogul, et al. Informational [Page 5]

RFC 2783 Pulse-Per-Second API March 2000

3.1 PPS abstraction

 A PPS signal consists of a series of pulses, each with an "asserted"
 (logical true) phase, and a "clear" (logical false) phase. The two
 phases may be of different lengths. The API may capture an "assert
 timestamp" at the moment of the transition into the asserted phase,
 and a "clear timestamp" at the moment of the transition into the
 clear phase.

 The specific assignment of the logical values "true" and "false" with
 specific voltages of a PPS signal, if applicable, is outside the
 scope of this specification. However, these assignments SHOULD be
 consistent with applicable standards. Implementors of PPS sources
 SHOULD document these assignments.

 Reminder to implementors of DCD-based PPS support: TTL and RS-
 232C (V.24/V.28) interfaces both define the "true" state as the
 one having the highest positive voltage. TTL defines a nominal
 absence of voltage as the "false" state, but RS-232C (V.24/V.28)
 defines the "false" state by the presence of a negative voltage.

 The API supports the direct provision of PPS events (and timestamps)
 to an in-kernel PPS consumer. This could be the function called
 "hardpps()", as described in RFC 1589 [4], but the API does not
 require the kernel implementation to use that function name
 internally. The current version of the API supports at most one in-
 kernel PPS consumer, and does not provide a way to explicitly name
 it. The implementation SHOULD impose access controls on the use of
 this feature.

 The API optionally supports an "echo" feature, in which events on the
 incoming PPS signal may be reflected through software, after the
 capture of the corresponding timestamp, to an output signal pin.
 This feature may be used to discover an upper bound on the actual
 delay between the edges of the PPS signal and the capture of the
 timestamps; such information may be useful in precise calibration of
 the system.

 The designation of an output pin for the echo signal, and sense and
 shape of the output transition, is outside the scope of this
 specification, but SHOULD be documented for each implementation. The
 output pin MAY also undergo transitions at other times besides those
 caused by PPS input events.

 Note: this allows an implementation of the echo feature to
 generate an output pulse per input pulse, or an output edge per
 input pulse, or an output pulse per input edge. It also allows the
 same signal pin to be used for several purposes simultaneously.

Mogul, et al. Informational [Page 6]

RFC 2783 Pulse-Per-Second API March 2000

 Also, the API optionally provides an application with the ability to
 specify an offset value to be applied to captured timestamps. This
 can be used to correct for cable and/or radio-wave propagation
 delays, or to compensate for systematic jitter in the external
 signal. The implementation SHOULD impose access controls on the use
 of this feature.

3.2 New data structures

 The data structure declarations and symbol definitions for this API
 will appear in the header file <sys/timepps.h>. The header file MUST
 define all constants described in this specification, even if they
 are not supported by the implementation.

 The API includes several implementation-specific types:

 typedef ... pps_handle_t; /* represents a PPS source */

 typedef unsigned ... pps_seq_t; /* sequence number */

 The "pps_handle_t" type is an opaque scalar type used to represent a
 PPS source within the API.

 The "pps_seq_t" type is an unsigned integer data type of at least 32
 bits.

 The precise declaration of the pps_handle_t and pps_seq_t types is
 system-dependent.

 The API imports the standard POSIX definition for this data type:

 struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
 };

 The API defines this structure as an internal (not "on the wire")
 representation of the NTP "64-bit unsigned fixed-point" timestamp
 format [3]:

 typedef struct ntp_fp {
 unsigned int integral;
 unsigned int fractional;
 } ntp_fp_t;

 The two fields in this structure may be declared as any unsigned
 integral type, each of at least 32 bits.

Mogul, et al. Informational [Page 7]

RFC 2783 Pulse-Per-Second API March 2000

 The API defines this new union as an extensible type for representing
 times:

 typedef union pps_timeu {
 struct timespec tspec;
 ntp_fp_t ntpfp;
 unsigned long longpad[3];
 } pps_timeu_t;

 Future revisions of this specification may add more fields to this
 union.

 Note: adding a field to this union that is larger than
 3*sizeof(long) will break binary compatibility.

 The API defines these new data structures:

 typedef struct {
 pps_seq_t assert_sequence; /* assert event seq # */
 pps_seq_t clear_sequence; /* clear event seq # */
 pps_timeu_t assert_tu;
 pps_timeu_t clear_tu;
 int current_mode; /* current mode bits */
 } pps_info_t;

 #define assert_timestamp assert_tu.tspec
 #define clear_timestamp clear_tu.tspec

 #define assert_timestamp_ntpfp assert_tu.ntpfp
 #define clear_timestamp_ntpfp clear_tu.ntpfp

 typedef struct {
 int api_version; /* API version # */
 int mode; /* mode bits */
 pps_timeu_t assert_off_tu;
 pps_timeu_t clear_off_tu;
 } pps_params_t;

 #define assert_offset assert_off_tu.tspec
 #define clear_offset clear_off_tu.tspec

 #define assert_offset_ntpfp assert_off_tu.ntpfp
 #define clear_offset_ntpfp clear_off_tu.ntpfp

 The "pps_info_t" type is returned on an inquiry to PPS source. It
 contains the timestamps for the most recent assert event, and the
 most recent clear event. The order in which these events were
 actually received is defined by the timetamps, not by any other

Mogul, et al. Informational [Page 8]

RFC 2783 Pulse-Per-Second API March 2000

 aspect of the specification. Each timestamp field represents the
 value of the operating system’s internal timebase when the
 timestamped event occurred, or as close as possible to that time
 (with the optional addition of a specified offset). The current_mode
 field contains the value of the mode bits (see section 3.3) at the
 time of the most recent transition was captured for this PPS source.
 An application can use current_mode to discover the format of the
 timestamps returned.

