
Network Working Group H. Maruyama
Request for Comments: 2803 K. Tamura
Category: Informational N. Uramoto
 IBM
 April 2000

 Digest Values for DOM (DOMHASH)

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This memo defines a clear and unambiguous definition of digest (hash)
 values of the XML objects regardless of the surface string variation
 of XML. This definition can be used for XML digital signature as well
 efficient replication of XML objects.

Table of Contents

 1. Introduction..2
 2. Digest Calculation......................................3
 2.1. Overview..3
 2.2. Namespace Considerations..............................4
 2.3. Definition with Code Fragments........................5
 2.3.1. Text Nodes..5
 2.3.2. Processing Instruction Nodes........................6
 2.3.3. Attr Nodes..6
 2.3.4. Element Nodes.......................................7
 2.3.5. Document Nodes......................................9
 3. Discussion..9
 4. Security Considerations.................................9
 References..10
 Authors’ Addresses..10
 Full Copyright Statement..................................11

Maruyama, et al. Informational [Page 1]

RFC 2803 Digest Values for DOM (DOMHASH) April 2000

1. Introduction

 The purpose of this document is to give a clear and unambiguous
 definition of digest (hash) values of the XML objects [XML]. Two
 subtrees are considered identical if their hash values are the same,
 and different if their hash values are different.

 There are at least two usage scenarios of DOMHASH. One is as a basis
 for digital signatures for XML. Digital signature algorithms normally
 require hashing a signed content before signing. DOMHASH provides a
 concrete definition of the hash value calculation.

 The other is to use DOMHASH when synchronizing two DOM structures
 [DOM]. Suppose that a server program generates a DOM structure which
 is to be rendered by clients. If the server makes frequent small
 changes on a large DOM tree, it is desirable that only the modified
 parts are sent over to the client. A client can initiate a request by
 sending the root hash value of the structure in the cache memory. If
 it matches with the root hash value of the current server structure,
 nothing needs be sent. If not, then the server compares the client
 hash with the older versions in the server’s cache. If it finds one
 that matches the client’s version of the structure, then it locates
 differences with the current version by recursively comparing the
 hash values of each node. This way, the client can receive only an
 updated portion of a large structure without requesting the whole
 thing.

 One way of defining digest values is to take a surface string as the
 input for a digest algorithm. However, this approach has several
 drawbacks. The same internal DOM structure may be represented in may
 different ways as surface strings even if they strictly conform to
 the XML specification. Treatment of white spaces, selection of
 character encodings, entity references (i.e., use of ampersands), and
 so on have impact on the generation of a surface string. If the
 implementations of surface string generation are different, the hash
 values would be different, resulting in unvalidatable digital
 signatures and unsuccessful detection of identical DOM structures.
 Therefore, it is desirable that digest of DOM is defined in the DOM
 terms -- that is, as an unambiguous algorithm operating on a DOM
 tree. This is the approach we take in this specification.

 Introduction of namespace is another source of variation of surface
 string because different namespace prefixes can be used for
 representing the same namespace URI [URI]. In the following example,
 the namespace prefix "edi" is bound to the URI
 "http://ecommerce.org/schema" but this prefix can be arbitrary chosen
 without changing the logical contents as shown in the second example.

Maruyama, et al. Informational [Page 2]

RFC 2803 Digest Values for DOM (DOMHASH) April 2000

 <?xml version="1.0"?>
 <root xmlns:edi=’http://ecommerce.org/schema’>
 <edi:order>
 :
 </edi:order>
 </root>

 <?xml version="1.0"?>
 <root xmlns:ec=’http://ecommerce.org/schema’>
 <ec:order>
 :
 </ec:order>
 </root>

 The DOMHASH defined in this document is designed so that the choice
 of the namespace prefix does not affect the digest value. In the
 above example, both the "root" elements will get the same digest
 value.

2. Digest Calculation

2.1. Overview

 Hash values are defined on the DOM type Node. We consider the
 following five node types that are used for representing a DOM
 document structure:

 - Text
 - ProcessingInstruction
 - Attr
 - Element
 - Document

 Comment nodes and Document Type Definitions (DTDs) do not participate
 in the digest value calculation. This is because DOM does not
 require a conformant processor to create data structures for these.
 DOMHASH is designed so that it can be computed with any XML processor
 conformant to the DOM or SAX [SAX] specification.

 Nodes with the node type EntityReference must be expanded prior to
 digest calculation.