 The assert_sequence number increases once per captured assert
 timestamp. Its initial value is undefined. If incremented past the
 largest value for the type, the next value is zero. The
 clear_sequence number increases once per captured clear timestamp.
 Its initial value is undefined, and may be different from the initial
 value of assert_sequence. If incremented past the largest value for
 the type, the next value is zero. Due to possible signal loss or
 excessive signal noise, the assert-sequence number and the clear-
 sequence number might not always increase in step with each other.

 Note that these sequence numbers are most useful in applications
 where events other than PPS transitions are to be captured, which
 might be involved in a precision stopwatch application, for
 example. In such cases, the sequence numbers may be used to detect
 overruns, where the application has missed one or more events.
 They may also be used to detect an excessive event rate, or to
 detect that an event has failed to occur between two calls to the
 time_pps_fetch() function (defined later).

 In order to obtain an uninterrupted series of sequence numbers
 (and hence of event timestamps), it may be necessary to sample the
 pps_info_t values at a rate somewhat faster than the underlying
 event rate. For example, an application interested in both assert
 and clear timestamps may need to sample at least twice per second.
 Proper use of the sequence numbers allows an application to
 discover if it has missed any event timestamps due to an
 insufficient sampling rate.

 The pps_params_t data type is used to discover and modify parameters
 of a PPS source. The data type includes a mode field, described in
 section 3.3. It also includes an api_version field, a read-only
 value giving the version of the API. Currently, the only defined
 value is:

 #define PPS_API_VERS_1 1

 This field is present to enable binary compatibility with future
 versions of the API.

Mogul, et al. Informational [Page 9]

RFC 2783 Pulse-Per-Second API March 2000

 Note: the term "read-only" in this specification means that an
 application cannot modify the relevant data item; only the
 implementation can modify the value. The implementation MUST
 ignore attempts by the application to modify a read-only field.

 As an OPTIONAL feature of the API, the implementation MAY support
 adding offsets to the timestamps that are captured. (Values of type
 "struct timespec" can represent negative offsets.) The assert_offset
 field of a pps_params_t value specifies a value to be added to
 generate a captured assert_timestamp. The clear_offset of a
 pps_params_t value field specifies a value to be added to generate a
 captured clear_timestamp. Since the offsets, if any, apply to all
 users of a given PPS source, the implementation SHOULD impose access
 controls on the use of this feature; for example, allowing only the
 super-user to set the offset values. The default value for both
 offsets is zero.

3.3 Mode bit definitions

 A set of mode bits is associated with each PPS source.

 The bits in the mode field of the pps_params_t type are:

 /* Device/implementation parameters */
 #define PPS_CAPTUREASSERT 0x01
 #define PPS_CAPTURECLEAR 0x02
 #define PPS_CAPTUREBOTH 0x03

 #define PPS_OFFSETASSERT 0x10
 #define PPS_OFFSETCLEAR 0x20

 #define PPS_CANWAIT 0x100
 #define PPS_CANPOLL 0x200

 /* Kernel actions */
 #define PPS_ECHOASSERT 0x40
 #define PPS_ECHOCLEAR 0x80

 /* Timestamp formats */
 #define PPS_TSFMT_TSPEC 0x1000
 #define PPS_TSFMT_NTPFP 0x2000

 These mode bits are divided into three categories:

 1. Device/implementation parameters: These are parameters either
 of the device or of the implementation. If the implementation
 allows these to be changed, then these bits are read/write for
 users with sufficient privilege (such as the super-user), and

Mogul, et al. Informational [Page 10]

RFC 2783 Pulse-Per-Second API March 2000

 read-only for other users. If the implementation does not
 allow these bits to be changed, they are read-only.

 2. Kernel actions: These bits specify certain kernel actions to
 be taken on arrival of a signal. If the implementation
 supports one of these actions, then the corresponding bit is
 read/write for users with sufficient privilege (such as the
 super-user), and read-only for other users. If the
 implementation does not support the action, the corresponding
 bit is always zero.

 3. Timestamp formats: These bits indicate the set of timestamp
 formats available for the device. They are always read-only.

 In more detail, the meanings of the Device/implementation parameter
 mode bits are:

 PPS_CAPTUREASSERT
 If this bit is set, the assert timestamp for the
 associated PPS source will be captured.

 PPS_CAPTURECLEAR
 If this bit is set, the clear timestamp for the
 associated PPS source will be captured.

 PPS_CAPTUREBOTH Defined as the union of PPS_CAPTUREASSERT and
 PPS_CAPTURECLEAR, for convenience.

 PPS_OFFSETASSERT
 If set, the assert_offset value is added to the
 current value of the operating system’s internal
 timebase in order to generate the captured
 assert_timestamp.

 PPS_OFFSETCLEAR If set, the clear_offset value is added to the
 current value of the operating system’s internal
 timebase in order to generate the captured
 clear_timestamp.

 PPS_CANWAIT If set, the application may request that the
 time_pps_fetch() function (see section 3.4.3) should
 block until the next timestamp arrives. Note: this
 mode bit is read-only.

 PPS_CANPOLL This bit is reserved for future use. An application
 SHOULD NOT depend on any functionality implied either
 by its presence or by its absence.

Mogul, et al. Informational [Page 11]

RFC 2783 Pulse-Per-Second API March 2000

 If neither PPS_CAPTUREASSERT nor PPS_CAPTURECLEAR is set, no valid
 timestamp will be available via the API.

 The meanings of the Kernel action mode bits are:

 PPS_ECHOASSERT If set, after the capture of an assert timestamp,
 the implementation generates a signal transition as
 rapidly as possible on an output signal pin. This
 MUST NOT affect the delay between the PPS source’s
 transition to the asserted phase and the capture of
 the assert timestamp.

 PPS_ECHOCLEAR If set, after the capture of a clear timestamp, the
 implementation generates a signal transition as
 rapidly as possible on an output signal pin. This
 MUST NOT affect the delay between the PPS source’s
 transition to the clear phase and the capture of the
 clear timestamp.

 The timestamp formats are:

 PPS_TSFMT_TSPEC Timestamps and offsets are represented as values of
 type "struct timespec". All implementations MUST
 support this format, and this format is the default
 unless an application specifies otherwise.

 PPS_TSFMT_NTPFP Timestamps and offsets are represented as values of
 type "ntp_fp_t", which corresponds to the NTP
 "64-bit unsigned fixed-point" timestamp format [3].
 Support for this format is OPTIONAL.

 Other timestamp format bits may be defined as fields are added to the
 "pps_timeu_t" union.

 The operating system may implement all of these mode bits, or just a
 subset of them. If an attempt is made to set an unsupported mode
 bit, the API will return an error. If an attempt is made to modify a
 read-only mode bit, the API will return an error.

3.4 New functions

 In the description of functions that follows, we use the following
 function parameters:

 filedes A file descriptor (type: int), for a serial line or
 other source of PPS events.

Mogul, et al. Informational [Page 12]

RFC 2783 Pulse-Per-Second API March 2000

 ppshandle A variable of type "pps_handle_t", as defined in
 section 3.2.

 ppsinfobuf A record of type "pps_info_t", as defined in
 section 3.2.

 ppsparams A record of type "pps_params_t", as defined in
 section 3.2.

 tsformat An integer with exactly one of the timestamp format
 bits set.

3.4.1 New functions: obtaining PPS sources

 The API includes functions to create and destroy PPS source
 "handles".

 SYNOPSIS

 int time_pps_create(int filedes, pps_handle_t *handle);
 int time_pps_destroy(pps_handle_t handle);

 DESCRIPTION

 All of the other functions in the PPS API operate on PPS handles
 (type: pps_handle_t). The time_pps_create() is used to convert an
 already-open UNIX file descriptor, for an appropriate special file,
 into a PPS handle.

 The definition of what special files are appropriate for use with the
 PPS API is outside the scope of this specification, and may vary
 based on both operating system implementation, and local system
 configuration. One typical case is a serial line, whose DCD pin is
 connected to a source of PPS events.

 The mode in which the UNIX file descriptor was originally opened
 affects what operations are allowed on the PPS handle. The
 time_pps_setparams() and time_pps_kcbind() functions (see sections
 3.4.2 and 3.4.4) SHOULD be prohibited by the implementation if the
 descriptor is open only for reading (O_RDONLY).

 Note: operations on a descriptor opened with an inappropriate mode
 might fail with EBADF.

 The time_pps_destroy() function makes the PPS handle unusable, and
 frees any storage that might have been allocated for it. It does not
 close the associated file descriptor, nor does it change any of the
 parameter settings for the PPS source.

Mogul, et al. Informational [Page 13]

RFC 2783 Pulse-Per-Second API March 2000

 Note: If this API is adapted to an operating system that does not
 follow UNIX conventions for representing an accessible PPS source
 as an integer file descriptor, the time_pps_create() function may
 take different parameters from those shown here.

 RETURN VALUES

 On successful completion, the time_pps_create() function returns 0.
 Otherwise, a value of -1 is returned and errno is set to indicate the
 error.

 If called with a valid handle parameter, the time_pps_destroy()
 function returns 0. Otherwise, it returns -1.

 ERRORS

 If the time_pps_create() function fails, errno may be set to one of
 the following values:

 [EBADF] The filedes parameter is not a valid file descriptor.