 The digest values are defined recursively on each level of the DOM
 tree so that only a relevant part needs to be recalculated when a
 small portion of the tree is changed.

Maruyama, et al. Informational [Page 3]

RFC 2803 Digest Values for DOM (DOMHASH) April 2000

 Below, we give the precise definitions of digest for these types. We
 describe the format of the data to be supplied to a hash algorithm
 using a figure and a simple description, followed by a Java code
 fragment using the DOM API and the JDK 1.1 Platform Core API only.
 Therefore, the semantics should be unambiguous.

 As the rule of thumb, all strings are to be in UTF-16BE [UTF16]. If
 there is a sequence of text nodes without any element nodes in
 between, these text nodes are merged into one by concatenating them.
 A zero-length text node is always ignored.

 Note that validating and non-validating XML processors may generate
 different DOM trees from the same XML document, due to attribute
 normalization and default attributes. If DOMHASH is to be used for
 testing logical equivalence between two XML documents (as opposed to
 DOM trees), it may be necessary to normalize attributes and supply
 default attributes prior to DOMHASH calculation.

 Some legacy character encodings (such as ISO-2022-JP) have certain
 ambiguity in translating into Unicode. This is again dependent on
 XML processors. Treatment of such processor dependencies is out of
 scope of this document.

2.2. Namespace Considerations

 To avoid the dependence on the namespace prefix, we use "expanded
 names" to do digest calculation. If an element name or an attribute
 name is qualified either by a explicit namespace prefix or by a
 default namespace, the name’s LocalPart is prepended by the URI of
 the namespace (the namespace name as defined in the Namespace
 specification [NAM]) and a colon before digest calculation. In the
 following example, the default qualified name "order" is expanded
 into "http://ecommerce.org/schema:order" while the explicit qualified
 name "book:title" is expanded into "urn:loc.gov:books:title" before
 digest calculation.

 <?xml version="1.0"?>

 <root xmlns=’http://ecommerce.org/schema’
 xmlns:book=’urn:loc.gov:books’>
 <order>
 <book:title> ... </book:title>
 :
 </order>
 </root>

Maruyama, et al. Informational [Page 4]

RFC 2803 Digest Values for DOM (DOMHASH) April 2000

 We define an expanded name (either for element or attribute) as
 follows:

 If a name is not qualified, the expanded name is the name itself.

 If a name is qualified with the prefix "xmlns", the expanded name
 is undefined.

 If a name is qualified either by default or by an explicit
 namespace prefix, the expanded name is URI bound to the namespace
 + ":" + LocalPart

 In the following example code, we assume that the getExpandedName()
 method (which returns the expanded name as defined above) is defined
 in both Element and Attr interfaces of DOM.

 Note that the digest values are not defined on namespace
 declarations. In other words, the digest value is not defined for an
 attribute when

 - the attribute name is "xmlns", or
 - the namespace prefix is "xmlns".

 In the above example, the two attributes which are namespace
 declarations do not have digest values and therefore will not
 participate in the calculation of the digest value of the "root"
 element.

2.3. Definition with Code Fragments

 The code fragments in the definitions below assume that they are in
 implementation classes of Node. Therefore, a methods call without an
 explicit object reference is for the Node itself. For example,
 getData() returns the text data of the current node if it is a Text
 node. The parameter digestAlgorithm is to be replaced by an
 identifier of the digest algorithm, such as "MD5" [MD5] and "SHA-1"
 [SHA].

 The computation should begin with a four byte integer that represents
 the type of the node, such as TEXT_NODE or ELEMENT_NODE.

2.3.1. Text Nodes

 The hash value of a Text node is computed on the four byte header
 followed by the UTF-16BE encoded text string.

 - TEXT_NODE (3) in 32 bit network-byte-ordered integer
 - Text data in UTF-16BE stream (variable length)

Maruyama, et al. Informational [Page 5]

RFC 2803 Digest Values for DOM (DOMHASH) April 2000

 public byte[] getDigest(String digestAlgorithm) {
 MessageDigest md = MessageDigest.getInstance(digestAlgorithm);
 md.update((byte)0);
 md.update((byte)0);
 md.update((byte)0);
 md.update((byte)3);
 md.update(getData().getBytes("UnicodeBigUnmarked"));
 return md.digest();
 }

 Here, MessageDigest is in the package java.security.*, one of the
 built-in packages of JDK 1.1.