 [EOPNOTSUPP] The use of the PPS API is not supported for the file
 descriptor.

 [EPERM] The process’s effective user ID does not have the
 required privileges to use the PPS API.

3.4.2 New functions: setting PPS parameters

 The API includes several functions use to set or obtain the
 parameters of a PPS source.

 SYNOPSIS

 int time_pps_setparams(pps_handle_t handle,
 const pps_params_t *ppsparams);
 int time_pps_getparams(pps_handle_t handle,
 pps_params_t *ppsparams);
 int time_pps_getcap(pps_handle_t handle, int *mode);

 DESCRIPTION

 A suitably privileged application may use time_pps_setparams() to set
 the parameters (mode bits and timestamp offsets) for a PPS source.
 The pps_params_t type is defined in section 3.2; mode bits are
 defined in section 3.3. An application may use time_pps_getparams()
 to discover the current settings of the PPS parameters. An
 application that needs to change only a subset of the existing

Mogul, et al. Informational [Page 14]

RFC 2783 Pulse-Per-Second API March 2000

 parameters must first call time_pps_getparams() to obtain the current
 parameter values, then set the new values using time_pps_setparams().

 Note: a call to time_pps_setparams() replaces the current values
 of all mode bits with those specified via the ppsparams argument,
 except those bits whose state cannot be changed. Bits might be
 read-only due to access controls, or because they are fixed by the
 implementation.

 The timestamp format of the assert_offset and clear_offset fields is
 defined by the mode field. That is, on a call to
 time_pps_setparams(), the kernel interprets the supplied offset
 values using the timestamp format given in the mode field of the
 ppsparams argument. If the requested timestamp format is not
 supported, the time_pps_setparams() function has no effect and
 returns an error value. On a call to time_pps_getparams(), the
 kernel provides the timestamp format of the offsets by setting one of
 the timestamp format bits in the mode field.

 Note: an application that uses time_pps_getparams() to read the
 current offset values cannot specify which format is used. The
 implementation SHOULD return the offsets using the same timestamp
 format as was used when the offsets were set.

 An application wishing to discover which mode bits it may set, with
 its current effective user ID, may call time_pps_getcap(). This
 function returns the set of mode bits that may be set by the
 application, without generating an EINVAL or EPERM error, for the
 specified PPS source. It does not return the current values for the
 mode bits. A call to time_pps_getcap() returns the mode bits
 corresponding to all supported timestamp formats.

 The time_pps_getcap() function MAY ignore the mode in which the
 associated UNIX file descriptor was opened, so the application might
 still receive an EBADF error on a call to time_pps_setparams(), even
 if time_pps_getcap() says that the chosen mode bits are allowed.

 The mode bits returned by time_pps_getcap() for distinct PPS handles
 may differ, reflecting the specific capabilities of the underlying
 hardware connection to the PPS source, or of the source itself.

 RETURN VALUES

 On successful completion, the time_pps_setparams(),
 time_pps_getparams(), and time_pps_getcap() functions return 0.
 Otherwise, a value of -1 is returned and errno is set to indicate the
 error.

Mogul, et al. Informational [Page 15]

RFC 2783 Pulse-Per-Second API March 2000

 ERRORS

 If the time_pps_setparams(), time_pps_getparams(), or
 time_pps_getcap() function fails, errno may be set to one of the
 following values:

 [EBADF] The handle parameter is not associated with a valid
 file descriptor, or the descriptor is not open for
 writing.

 [EFAULT] A parameter points to an invalid address.

 [EOPNOTSUPP] The use of the PPS API is not supported for the
 associated file descriptor.

 [EINVAL] The operating system does not support all of the
 requested mode bits.

 [EPERM] The process’s effective user ID does not have the
 required privileges to use the PPS API, or to set the
 given mode bits.

3.4.3 New functions: access to PPS timestamps

 The API includes one function that gives applications access to PPS
 timestamps. As an implementation option, the application may request
 the API to block until the next timestamp is captured. (The API does
 not directly support the use of the select() or poll() system calls
 to wait for PPS events.)

 SYNOPSIS

 int time_pps_fetch(pps_handle_t handle,
 const int tsformat,
 pps_info_t *ppsinfobuf,
 const struct timespec *timeout);

 DESCRIPTION

 An application may use time_pps_fetch() to obtain the most recent
 timestamps captured for the PPS source specified by the handle
 parameter. The tsformat parameter specifies the desired timestamp
 format; if the requested timestamp format is not supported, the call
 fails and returns an error value. The application MUST specify
 exactly one timestamp format.

Mogul, et al. Informational [Page 16]

RFC 2783 Pulse-Per-Second API March 2000

 This function blocks until either a timestamp is captured from the
 PPS source, or until the specified timeout duration has expired. If
 the timeout parameter is a NULL pointer, the function simply blocks
 until a timestamp is captured. If the timeout parameter specifies a
 delay of zero, the function returns immediately.

 Support for blocking behavior is an implementation option. If the
 PPS_CANWAIT mode bit is clear, and the timeout parameter is either
 NULL or points to a non-zero value, the function returns an
 EOPNOTSUPP error. An application can discover whether the feature is
 implemented by using time_pps_getcap() to see if the PPS_CANWAIT mode
 bit is set.

 The result is stored in the ppsinfobuf parameter, whose fields are
 defined in section 3.2. If the function returns as the result of a
 timeout or error, the contents of the ppsinfobuf are undefined.

 If this function is invoked before the system has captured a
 timestamp for the signal source, the ppsinfobuf returned will have
 its timestamp fields set to the time format’s base date (e.g., for
 PPS_TSFMT_TSPEC, both the tv_sec and tv_nsec fields will be zero).

 RETURN VALUES

 On successful completion, the time_pps_fetch() function returns 0.
 Otherwise, a value of -1 is returned and errno is set to indicate the
 error.

 ERRORS

 If the time_pps_fetch() function fails, errno may be set to one of
 the following values:

 [EBADF] The handle parameter is not associated with a valid
 file descriptor.

 [EFAULT] A parameter points to an invalid address.

 [EINTR] A signal was delivered before the time limit
 specified by the timeout parameter expired and before
 a timestamp has been captured.

 [EINVAL] The requested timestamp format is not supported.

 [EOPNOTSUPP] The use of the PPS API is not supported for the
 associated file descriptor.

 [ETIMEDOUT] The timeout duration has expired.

Mogul, et al. Informational [Page 17]

RFC 2783 Pulse-Per-Second API March 2000

3.4.4 New functions: disciplining the kernel timebase

 The API includes one OPTIONAL function to specify if and how a PPS
 source is provided to a kernel consumer of PPS events, such as the
 code used to discipline the operating system’s internal timebase.

 SYNOPSIS

 int time_pps_kcbind(pps_handle_t handle,
 const int kernel_consumer,
 const int edge,
 const int tsformat);
 DESCRIPTION

 An application with appropriate privileges may use time_pps_kcbind()
 to bind a kernel consumer to the PPS source specified by the handle.

 The kernel consumer is identified by the kernel_consumer parameter.
 In the current version of the API, the possible values for this
 parameter are:

 #define PPS_KC_HARDPPS 0
 #define PPS_KC_HARDPPS_PLL 1
 #define PPS_KC_HARDPPS_FLL 2

 with these meanings:

 PPS_KC_HARDPPS The kernel’s hardpps() function (or equivalent).

 PPS_KC_HARDPPS_PLL
 A variant of hardpps() constrained to use a
 phase-locked loop.

 PPS_KC_HARDPPS_FLL
 A variant of hardpps() constrained to use a
 frequency-locked loop.

 Implementation of any or all of these values is OPTIONAL.

 The edge parameter indicates which edge of the PPS signal causes a
 timestamp to be delivered to the kernel consumer. It may have the
 value PPS_CAPTUREASSERT, PPS_CAPTURECLEAR, or PPS_CAPTUREBOTH,
 depending on particular characteristics of the PPS source. It may
 also be zero, which removes any binding between the PPS source and
 the kernel consumer.

Mogul, et al. Informational [Page 18]

RFC 2783 Pulse-Per-Second API March 2000

 The tsformat parameter specifies the format for the timestamps
 delivered to the kernel consumer. If this value is zero, the
 implementation MAY choose the appropriate format, or return EINVAL.
 The implementation MAY ignore a non-zero value for this parameter.

 The binding created by this call persists until it is changed by a
 subsequent call specifying the same kernel_consumer. In particular,
 a subsequent call to time_pps_destroy() for the specified handle does
 not affect the binding.

 The binding is independent of any prior or subsequent changes to the
 PPS_CAPTUREASSERT and PPS_CAPTURECLEAR mode bits for the device.
 However, if either the edge or the tsformat parameter values are
 inconsistent with the capabilities of the PPS source, an error is
 returned. The implementation MAY also return an error if the
 tsformat value is unsupported for time_pps_kcbind(), even if it is
 supported for other uses of the API.

 The operating system may enforce two restrictions on the bindings
 created by time_pps_kcbind():

 1. the kernel MAY return an error if an attempt is made to bind a
 kernel consumer to more than one PPS source a time.

 2. the kernel MAY restrict the ability to set bindings to
 processes with sufficient privileges to modify the system’s
 internal timebase. (On UNIX systems, such modification is
 normally done using settimeofday() and/or adjtime(), and is
 restricted to users with superuser privilege.)

 Warning: If this feature is configured for a PPS source that does
 not have an accurate 1-pulse-per-second signal, or is otherwise
 inappropriately configured, use of this feature may result in
 seriously incorrect timekeeping for the entire system. For best
 results, the 1-PPS signal should have much better frequency
 stability than the system’s internal clock source (usually a
 crystal-controlled oscillator), and should have jitter (variation
 in interarrival time) much less than the system’s clock-tick
 interval.

 See RFC 1589 [4] for more information about how the system’s timebase
 may be disciplined using a PPS signal.