2.3.2. ProcessingInstruction Nodes

 A ProcessingInstruction (PI) node has two components: the target and
 the data. Accordingly, the hash is computed on the concatenation of
 both, separated by ’x0000’. PI data is from the first non white
 space character after the target to the character immediately
 preceding the "?>".

 - PROCESSING_INSTRUCTION_NODE (7) in 32 bit network-byte-ordered
 integer
 - PI target in UTF-16BE stream (variable length)
 - 0x00 0x00
 - PI data in UTF-16BE stream (variable length)

 public byte[] getDigest(String digestAlgorithm) {
 MessageDigest md = MessageDigest.getInstance(digestAlgorithm);
 md.update((byte)0);
 md.update((byte)0);
 md.update((byte)0);
 md.update((byte)7);
 md.update(getName().getBytes("UnicodeBigUnmarked"));
 md.update((byte)0);
 md.update((byte)0);
 md.update(getData().getBytes("UnicodeBigUnmarked"));
 return md.digest();
 }

2.3.3. Attr Nodes

 The digest value of Attr nodes are defined similarly to PI nodes,
 except that we need a separator between the expanded attribute name
 and the attribute value. The ’0x0000’ value in UTF-16BE is allowed
 nowhere in an XML document, so it can serve as an unambiguous
 separator. The expanded name must be used as the attribute name
 because it may be qualified. Note that if the attribute is a

Maruyama, et al. Informational [Page 6]

RFC 2803 Digest Values for DOM (DOMHASH) April 2000

 namespace declaration (either the attribute name is "xmlns" or its
 prefix is "xmlns"), the digest value is undefined and the getDigest()
 method should return null.

 - ATTRIBUTE_NODE (2) in 32 bit network-byte-ordered integer
 - Expanded attribute name in UTF-16BE stream (variable length)
 - 0x00 0x00
 - Attribute value in UTF-16BE stream (variable length)

 public byte[] getDigest(String digestAlgorithm) {
 if (getNodeName().equals("xmlns")
 || getNodeName().startsWith("xmlns:"))
 return null;
 MessageDigest md = MessageDigest.getInstance(digestAlgorithm);
 md.update((byte)0);
 md.update((byte)0);
 md.update((byte)0);
 md.update((byte)2);
 md.update(getExpandedName().getBytes("UnicodeBigUnmarked"));
 md.update((byte)0);
 md.update((byte)0);
 md.update(getValue().getBytes("UnicodeBigUnmarked"));
 return md.digest();
 }

2.3.4. Element Nodes

 Element nodes are the most complex because they consist of other
 nodes recursively. Hash values of these component nodes are used to
 calculate the node’s digest so that we can save computation when the
 structure is partially changed.

 First, all the attributes except for namespace declarations must be
 collected. This list is sorted lexicographically by the expanded
 attribute names (based on Unicode character code points). When no
 surrogate characters are involved, this is the same as sorting in
 ascending order in terms of the UTF-16BE encoded expanded attribute
 names, using the string comparison operator String.compareTo() in
 Java.

 - ELEMENT_NODE (1) in 32 bit network-byte-ordered integer
 - Expanded element name in UTF-16BE stream (variable length)
 - 0x00 0x00
 - A number of non-namespace-declaration attributes in 32 bit
 network-byte-ordered unsigned integer
 - Sequence of digest values of non-namespace-declaration attributes,
 sorted lexicographically by expanded attribute names
 - A number of child nodes (except for Comment nodes) in 32bit

Maruyama, et al. Informational [Page 7]

RFC 2803 Digest Values for DOM (DOMHASH) April 2000

 network-byte-ordered unsigned integer
 - Sequence of digest values of each child node except for Comment
 nodes (variable length) (A sequence of child texts is merged to one
 text. A zero-length text and Comment nodes are not counted as
 child)