 RETURN VALUES

 On successful completion, the time_pps_kcbind() function returns 0.
 Otherwise, a value of -1 is returned and errno is set to indicate the
 error.

Mogul, et al. Informational [Page 19]

RFC 2783 Pulse-Per-Second API March 2000

 ERRORS

 If the time_pps_kcbind() function fails, errno may be set to one of
 the following values:

 [EBADF] The handle parameter is not associated with a valid
 file descriptor, or the descriptor is not open for
 writing.

 [EFAULT] A parameter points to an invalid address.

 [EINVAL] The requested timestamp format is not supported.

 [EOPNOTSUPP] The use of the PPS API is not supported for the
 associated file descriptor, or this OPTIONAL
 function is not supported.

 [EPERM] The process’s effective user ID does not have the
 required privileges to set the binding.

3.5 Compliance rules

 The key words "MUST", "MUST NOT", "REQUIRED","SHOULD", SHOULD NOT",
 "MAY", and "OPTIONAL" in this document are to be interpreted as
 described in RFC 2119 [1].

 Some features of this specification are OPTIONAL, but others are
 REQUIRED.

3.5.1 Functions

 An implementation MUST provide these functions:

 - time_pps_create()
 - time_pps_destroy()
 - time_pps_setparams()
 - time_pps_getparams()
 - time_pps_getcap()
 - time_pps_fetch()

 An implementation MUST provide this function, but it may be
 implemented as a function that always return an EOPNOTSUPP error,
 possibly on a per-source basis:

 - time_pps_kcbind()

Mogul, et al. Informational [Page 20]

RFC 2783 Pulse-Per-Second API March 2000

3.5.2 Mode bits

 An implementation MUST support at least one of these mode bits for
 each PPS source:

 - PPS_CAPTUREASSERT
 - PPS_CAPTURECLEAR

 and MAY support both of them. If an implementation supports both of
 these bits for a PPS source, it SHOULD allow them to be set
 simultaneously.

 An implementation MUST support this timestamp format:

 - PPS_TSFMT_TSPEC

 An implementation MAY support these mode bits:

 - PPS_ECHOASSERT
 - PPS_ECHOCLEAR
 - PPS_OFFSETASSERT
 - PPS_OFFSETCLEAR

 An implementation MAY support this timestamp format:

 - PPS_TSFMT_NTPFP

3.6 Examples

 A very simple use of this API might be:

 int fd;
 pps_handle_t handle;
 pps_params_t params;
 pps_info_t infobuf;
 struct timespec timeout;

 /* Open a file descriptor and enable PPS on rising edges */
 fd = open(PPSfilename, O_RDWR, 0);
 time_pps_create(fd, &handle);
 time_pps_getparams(handle, ¶ms);
 if ((params.mode & PPS_CAPTUREASSERT) == 0) {
 fprintf(stderr, "%s cannot currently CAPTUREASSERT\n",
 PPSfilename);
 exit(1);
 }

 /* create a zero-valued timeout */

Mogul, et al. Informational [Page 21]

RFC 2783 Pulse-Per-Second API March 2000

 timeout.tv_sec = 0;
 timeout.tv_nsec = 0;

 /* loop, printing the most recent timestamp every second or so */
 while (1) {
 sleep(1);
 time_pps_fetch(handle, PPS_TSFMT_TSPEC, &infobuf, &timeout);
 printf("Assert timestamp: %d.%09d, sequence: %ld\n",
 infobuf.assert_timestamp.tv_sec,
 infobuf.assert_timestamp.tv_nsec,
 infobuf.assert_sequence);
 }

 Note that this example omits most of the error-checking that would be
 expected in a reliable program.

 Also note that, on a system that supports PPS_CANWAIT, the function
 of these lines:

 sleep(1);
 time_pps_fetch(handle, PPS_TSFMT_TSPEC, &infobuf, &timeout);

 might be more reliably accomplished using:

 timeout.tv_sec = 100;
 timeout.tv_nsec = 0;
 time_pps_fetch(handle, PPS_TSFMT_TSPEC, &infobuf, &timeout);

 The (arbitrary) timeout value is used to protect against the
 possibility that another application might disable PPS timestamps, or
 that the hardware generating the timestamps might fail.

 A slightly more elaborate use of this API might be:

 int fd;
 pps_handle_t handle;
 pps_params_t params;
 pps_info_t infobuf;
 int avail_mode;
 struct timespec timeout;

 /* Open a file descriptor */
 fd = open(PPSfilename, O_RDWR, 0);
 time_pps_create(fd, &handle);

 /*
 * Find out what features are supported
 */

Mogul, et al. Informational [Page 22]

RFC 2783 Pulse-Per-Second API March 2000

 time_pps_getcap(handle, &avail_mode);
 if ((avail_mode & PPS_CAPTUREASSERT) == 0) {
 fprintf(stderr, "%s cannot CAPTUREASSERT\n", PPSfilename);
 exit(1);
 }
 if ((avail_mode & PPS_OFFSETASSERT) == 0) {
 fprintf(stderr, "%s cannot OFFSETASSERT\n", PPSfilename);
 exit(1);
 }

 /*
 * Capture assert timestamps, and
 * compensate for a 675 nsec propagation delay
 */

 time_pps_getparams(handle, ¶ms);
 params.assert_offset.tv_sec = 0;
 params.assert_offset.tv_nsec = 675;
 params.mode |= PPS_CAPTUREASSERT | PPS_OFFSETASSERT;
 time_pps_setparams(handle, ¶ms);

 /* create a zero-valued timeout */
 timeout.tv_sec = 0;
 timeout.tv_nsec = 0;

 /* loop, printing the most recent timestamp every second or so */
 while (1) {
 if (avail_mode & PPS_CANWAIT) {
 time_pps_fetch(handle, PPS_TSFMT_TSPEC, &infobuf, NULL);
 /* waits for the next event */
 } else {
 sleep(1);
 time_pps_fetch(handle, PPS_TSFMT_TSPEC, &infobuf,
 timeout);

 }
 printf("Assert timestamp: %d.%09d, sequence: %ld\n",
 infobuf.assert_timestamp.tv_sec,
 infobuf.assert_timestamp.tv_nsec,
 infobuf.assert_sequence);
 }

 Again, most of the necessary error-checking has been omitted from
 this example.

Mogul, et al. Informational [Page 23]

RFC 2783 Pulse-Per-Second API March 2000

4 Security Considerations

 This API gives applications three capabilities:

 - Causing the system to capture timestamps on certain events.

 - Obtaining timestamps for certain events.

 - Affecting the system’s internal timebase.

 The first capability should not affect security directly, but might
 cause a slight increase in interrupt latency and interrupt-handling
 overhead.

 The second capability might be useful in implementing certain kinds
 of covert communication channels.

 In most cases, neither of these first two issues is a significant
 security threat, because the traditional UNIX file protection
 facility may be used to to limit access to the relevant special
 files. Provision of the PPS API adds minimal additional risk.

 The final capability is reserved to highly privileged users. In UNIX
 systems, this means those with superuser privilege. Such users can
 evade protections based on file permissions; however, such users can
 in general cause unbounded havoc, and can set the internal timebase
 (and its rate of change), so this API creates no new vulnerabilities.

5 Acknowledgements

 The API in this document draws some of its inspiration from the LBL
 "ppsclock" distribution [2], originally implemented in 1993 by Steve
 McCanne, Craig Leres, and Van Jacobson. We also thank Poul-Henning
 Kamp, Craig Leres, Judah Levine, and Harlan Stenn for helpful
 comments they contributed during the drafting of this document.

Mogul, et al. Informational [Page 24]

RFC 2783 Pulse-Per-Second API March 2000

6 References

 1. Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 2. Steve McCanne, Craig Leres, and Van Jacobson. PPSCLOCK.
 ftp://ftp.ee.lbl.gov/ppsclock.tar.Z.

 3. Mills, D., "Network Time Protocol (Version 3): Specification,
 Implementation and Analysis", RFC 1305, March 1992.

 4. Mills, D., "A Kernel Model for Precision Timekeeping", RFC 1589,
 March, 1994.

 5. The Open Group. The Single UNIX Specification, Version 2 - 6 Vol
 Set for UNIX 98. Document number T912, The Open Group, February,
 1997.

Mogul, et al. Informational [Page 25]

RFC 2783 Pulse-Per-Second API March 2000

7 Authors’ Addresses

 Jeffrey C. Mogul
 Western Research Laboratory
 Compaq Computer Corporation
 250 University Avenue
 Palo Alto, California, 94305, U.S.A.

 Phone: 1 650 617 3304 (email preferred)
 EMail: mogul@wrl.dec.com

 David L. Mills
 Electrical and Computer Engineering Department
 University of Delaware
 Newark, DE 19716

 Phone: (302) 831-8247
 EMail: mills@udel.edu

 Jan Brittenson
 Sun Microsystems, Inc.
 901 San Antonio Rd M/S MPK17-202
 Palo Alto, CA 94303
 Email: Jan.Brittenson@Eng.Sun.COM

 Jonathan Stone
 Stanford Distributed Systems Group
 Stanford, CA 94305

 Phone: (650) 723-2513
 EMail: jonathan@dsg.stanford.edu

 Ulrich Windl
 Universitaet Regensburg, Klinikum

 EMail: ulrich.windl@rz.uni-regensburg.de

Mogul, et al. Informational [Page 26]

RFC 2783 Pulse-Per-Second API March 2000

A. Extensions and related APIs

 The API specified in the main body of this document could be more
 useful with the provision of several extensions or companion APIs.

 At present, the interfaces listed in this appendix are not part of
 the formal specification in this document.

A.1 Extension: Parameters for the "echo" mechanism

 The "echo" mechanism described in the body of this specification
 leaves most of the details to the implementor, especially the
 designation of one or more output pins.

 It might be useful to extend this API to provide either or both of
 these features:

 - A means by which the application can discover which output
 pin is echoing the input pin.