 public byte[] getDigest(String digestAlgorithm) {
 MessageDigest md = MessageDigest.getInstance(digestAlgorithm);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 DataOutputStream dos = new DataOutputStream(baos);
 dos.writeInt(ELEMENT_NODE);//This is stored in network byte order
 dos.write(getExpandedName().getBytes("UnicodeBigUnmarked"));
 dos.write((byte)0);
 dos.write((byte)0);
 // Collect all attributes except for namespace declarations
 NamedNodeMap nnm = this.getAttributes();
 int len = nnm.getLength()
 // Find "xmlns" or "xmlns:foo" in nnm and omit it.
 ...
 dos.writeInt(len); // This is sorted in the network byte order
 // Sort attributes lexicographically by expanded attribute
 // names.
 ...
 // Assume that ‘Attr[] aattr’ has sorted Attribute instances.
 for (int i = 0; i < len; i ++)
 dos.write(aattr[i].getDigest(digestAlgorithm));
 Node n = this.getFirstChild();
 // Assume that adjoining Texts are merged,
 // there is no 0-length Text, and
 // comment nodes are removed.
 len = this.getChildNodes().getLength();
 dos.writeInt(len); // This is stored in the network byte order
 while (n != null) {
 dos.write(n.getDigest(digestAlgorithm));
 n = n.getNextSibling();
 }
 dos.close();
 md.update(baos.toByteArray());
 return md.digest();
 }

Maruyama, et al. Informational [Page 8]

RFC 2803 Digest Values for DOM (DOMHASH) April 2000

2.3.5. Document Nodes

 A Document node may have PI nodes before and after the root Element
 node. The digest value of a Document node is computed based on the
 sequence of the digest values of the pre-root PI nodes, the root
 Element node, and the post-root PI nodes in this order. Comment
 nodes and DocumentType nodes, if any, are ignored.

 - DOCUMENT_NODE (9) in 32 bit network-byte-ordered integer
 - A number of child nodes (except for Comment and DocumentType nodes)
 in 32bit network-byte-ordered unsigned integer
 - Sequence of digest values of each child node except for Comment and
 DocumentType nodes (variable length)

 public byte[] getDigest(String digestAlgorithm) {
 MessageDigest md = MessageDigest.getInstance(digestAlgorithm);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 DataOutputStream dos = new DataOutputStream(baos);
 dos.writeInt(DOCUMENT_NODE);//This is stored in network byte order

 // Assume that Comment and DocumentType nodes are removed and this
 // node has only an Element node and PI nodes.
 len = this.getChildNodes().getLength();
 dos.writeInt(len); // This is stored in the network byte order
 Node n = this.getFirstChild();
 while (n != null) {
 dos.write(n.getDigest(digestAlgorithm));
 n = n.getNextSibling();
 }
 dos.close();
 md.update(baos.toByteArray());
 return md.digest();
 }

3. Discussion

 The definition described above can be efficiently implemented with
 any XML processor that is conformant to either DOM and SAX
 specification. Reference implementations are available on request.

4. Security Considerations

 DOMHASH is expected to be used as the basis for digital signatures
 and other security and integrity uses. It’s appropriateness for
 such uses depends on the security of the hash algorithm used and
 inclusion of the fundamental characteristics it is desired to check
 in parts of the DOM model incorporated in the digest by DOMHASH.

Maruyama, et al. Informational [Page 9]

RFC 2803 Digest Values for DOM (DOMHASH) April 2000

References

 [DOM] "Document Object Model (DOM), Level 1 Specification", October
 1998, http://www.w3.org/TR/REC-DOM-Level-1/

 [MD5] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [NAM] Tim Bray, Dave Hollander, Andrew Layman, "Namespaces in XML",
 http://www.w3.org/TR/1999/REC-xml-names-19990114.

 [SAX] David Megginson, "SAX 1.0: The Simple API for XML",
 http://www.megginson.com/SAX/, May 1998.

 [SHA] (US) National Institute of Standards and Technology, "Federal
 Information Processing Standards Publication 180-1: Secure Hash
 Standard", 17 April 1995.

 [URI] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998.

 [UTF16] Hoffman, P., Yergeau, F., "UTF-16, an encoding of ISO 10646",
 RFC 2781, February 2000.

 [XML] Tim Bray, Jean Paoli, C. M. Sperber-McQueen, "Extensible
 Markup Language (XML) 1.0", http://www.w3.org/TR/1998/REC-xml-
 19980210

Authors’ Addresses

 Hiroshi Maruyama,
 IBM Research, Tokyo Research Laboratory

 EMail: maruyama@jp.ibm.com

 Kent Tamura,
 IBM Research, Tokyo Research Laboratory

 EMail: kent@trl.ibm.co.jp

 Naohiko Uramoto,
 IBM Research, Tokyo Research Laboratory

 EMail: uramoto@jp.ibm.com

Maruyama, et al. Informational [Page 10]

RFC 2803 Digest Values for DOM (DOMHASH) April 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Maruyama, et al. Informational [Page 11]