 - A means by which the application can select which output
 pin is echoing the input pin.

A.2 Extension: Obtaining information about external clocks

 The PPS API may be useful with a wide variety of reference clocks,
 connected via several different interface technologies (including
 serial lines, parallel interfaces, and bus-level interfaces). These
 reference clocks can have many features and parameters, some of which
 might not even have been invented yet.

 We believe that it would be useful to have a mechanism by which an
 application can discover arbitrary features and parameters of a
 reference clock. These might include:

 - Clock manufacturer, model number, and revision level
 - Whether the clock is synchronized to an absolute standard
 - For synchronized clocks,
 * The specific standard
 * The accuracy of the standard
 * The path used (direct connection, shortwave, longwave,
 satellite, etc.)
 * The distance (offset) and variability of this path

Mogul, et al. Informational [Page 27]

RFC 2783 Pulse-Per-Second API March 2000

 - For PPS sources,
 * The pulse rate
 * The pulse shape
 * Which edge of the pulse corresponds to the epoch

 - The time representation format

 This information might best be provided by an API analogous to the
 standard "curses" API, with a database analogous to the standard
 "terminfo" database. That is, a "clockinfo" database would contain a
 set of (attribute, value) pairs for each type of clock, and the API
 would provide a means to query this database.

 Additional mechanisms would allow an application to discover the
 clock or clocks connected to the local system, and to discover the
 clockinfo type of a specific clock device.

A.3 Extension: Finding a PPS source

 Although the clockinfo database described in section A.2, together
 with the discover mechanisms described there, would allow an
 application to discover the PPS source (or sources) connected to a
 system, it might be more complex than necessary.

 A simpler approach would be to support a single function that
 provides the identity of one or more PPS sources.

 For example, the function might be declared as

 int time_pps_findsource(int index,
 char *path, int pathlen,
 char *idstring, int idlen);

 The index argument implicitly sets up an ordering on the PPS sources
 attached to the system. An application would use this function to
 inquire about the Nth source. The function would return -1 if no
 such source exists; otherwise, it would return 0, and would place the
 pathname of the associated special file in the path argument. It
 would also place an identification string in the idstring argument.
 The identification string could include the clock make, model,
 version, etc., which could then be used by the application to control
 its behavior.

 This function might simply read the Nth line from a simple database,
 containing lines such as:

 /dev/tty00 "TrueTime 468-DC"
 /dev/pps1 "Homebrew rubidium frequency standard"

Mogul, et al. Informational [Page 28]

RFC 2783 Pulse-Per-Second API March 2000

 allowing the system administrator to describe the configuration of
 PPS sources.

B. Example implementation: PPSDISC Line discipline

 One possible implementation of the PPS API might be to define a new
 "line discipline" and then map the API onto a set of ioctl()
 commands. Here we sketch such an implementation; note that this is
 not part of the specification of the API, and applications should not
 expect this low-level interface to be available.

 In this approach, the set of line disciplines is augmented with one
 new line discipline, PPSDISC. This discipline will act exactly the
 same as the TTYDISC discipline, except for its handling of modem DCD
 interrupts.

 Once the TIOCSETD ioctl() has been used to select this line
 discipline, PPS-related operations on the serial line may be invoked
 using new ioctl() commands. For example (values used only for
 illustration):

 #define PPSFETCH _IOR(’t’, 75, pps_info_t)
 #define PPSSETPARAM _IOW(’t’, 76, pps_params_t)
 #define PPSGETPARAM _IOR(’t’, 77, pps_params_t)
 #define PPSGETCAP _IOR(’t’, 78, int)

B.1 Example

 A typical use might be:

 int ldisc = PPSDISC;
 pps_params_t params;
 pps_info_t infobuf;

 ioctl(fd, TIOCSETD, &ldisc); /* set discipline */

 /*
 * Check the capabilities of this PPS source to see
 * if it supports what we need.
 */
 ioctl(fd, PPSGETCAP, ¶ms);
 if ((params.mode & PPS_CAPTUREASSERT) == 0) {
 fprintf(stderr, "PPS source is not suitable\n");
 exit(1);
 }

 /*
 * Set this line to timestamp on a rising-edge interrupt

Mogul, et al. Informational [Page 29]

RFC 2783 Pulse-Per-Second API March 2000

 */
 ioctl(fd, PPSGETPARAMS, ¶ms);
 params.mode |= PPS_CAPTUREASSERT;
 ioctl(fd, PPSSETPARAMS, ¶ms);

 sleep(2); /* allow time for the PPS pulse to happen */

 /* obtain most recent timestamp and sequence # for this line */
 ioctl(fd, PPSFETCH, &infobuf);

 Again, this example imprudently omits any error-checking.

C. Available implementations

 Several available implementations of this API are listed at
 <http://www.ntp.org/ppsapi/PPSImpList.html>. Note that not all of
 these implementations correspond to the current version of the
 specification.

Mogul, et al. Informational [Page 30]

RFC 2783 Pulse-Per-Second API March 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Mogul, et al. Informational [Page 31]

